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ABSTRACT

We introduce a simple and interpretable model for functional data analysis for situations

where the observations at each location are functional rather than scalar. This new ap-

proach is based on a tensor product representation of the function-valued process and

utilizes eigenfunctions of marginal kernels. The resulting marginal principal components

and product principal components are shown to have nice properties. Given a sample of

independent realizations of the underlying function-valued stochastic process, we propose

straightforward fitting methods to obtain the components of this model and to establish

asymptotic consistency and rates of convergence for the proposed estimates. The methods

are illustrated by modeling the dynamics of annual fertility profile functions for 17 countries.

This analysis demonstrates that the proposed approach leads to insightful interpretations

of the model components and interesting conclusions.

KEY WORDS: Asymptotics, demography, functional data analysis, marginal kernel,

product principal component analysis, tensor product representation.

This research was supported by NSF grants DMS-1104426, DMS-1228369, DMS-1407852, by the

Spanish Ministry of Education and Science, and FEDER grant MTM2010-14887. The main part

of this work was done when Pedro Delicado was visiting UC Davis with the financial support

of the Spanish Government (Programa Nacional de Movilidad de Recursos Humanos del Plan

Nacional de I-D+i).U.S.



1. INTRODUCTION

In various applications one encounters stochastic processes and random fields that are

defined on temporal, spatial or other domains and take values in a function space, assumed

to be the space of square integrable functions L2. More specifically, for S ⇢ Rd1 and

T ⇢ Rd2 , we consider the stochastic process X : T ! L2(S) and denote its value at time

t 2 T by X(·, t), a square integrable random function with argument s 2 S. A key feature

of our approach is that we consider the case where one has n independent observations of

the functional stochastic process.

A specific example that we will discuss in detail below (see Section 5) is that of female

fertility profile functions X(·, t), available annually (t = year) for n = 17 countries, with

age as argument s. The starting point is the Age-Specific Fertility Rate (ASFR) X(s, t) for

a specific country, defined as

X(s, t) = ASFR(s, t) =
Births during the year t given by women aged s

Person-years lived during the year t by women aged s
. (1)

Figure 1 illustrates the ASFR data for the U.S. from 1951 to 2006. The left panel shows

ASFR(·, t) for t = 1960, 1980 and 2000. The image plot representing ASFR(s, t) for all

possible values of s and t in the right panel provides a visualization of the dynamics of

fertility in the U.S. over the whole period.
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Figure 1: Age Specific Fertility Rate for the U.S. Left: Profiles for three calendar years.

Right: Image plot representing ASFR(s, t) for all possible values of s and t.
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For data structures where one observes only one realization of a function-valued process,

related modeling approaches have been discussed previously (Delicado et al. 2010; Nerini

et al. 2010; Gromenko et al. 2012, 2013; Huang et al. 2009). Similarly, Hyndman and

Ullah (2007) and Hyndman and Shang (2009) considered functional time series in a setting

where only one realization is observed. In related applications such as mortality analysis,

the decomposition into age and year has been studied by Eilers and Marx (2003); Currie

et al. (2004, 2006); Eilers et al. (2006), using P-splines. The case where i.i.d. samples

are available for random fields has been much less studied. Multilevel functional models

and functional mixed e↵ects models have been investigated by Morris and Carroll (2006),

Crainiceanu et al. (2009), Greven et al. (2010), and Yuan et al. (2014), among others, while

Chen and Müller (2012) developed a “double functional principal component” method and

studied its asymptotic properties.

Our approach applies to general dimensions of both the domain of the underlying ran-

dom process, with argument t, as well as of the domain of the observed functions, with

argument s, while we emphasize the case of function-valued observations for stochastic

processes on a one-dimensional time domain. This is the most common case and it often

allows for particularly meaningful interpretations. Consider processes X(s, t) with mean

µ(s, t) = E(X(s, t)) for all s 2 S ✓ Rd1 and all t 2 T ✓ Rd2 , and covariance function

C((s, t), (u, v)) = E(X(s, t)X(u, v))� µ(s, t)µ(u, v) = E(Xc(s, t)Xc(u, v)), (2)

where here and in the following we denote the centered processes by Xc.

A well-established tool of Functional Data Analysis (FDA) is Functional Principal Com-

ponent Analysis (FPCA) (Ramsay and Silverman 2005) of the random process X(s, t),

which is based on the Karhunen-Loève expansion

X(s, t) = µ(s, t) +
1X

r=1

Zr�r(s, t), s 2 S, t 2 T . (3)

Here {�r : r � 1} is an orthonormal basis of L2(S⇥T ) that consists of the eigenfunctions of

the covariance operator of X, and {Zr =
R
�r(s, t)Xc(s, t)dsdt : r � 1} are the (random)
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coe�cients. This expansion has the optimality property that the first K terms form the

K-dimensional representation of X(s, t) with the smallest unexplained variance.

A downside of the two- or higher-dimensional Karhunen-Loève representation (3) is

that it allows only for a joint symmetric treatment of the arguments and therefore is not

suitable for analyzing the separate (possibly asymmetric) e↵ects of s and t. An additional

technical drawback is that an empirical version of (3) requires the estimation of the covari-

ance function C in (2) that depends on dimension 2(d1 + d2), and for the case of sparse

designs, this then requires to perform non-parametric regression depending on at least four

variables, with associated slow computing, curse of dimensionality and loss of asymptotic

e�ciency. Finally, Karhunen-Loève expansions for functional data depending on more than

one argument are non-standard and suitable software is hard to obtain.

Aiming to address these di�culties and with a view towards interpretability and sim-

plicity of modeling, we propose in this paper the following representation,

X(s, t) = µ(s, t) +
1X

j=1

⇠j(t) j(s) = µ(s, t) +
1X

k=1

1X

j=1

�jk�jk(t) j(s), (4)

where { j : j � 1} are the eigenfunctions of the operator in L2(S) with kernel

GS(s, u) =

Z

T
C((s, t), (u, t))dt, (5)

while {⇠j(t) : j � 1} are the (random) coe�cients of the expansion of the centered pro-

cesses Xc(·, t) in  j(s), and ⇠j(t) =
P1

k=1 �jk�jk(t) is the Karhunen-Loève expansion of the

random functions ⇠j(t) in L2(T ) with eigenfunctions �jk and FPCs �jk.

We refer to GS as the marginal covariance function, and to (4) as the marginal

Karhunen-Loève representation of X that leads to the marginal FPCA and note that the

product basis functions �jk(t) j(s) are orthogonal to each other. Hence the scores �jk can

be optimally estimated by the inner product of Xc with the corresponding basis. Also,

for each j � 1, we have E�jk�jk0 = 0 for k 6= k0. In related settings, marginal covari-

ance functions very recently have also been utilized by other researchers (Park and Staicu

2015; Aston et al. 2015). In Theorem 1 below we establish the optimality of the marginal
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eigenfunctions  j under a well-defined criterion and show in Theorem 2 that the finite

expansion based on the marginal FPCA approach nearly minimizes the variance among all

representations of the same form.

When using the representation (4), the e↵ects of the two arguments s and t can be

analyzed separately, which we will show in greater detail below in Sections 2 and 5. We

also note that the estimation of the marginal representation (4) requires only to estimate

covariance functions that depend on 2d1 or 2d2 real arguments. In particular, when d1 =

d2 = 1, only two-dimensional surfaces need to be estimated and marginal FPCA can be

easily implemented using standard functional data analysis packages.

Motivated by a common principal component perspective, we also introduce a simplified

version of (4), the product FPCA,

X(s, t) = µ(s, t) +
1X

k=1

1X

j=1

�jk�k(t) j(s), (6)

where the �k, k � 1, are the eigenfunctions of the marginal kernel GT (s, u), analogous to

GS(t, v), with supporting theory provided by Theorem 4 and Theorem 5.

Sections 2 and 3 provide further details on model and estimation. Theoretical consider-

ations are in Section 4. In Section 5, we compare the performance of the proposed marginal

FPCA, product FPCA and the conventional two-dimensional FPCA in the context of an

analysis of the fertility data. Simulation results are described in Section 6 and conclusions

can be found in Section 7. Detailed proofs, additional materials and the analysis of an

additional human mortality data example have been relegated to the Online Supplement.

2. MARGINAL FPCA

2.1. Modeling

Consider the standard inner product, hf, gi =
R
S
R
T f(s, t)g(s, t)dtds in the separable

Hilbert space L2(S ⇥ T ) and the corresponding norm k · k. In the following, X is in

L2(S ⇥ T ) with mean µ(s, t). Using the covariance function C((s, t), (u, v)) as kernel for
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the Hilbert-Schmidt covariance operator �(f)(s, t) =
R
S
R
T C((s, t), (u, v))f(u, v)dv du with

orthonormal eigenfunctions �r, r � 1, and eigenvalues �1 � �2 � . . . then leads to the

Karhunen-Loève representation of X in (3), where E(Zr) = 0 and cov(Zr, Zl) = �r�rl, with

�rl = 1 for r = l and = 0 otherwise; see Horváth and Kokoszka (2012) and Cuevas (2013).

Since the marginal kernel GS(s, u) as defined in (5) is a continuous symmetric positive

definite function (see Lemma 1 in Online Supplement A), denoting its eigenvalues and

eigenfunctions by ⌧j,  j, j � 1, respectively, the following representation for X emerges,

X(s, t) = µ(s, t) +
1X

j=1

⇠j(t) j(s), (7)

where ⇠j(t) = hX(·, t)�µ(·, t), jiS , j � 1, is a sequence of random functions in L2(T ) with

E(⇠j(t)) = 0 for t 2 T , and E(h⇠j, ⇠kiT ) = ⌧j�jk (see Lemma 2 in Online Supplement A).

Theorem 1 in Section 4 shows that the above representation has an optimality property.

The marginal Karhunen-Loève representation (7) provides new functional data, the

score functions ⇠j(t), which are random functions that depend on only one argument. For

each j � 1, the ⇠j have their own covariance functions ⇥j(t, v) = E(⇠j(t)⇠j(v)), t, v 2

T , j � 1, with eigencomponents (eigenvalues/eigenfunctions) {⌘jk,�jk(t) : k � 1}. The

continuity of the covariance function C implies that the ⇥j(t, v) are also continuous func-

tions. The random functions ⇠j(t) then admit their own Karhunen-Loève expansions,

⇠j(t) =
1X

k=1

�jk�jk(t), j � 1, (8)

with E(�jk) = 0 and E(�jk�jr) = ⌘jk�kr. From (7) and (8) we obtain the representation

for X(s, t) in (4), X(s, t) = µ(s, t)+
P1

j=1

P1
k=1 �jk�jk(t) j(s). As already mentioned, this

expansion does not coincide with the standard Karhunen-Loève expansion of X and it is

not guaranteed that �jk and �lr are uncorrelated for j 6= l. But the product functions

�jk(t) j(s) remain orthonormal in the sense that
R
S,T �jk(t) j(s)�lh(t) l(s)dsdt = �jk,lh,

where �jk,lh = 1 when j = l and k = h; zero otherwise.

2.2 Estimating Procedures

Time- or space-indexed functional data consist of a sample of n independent subjects or
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units. For the i-th subject, i = 1, . . . , n, random functions Xi(·, t) are recorded at a series of

time points tim, m = 1, . . . ,Mi. Ordinarily, these functions are not continuously observed,

but instead are observed at a grid of functional design points sl, l = 1, . . . , L. In this paper

we focus on the case where the grid of s is dense, regular and the same across all subjects.

The case of sparse designs in s will be discussed in Section 7. Our proposed marginal FPCA

procedure consists of three main steps:

Step 1. Center the data to obtain X̂c
i (s, t) = Xi(s, t) � µ̂(s, t). Obtain an estimator of

µ(s, t) by pooling all the data together. If the recording points t are densely and regularly

spaced, i.e., tim = tm, an empirical estimator by averaging over n subjects and interpolating

between design points can be used. This scheme is also applicable to dense irregular designs

by adding a pre-smoothing step and sampling smoothed functions at a dense regular grid.

Alternatively, one can recover the mean function µ by smoothing the pooled data (Yao

et al. 2005), for example with a local linear smoother, obtaining a smoothing estimator

µ̂(s, t) = â0, where

(â0, â1, â2) = argmin
1

n

nX

i=1

MiX

m=1

LimX

l=1

{[Xi(tim, siml)� a0 � a1(siml � s)� a2(tim � t)]2

⇥Khs(siml � s)Kht(tim � t)}. (9)

Step 2. Use the centered data X̂c
i (s, t) from Step 1 to obtain estimates of the marginal co-

variance function GS(s, u) as defined in (5), its eigenfunctions  j(s) and the corresponding

functional principal component (FPC) score functions ⇠i,j(t). For this, we pool the data

{X̂c
i (·, tim), i = 1, . . . , n, m = 1, . . . ,Mi} and obtain estimates

ĜS(sj, sl) =
|T |Pn
i=1 Mi

nX

i=1

MiX

m=1

X̂c
i (sj, tim)X̂

c
i (sl, tim), (10)

where 1  j  l  L and |T | is the Lebesgue measure of T , followed by interpolating be-

tween grid points to obtain ĜS(s, u) for (s, u) 2 S⇥S. One then obtains the eigenfunctions

 ̂j and eigenvalues ⌧̂j by standard methods (Yao et al. 2005) as implemented in the PACE

package (http://www.stat.ucdavis.edu/PACE) or as in Kneip and Utikal (2001), and the
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FPC function estimates ⇠̂i,j(t) by interpolating numerical approximations of the integrals

⇠̂i,j(tim) =
R
X̂c

i (s, tim) ̂j(s)ds. Theorem 3 shows that ĜS in (10) and  ̂j are consistent

estimates of the marginal covariance function GS and its eigenfunctions and that estimates

{⇠̂i,j(t), i = 1, . . . , n, } converge uniformly to the target processes {⇠i,j(t), j � 1}.

Step 3. This is a standard FPCA of one-dimensional processes {⇠i,j(t), j � 1}, where for

each fixed j, one obtains estimates for the FPCs �jk and eigenfunctions {�jk(t) : k � 1};

see for example Ramsay and Silverman (2005); Kneip and Utikal (2001) for designs that

are dense in t and Yao et al. (2005) for designs that are sparse in t.

After selecting appropriate numbers of included components P and Kj, j = 1, . . . , P ,

one obtains the overall representation

X̂i(s, t) = µ̂(s, t) +
PX

j=1

⇠̂i,j(t) ̂j(s) = µ̂(s, t) +
PX

j=1

KjX

k=1

�̂i,jk�̂jk(t) ̂j(s). (11)

The included number of components P can be selected via a fraction of variance explained

(FVE) criterion, finding the smallest P such that
PP

j=1 ⌧̂j/
PM

j=1 ⌧̂j � 1 � p, where M is

large and we choose p = 0.15 in our application. The number of included components Kj

can be determined by a second application of the FVE criterion, where the variance Vjk

explained by each term (j, k) is defined as

Vjk =
1
n

Pn
i=1 �̂

2
i,jk

1
n

Pn
i=1 ||X(s, t)� µ̂(s, t)||2S⇥T

. (12)

Note that Vjk does not depend on the choice of P in the first step, since it is the fraction of

total variance explained. Here total variance explained,
PKj

k=1

PP
j=1 E(�2

jk), cannot exceed

the variance explained in the first step,
PP

j=1 ⌧j.

We will illustrate these procedures in Section 5. Since the functions  j(s)⇥ �jk(t) are

orthogonal, the unexplained variance, EkXck2�
PP

j=1

PKj

k=1 E(�2
jk), and the reconstruction

loss, E
⇣R

S,T {X
c(s, t)�

PP
j=1

PKj

k=1hXc,�jk ji�jk(t) j(s)}2dsdt
⌘
, are equivalent.

3. PRODUCT FPCA

In this section we discuss a simplified version of the marginal Karhunen-Loève representa-

tion (4). A simplifying assumption is that the eigenfunctions �jk in the Karhunen-Loève
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expansion of ⇠j(t) in (4) do not depend on j. This assumption leads to a more compact

representation of X as given in (6), X(s, t) = µ(s, t) +
P1

j=1

P1
k=1 �jk�k(t) j(s).

To study the properties of this specific product representation, we consider product

representations with general orthogonal basis X(s, t) = µ(s, t) +
P1

j=1

P1
k=1 �jkfk(t)gj(s),

where �jk = hXc, fkgji. For such general representations, the assumption

cov(�jk,�jl) = 0 for k 6= l, and cov(�jk,�hk) = 0 for j 6= h (13)

implies that the covariance kernel induced by ⇠j(t) = hXc(t, ·), gjiS has common eigen-

functions {fk(t), k � 1}, not depending on j, and the covariance kernel induced by

⇠k(s) = hXc(·, s), fkiT has common eigenfunctions {gj(s), j � 1}, not depending on k.

Therefore we refer to (13) as the common principal component assumption. We prove in

Theorem 4 below that if there exists bases {gj(s), j � 1} and {fk(t), k � 1} such that

(13) is satisfied, then gj ⌘  j and fk ⌘ �k, the eigenfunctions of the marginal covariance

GS(s, u) and GT (t, v), respectively, where GT (t, v) is defined as

GT (t, v) =

Z

S
C((s, t), (s, v)) ds, with t, v 2 T . (14)

Even without invoking (13), in Theorem 5 we show that the finite expansion based on

the marginal eigenfunctions �k and  j yields a near-optimal solution in terms of minimiz-

ing the unexplained variance among all possible product expansions. This result provides

additional theoretical support for the use of product FPCA based on the marginal kernels

GS and GT under fairly general situations. While the product functions �k(t) j(s) are or-

thonormal, without addtional conditions, the scores �jk in general will not be uncorrelated.

Product FPCA (6) is well suited for situations where the two arguments of X(s, t) play

symmetric roles. This simplified model retains substantial flexibility, as we will demonstrate

in the application to fertility data (see Online Supplement C).

The estimation procedures for this model are analogous to those described in the pre-

vious section. This also applies to the theoretical analysis of these estimates and their

asymptotic properties. A straightforward approach to estimate the eigenfunctions appear-

ing in (6) is to apply the estimation procedure described in Section 2.2 twice, first following
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the description there to obtain estimates of GS and  j and then changing the roles of the

two arguments in a second step to obtain estimates of GT and �k.

4. THEORETICAL PROPERTIES

Detailed proofs of the results in this section are in Online Supplement A. We show that

the optimal finite-dimensional approximation property of FPCA extends to the proposed

marginal FPCA under well defined criteria. Theorem 1 establishes the optimality of the

basis functions  j, i.e. the eigenfunctions in (4) derived from the marginal covariance in

(5). Theorem 2 shows the near optimality of the marginal representation (4), based on

the eigenfunctions �jk and  j, in terms of minimizing the unexplained variance among all

functional expansions of the same form.

Theorem 1. For each P � 1 for which ⌧P > 0, the functions g1, . . . , gP in L2(S) that

provide the best finite-dimensional approximations in the sense of minimizing

E

 Z

T
kXc(·, t)�

PX

j=1

hXc(·, t), gjiSgjk2Sdt
!

are gj =  j, j = 1, . . . , P, i.e., the eigenfunctions of GS . The minimizing value is
P1

j=P+1 ⌧j.

Theorem 2. For P � 1 and Kj � 1, consider the following loss minimization

min
fjk,gj

E

0

@
Z

S,T
{Xc(s, t)�

PX

j=1

KjX

k=1

hXc, fjkgjifjk(t)gj(s)}2dsdt

1

A ,

with minimizing value Q⇤, where the gj(s), j � 1, are orthogonal and for each j, the

fjk(t), k � 1 are orthogonal. The marginal eigenfunctions  j(s), and �jk(t) achieve good

approximation in the sense that

E

0

@
Z

S,T
{Xc(s, t)�

PX

j=1

KjX

k=1

hXc,�jk ji�jk(t) j(s)}2dsdt

1

A < Q⇤ + aEkXck2,

where a = max1jP aj, with (1 � aj) denoting the fraction of variance explained by Kj

terms for each process ⇠j(t) = hXc(·, t), jiS .
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In the following, kGS(s, u)kS = {
R
S
R
S(GS(s, u))2dsdu}1/2 is the Hilbert-Schmidt norm

and a ⇣ b denotes that a and b are of the same order asymptotically. For the consistency

of marginal FPCA (4) it is important that the covariance kernel GS and its eigenfunctions

 j and eigenvalues ⌧j can be consistently estimated from the data. Uniform convergence of

the empirical working processes {⇠̂i,j(tim), 1  i  n, 1  m  Mi} to the target processes

{⇠i,j(t), t 2 T } then guarantees the consistency of the estimates of the eigenfunctions �jk

and the eigenvalues ⌘jk (Yao and Lee 2006).

The following assumptions are needed to establish these results. We use 0 < B < 1 as

a generic constant that can take di↵erent values at di↵erent places.

(A.1) sups,t |µ(s, t)| < B and sups | j(s)| < B for all 1  j  P .

(A.2) E sups,t |X(s, t)| < B and sups,t E|X(s, t)|4 < B.

(A.3) sup(s,u)2S2,(t1,t2)2T 2 |C((s, t1), (u, t1))� C((s, t2), (u, t2))| < B|t1 � t2|

(A.4) sup(s1,u1,s2,u2)2S4 |GS(s1, u1)�GS(s2, u2)| < B(|s1 � s2|+ |u1 � u2|).

(A.5) For all 1  j  P , �j > 0, where �j = min1lj(⌧l � ⌧l+1).

(A.6a) The grid points {tim : m = 1, . . . ,M} are equidistant, and n/M = O(1).

(A.6b) The grid points {tim : m = 1, . . . ,Mi} are independently and identically distributed

with uniform density, and mini Mi ⇣ maxi Mi.

Condition (A.1) generally holds for smooth functions that are defined on finite domains.

Condition (A.2) are commonly used moment conditions for X(s, t). Conditions (A.3) and

(A.4) are Lipschitz conditions for the joint covariance C and the marginal covariance GS

and quantify the smoothness of these covariance surfaces. Condition (A.5) requires non-

zero eigengaps for the first P leading components and is widely adopted in the literature

(Hall et al. 2006; Li and Hsing 2010). Conditions (A.6a) and (A.6b) correspond to two

alternative scenarios for the design at which the underlying random process is sampled

over t. Here (A.6a) reflects the case of a dense regular design, where one observes functions

X(·, tm) at a dense and regular grid of {tm : m = 1, . . . ,M}, with n/M = O(1), while

(A.6b) corresponds to the case of a random design, where one observes functions X(·, tim)
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at a series of random locations corresponding to the time points {tim : m = 1, . . . ,Mi},

where the number of available measurements Mi may vary across subjects.

Theorem 3. If conditions (A.1)-(A.5),(A.6a) or (A.1)-(A.5), (A.6b) hold, max(sl �

sl�1) = O(n�1), and µ̂(s, t) obtained in Step 1 above satisfies sups,t |µ̂(s, t) � µ(s, t)| =

Op((log n/n)1/2), one has the following results for 1  j  P :

kĜS(s, u)�GS(s, u)kS = Op((log n/n)
1/2) (15)

|⌧̂j � ⌧j| = Op((log n/n)
1/2) (16)

k ̂j(s)�  j(s)kS = Op((log n/n)
1/2) (17)

1

n

nX

i=1

sup
1mMi

|⇠̂i,j(tim)� ⇠i,j(tim)| = Op((log n/n)
1/2). (18)

The empirical estimator and the smoothing estimator that are discussed in Step 1 both

satisfy sups,t |µ̂(s, t)� µ(s, t)| = Op((log n/n)1/2) under appropriate conditions and appro-

priate choice of the bandwidth in the smoothing estimator. We refer to Chen and Müller

(2012), Theorems 1 and 2 for detailed conditions and proofs. The following result estab-

lishes the uniqueness of the product representation with marginal eigenfunctions  j and �j

derived from (5) and (14) under the common principal component assumption (13). An

important implication of Theorem 4 is that the product FPCA based on marginal eigen-

functions is optimal if the eigenfunctions of kernel C(s, t; u, v) indeed can be written as

products in their arguments.

Theorem 4. If there exist orthogonal bases {gj(s), j � 1} and {fk(t), k � 1}, under which

the common principal component assumption (13) is satisfied, we have gj(s) ⌘  j(s) and

fk(t) ⌘ �k(t), with

GS(s, u) =
P1

j=1⌧j j(s) j(u), for all s, u 2 S, (19)

GT (t, v) =
P1

k=1#k�k(t)�k(v), for all t, v 2 T , (20)
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where

⌧j =
P1

k=1var(�jk), #k =
P1

j=1var(�jk),

�jk =

Z

S

Z

T
(X(s, t)� µ(s, t)) j(s)�k(t) dt ds,

E(�jk) = 0, cov(�jk,�jl) = var(�jk)�kl, cov(�jk,�hk) = var(�jk)�jh. (21)

Theorem 5. For P � 1 and K � 1, consider the following loss minimization

min
fk,gj

E

 Z

S,T
{Xc(s, t)�

PX

j=1

KX

k=1

hXc, fkgjifk(t)gj(s)}2dsdt
!
,

with minimizing value Q⇤, where fk, k � 1 are orthogonal, and gj, j � 1 are orthogonal.

The marginal eigenfunctions  j(s) of GS(s, u) and �k(t) of GT (t, v) achieve good approxi-

mation in the sense that

E

 Z

S,T
{Xc(s, t)�

PX

j=1

KX

k=1

hXc,�k ji�k(t) j(s)}2dsdt
!

< Q⇤ + aEkXck2,

where a = min(aT , aS), with (1 � aT ) denoting the fraction of variance explained by K

terms for GT (t, v) and analogously for aS .

Similarly to the situation in Theorem 2, the error term aEkXck2 depends on the loss

involved in truncating just the (marginal) principal component decompositions, which also

imposes a lower bound on Q⇤.

5. FUNCTIONAL DATA ANALYSIS OF FERTILITY

Human fertility naturally plays a central role in demography (Preston et al. 2001) and its

analysis recently has garnered much interest due to declining birth rates in many developed

countries and associated sub-replacement fertilities (Takahashi 2004; Ezeh et al. 2012). The

Human Fertility Database (HFD 2013) contains detailed period and cohort fertility annual

data for 22 countries (plus five subdivisions: two for Germany and three for the U.K.). We

are interested in Age-Specific Fertility Rates (ASFR), considered as functions of women’s

age in years (s) and repeatedly measured for each calendar year t for various countries.

These rates (see (1)) constitute the functional data X(s, t) = ASFR(s, t).

12
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Figure 2: Sample means of the 17 fertility rate functions by calendar year.

A detailed description how ASFR is calculated from raw demographic data can be found

in the HFD Methods Protocol (Jasilioniene et al. 2012). The specific definition of ASFR we

are using corresponds to period fertility rates by calendar year and age (Lexis squares, age

in completed years). In HFD (2013), ASFR(s, t) is included for mothers of ages s = 12�55

years, thus the domain S is an interval of length L = 44 years. The interval of calendar

years with available ASFR varies by country. Aiming at a compromise between the length

M of the studied period T and the number n of countries that can be included, we choose T

as the interval from 1951 to 2006. There are n = 17 countries (or territories) with available

ASFR data during this time interval (see Table 4 and Figure 5 in Online Supplement B for

the list of n = 17 included countries and heat maps depicting individual functions ASFRi).

The sample mean ASFR(s, t) of the ASFR functions for 17 countries displayed in Figure

2 shows that fertility rates are, on average, highest for women aged between 20 and 30 and

are decreasing with increasing calendar year; this overall decline is interspersed with two

periods of increasing fertility before 1965, corresponding to the baby-boom, and after 1995

with a narrow increase for ages between 30 and 40 years; is narrowing in terms of the

age range with high fertility; and displays an increase in regard to the ages of women

where maximum fertility occurs. We applied marginal FPCA, product FPCA and two-

dimensional FPCA to quantify the variability across individual countries and summarize

the main results here. Additional details can be found in Online Supplement C.

The fertility data include one fertility curve over age per calendar year and per country

13



20 30 40 50
−0

.2
0.

0
0.

2
0.

4

Eigenfunction 1 (FVE: 61.18%)

Age

Ei
ge

nf
un

ct
io

n 
1

20 30 40 50

0.
00

0.
10

0.
20

Eigenfunction 2 (FVE: 27.73%)

Age

Ei
ge

nf
un

ct
io

n 
2

20 30 40 50

−0
.3

−0
.1

0.
1

Eigenfunction 3 (FVE: 6.93%)

Age

Ei
ge

nf
un

ct
io

n 
3

1950 1960 1970 1980 1990 2000

−0
.2

−0
.1

0.
0

0.
1

0.
2

Functional scores at eigenfunction 1

Year

Sc
or

es
 a

t e
ig

en
fu

nc
tio

n 
1

AUT AUT

BGR BGR

CAN
CAN

CZE

CZE
FIN FIN

FRA

FRA

HUN

HUN

JPN

JPN

NLD

NLDPRT

PRT

SVK
SVK

SWE

SWECHE
CHE

GBRTENW
GBRTENW

GBR_SCO
GBR_SCO

USA

USA

ESP

ESP

BGR BGRCZE

CZE

HUN

HUN

SVK
SVK

USA

USA

1950 1960 1970 1980 1990 2000

−0
.2

−0
.1

0.
0

0.
1

0.
2

Functional scores at eigenfunction 2

Year
Sc

or
es

 a
t e

ig
en

fu
nc

tio
n 

2

AUT

AUT
BGR BGR

CAN

CANCZE

CZE

FIN FIN
FRA

FRA

HUN HUN

JPN

JPN

NLD NLD
PRT

PRT

SVK

SVK
SWE

SWE

CHE
CHE

GBRTENW

GBRTENW

GBR_SCO

GBR_SCO

USA
USA

ESP ESP

CAN

CAN

HUN HUN

PRT

PRT

USA
USA

ESP ESP

1950 1960 1970 1980 1990 2000

−0
.1

5
−0

.0
5

0.
00

0.
05

Functional scores at eigenfunction 3

Year

Sc
or

es
 a

t e
ig

en
fu

nc
tio

n 
3

AUT

AUTBGR
BGR

CAN CAN

CZE CZE

FIN
FIN

FRA FRA
HUN HUN
JPN

JPN

NLD

NLD

PRT

PRT

SVK
SVK

SWE SWE

CHE
CHE

GBRTENW

GBRTENW

GBR_SCO

GBR_SCO

USA USA

ESP

ESP

JPN

JPN

Figure 3: Results of the marginal FPCA for the fertility data. First row: Estimated

eigenfunctions  ̂j(s), j = 1, 2, 3 , where s is age. Second row: Score functions ⇠̂i,j(t), where

t is calendar year. Colored lines are used for countries mentioned in the text.

and are observed on a regular grid spaced in years across both coordinates age s and

calendar year t, which means that the empirical estimators described in Section 2 can be

applied to these data. Figure 6 (Online Supplement B) displays the nM = 952 centered

functional data ASFRc
i(sl, tm) = ASFRi(sl, tm) � ASFR(sl, tm), for l = 1, . . . , L = 44,

m = 1, . . . ,M = 56 and i = 1, . . . , n = 17, demonstrating that there is substantial variation

across countries and calendar years. The results of the proposed marginal FPCA are

summarized in Figures 3 and 4 for the first three eigenfunctions,  ̂j(s), j = 1, 2, 3, resulting

in a FVE of 95.8%. From Figure 3, the first eigenfunction  ̂1(s) can be interpreted as a

contrast between fertility before and after the age of 25 years, representing the direction

from mature fertility (negative scores) to young fertility (positive scores).

The second eigenfunction  ̂2(s) takes positive values for all ages s, with a maximum at

age s = 24. The shape of  ̂2(s) is similar to that of the mean function ASFR(s, t) for a

fixed year t (see the right panel of Figure 2). Therefore  ̂2(s) can be interpreted as a size

component: Country-years with positive score in the direction of this eigenfunction have

higher fertility ratios than the mean function for all ages. The third eigenfunction  ̂3(s)

represents a direction from more concentrated fertility around the age of 25 years to a more
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dispersed age distribution of fertility.

Examining the score functions ⇠̂i,j(t), t 2 T , which are country-specific functions of

calendar year, one finds from Figure 3 for ⇠̂i,1(t) that there are countries, such as U.S.

(light pink), Bulgaria (red) or Slovakia (green) for which ⇠1(t) is positive for all calendar

years t, which implies that these countries always have higher fertility rates for young

women and vice versa for mature women, relative to the mean function. Countries from

Eastern Europe such as Bulgaria, Czech Republic (pink) Hungary (brown) and Slovakia

have high scores until the end of the 1980s when there is a sudden decline, implying that

the relationship of fertility between younger and more mature women has reversed for these

countries. Also notable is a declining trend in the dispersion of the score functions since

1990, implying that the fertility patterns of the 17 countries are converging.

The score functions ⇠̂i,2(t) corresponding to the size component indicate that Canada

(purple) and the USA had a particularly strong baby boom in the 1960s, while Portugal

(blue) and Spain (medium gray) had later baby booms during the 1970s. In contrast,

Hungary had a period of relatively low fertility during the 1960s. Again, the dispersion of

these size score functions declines towards 2006. The patterns of the score functions ⇠̂i,3(th)

indicate that Japan (dark grey) has by far the largest degree of concentrated fertility at

ages from 22 to 29 years, from 1960-1980, but lost this exceptional status in the 1990s and

beyond. There is also a local anomaly for Japan in 1966. Takahashi (2004) reports that in

1966 the total fertility in Japan declined to the lowest value ever recorded, because 1966

was the year of the Hinoe-Uma (Fire Horse, a calendar event that occurs every 60 years),

associated with the superstitious belief of bad luck for girls born in such years.

Trends over calendar time for particular countries can be visualized by track plots, which

depict the changing vectors of score functions (⇠i,1(t), . . . , ⇠i,K(t)), parametrized in t 2 T ,

as one-dimensional curves in RK . Track plots are most useful for pairs of score functions

and are shown in the form of planar curves for the pairs (⇠i,1(t), ⇠i,2(t)) and (⇠i,1(t), ⇠i,3(t)),

t 2 T , in Figure 4 for selected countries and in Figure 7 (Online Supplement B) for all

15



−0.2 −0.1 0.0 0.1 0.2

−0
.2

−0
.1

0.
0

0.
1

0.
2

Scores at eigenfunctions 2 vs. 1

Scores at eigenfunction 1

Sc
or

es
 a

t e
ig

en
fu

nc
tio

n 
2

1951.CZE

1966.CZE

1981.CZE

1996.CZE
2006.CZE

1951.JPN

1966.JPN

1981.JPN
1996.JPN

2006.JPN

1951.NLD

1966.NLD

1981.NLD

1996.NLD

2006.NLD

1951.PRT

1966.PRT

1981.PRT

1996.PRT

2006.PRT

1951.USA

1966.USA

1981.USA

1996.USA

2006.USA

1951.ESP

1966.ESP

1981.ESP

1996.ESP

2006.ESP

1951.CZE

1966.CZE

1981.CZE

1996.CZE
2006.CZE

1951.PRT

1966.PRT

1981.PRT

1996.PRT

2006.PRT

1951.USA

1966.USA

1981.USA

1996.USA

2006.USA

1951.ESP

1966.ESP

1981.ESP

1996.ESP

2006.ESP

−0.2 −0.1 0.0 0.1 0.2

−0
.1

5
−0

.1
0

−0
.0

5
0.

00
0.

05

Scores at eigenfunctions 3 vs. 1

Scores at eigenfunction 1

Sc
or

es
 a

t e
ig

en
fu

nc
tio

n 
3

1951.CZE

1966.CZE
1981.CZE

1996.CZE2006.CZE1951.JPN

1966.JPN

1981.JPN

1996.JPN 2006.JPN

1951.NLD

1966.NLD
1981.NLD

1996.NLD

2006.NLD

1951.PRT
1966.PRT

1981.PRT

1996.PRT

2006.PRT

1951.USA

1966.USA

1981.USA
1996.USA

2006.USA

1951.ESP
1966.ESP 1981.ESP

1996.ESP

2006.ESP

1951.JPN

1966.JPN

1981.JPN

1996.JPN 2006.JPN

1951.NLD

1966.NLD
1981.NLD

1996.NLD

2006.NLD1951.ESP
1966.ESP 1981.ESP

1996.ESP

2006.ESP

−0.2 −0.1 0.0 0.1 0.2

−0
.2

−0
.1

0.
0

0.
1

0.
2

Scores at eigenfunctions 2 vs. 1

Scores at eigenfunction 1

Sc
or

es
 a

t e
ig

en
fu

nc
tio

n 
2

1951.CZE

1966.CZE

1981.CZE

1996.CZE
2006.CZE

1951.JPN

1966.JPN

1981.JPN
1996.JPN

2006.JPN

1951.NLD

1966.NLD

1981.NLD

1996.NLD

2006.NLD

1951.PRT

1966.PRT

1981.PRT

1996.PRT

2006.PRT

1951.USA

1966.USA

1981.USA

1996.USA

2006.USA

1951.ESP

1966.ESP

1981.ESP

1996.ESP

2006.ESP

1951.CZE

1966.CZE

1981.CZE

1996.CZE
2006.CZE

1951.PRT

1966.PRT

1981.PRT

1996.PRT

2006.PRT

1951.USA

1966.USA

1981.USA

1996.USA

2006.USA

1951.ESP

1966.ESP

1981.ESP

1996.ESP

2006.ESP

−0.2 −0.1 0.0 0.1 0.2

−0
.1

5
−0

.1
0

−0
.0

5
0.

00
0.

05

Scores at eigenfunctions 3 vs. 1

Scores at eigenfunction 1

Sc
or

es
 a

t e
ig

en
fu

nc
tio

n 
3

1951.CZE

1966.CZE
1981.CZE

1996.CZE2006.CZE1951.JPN

1966.JPN

1981.JPN

1996.JPN 2006.JPN

1951.NLD

1966.NLD
1981.NLD

1996.NLD

2006.NLD

1951.PRT
1966.PRT

1981.PRT

1996.PRT

2006.PRT

1951.USA

1966.USA

1981.USA
1996.USA

2006.USA

1951.ESP
1966.ESP 1981.ESP

1996.ESP

2006.ESP

1951.JPN

1966.JPN

1981.JPN

1996.JPN 2006.JPN

1951.NLD

1966.NLD
1981.NLD

1996.NLD

2006.NLD1951.ESP
1966.ESP 1981.ESP

1996.ESP

2006.ESP

Figure 4: Track-plots {(⇠̂i,1(t), ⇠̂i,2(t)) : t = 1951, . . . , 2006} (left panel) and

{(⇠̂i,1(t), ⇠̂i,3(t)) : t = 1951, . . . , 2006} (right panel), indexed by calendar time t, where

⇠i,j(t) is the j-th score function for country i (for selected countries) as in (4).

countries. The left panel with the track plot illustrating the evolution in calendar time of

first and second FPCs shows predominantly vertical movements: From 1951 to 2006 for

most countries there are more changes in total fertility than changes in the distribution of

fertility over the di↵erent ages of mothers. Exceptions to this are Portugal (blue), Spain

(medium gray), Czech Republic (pink) and the U.S. (light pink), with considerable variation

over the years in the first FPC score. There was more variation in fertility patterns between

the countries included in this analysis in 1951 than in 2006, indicating a “globalization” of

fertility patterns. In the track plot corresponding to the first and third eigenfunctions in

the right panel of Figure 4, the anomalous behavior of Japan (dark gray) stands out. The

third step of the marginal FPCA described in Section 2 consists of performing a separate

FPCA for the estimated score functions ⇠̂i,j(t), i = 1, . . . , n, for j = 1, 2, 3, with estimated

eigenfunctions �̂jk shown in Figure 8 (Online Supplement B). The interpretation of these

eigenfunctions is relative to the shape of the  j(s).

The results in Table 1 for estimated representations (11) justify to include only the six

terms with the highest FVE in the final model, leading to a cumulative FVE of 87.49%,

where the FVE for each term (j, k) is estimated by (12). The corresponding 6 product

functions �̂jk(t) ̂j(s) are shown in Figure 9 (Appendix B). Regarding the comparative

performance of standard two-dimensional FPCA, product FPCA (with detailed results in

16



Table 1: Fraction of Variance Explained (FVE) of ASFR(s, t) for the leading terms in the

proposed marginal FPCA, product FPCA and two-dimensional FPCA. Number of terms

in each case is selected to achieve fraction of variance explained (FVE) of more than 85%.

marginal FPCA FVE in % product FPCA FVE in % 2d FPCA FVE in %

Six terms 87.49 Seven terms 87.38 Four terms 89.73

�̂11(t) ̂1(s) 54.33 �̂1(t) ̂1(s) 53.69 �̂1(s, t) 58.93

�̂21(t) ̂2(s) 13.04 �̂2(t) ̂2(s) 8.10 �̂2(s, t) 13.71

�̂22(t) ̂2(s) 6.88 �̂1(t) ̂2(s) 8.08 �̂3(s, t) 11.04

�̂12(t) ̂1(s) 4.62 �̂3(t) ̂2(s) 5.51 �̂4(s, t) 6.05

�̂23(t) ̂2(s) 4.40 �̂2(t) ̂1(s) 4.47

�̂31(t) ̂3(s) 4.22 �̂4(t) ̂2(s) 3.85

�̂1(t) ̂3(s) 3.68

Online Supplement C) and marginal FPCA, we find: (1) As expected, standard FPCA

based on the two-dimensional Karhunen-Loève expansion requires fewer components to

explain a given amount of variance, as 4 eigenfunctions lead to a FVE of 89.73% (see

Table 1), while marginal FPCA representation achieves a FVE of 87.49% with 6 terms,

and product FPCA needs 7 terms to explain 87.38%. (2) Product FPCA and Marginal

FPCA represent the functional data as a sum of terms that are products of two functions,

each depending on only one argument. This provides for much better interpretability

and makes it possible to discover patterns in functional data that are not found when

using standard FPCA. For instance, the second eigenfunction  2 in the first step of the

marginal FPCA could be characterized as a fertility size component, with a country-specific

time-varying multiplier ⇠2(t). Standard FPCA does not pinpoint this feature, which is an

essential characteristic of demographic changes in fertility. (3) Marginal FPCA makes it

much easier than standard FPCA to analyze the time dynamics of the fertility process.

Specifically, the plots in the second row of Figure 3 or the track plots in Figure 4

are informative about the fertility evolution over calendar years: (a) The relative balance

between young and mature fertility at each country changes over the years. The graphical
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representation of functional score functions ⇠̂i,1(t) allows to characterize and quantify this

phenomenon. (b) The track plot in the left panel of Figure 4 indicates that in general it is

much more common that fertility rates rise or decline across all ages compared to transfers

of fertility between di↵erent age groups. (c) The fertility patterns of the various countries

are much more similar in 2006 than in 1951.

All three approaches to FPCA for function-valued stochastic processes, namely standard

FPCA (3), marginal FPCA (4) and the product FPCA (6), can be used to produce country

scores which can be plotted against each other. They turn out to be similar for these

approaches; as an example the standard FPCA scores are shown in Figure 12 (Appendix

C). We conclude that standard FPCA, marginal FPCA and product FPCA complement

each other. Our recommendation is to perform all whenever feasible, in order to gain as

much insight about complex functional data as possible.

6. SIMULATIONS

We conducted two simulation studies, one to investigate the estimation procedure for

marginal FPCA, and a second study to evaluate the performance of product FPCA. Both

were conducted in a scenario that mimicks the fertility data. For simulation 1, we gener-

ated data following a truncated version of (4), where we used the estimated mean function

ASFR(s, t) from the country fertility data (Section 5) as mean function and the estimated

product functions �̂jk(t) ̂j(s), 1  j, k  4, as base functions in (4). Random scores �jk

were generated as independent normal random variables with variances �jk, corresponding

to the estimates derived from the fertility data, �jk = 1
n

Pn
i=1 �̂

2
i,jk. We also added i.i.d.

noise to the actual observations Yi(sl, th) = X(sl, th) + ✏i,lh, l = 1, . . . , 44, h = 1, . . . , 56,

where ✏i,lh ⇠ N(0, �2) with � = 0.005 to mimic the noise level of the fertility data.

Estimated and true functions  j(s) and �jk(t) obtained for one sample run with n = 50

are shown in Figure 10 (Online Supplement B), demonstrating very good recovery of the

true basis functions. To quantify the quality of the estimates of µ(s, t), we use the relative
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Table 2: Results for simulation 1, reporting median relative errors (RE), as defined in (22)

(with median absolute deviation in parentheses), for various components of the model and

varying sample sizes n.

RE FVE in % n = 50 n = 100 n = 200

µ 0.0012 (0.0008) 0.0006 (0.0004) 0.0003 (0.0002)

Xc 0.1523 (0.0228) 0.1483 (0.0168) 0.1435 (0.0091)

�11(t) 1(s) 53.6967 0.0092 (0.0071) 0.0045 (0.0040) 0.002 (0.0016)

�21(t) 2(s) 12.9333 0.0584 (0.0538) 0.0280 (0.0243) 0.0133 (0.0110)

�22(t) 2(s) 6.7450 0.1306 (0.1267) 0.0660 (0.0619) 0.0311 (0.0287)

�12(t) 1(s) 4.5367 0.0222 (0.0178) 0.0129 (0.0091) 0.005 (0.0037)

�23(t) 2(s) 4.1917 0.0999 (0.0904) 0.0469 (0.0417) 0.0296 (0.0238)

�31(t) 3(s) 4.0400 0.0283 (0.0238) 0.0127 (0.0100) 0.0077 (0.0062)

squared error

RE =
||µ(s, t)� µ̂(s, t)||2

||µ(s, t)||2 , (22)

where ||µ(s, t)||2 =
R R

µ(s, t)2dsdt, analogously for X̂c
i (s, t) and �̂jk(t) ̂j(s). The relative

squared errors over 200 simulation runs, reported in Table 2, were found to be quite small

for µ, Xc
i and for the six product functions �̂jk(t) ̂j(s) with largest FVEs, which are the

same six functions as in Figure 9. The errors decline with increasing sample size n, as

expected. The FVEs for each term (j, k) are also in Table 2, averaged over simulation runs

and over the di↵erent sample sizes, as they were similar across varying sample sizes.

For simulation 2, data were generated according to a truncated product FPC model

X(s, t) = µ(s, t) +
4X

j=1

4X

k=1

�jk�k(t) j(s),

where µ(s, t) and �k(t) j(s) for 1  j, k  4 are substituted by the estimates obtained from

the fertility data. As in simulation 1, the random scores �jk were generated as independent

normal random variables with variances estimated from the data. Estimated and true

functions  j(s) and �k(t) obtained for one sample run with n = 50 are shown in Figure

11 (Online Supplement B). The relative squared errors over 200 simulation runs, for µ, Xc
i
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Table 3: Results for simulation 2, reporting median relative errors (RE), as defined in (22)

(with median absolute deviations in parentheses) for various components of the model and

varying sample sizes n.

RE FVE in % n = 50 n = 100 n = 200

µ 0.0011 (0.0006) 0.0006 (0.0003) 0.0003 (0.0002)

Xc 0.1464 (0.0216) 0.1390 (0.0138) 0.1324 (0.0080)

�1(t) 1(s) 53.5400 0.0099 (0.0075) 0.0053 (0.0048) 0.0022 (0.0017)

�2(t) 2(s) 8.1500 0.0559 (0.0525) 0.0342 (0.0275) 0.0174 (0.0180)

�1(t) 2(s) 8.0817 0.0109 (0.0078) 0.0064 (0.0051) 0.0026 (0.0018)

�3(t) 2(s) 5.4300 0.0776 (0.0635) 0.0389 (0.0331) 0.0208 (0.0204)

�2(t) 1(s) 4.2783 0.0543 (0.0502) 0.0328 (0.0271) 0.0173 (0.0180)

�4(t) 2(s) 3.7817 0.0368 (0.0293) 0.0167 (0.0131) 0.0089 (0.0072)

�1(t) 3(s) 3.5917 0.0108 (0.0075) 0.0056 (0.0039) 0.0028 (0.0019)

and for the seven product functions �̂k(t) ̂j(s) with largest FVEs (among 16 total product

functions), which are the same seven functions as in Figure 18 (Online Supplement C),

are reported in Table 3. Both figure and numbers demonstrate good performance of the

method.

7. DISCUSSION

The proposed marginal FPCA and product FPCA provide a simple and straightforward

representation of function-valued stochastic processes. This holds especially in comparison

with a previously proposed two-step expansion for repeatedly observed functional data

(Chen and Müller 2012), in which processes X are represented as

X(s, t) = µ(s, t) +
1X

j=1

⌫j(t)⇢j(s|t) = µ(s, t) +
1X

j=1

1X

k=1

✓jk!jk(t)⇢j(s|t), (23)

where ⇢j(·|t) is the j-th eigenfunction of the operator in L2(S) with kernel GS(s, u|t) =

C((s, t), (u, t)), ⌫j(t) = hX(·, t), ⇢j(·|t)iS and
P1

k=1 ✓jk!jk(t) is the Karhunen-Loève ex-

pansion of ⌫j(t) as a random function in L2(T ). This method can be characterized as a
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conditional FPCA approach (we note that in Chen and Müller (2012) the notation of s

and t is reversed as compared to the present paper). Similarly to the proposed marginal

approach this conditional method provides for asymmetric handling of arguments s and t

of X and is a two-step procedure which is composed of iterated one-dimensional FPCAs.

Key di↵erences between the marginal FPCA and the conditional FPCA are as follows:

(1) The first step of the conditional FPCA approach (23) requires to perform a separate

FPCA for each t 2 T , while in the marginal approach (4) only one FPCA is required, with

lower computational cost, and, most importantly, using all the data rather than the data

in a window around t. (2) In (23), the eigenfunctions ⇢j(s|t) depend on both arguments,

making it di�cult to separate and interpret the e↵ects of s and t in conditional FPCA,

in contrast to marginal FPCA, where the eigenfunctions in (4) only depend on s. (3) For

sparse designs, conditional FPCA requires a smoothing estimator of the function GS(s, u|t)

that depends on 2d1 + d2 univariate arguments. This improves upon the standard two-

argument FPCA (3), where the corresponding covariance functions depend on 2d1 + 2d2

arguments. The improvement is however even greater for marginal FPCA, where the

covariance function depends on only 2d1 or 2d2 arguments, leading to faster convergence.

The proposed marginal FPCA improves upon standard FPCA by providing inter-

pretable components and making it possible to treat the index of the stochastic process

asymmetrically in the arguments of the random functions that constitute the values of the

process. While we have discussed in detail the case of time-indexed function-valued pro-

cesses, and our example also conforms with this simplest setting, extensions to spatially

indexed function-valued processes or processes which are indexed on a rectangular subdo-

main ofRp are straightforward. Marginal FPCA also is supported by theoretical optimality

properties as per Theorem 1 and Theorem 2.

A promising simplified version of the marginal FPCA is product FPCA, motivated by a

common principal component assumption, see Theorem 4. Additional motivation is its near

optimality even without the common principal component assumption, as per Theorem 5.
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In our fertility data example, the loss of flexibility is quite limited and may be outweighed

by the simplicity and interpretability of this model. In general, the explanatory power of the

product FPCA model depends on the structure of the double-indexed array ⌘jk = var(�jk).

When one of the marginal kernels does not have fast decaying eigenvalues, relatively large

values of ⌘jk might show up in large j or large k and in such situations the product FPCA

might have limited explanatory power, and it would be better to apply marginal FPCA or

two-dimensional FPCA. The eigenvalues of the marginal kernels can be directly estimated

and can be used to diagnose this situation in data applications.

In this paper we mainly focus on the case where the argument of the functional values s

is densely and regularly sampled. In practical applications with designs that are sparse in

s, one may obtain ĜS by pooling the data {X̂c
i (·, tim), i = 1, . . . , n, m = 1, . . . ,Mi}, and

utilizing a two-dimensional smoothing estimator of the covariance (Yao et al. 2005). The

FPCs can be obtained through conditional expectation (PACE) under Gaussian assump-

tions; software is available at http://www.stat.ucdavis.edu/PACE/. For this case, one

can only show that ⇠̂i,j(t) !a.s. E(⇠i,j(t)|Data) under Gaussian assumptions.
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Nerini, D., Monestiez, P. and Manté, C. (2010) Cokriging for spatial functional data. Jour-

nal of Multivariate Analysis, 101, 409–418.

Park, S. and Staicu, A. (2015) Longitudinal functional data analysis. STAT, 4, 212–226.

Preston, S. H., Heuveline, P. and Guillot, M. (2001) Demography: Measuring and modeling

population processes. Blackwell Publishing.

Ramsay, J. O. and Silverman, B. W. (2005) Functional Data Analysis. Springer Series in

Statistics. New York: Springer, second edn.

Takahashi, S. (2004) Demographic investigation of the declining fertility process in japan.

The Japanese Journal of Population, 2, 93–116.

24



WPP (2012) World population prospects: The 2012 revision, dvd edition.

Yao, F. and Lee, T. C. M. (2006) Penalized spline models for functional principal component

analysis. Journal of the Royal Statistical Society: Series B, 68, 3–25.

Yao, F., Müller, H.-G. and Wang, J.-L. (2005) Functional data analysis for sparse longitu-

dinal data. Journal of the American Statistical Association, 100, 577–590.

Yuan, Y., Gilmore, J. H., Geng, X., Martin, S., Chen, K., Wang, J.-l. and Zhu, H. (2014)

Fmem: Functional mixed e↵ects modeling for the analysis of longitudinal white matter

tract data. NeuroImage, 84, 753–764.

25


