ONLINE SUPPLEMENT
SUPPLEMENT A: AUXILIARY RESULTS AND PROOFS

Lemma 1. The function Gg defined in (5) is a continuous, symmetric and positive definite

function. Moreover it is a valid covariance function.

Proof. Symmetry is obvious. Continuity follows from the continuity of the covariance
function C. We have that Gs(s,u) = [ cov(X(s,t), X (u,t))dt. Observing that for each
fixed ¢, cov(X (s, t), X (u,t)) is positive definite, it holds that for any function f in L*(S) we
have that [ scov(X(s,t), X (u,t))f(u)f(s)duds > 0 for all t € T. Therefore, by Fubini,

/5x3 Gs(u, s)f(u)f(s)duds = /7'/S><S cov(X (s, t), X(u,t))f(u)f(s)dudsdt > 0.

To see that Gs is a valid covariance function, remember that this is equivalent to say
that fs Gs(s,s)ds < oo (see, for instance, Horvath and Kokoszka 2012, page 24). Observe

that

/SGg(s,s)ds:/S/TC’((s,t),(s,t))dtds

and the last integral is finite because C' is a valid covariance function. [

Lemma 2. Let §;(t) = (X (-, t) — p(-,t),¥)s, j > 1, be the random functional coefficients
in the marginal Karhunen-Loéve representation (7). Then E(;(t)) = 0 for almost all
teT, and E((&, &) 1) = 70,1, where 6, =1 if j =k and = 0 otherwise.

Proof. First, for almost all ¢t € T, X(-,t) is a random element of L?(S) because X is in
L*(S x T). Then there exists a unique (in the L? sense) function ji(-,¢) in L?(S) such that
E({(X(-,t),y)s) = (i(-,t),y)s for all y € L*(S) and it follows that ji(s,t) = E(X(s,t)) =
wu(s,t) for almost all s € S (see, for instance, Horvath and Kokoszka (2012), Section 2.3),

so that fi(-,t) = u(-,t) in the L? sense. Then taking y = 1; we have that
E(&(t) = E((X(-,1),¥5)s) — (ul(-,1),¥5)s = 0.
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Furthermore,

B &7 (/5 )t dt)

(/ (/ A0y dS) ( [ x u,twk(u)du) dt)
/// ) dt ;(s)i(u) ds du
/5(/GS< W) d )wm

:< (@Z’) wk>8 Tj W ¢k>$ :Tj5jk,

where we have used that 7;, ¥;, 7 > 1, are, respectively, the eigenvalues and eigenfunctions

of the operator ¥ defined as U(f)(s) = [ Gs(s,u) f(u) du. O

Proof of Theorem 1:
Observe that

E ( e

), 9j>59j”?sdf>
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5 ( [ o )>sdt)—iE( [t onazar)
e S (/ </x o) o
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where W is the operator in L*(S) with kernel Gs. Then minimizing
( JESER e sg]usdt)
7j=1
is equivalent to maximizing Zle J5(¥(g)),95)s. Given that W is a symmetric, positive
definite Hilbert-Schmidt operator (see Lemma 1), standard arguments (see, for instance,

Theorem 3.2 in Horvéath and Kokoszka (2012)) complete the proof.

Proof of Theorem 2:

For f;;(t) and g;(s) that satisfy the orthogonal conditions, we have

B 1) = 35 UX fua) fu(t)gs (o)) st
ST j=1 k=1
“EIXP 2325 ( / X fjk9j>fjk(t)gj(s>> dsdt
B »»> X, Fgs) i 0)95(5) (X funt) fin (D (s) s
ST j=1 k=1 I=1 h=1
-2 x 30y [ XX 0) S0 D)y st

<
I
—

=
Il

,_.

+Z;/E(Xc(s’t)Xc(uvv))fjk(t)fjk(v>gj(3)gj(U)dsdtdudv

K;

,
—E|IX* =)

/E (X(s,t) X (u,v)) fix(t) fix(v)g;(s)gj(w)dsdtdudv

(24)

Let f;x(t) and §;(s) denote the optimal basis to achieve the minimum reconstruction

error (*, and define

ZZ / (X(s, )X (u,v)) dju (8) i (v)5 ()5 (w) dstdud

=1 k=1

and
K,

<.

P
=1 k=1

/ E (X(5,8)X<(t, 0)) Fon () o (0)55 (535 () dsdtcdudo.
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By Eq. (24), to prove the theorem, we only need to show that (I1) — (I) < aE||X¢|2.
We further define

(IIT) = /5 . / (X°(s, £) X (u, £)) dtd;(s)G; (w)dsclu,

and

(IV) = /st/ (X(s,t) X (u,t)) dt;(s)y;(u)dsdu.

We will prove that (I]) (I1I) < (IV)and (IV)—(I) < aE||X¢||2, which implies that
(I1) — (I) < aB||X*]|.

By definition, 1; are the leading eigenfunctions of the marginal kernel Gs(s,u) so that
(I11) < (IV).

To show (I1) < (II1), let &;(t) = (X(s,t),§;(s)). Then,

E(X¢(s,t)X(u,v)) fir(t) fix(v)§;(5)§; (u)dsdtdudy

<.
Il
-

Mw
BIE

bj

pnﬁw

f]k )fjk (U)dtd’l)

.
Il
—
£
Il

1

E f]k t) fi(v)dtdv
(§wéw)ar
E(/Xcstg] ds/Xcuth()du>d

(I11) (25)

e
e
[

-
K

1

.
Il
-

E

<.
I
—

Il
M~
— 7

M-

<.
Il
—

29



Finally, we prove (IV) — (I) < aE|| X*||2,

(V) —(I) = Z E(&(1)€;(t)) dt

J

—Z 10, 00) ()00 s

B /E )€ (v)) Gj1(t) b (v)dtdv
Z J /E ))gb]/f( )ijk(v)dtdv
< aB[| X2,

(26)

where a = max;<;<p a;, with (1 — a;)% denoting the fraction of variance explained by K;

terms in each process &;(t) = (X°(-,t), ;).

Proof of Theorem 3:
Recall that

(s,u) /C t))dt,
T

where C((s,t), (u,t)) = E[(X(s,t)—p(s, 1)) (X (u,t)—p(u,t))]. For (s,u) on the grid points,

we have

és(S,U ZZXC (8, tim) Xc (U, tim),

’L

=1 m=1

where X(s, tim) = X(5,tim) — ji(s,tim) and |T] is the Lebesgue measure of 7. We define

~ 7- n M;
Gis(5,u) = Zl 3 Xt X ).
=1 ?

i=1 m=1
Using sup,, |fi(s,t) — pu(s,t)] = O,((logn/n)!/?), it is casy to show that |Gs(s,u) —

Gs(s,u)||s = Op((logn/n)'/?). Next we show
IGs(s,u) = Gs(s,u)lls = Op((1/n)"/?). (27)
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We first prove (27) under assumption (A.6a). By (A.6a), we have M; = M, and the

grid of ¢ is {t1,...,ty}. Therefore,

sup |EGs(s,u) — Gs(s,u) (28)
(s,u)eS?
T &
= s ﬁmx ) (b)) = [l w0

Z'O(M) = 0(1/n),

and

sup var(Gs(s,u))

(s,u)eS?
= sup Zvar ZXcst tm)) (29)
(su682

|T?
< sup E(XC(8,tm) X (u, b)) X(S, t ) X (u,
Sy Zm; (5, ) X, 1) X, ) X (0, )

Combining (28) and (29) we have

sup E|Gs(s,u) — Gs(s,u)> = O(1/n).
(s,u)€S?

Therefore, by (A.4) and (s; — s;_1) = O(n™1),

E||Gs(s,u) — Gs(s,u)||% = /5/3 1Gs(s,u) — Gs(s,u)|*dsdu (30)
B 5_2’ z_; ; E|Gs(s;s1) — Gs(s;, 1) +O(1/n)
= O(1/n),

which implies (27). The same result can be derived using a similar argument under (A.6b),
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by substituting (28) with

sup |EGs(s,u) — Gs(s,u)| (31)
(s,u)eS?
\T| ZZO S, tim), (U tlm))—/C((s,t),(u,t))dt =0,
’L i=1 m=1 T

and substituting (29) with

sup var(Gs(s,u)) = (Z’T‘M Zvar ZXC Sy tim) X (s tim)) (32)

(s,u)eS?

A1,A2 |7‘|2 n

< (anMQZMQB O(1/n).

This completes the proof for Eq. (15).
For a fixed j, Lemma 4.3 in Bosq (2000) implies that

|7 =75] < [|Gs(s,u)=Gs(s,u)lls, [d5(s)=t5(s)lls < 2267 ||Gis(s,u) = Gis(s, )], (33)

where 0, is defined in (A.5). By (A.5), Eq. (16) and Eq. (17) directly follow.

In the following, we establish Eq. (18) as follows,

: Z S (6 tin) = Gt
S—ZKSTBEM [ (XG5 i) = st (05(5) = (5|
13 > [ s tin) = sty (s)as
i1 ZK% [ s tn) = o)) 5(5) = (s
<D X ) = Dll0) o)l

+sup (s, t) — (s, t)] sup [v5(s)| + sup [fa(s, 1) — ps, Ole5(s) = Ui()lls

= Oy((logn/n)"'?) + Oy((logn/n)'/?) + Oy((logn/n)"/?)

= Oy((logn/n)'’?), (34)
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where we used (A.1),(A.2), sup,,|i(s,t) — p(s,t)| = Oy((logn/n)'/?), and the previous
result sup, |g£j(s) — ¢i(s)] = O,((logn/n)'/?). This completes the proof.

Proof of Theorem 4:

Furthermore, by the orthogonality of fj, and cov(xjk, xi) = 0 for j # [, we have

oo 0 0

ZZZCOV (XjkX1n)95(8)gi(u /fk ) fn(t)

j=1 1=1 k=1 h=1

Cis(s, 1) :/TC((S )

:Z Zcov (ks X)) 95(8) g (w).

j=1 k=1
Therefore, g;(s) are the unique eigenfunctions of Cs(s,u), and 7; = > ;7 var(x;z). By

symmetry, one obtains the analogous result f(t) = ¢ (¢).

Proof of Theorem 5:

For fi(t) and g;(s) that satisfy the orthogonality conditions,

E(ST{XCst SN TUXE fug) i) <>}dsdt)

7j=1 k=1

X =2 3037 [ B (X5 0 (w0) Fet) o)y () () dsdudo

j=1 k=1

+ Z Z/E (X“(s,t) X (u,v)) fr(t) fr(v)g;(s)g;(u)dsdtdudv

j=1 k=1

=F||X|? - Z Z/E (X(s,t) X(u,v)) fi(t) fr(v)g,(s)g;(u)dsdtdudv.

=1 k=1

(35)
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Let fi(t) and §;(s) denote the optimal basis to achieve the minimum reconstruction

error (*, and define

ZZ/E (X(5, 1) X (u, ) G(£) ok (v) 15 ()20 (u)dsdtdud,

7=1 k=1

and

(I1) ZZ/E (X2, )X (0, 0)) Fo(t) i (0)5 ()31 () dsdtdud.

7=1 k=1

By Eq. (35), to prove the theorem, we only need to show that (I7) — (I) < aE||X¢|2.
We further define

(1T = /S . / B (X°(s,6)X<(u, 1)) dtd;(s)d; (w)dsdu,

and
()= /S . /T E (X°(s,£)X<(u, 1)) dttbs (s)05; (w)dscls.

We will prove that (I1) < (I11) < (IV) and (IV)—(I) < aE||X*¢||2, which implies that
(I1) = (1) < aB[| X*[|2,

By definition, the 1; are the leading eigenfunctions of the marginal kernel Gs(s,u) so
that (111) < (IV).

To show (IT) < (I11), let §(t) = (X(s,1),J,(s)), we observe
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Finally, we prove (IV) — (I) < aE|| X¢|s = max(as, a7)E|| X¢||2. Recall that 7; and vy

are the eigenvalues of G (s, u) and Gs(t,v). Then
7j :/GT(S7u)¢j(S)¢j(U)d8du
= / / E (X(s,t)X(u, t)) dtih;(s);(u)dsdu
= / / SS T ST ST B ) r(E)bn(€)dtiiy () (w)s (s) e (w)dclu
ik 1 h

=2 _var(x;n),
k=1

and by symmetry, we obtain J), = > 7| var(x;x). Then,

P

K P 00
B IEED ) INIIES ol SRR

j=1 j=1 k=1 j=1 k=K+1

< Z Oy, = arE|| X2,

k=K+1

By symmetry, we also have (IV') — (I) < asE|| X||.

35



SUPPLEMENT B: ADDITIONAL TABLES AND FIGURES FOR THE ANALYSIS OF THE

FERTILITY DATA AND SIMULATIONS

Additional materials on the fertility data, which were downloaded from the human fertility
database on March 18, 2013, are provided in Table 4 and Figures 5-11. These complement

the results presented in sections 5 and 6 of the main part of the paper.

Table 4: The abbreviations and names of the 17 countries (or territories), whose data are
used in the fertility application (those with available data for the period 1951-2006). The

colors used for representing each country in Figures 4 and 6 are also shown.

Color Abbreviation Country name First year Last year
B SWE Sweden 1891 2010
B CAN Canada 1921 2007

ESP Spain 1922 2006

CHE Switzerland 1932 2009

USA U.S. 1933 2010
Bl GBRTENW U.K., England and Wales 1938 2009
BN FIN Finland 1939 2009
Bl PRT Portugal 1940 2009
B GBR.SCO U.K., Scotland 1945 2009

FRA France 1946 2010
B BGR Bulgaria 1947 2009
B JPN Japan 1947 2009
m CZE Czech Republic 1950 2011
B HUN Hungary 1950 2009
Bl NLD Netherlands 1950 2009
B SVK Slovakia 1950 2009
B AUT Austria 1951 2010
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Figure 5: Age-specific fertility rates (ASFR) for 17 countries, red colors correspond to low

values and yellow colors to high values.
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ASFR. Country-year data
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Figure 6: All available functional fertility data as functions of age for 952 combinations of
17 countries and 56 calendar years, centered around the mean. Functions corresponding to

the same country are in the same color.
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Figure T:
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j-th score function for country i as in (4).
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Figure 8: Estimated eigenfunctions ¢,;(t) of the random scores &;(¢). These quantities are
as defined in (4).
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Figure 9: Product functions (/Bjk(t)ﬁj(s) corresponding to the six terms with higher FVE
in the marginal FPCA representation (4) of ASFR(s, ).
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n = 50.
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Figure 11: True (red-solid) and estimated (blue-dashed) eigenfunctions v;(s) and ¢(t) in
model (6) for j =1,2,3 and k = 1,2, 3, as obtained in one run of simulation 2 with sample

size n = 50.
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SUPPLEMENT C: STANDARD TWO-DIMENSIONAL FPCA AND PrODUCT FPCA FOR

FERTILITY DATA

Here we present the standard FPCA analysis of the ASFR data with the Karhunen-
Loeve representation, considering the data as random functions in two arguments. We
performed FPCA for this type of functional data following Yao et al. (2005) as implemented
in the PACE package (http://www.stat.ucdavis.edu/PACE). First, we rearrange the n = 17
matrices with dimension L x M = 44 x 56, containing the observed functional data, into a
big data matrix with dimension n x (M - L). Then we perform FPCA on this big matrix.
Finally we rearrange the estimated eigenfunctions (stored at this point as arrays of length
M - L) into matrices of dimension M x L. Figure 12 graphically summarizes the main
results of this standard FPCA.

The first 4 eigenfunctions (which are eigensurfaces in this unconstrained approach) have
a FVE of 89.73%. The first one (with FVE equal to 58.93%) is almost constant in calendar
year and corresponds to a contrast between young fertility (women aged between 18 and 25
years) and fertility in mature years (mothers being from 25 to 40 years old). Countries with
larger positive coefficients in this eigenfunction are Bulgaria, Czech Republic, Slovakia,
Hungary and U.S., while the Netherlands, Japan, Spain and Switzerland have negative
coefficients.

The second eigenfunction (or eigensurface) reflects the specificity of the baby-boom
around 1960 in Canada and U.S. (both have high positive coefficients in this eigenfunction).
Countries with negative scores (such as Japan, Spain, Bulgaria, Hungary or Czech Republic)
do not show a drop in fertility rates at the end of the 1960s. The third eigenfunction appears
to correspond to a sudden drop at the end of the 1970s in fertility for women aged between
30 and 40 years. This could be associated with women’s decision on reducing the number
of children, as the high fertility rates for ages in the interval [30,40] before 1977 are mainly
associated with large families or, in more technical terms, with high parities, parity being

defined as the cumulative number of a woman’s live births; see Preston et al. (2001)). This
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drop may be related to advances in birth control. These social changes arrived with a
certain lag in countries with positive scores (Portugal, Spain, Slovakia) while they were
adopted much earlier in countries with negative scores (Sweden, Finland, Switzerland).
Other characteristics of this third eigenfunction are less intuitive.

Regarding the fourth eigenfunction, the score map in the panel in column 2, row 2, of
Figure 12 indicates that Japan strongly weighs in this eigenfunction. Meanwhile the heat
map (panel in column 2, row 4) shows a contrast between fertility concentrated around the
age of 25 years (this strongly applies for Japan, with an outstanding positive score in this
eigenfunction) and spread out fertility between the ages of 18 to 40, mainly between 1955
and 1980. Moreover, this heat map also shows an anomalous behavior (that appears as a
discontinuity) at the year 1966. This fact corroborates that the fourth eigenfunction is a
Japan specific function. We refer to the discussion in Section 5 for the anomaly in Japanese
fertility in 1966.

Fitting the product FPC model to the fertility data resulted in estimates for the first
four eigenfunctions ¢, of the operator G7(t,v) as shown in Figure 13. The first of these
time trend functions particularly weighs the pre-1990 fertility, while the others are contrasts
between different calendar time periods. These estimated eigenfunctions are then multiplied
with the age eigenfunction estimates @Z;j(s) of Figure 3 to obtain the product functions
q@k(t)&j(s) that appear in the product FPC model representation (6) of ASFR(s,t). Figure
18 displays these product functions corresponding to the seven terms with larger FVEs
among those with j < 4 and k < 4, which together explain 87.38% of the total variability;
see also Table 1.

The product functions ¢y, (t)z/AJj(s) in Figure 18 match well with the corresponding prod-
ucts ¢;x(t)h;(s) in Figure 9 that result from the more general marginal approach (see
Appendix B). These functions can thus be similarly interpreted as previously described in
Section 5.1. The simplified product FPCA provides representations that are thus slightly

less flexible and therefore explain somewhat less of the variance when compared with those
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obtained from marginal FPCA, but have equally good, if not better, interpretability.
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Figure 13: Estimated eigenfunctions qgk(t), k =1,2,3,4, in the product FPC model (6) for

the fertility data.
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Figure 14: Product functions ¢y, (t)v,ﬁj(s) corresponding to the seven terms with higher FVE
in the product FPC model.

When applying product FPCA, one needs 7 terms to explain 87.38% of variance,
while for the marginal FPCA it is sufficient to include 6 terms to explain 87.49% of
the variance. Of course product FPCA has the big advantage that the final repre-
sentation in general involves fewer functions t;(s) and ¢(¢) than the number of func-
tions needed for the marginal FPCA representation and therefore is much simpler. For
instance, the analysis of the fertility data with marginal FPCA involves 9 functions
(11 (3), a(s), U3(s), pr1(t), dra(t), dar (t), daa(t), das(t), d31(t)), while only 7 functions are in-
volved in the product FPC model (zﬂl(s), @z(s), 1[)3(3), b1 (t), Qgg(t), &3(15), qA54(t)).
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SUPPLEMENT D: MALE MORTALITY RATES AS AN ADDITIONAL EXAMPLE

Mortality rates (or death rates) are defined as a ratio of the death count for a given age-
time interval divided by an estimate of the population exposed to the risk of death during
some age-time interval (Preston et al. 2001). The Human Mortality Database (http:
//www.mortality.org/) provides detailed information on mortality rates for 37 countries
or areas with precision of one year in both age and calendar time. Such rich information
can be provided only by countries with well developed official statistics agencies. This is
the reason why only 37 countries are covered by this database.

An alternative database including a much larger number of countries can be accessed
through the Population Division of the Department of Economic and Social Affairs of
the United Nations (WPP 2012). This database contains information for more than 200
countries on deaths grouped into five-year age intervals, from 1950 to 2010 (every 5 years).
The price to be paid for including a much larger number of countries is a loss in precision,
i.e., aggregation over 5 year intervals, both in terms of age and calendar time. As definition
of the mortality rate for a given country during a period of consecutive years and an interval
of ages, we consider the ratio between the number of deaths reported for a specific country
over the selected 5 year calendar period for people with age at death in the selected 5
year age interval, divided by the number of people that at the beginning of the calendar
time interval were in the age interval. As male and female mortality rates are different, we

consider here male data that were downloaded (on the 14th of January 2015) from

http://esa.un.org/wpp/Excel-Data/EXCEL_FILES/3_Mortality/
WPP2012_MORT_FO04_2_DEATHS_BY_AGE_MALE.XLS
http://esa.un.org/wpp/Excel-Data/EXCEL_FILES/1_Population/

WPP2012_POP_F15_2_ANNUAL_POPULATION_BY_AGE_MALE.XLS

We work with log-Mortality Rates, for which we use log(mortality rate+1), considered

as functions of men’s age grouped into intervals of 5 years (s) and repeatedly measured for
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every 5 calendar years t for various countries. The aggregated log-mortalities constitute
the functional data X (s,t) = log-mortality rate(s,t).

In WPP (2012), data are provided for ages s in the year intervals {[0,5), [5,10), ...,
[90,95), [95,00)}. The interval of calendar years with available data are {[1950,1955),. ..,
[2005,2010)}. The variability of mortality rates increases with age and decreases with
population. So we limit ourselves to ages lower than 80. We also excluded countries with
a 0 value for population size at any year or age. Then our database finally consisted of 166
countries, with 12 periods of five years each (which we labeled with the first year of the

respective interval: 1950 to 2005) and 16 five years age intervals (labeled from 0 to 75).

Male log-mortatlity rate sample mean
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Figure 15: Sample mean of the 166 male log-mortality rate functions by calendar year.

The sample mean of the male log-mortality rate functions for 166 countries displayed
in Figure 15 shows that mortality rates are, on average, highest for children under 5, and
for men aged more than 60; and that they are decreasing with increasing calendar year.

The male log-mortality rate data include one log-mortality rate curve over age per
calendar year and per country and are observed on a regular grid spaced in years across both
coordinates age s and calendar year ¢, which means that the empirical estimators described
in Section 2 can be applied to these data. Figure 16 displays the nM = 1992 centered

functional data male log-mortality rates X{(s;,tm) = Xi(s;,tm) for [ = 1,...,L = 16,
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Centered male log mortality rates. Country-year data
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Figure 16: All available functional male log-mortality data as functions of age for 1992
combinations of 166 countries and 12 calendar years, centered around the mean. Functions

corresponding to the same country are in the same color.

m=1,...,M = 12 and ¢ = 1,...,n = 166, demonstrating that there is substantial
variation across countries and calendar years. Several outliers in the centered log mortality
profiles have been highlighted in the figure. Some of these reflect periods of war, e.g. Iran
1980-1985 or genocides, e.g. Cambodia 1975-1980. Others correspond to high mortality
rates due to the HIV/AIDS pandemic. The bloody reign of the Macias Nguema dictatorship
in Equatorial Guinea also left its mark in this country’s mortality profile.

We fitted the marginal FPC model and found that the ¢;;(t) are similar for j = 1 and
2. This is an indication that the product FPCA is appropriate for these data, and we
directly applied it. Fitting the product FPC model to the male log-mortality data resulted
in estimates for 1; and ¢, as shown in Figure 17. The shape of the first eigenfunction
1 (s) (that takes positive values for all ages s) is similar to that of the mean function for a
fixed year t (see the right panel of Figure 15). Therefore 1, (s) can be interpreted as a size
component: Country-years with positive score in the direction of this eigenfunction have

higher male log-mortality ratios than the mean function for all ages, with larger differences
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for larger values of the average log-mortality rates. The second eigenfunction 1@2(3) repre-
sents a contrast between infant mortality and older age mortality. The third eigenfunction
ﬁg(s) appears to point to difficulties in obtaining accurate estimates of mortality rates for

the last age interval.
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Figure 17: Estimated eigenfunctions t;(s) (first row) and ¢ (t) (second row), in the product
FPC model for the log-mortality data.

The first calendar year trend function gz@l(t) shows a continuous reduction in male log-
mortality rates, with a pattern similar to the average evolution of male log-mortality over
time (see Figure 15, right panel). So positive scores associated with this eigenfunction
indicate larger reductions than the average (the opposite for negative scores). The second
and third trend functions are contrasts between different calendar time periods. Positive
(resp., negative) scores in the second trend function ¢,(s) indicate higher (resp., lower) than
average mortality at the beginning of the overall calendar period, and lower than average
mortality for the final years of the calendar period, i.e., a faster decline in mortality as
compared to the average decline. The third eigenfunction is associated with differences
in changes in log-mortality rates over calendar time between the middle period and the

early/late periods.
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The product functions ¢ (t)zﬁj(s) are shown in Figure 18. These functions can be easily
interpreted by taking into account that they are the product of a function '@Z;j(S) and a
function ggk(t), as represented in Figure 17. When applying product FPCA, one needs 4
terms to achieve a FVE of 71.06%, and 6 terms to achieve a FVE of 75%.

j=1, k=1 (FVE: 55.81%) j=2, k=1 (FVE: 6.57%)

60
60

Age
40

Age
40

20
20

1950 1960 1970 1980 1990 2000 1950 1960 1970 1980 1990 2000
Year Year
j=1, k=2 (FVE: 5.15%) j=3, k=1 (FVE: 3.53%)

Age
40 60

Age

20

1950 1960 1970 1980 1990 2000 1950 1960 1970 1980 1990 2000
Year Year
j=1, k=3 (FVE: 2.84%) j=2, k=2 (FVE: 2.79%)

60
60

Age
40

Age
40

20
20

1950 1960 1970 1980 1990 2000 1950 1960 1970 1980 1990 2000

Year Year

Figure 18: Product functions qgk(t)@](s) corresponding to the six terms with higher FVE
in the product FPC model representation for the log mortality data.
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The first product of estimated eigenfunctions (with FVE equal to 55.81%) is ¢; (¢)tb; (s),
which is the product of the function qgl(t) that is similar to the average evolution of log-
mortality rate over calendar years, and the function 1&1(5) that has a shape similar to
the average log-mortality rate pattern. As a consequence, the product function is always
positive and very similar to the mean function (see Figure 15). So countries with positive
random coefficients V1, at this product function ¢, (t)iﬂl(s) have larger male log-mortality
rates than the average for all ages and all calendar years, with larger differences for larger
values of the average log-mortality rates, and vice versa for the countries with a negative
coefficient. We refer to Table 5 for a list of countries with most extreme (positive or
negative) coefficients at this first product component.

The second product of eigenfunctions is ¢, (t)2(s) (FVE: 6.57%). It represents a con-
trast between infant mortality and old age mortality, due to the shape of 1/;2(8), which is
more marked at the beginning than at the end of the period (because of ¢, (t)). Countries
with negative scores (see Table 5) have lower than average infant log-mortality rates and
higher than average old age log-mortality rates. The opposite applies to countries with
positive scores at this product. The third product of eigenfunctions is ég(t)iﬂl(s) and it
separates countries with faster than average reduction in male log-mortality rates (positive
coefficients) from those with slower than average reduction (negative coefficients). This is
the main effect of Qgg(t). This effect is more marked for extreme ages, due to the shape of
1/31(3). The countries with extreme coefficients as listed in Table 5 are extremes in a certain
shape direction and deserve further study.

Alternatively, one can also apply marginal FPCA to quantify the observed variability
across countries. The results for marginal FPCA are summarized in Figures 19 and 20 for
the first three eigenfunctions, 1/;]-(3), j = 1,2,3, resulting in a FVE of 89.52%. The first
row of Figure 19 displays the estimated eigenfunctions ;(s), which are identical to the
functions ;(s) used in the product FPCA. The second row of panels in Figure 19 shows

the score functions éw (t),t € T, which are country-specific functions of calendar year.
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Table 5: Countries with the most extreme estimates of the random coefficients x;, ob-
tained by fitting the product FPCA model (6) for the six terms with higher FVE in the

representation of male log-mortality rates as linear combinations of the product functions

D) (s).

d1(t)Un(s) (FVE: 55.81%)
Most — Iceland, Channel Islands, Sweden, Norway, Puerto Rico, Barbados

Most + Sierra Leone, Mali, Eritrea, Equatorial Guinea, Timor-Leste, Liberia

é1()a(s) (FVE: 6.57%)
Most —  Fiji, Suriname, Martinique, Mauritius, Dem People’s Republic of Korea, Guyana

Most + Reunion, Central African Republic, El Salvador, Honduras, Pakistan, Angola

do(t)ih1(s) (FVE: 5.15%)
Most — Channel Islands, Barbados, Iceland, Belarus, Rwanda, Sierra Leone

Most + China, Oman, Tunisia, Singapore, Hong Kong SAR, Japan

é1()5(s) (FVE: 3.53%)
Most — Channel Islands, Iceland, Martinique, Guinea-Bissau, Timor-Leste, Oman
Most + Reunion, Papua New Guinea, Eritrea, South Africa,

Dem People’s Republic of Korea, Guadeloupe

b3(t)1(s) (FVE: 2.84%)
Most — Cape Verde, Tajikistan, Kazakhstan, Azerbaijan, Belarus, Kyrgyzstan

Most + Cambodia, Barbados, Channel Islands, Reunion, Guadeloupe, Martinique

Go(t)1)a(s) (FVE: 2.79%)
Most — Martinique, Japan, Fiji, Malta, Guyana, Botswana

Most + Reunion, Barbados, Channel Islands, Iceland, Yemen, Eritrea
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Their evolution over calendar time can be visualized by the track plot in Figure 20, showing
the planar curves for the pairs (& 1(t),&2(t)), t € T. In this example, the track plot is
particularly useful to detect country-years with extreme scores in some eigenfunctions. For
instance, Cambodia 1975-1980 and Rwanda 1990-1995 have extremely positive high scores
in the first eigenfunction. This corresponds to periods in the history of these two countries
during which they experienced a very high mortality rate: the Cambodian Genocide from
1975 to 1979, and the Rwandan Genocide in 1994.

The third step of the marginal FPCA (performing a separate standard FPCA for the
estimated score functions fm-(t), i=1,...,n, for 7 = 1,2,3) yields estimated eigenfunc-
tions éjk. For k = 1,2, 3 these estimates are shown in Figure 19 (three lower rows). It can
be seen that results are similar (up to sign changes) for the first and second sets of score
functions.

To conclude this second example, we present the standard FPCA of the log-mortality
data with the Karhunen-Loeve representation, considering the data as random functions in
two arguments. Figure 21 graphically summarizes the main results of this standard FPCA.
The first four eigenfunctions have a FVE of 78.55%. There are similarities between these
eigenfunctions and, respectively, the 1st, 2nd, 3rd and 5th eigenfunction products repre-
sented in Figure 18 (in the two last cases, up to a sign change). Therefore the interpretation
we have made above for these eigenfunctions products are valid for the eigenfunctions ob-
tained by standard FPCA. Nevertheless, to arrive at these interpretations is much more
difficult if the starting point is Figure 21, without the benefit of the functions represented
in Figure 18 for the product FPCA and their decomposition as products of functions in

Figure 17.
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