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ABSTRACT

Stochastic block model (SBM) and its variants are popular models used in community detection
for network data. In this paper, we propose a feature adjusted stochastic block model (FASBM) to
capture the impact of node features on the network links as well as to detect the residual commu-
nity structure beyond that explained by the node features. The proposed model can accommodate
multiple node features and estimate the form of feature impacts from the data. Moreover, unlike
many existing algorithms that are limited to binary-valued interactions, the proposed FASBM
model and inference approaches are easily applied to relational data that generates from any ex-
ponential family distribution. We illustrate the methods on simulated networks and on two real
world networks: a brain network and an US air-transportation network.
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1 Introduction

In recent years, there has been increasing interest in statistical methodologies designed for net-

work data. Network data takes the form of observed edges between nodes. Examples include

brain networks (in which the nodes are segregated brain regions and edges are characterizations

of white matter structural connectivity or brain’s functional interactions) and social networks (in

which the nodes are people and the edges may represent social interaction such as friendship or

collaboration). The nodes and edges together define a network, often represented by an adjacency

matrix, indicating the pairwise connection between nodes.

Community detection is a popular problem in network analysis. It has been a useful tool in

identifying the important structures of many complex systems. Loosely speaking, network com-

munity refers to a subset of nodes that have similar profiles of connection to other nodes. Two

classes of methods are commonly used for community detection. The first class of methods

seeks community structure by optimizing a criterion that represents the quality of the partition of

the network. These criteria come from a sense of what network communities should look like,

lacking the interpretation of the data process that gives rise to the network. Though not orginated

from a model, some popular methods such as simple spectral clustering (Von Luxburg, 2007) and

Newman-Girvan Modularity (Newman and Girvan, 2004) has been proved to produce consistent

estimation under stochastic block models (Bickel and Chen, 2009; Rohe et al., 2011; Lei et al.,

2014). The second class of methods involves fitting a probabilistic model that has well-defined

communities, where community detection is achieved by optimizing some statistical criterion

linked to the assumed model, for example, using the likelihood. One of the most popular models

is the stochastic block model (SBM) (Holland et al., 1983; Snijders and Nowicki, 1997; Nowicki

and Snijders, 2001). The important assumptions of the SBM model are that each node belongs to

one of the multiple blocks and the probability that an edge appears between any two nodes only

depends on the memberships of the two nodes. Karrer and Newman (2011) proposed the de-

gree corrected stochastic block model (DCBM) that allows degree inhomogeneity within blocks.

Another popular model that shares the same goal of inferring node cluster labels is proposed in

Handcock et al. (2007), where they extend the original latent space model proposed in Hoff et al.

(2002) by combining a clustering model in the form of a mixture of Gaussians in the latent space
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so that inference on cluster labels is attainable along with the latent positions. For a survey of

statistical models used in analysing network data, see Goldenberg et al. (2010) and Kolaczyk

(2009).

Despite the extensive literature on community detection, most of the proposed methods only fo-

cus on the observed edges of the network without taking into account the additional information

of node features (or node attributes). In many networks, the similarities and distinctions in the

node features have considerable impact on the pattern of linking. The nodes in different com-

munities are commonly assumed to have distinct connectivity patterns while the impact of node

features is usually in a more continuous fashion. For example, in the global airline network, there

are more connections between large airports, and, in the social network, individuals who are more

similar to one another in age and education are more likely to have interconnections (McPherson

et al., 2001). It is generally expected that integrating node features and network topology can

help us understand the network structure better than using the adjacency matrix alone or node

features information alone.

The primary focus of this paper is to take node features into account in network analysis in

order to capture the impact of node features on the network links, as well as to detect the resid-

ual community structure beyond that explained by the node features. For instance, in the brain

connectivity study, all the nodes are naturally embedded in a three-dimensional brain space. Con-

nectivity between adjacent nodes is sometimes over-represented due to technical reasons (Stanley

et al., 2013). One needs to account for the spurious connectivity in adjacent nodes by removing

the effect of spatial location so as to recover functionally distinct brain regions ("communities").

There are some recent attempts in integrating node features and network topology (Viennet et al.,

2012; Liu et al., 2014; Yang et al., 2013; Binkiewicz et al., 2017; Zhang et al., 2016; Newman and

Clauset, 2016). These efforts have provided great motivation for combining node features with

community detection. In particular Binkiewicz et al. (2017) introduced a covariate assisted spec-

tral clustering that leverages both node covariates and the graph in spectral techniques. Zhang

et al. (2016) proposed to include edge weights as a function of node features to an analogue of

modularity so that nodes having more similarity are more likely to be grouped into the same

community. Newman and Clauset (2016) illustrates how to use or ignore the node feature data
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depending on whether they contain useful information. However, the methods are mainly ap-

proaches aiming at improving community detection using node features that are aligned to the

communities to a certain degree, while we take a different perspective. We build a generative

stochastic model that models the node features effect and the community effect on the network

additively. The impact of node features on the probability of linking between two nodes is usually

a function of the similarities in the two node features. The proposed method can assist commu-

nity detection in the sense that it estimates and accounts for the effect of covariates, and so as to

reveal the hidden community structure.

The model we propose is a feature adjusted stochastic block model (FASBM), which combines

a block model component with community structures and a single-index function to incorporate

node features. As a generative model, the FASBM model assumes that the connectivity proba-

bility between two nodes i and j is determined by their communities, and also a smooth function

of the node features. The heterogeneity within a block is explained by the continuous effect

of specific node features. The estimation of the FASBM model involves discovering the opti-

mal block partition as part of the model estimation while capturing the impact of node features

on the network links. The proposed model builds upon the stochastic block model (SBM) and,

thus, inherits the merits of block models. With a semi-parametric single-index component, it is

also adequately flexible to accommodate multiple node features with no prior information about

the contribution of the features. Moreover, unlike many existing algorithms that are limited to

binary-valued interactions, the proposed FASBM model and estimation approaches are appli-

cable to relational data that are generated from any exponential family distribution and are not

restricted to being only Bernoulli.

The rest of the paper is organized as follows. We describe the proposed feature adjusted stochas-

tic block model (FASBM) in Section 2. Section 3 is devoted to a detailed description of the

estimation procedures. The performance of the proposed method is demonstrated on a range of

simulated networks in Section 4 and in Section 5 is applied to a functional brain network and an

US air-transportation network . The paper is concluded with a short discussion in Section 6.
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2 Feature Adjusted Stochastic Block Model (FASBM)

2.1 Stochastic Block Model and Likelihood Inference

We consider undirected networks in our paper, and self-loops are not allowed unless otherwise

specified. Most of the networks that have been studied are binary in nature, that is, the edges

between nodes indicate the presence or absence of an interaction. Binary network can be repre-

sented by a binary adjacency matrix Y = (Yij)1≤i,j≤m, where Yij = 1 if there is an edge between

node i and a different node j, and Yij = 0 otherwise.

The SBM has been developed in concordance with the notion of structural equivalence in a graph.

Let K be the number of non-overlapping communities, m be the number of nodes and r be a

vector of community labels with ri = k if node i, i = 1, · · · ,m, belongs to the community k ,

k = 1, · · · , K. For the SBM, the adjacency matrix Y is generated by

Yij =


independent Bernoulli with probability µij if i < j

0 if i = j

Yji if i > j

(1)

A stochastic block model is parameterized by a pair of (r, B), where B is a K ×K symmetric

matrix,

E(Yij) = µij = Brirj . (2)

Under the SBM, each node belongs to one of the multiple blocks, and the probability that an

edge appears between any two nodes only depends on the block memberships of the two nodes.

The primary interest of community detection is concerned with estimating r. It has been stud-

ied in Bickel and Chen (2009); Choi et al. (2012); Zhao et al. (2012); Celisse et al. (2012) that

blockmodels and the corresponding likelihood-based algorithms are (asymptotically) unbiased

and lead to the detection of the correct community structure. Let L(Y ;B, r) denote the log-

likelihood function L(Y ;B, r) =
∑m

i=1

∑m
j=i+1{Yij log(Brirj)+(1−Yij) log(1−Brirj)}. Find-

ing the global maximum involves maximizing the likelihood function over all possible label as-

signments, which is computationally infeasible. Some types of greedy label-switching algorithms

for maximizing the likelihood function have been proposed and work well in practice. Another
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popular community detection algorithm, simple spectral clustering (Von Luxburg, 2007), has also

been proved to be consistent under SBM (Rohe et al., 2011; Lei et al., 2014). Bickel and Chen

(2009) also proved that under some conditions, partitions obtained from the Newman-Girvan

Modularity (Newman and Girvan, 2004) are consistent estimators of block partitions under the

SBM, although the algorithm itself is not based on generative models.

2.2 Generalized semi-parametric single-index model

We aim to find a way to incorporate feature information into the stochastic block model, and

meanwhile account for three practical considerations:

1) There may be multiple node features influencing the connection probability.

2) In the general case, we may not have good knowledge of how node features impact connec-

tions.

3) Many networks have relational data indicating differing strengths of interactions. For example,

in a brain network there may be stronger or weaker reactions between two regions of interest, or

in a collaborative research network there may be more or fewer co-authored papers between two

researchers. Dichotomizing the strength of interaction would clearly destroy potentially valuable

information.

We propose the Feature Adjusted Stochastic Block Model (FASBM) as follows. The network Y

is generated by

Yij =


independent exponential family with mean µij if i < j

0 if i = j

Yji if i > j

(3)

The distributions we consider here are mainly in one-parameter exponential family (uniquely de-

termined by µij). We allow for an unknown scaling parameter such as the variance in normal

distribution. Our algorithm does not estimate the nuisance scaling parameter. Further specifica-

tion of the mean µij is as follows

E(Yij) = µij = g−1(θrirj + f(βTzij)), with ‖β‖ = 1. (4)
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where g is a known link function, θ is a K × K symmetric matrix that captures the block-

wise effect, f is an unknown smooth function that will be estimated non-parametrically, zij is

a p-dimensional vector of covariates and β is the p-dimensional linear coefficient. Here zij is

selected in a manner depending on the node features fi and fj and we assume zij = zji. Sup-

pose that in a brain network, we are interested in assessing the impact of spatial locations on

brain connectivity, the physical distance between two brain regions may be a sensible choice,

i.e., zij = d(fi,fj) where d is a distance measure and fi is the location of region i in the three-

dimensional brain space. Noting that we basically model the probability of the presence of an

edge as two parts, one is a discrete part that captured by the θ matrix, and the other part captured

by the smooth function f . For model identifiability, we require βTzij to take values on an interval

and none of the covariates is perfectly aligned with the communities. In the extreme case that we

have two communities, and the covariate takes one value in community 1 and takes another value

in community 2, which means the covariates are completely aligned with the community, we get

into an identifiability problem. Note that the covariates can still be correlated with the communi-

ties, such as settings in our simulation II. Our model encompasses many types of relational data

generated from an exponential family distribution. Families that generate the well known class

of generalized linear models are all extendable in the same way to the FASBM. The component

f(βTzij) can be referred to as a single-index component (Carroll et al., 1997). For identifiability

and for easier interpretation, the restriction ‖β‖ = 1 is used with the first component of β being

positive, and we also set f(x0) = 0 for a chosen constant x0. Single-index models have been

proven to be an efficient way to avoid fitting multivariate nonparametric regression functions.

The proposed FASBM can be viewed as a generalized semi-parametric single index model (4),

which consists of two parts: i) block model parameter θ that enters the model as a parametric

component, retaining the generality and tractability of the block model and ii) a single-index

component f(βTzij). The non-parametric function f is flexible to characterize nonlinear co-

variate effects, while βTzij reduces the dimension of the covariates. When no feature is con-

cerned or covariates have no effect on node connections, FASBM becomes a generalization of

the stochastic block model to accommodate relational data drawn from exponential families other

than Bernoulli distribution. The classic SBM is obviously a special case of FASBM.
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3 Maximum likelihood estimation for FASBM

In this section, we introduce the fitting algorithms for our proposed model.

Consider m(m − 1)/2 independent random variables Yij from exponential family distribution.

The log-likelihood function in the canonical form with a canonical link is given as

L(Y ;θ, r,β) =
m∑
i=1

m∑
j=i+1

{(Yijγij − b(γij))/φ+ a(yij, φ)} and

γij = θrirj + f(βTzij). (5)

Here φ is a nuisance parameter, and functions b(·), a(·, ·) are completely determined by the log-

likelihood function of the data. In the case that Yij is binary data assumed to follow a Bernoulli

distribution, the canonical link function g is the logit function, b(γ) = log(1 + exp(γ)), and

a(y) ≡ 1. Our goal is to maximize the logarithm of the likelihood function with respect to the

unknown model parameters θ,β, f, along with the node label assignment vector r. Because

an exact maximization of the (5) is computationally intractable, we propose an approach that

alternates between two stages of maximization: first with respect to the parameters in the block

model component, r and θ, and then with respect to the parameters in the single-index model

component, f and β. We adapt the likelihood-based algorithms for the SBM to stage 1 and the

estimation procedures for fitting single-index models (Carroll et al., 1997) to stage 2. Note that

we used the canonical link function to explicitly write equation (5). In fact, the algorithm works

for general link functions. Detailed descriptions of the algorithms are provided in the Subsection

3.2, and the code is publicly available on authors webpage.

In light of the fact that it has been proved in Bickel and Chen (2009) that partitions with likelihood-

based algorithms for the SBM are consistent, we would expect a good chance of recovering mem-

bership consistently, as long as we can consistently estimate the single-index part f and β. On

the other hand, given r, our model can be viewed as a generalized semi-parametric single-index

model and consistency of the estimates f,β and θ follows from Carroll et al. (1997). Empirically

we show satisfactory performance of the algorithm as detailed in the Section 4.
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3.1 Preliminaries

Local polynomial maximum likelihood estimation: We estimate f using local polynomial

maximum likelihood estimation. Imagine for a moment that node membership r, and θ, β are

fixed. We estimate the function f for each point x0 by maximizing the local kernel-weighted

log-likelihood

L(Y ;θ, r,β) =
m∑
i=1

m∑
j=i+1

{(Yijγij − b(γij))/φ+ a(yij, φ)}Kh(β
Tzij − x0) and

γij = θrirj + b0 + b1(β
Tzij − x0)) + · · ·+ bp(β

Tzij − x0)p. (6)

with respect to (b0, b1, . . . , bp) and then f̂(x0) = b̂0 and f̂ (1)(x0) = b̂1. Here f(x) is locally

approximated by a polynomial function near x0:

f(x) ≈ f(x0)+ f (1)(x0)(x−x0)+ · · ·+
1

p!
f (p)(x−x0)p ≡ b0+ b1(x−x0)+ · · ·+ bp(x−x0)p,

and Kh(·) = K(·/h)/h is a rescaled kernel function K(·) with bandwidth h, which places more

weight on those observations closer to x0. In general, the finite sample performance is not very

sensitive to the choice of p within a reasonable range. Previous work (Fan and Gijbels, 1996)

recommend to choose the degree of polynomial p as the desired derivative plus one, i.e., use local

linear approximation for estimating f , and use local quadratic approximation for estimating the

first derivative f (1). We used p = 2 in our simulations since we also need f (1) in the step of

updating θ.

Fisher Scoring algorithm: Our estimation of θ and f(·), β all use the Fisher Scoring algorithm

for maximum likelihood estimation. Consider a random variable y with a distribution in the

exponential family. The log-likelihood for one observation can be expressed as l(y, γ, φ) =

[(yγ−b(γ))/φ+a(y, φ)] for known functions b(·), a(·, ·), and it is easy to show that E(y) = µ =

b′(γ) and Var(y) = b′′(γ)φ = V (µ). When alternating between the estimation of θ, f(·) and β,

the proposed model µ = g−1(θ + f(βTz)) can be written as g(µ) = η(B), with its respective

form of η and unknown parameters B. By the chain rule and properties of exponential family,
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score function U(B) for N observations becomes

U(B) =
N∑
s=1

us =
N∑
s=1

∂ls(B)

∂B
=

N∑
s=1

∂ls
∂γs

∂γs
∂µs

∂µs

∂ηs

∂ηs
∂B

ws

=
N∑
s=1

ys − µs

φ

1

V (µs)
g−1′(ηs)

∂ηs
∂B

ws

=
∂η

∂B
W1W (y − µ)

with diagonal matrix [W1]ss =
g−1′(ηs)

φV (µs)
and diagonal weight matrix [W ]ss = ws. The weight

matrix W is simply an identity matrix when maximizing the global log-likelihood for the esti-

mation of θ and β. When considering the local kernel-weighted log-likelihood for estimating

f(x0), the local kernel-weight ws for each observation is specified in Section 3.1.

The Hessian matrix and Information matrix become:

H(B) =
∂U(B)

∂B
=

N∑
s=1

(ys − µs)

∂

(
[W1]ssws

∂ηs
∂B

)
∂B

+ [W1]ssws
∂ηs
∂B

∂(ys − µs)

∂B
,

and

I(B) = −E(H(B)) =
N∑
s=1

[W1]ssws
∂ηs
∂B

∂µs

∂B
=

N∑
s=1

[W1]ssws
∂ηs
∂B

∂µs

∂ηs

∂ηs
∂B

=
N∑
s=1

[W1]ssws
∂ηs
∂B

g−1′(ηs)
∂ηs
∂B

=
∂η

∂B
W2W

(
∂η

∂B

)T

with diagonal matrix [W2]ss =
(g−1′(ηs))

2

φV (µs)
. Given B(l) at the previous step, by the Fisher

Scoring algorithm, the updated B̂(l+1) = B̂(l) + I−1(B̂(l))U(B̂(l)),

B̂(l+1) = B̂(l) +

(
∂η

∂B
W2W

(
∂η

∂B

)T
)−1

∂η

∂B
W1W (y − µ)

∣∣∣∣
(l)

(7)

The approach for updating f , θ and β all fall into the above framework with its respective η and

unknown parameters B, which will be specified in Section 3.2. The weight matrices W are the
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kernel weights for local likelihood estimation, and only used in updating f . Given η, the link

function g, and the distribution of Y , matrices W1 and W2 can be computed according to the

formula given above.

3.2 The Algorithm

The algorithm takes the relational data Y , covariates z, assumed number of communities K

and the assumed distribution for Y (within the exponential family) as input, and output all the

estimated model components. Before we demonstrate the detailed algorithms, we convert the

upper triangle (excluding the diagonal) of Y into a vector Y ∗N×1 =
(
Y12, · · · , Y(m−1)m

)T where

N = m(m − 1)/2, and accordingly let Z∗N×p =
(
z12, · · · , z(m−1)m

)T . We use Y ∗s(ij) and z∗s(ij)
for the correspondence between s and the pair (i, j) when necessary.

(a) Initialization: Let f̂(·) = 0, each entry of β̂ =
√

1/p, assign initial labels r by k-means on

the rows of Y matrix.

(b) Updating θ and r: Given f̂ (o) and β̂(o), obtain θ̂(o+1) and r̂(o+1) by repeating steps of updating

θ and r iteratively until r is unchanged.

Suppressing the superscript (o), given the current f̂ and β̂, each iteration of updating θ and

r involves two steps:

(i) Given r̂(q−1), update θ̂(q) through (7) by reparameterizing the upper triangle of θK×K

into BP×1 = (θ11, · · · ,θ1K ,θ22, · · · ,θKK)
T with P = K(K + 1)/2. Here ηs(ij) =

xT
s(ij)B + f(βTz∗s(ij)) for s = 1, . . . , N , where xs(ij) has only one 1 indicating the

memberships (ri, rj), otherwise zero.

(ii) Given θ̂(q), the community label for ith node r(q)i is updated by minimizing the neg-

ative log-likelihood through the greedy label-switching algorithm (Stephens, 2000) as

follows:

r̂i
(q) = argmink∈{1,··· ,K}

m∑
j=1

{−Yij log[g−1(θ̂(q)
k,r

(q−1)
j

+ f̂(β̂Tzij))]−

(1− Yij) log[1− g−1(θ̂(q)
k,r

(q−1)
j

+ f̂(β̂Tzij))]}.
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(c) Updating β and f : Given θ̂(o+1) and r̂(o+1), obtain f̂ (o+1) and β̂(o+1) by iterating between

updating β and f until
‖f̂ (q) − f̂ (q−1)‖
‖f̂ (q−1)‖

≤ ε for a suitably chosen small constant ε, where ‖·‖

denotes L2 norm and q denotes the index of iteration consisting of updating β and f .

Omitting the superscript (o), given the current θ̂ and r̂, each iteration of updating f and β

involves two steps:

(i) Given f̂ (q−1), β̂(q) is obtained through (7) by viewing B = β. Here ηs(ij) = θrirj +

f(BTz∗s(ij)). Note that β̂ need to be normalized to meet ‖β‖ = 1.

(ii) Given β̂(q), we fit f̂(·) at a fixed but fine grid of points and subsequently using inter-

polation to get the other values. Take one of the grid points x0 for example, f̂(x0)

is updated through (7) using the local likelihood approach. Here, B = (b0, b1, b2),

ηs(ij) = θrirj + b0+ b1(β
Tz∗s(ij)−x0))+ b2(βTz∗s(ij)−x0))2, [W ]ss = Kh(β̂z

∗
s −x0),

f̂(x0) = b̂0 and f̂ (1)(x0) = b̂1.

(d) Iterate between steps (b) and (c) until
‖f̂ (o+1) − f̂ (o)‖
‖f̂ (o)‖

≤ ε for a suitably chosen small con-

stant ε.

4 Simulation Studies

We conduct four simulations total. Simulation I and II are designed to investigate the performance

of the proposed method under different types and levels of node influence, including cases where

node covariates are generated with or without alignment to node communities, and edge proba-

bility depends on node features through function f with various levels of influence, including the

case f ≡ 0. Simulation III is designed to investigate the performance of the proposed method

when there are nuisance nodal covariates i.e., a subset of the covariates have no impact on the

edge probability, but the overall f is not zero. Simulation IV is designed to further investigate

the performance under various shapes of f functions.

In Simulation I, the network generation procedure takes the following steps: first, generate la-

bels for m nodes independently with P (ri = 1) = · · · = P (ri = K) = 1/K; second, generate

node feature x and compute the l2 distance between xi and xj , denoted by zij; finally, the edges
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between node i and node j are generated independently as Yij ∼ Bernoulli
(
g−1(θrirj + f(zij)

)
,

where g is the logit function. The values of θ for K = 2 and K = 3 are as follows,

θ = logit

 0.5 0.2

0.2 0.2



and θ = logit


0.5 0.2 0.2

0.2 0.3 0.2

0.2 0.2 0.1

.

We let f = a sin(−8zij), with a taking different values, 0, 1.4 or 1.8. The node covariates x

are generated uniformly from interval (0, 1). In Simulation II, we keep the same settings as in

simulation I, K = 2, but generate covariates xi according to a mixture Gaussian distribution,

where xi is from N(−1, 1) if node i is in community 1, otherwise xi is from N(1, 1). In this

case, the nodal covariate values are aligned to the communities.

In both simulations, we compare the community detection results with the likelihood-based in-

ference of SBM (SBML), the simple spectral clustering (SPEC), the joint community detection

criterion proposed in Zhang et al. (2016), and the covariate-assisted spectral clustering (CASC)

proposed in Binkiewicz et al. (2017). We consider two measures to quantify the performance

in terms of the agreement between the true r and r̂. The first measure is the average misclas-

sification rates (ERR), quantifying the overall proportion of mis-clustered nodes (Girvan and

Newman, 2002). We also adopt the normalized mutual information criterion (NMI) (Kvalseth,

1987) to measure clustering quality, where higher values indicate better matching.

It is worth mentioning that for methods based on spectral clustering, including SPEC, JCDC

and CASC, one needs to choose the dimension d of spectral embedding. In the simulation, we

tried different d values for these three methods, and reported the one with the best performance.

There are two additional tuning parameters, α and wn, users need to specify, in using JCDC

method. In our simulations, α is set to 1, which is the same setting used for all the simulations

and data analysis reported in Zhang et al. (2016). We varied the value of wn and picked the

value that favors JCDC method the most in terms of normalized mutual information. Also all the

three algorithms require the number of communities to be known in advance, and we used the
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true K in the simulation. Determining the number of communities is gaining increasing interest

recently (Chen and Lei, 2018; Bickel and Sarkar, 2015). In the Section 5, we used the network

cross-validation (NCV) method proposed by Chen and Lei (2018) to determine the number of

communities.

Table 1 - Table 3 show the results of 100 simulation runs for simulations I and II. In the situations

where features have no impact on the network topology, i.e., a = 0, FASBML and SBML perform

equally well followed by SPEC and CASC. All the methods perform better as m increases as,

with more links, there is effectively more data to use for fitting the model. The performance

of other methods deteriorates rapidly as the amount of f effect increases. On the other hand,

the partition found by FASBML still has very good agreement with the actual partition in the

presence of large feature influence, and the performance improves asm increases. The inferiority

of SBM relative to FASBM in these scenarios is understandable as FASBM always uses both

the network topology and the features whereas SBM completely ignores feature influence. In

addition, the fact that FASBML and SBML have equally good performance when a = 0 confirms

the robustness of FASBML to the case where all covariates are irrelevant. The performance of

JCDC and CASC relies on the relationships between the covariate and the communities. In

their settings, the edge probability does not directly depend on covariates after accounting the

community structure (though the covariates are aligned with communities), and it corresponds

to f ≡ 0 in our setting. We do not mean to claim superiority by the comparison here, as these

methods take somewhat different perspectives and have different applications.

In simulation III, in addition to having a covariate x1 generated uniformly from interval (0, 1),

we generate covariate x2 according to a mixture Gaussian distribution: in the case of K = 2,

x2i is from N(−1, 1) if node i is in community 1, otherwise xi is from N(1, 1); in the case

of K = 3, x2i is from N(−2, 1) if node i is in community 1, from N(0, 1) if node i is in

community 2, otherwise x2i is from N(2, 1). Let f1 = 1.8 sin(−4

3
(0.2z1ij + 0.9798z2ij)), and

f2 = 1.8 sin(−4

3
(z2ij)), where z1ij and z2ij are the L2 distance between x1i and x1j , and between

x2i and x2j , respectively. In the first case, β1 = 0.2 and β2 = 0.9798, where the β vector

is set to have norm equal 1. In the second case, β1 = 0 and β2 = 1, which implies that x1 is a

nuisance covariate. Fitting FASBM using two covariates, we found that the estimated coefficients
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Table 1: Results of simulation I, K = 2. The average misclassification rates (ERR) and nor-

malized mutual information (NMI) are shown together with their standard deviations enclosed in

parentheses for varying a in f = a sin(−8zij), and varying number of nodes m. Numbers in bold

indicate the best performance.

m = 100 m = 200 m = 400

FASBML SBML SPEC JCDC CASC FASBML SBML SPEC JCDC CASC FASBML SBML SPEC JCDC CASC

a = 0

ERR 0.012 0.012 0.041 0.240 0.021 0.0004 0.0004 0.006 0.231 0.002 0 0 0.0003 0.227 0
(0.010) (0.010) (0.024) (0.04) (0.016) (0.0015) (0.0015) (0.006) (0.024) (0.003) (0) (0) (0.0009) (0.019) (0)

NMI 0.924 0.924 0.783 0.335 0.872 0.997 0.997 0.955 0.371 0.988 1 1 0.998 0.377 1
(0.060) (0.060) (0.100) (0.063) (0.083) (0.013) (0.013) (0.040) (0.035) (0.022) (0) (0) (0.008) (0.023) (0)

a = 1.4

ERR 0.157 0.443 0.128 0.303 0.093 0.012 0.469 0.079 0.286 0.045 0.0001 0.481 0.045 0.354 0.021
(0.200) (0.087) (0.041) (0.078) (0.040) (0.067) (0.024) (0.031) (0.082) (0.025) (0.0004) (0.014 ) (0.020) (0.119) (0.013)

NMI 0.592 0.038 0.470 0.195 0.581 0.962 0.005 0.625 0.241 0.754 0.999 0.002 0.75 0.162 0.869
(0.404) (0.147) (0.116) (0.119) (0.131) (0.141) (0.007) (0.104) (0.134) (0.098) (0.003) (0.002) (0.08) (0.165) (0.064)

a = 1.8

ERR 0.174 0.461 0.182 0.459 0.461 0.036 0.469 0.132 0.440 0.093 0.005 0.482 0.105 0.470 0.070
(0.192) (0.028) (0.057) (0.029) (0.030) (0.119) (0.023) (0.046) (0.069) (0.036) (0.049) (0.015 ) (0.030) (0.02 ) (0.027)

NMI 0.524 0.007 0.349 0.007 0.007 0.908 0.004 0.464 0.036 0.581 0.989 0.002 0.549 0.004 0.673
(0.375) (0.009) (0.115) (0.009) (0.010) (0.251) (0.007) (0.118) (0.088) (0.113) (0.100) (0.002 ) (0.090) (0.005 ) (0.090)

Table 2: Results of simulation I: K = 3. The average misclassification rates ERR and nor-

malized mutual information (NMI) are shown together with their standard deviations enclosed in

parentheses for varying a in f = a sin(−8zij), and varying number of nodes m.

m = 100 m = 200 m = 400

FASBML SBML SPEC JCDC CASC FASBML SBML SPEC JCDC CASC FASBML SBML SPEC JCDC CASC

a = 0

ERR 0.262 0.265 0.298 0.422 0.276 0.073 0.075 0.185 0.376 0.158 0.011 0.011 0.074 0.372 0.064
(0.133) (0.133) (0.067) (0.067) (0.068) (0.095) (0.096) (0.045) (0.032) (0.032) (0.005) (0.005) (0.021) (0.023) (0.013)

NMI 0.546 0.544 0.404 0.238 0.435 0.825 0.824 0.545 0.346 0.588 0.954 0.953 0.753 0.398 0.783
(0.110) (0.110) (0.077) (0.089) (0.086) (0.060) (0.063) (0.060) (0.043) (0.062) (0.020) (0.020) (0.045) (0.024) (0.036)

a = 1.4

ERR 0.380 0.535 0.407 0.499 0.378 0.167 0.524 0.352 0.477 0.316 0.038 0.534 0.335 0.449 0.287
(0.098) (0.052) (0.065) (0.073) (0.059) (0.149) (0.041) (0.057) (0.090) (0.054) (0.089) (0.037) (0.055) (0.107) (0.047)

NMI 0.332 0.099 0.272 0.125 0.295 0.682 0.117 0.331 0.179 0.364 0.910 0.117 0.351 0.257 0.400
(0.142) (0.071) (0.072) (0.089) (0.075) (0.176) (0.057) (0.056) (0.126) (0.062) (0.076) (0.056) (0.050) (0.166) (0.058)

a = 1.8

ERR 0.421 0.566 0.450 0.566 0.432 0.197 0.573 0.434 0.590 0.401 0.020 0.592 0.436 0.619 0.387
(0.094) (0.044) (0.059) (0.055) (0.057) (0.154) (0.040) (0.059) (0.051) (0.061) (0.008) (0.030) (0.053) (0.049) (0.059)

NMI 0.260 0.053 0.209 0.054 0.221 0.625 0.050 0.244 0.035 0.268 0.919 0.038 0.270 0.020 0.300
(0.125) (0.049) (0.068) (0.058) (0.071) (0.195) (0.037 (0.056) (0.062) (0.064) (0.025) (0.033) (0.038) (0.064) (0.049)

as well as the shape of f are close to the true values. For example, in the case of f1, m = 200

and K = 3, the average β̂ = (0.1999, 0.9798) over 100 simulations, with standard deviations

(0.0099, 0.002). For f2, m = 200 and K = 3, the average β̂ = (−0.0006, 0.9998), with standard

deviations (0.0219, 0.0003). The community detection results are shown in Table ??. We can see

that the model tends to ignore the covariate that has no impact on the network, and the community
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Table 3: Results of simulation II. The average misclassification rates (ERR) and normalized mu-

tual information (NMI) are shown together with their standard deviations enclosed in parentheses

for varying a in f = a sin(−4
3
zij), and varying number of nodes m. Numbers in bold indicate

the best performance.

m = 100 m = 200 m = 400

FASBML SBML SPEC JCDC CASC FASBML SBML SPEC JCDC CASC FASBML SBML SPEC JCDC CASC

a = 0

ERR 0.017 0.011 0.043 0.232 0.023 0.0008 0.0005 0.008 0.223 0.002 0.000 0.000 0.0002 0.227 0.000
(0.016) (0.010) (0.028) (0.041) (0.020) (0.002) (0.002) (0.007) (0.025) (0.003) (0.0003 ) (0) (0.0006 ) (0.017 ) (0.000 )

NMI 0.894 0.926 0.773 0.333 0.863 0.994 0.996 0.945 0.382 0.985 1.000 1.000 0.998 0.378 1.000
(0.087) (0.065) (0.117) (0.077) (0.101) (0.016) (0.012) (0.049) (0.037) (0.024) (0.002 ) (0) (0.006) (0.023) (0.002)

a = 1.4

ERR 0.041 0.221 0.186 0.401 0.184 0.004 0.189 0.152 0.399 0.149 0.0001 0.189 0.132 0.415 0.138
(0.027) (0.064) (0.041) (0.056) (0.045) (0.004) (0.053) (0.028) (0.062) (0.030) (0.0006) (0.049) (0.021) ( 0.050) ( 0.025)

NMI 0.778 0.287 0.332 0.047 0.342 0.968 0.352 0.415 0.050 0.438 0.999 0.368 0.491 0.035 0.499
(0.123) (0.104) (0.085) (0.046) (0.094) (0.031) (0.109) (0.076) (0.057) (0.079) (0.005) (0.119) (0.053) (0.049) (0.060)

a = 1.8

ERR 0.060 0.256 0.231 0.440 0.235 0.007 0.251 0.220 0.436 0.226 0.0002 0.263 0.214 0.437 0.215
(0.057) (0.063) (0.038) (0.042) (0.048) (0.007) (0.044) (0.034) (0.040) (0.038) (0.0007) ( 0.036 ) ( 0.034) (0.034) ( 0.034)

NMI 0.714 0.226 0.236 0.017 0.236 0.948 0.232 0.257 0.018 0.257 0.998 0.216 0.272 0.016 0.290
(0.159) (0.094) (0.075) (0.021) (0.093) (0.048) (0.070) (0.069) (0.020) (0.079) ( 0.007) ( 0.056 ) ( 0.073) ( 0.014 ) ( 0.077)

detection results are satisfactory in all cases and robust to nuisance covariates.

Table 4: Results of Simulation III. The average misclassification rates (ERR) and normalized

mutual information (NMI) are shown for FASBML together with their standard deviations en-

closed in parentheses for f1 = 1.8 sin(−4

3
(0.2z1ij + 0.9798z2ij)) and f2 = 1.8 sin(−4

3
(z2ij)),

with varying number of nodes m.

m = 100 m = 200 m = 400

f1 f2 f1 f2 f1 f2

K = 2 ERR 0.041 0.073 0.002 0.011 0.0001 0.0004
(0.031) (0.048 ) (0.004) (0.009 ) ( 0.0004) (0.0009 )

NMI 0.782 0.659 0.981 0.923 0.9995 0.996
(0.146) (0.163) (0.027) (0.054) (0.003) (0.009)

K = 3 ERR 0.259 0.292 0.051 0.049 0.010 0.010
(0.124 ) (0.126) (0.034) (0.015) (0.005) (0.005)

NMI 0.460 0.429 0.835 0.834 0.956 0.956
(0.161 ) (0.163) (0.058) (0.043) (0.020) (0.019)

In Simulation IV, we use two more examples to illustrate the empirical performance of the non-

parametric estimation for the function f . We set K = 2 in both examples. In the first example, f

is an exponential function, f(zij) = 2 exp(−8zij)− 2; in the second example, f is a polynomial
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Table 5: Results of Simulation IV. The average misclassification rates (ERR) and normalized mu-

tual information (NMI) are shown for FASBML together with their standard deviations enclosed

in parentheses for exponential f and polynomial f , with varying number of nodes m.

m = 100 m = 200 m = 400

Exp f Poly f Exp f Poly f Exp f Poly f

ERR 0.098 0.172 0.021 0.046 0.002 0.006
(0.056) (0.090) (0.012) (0.040) (0.003) (0.004)

NMI 0.574 0.398 0.866 0.763 0.981 0.954
(0.136) (0.178) (0.067) (0.130) (0.021) (0.029)

function, f(zij) = 10z4ij − 42z3ij + 50z2ij − 20zij . A fitted curve randomly selected from 100

simulations is depicted in Figure 1 for each scenario. It is shown that, when the network is

of moderate size, the fitted curve is remarkably close to the true curve, except some boundary

effect near the endpoints. The proposed algorithm can also provide satisfying partition results as

presented in Table 5.
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(a) (b)

(c) (d)

Figure 1: Estimates of f for a randomly selected simulated network with varying f functions and

varying number of nodes m. (a) f(x) = 2 exp(−8x)−2 . (b) f(x) = 10x4−42x3+50x2−20x.

(c) f(x) = 1.4sin(−8x). (d) f(x) = 1.8sin(−8x)

.
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5 Data Applications

In this section, we show applications of our method to two actual world networks: a functional

brain network and an US air-transportation network, which are representative examples of bio-

logical and infrastructure systems. The proposed FASBM reveal interesting node feature effects,

as well as interpretable communities.

5.1 Functional Brain Network

We first consider an application to brain functional connectivity study using resting-state func-

tional magnetic resonance imaging (RS-fMRI) data. The data were collected by University of

Pittsburgh Medical Center and detailed descriptions can be found in Hwang et al. (2013). Imag-

ing data were preprocessed to reduce noise and artifacts using standard fMRI data processing

methods .

RS-fMRI measures the intrinsic, high-amplitude, low-frequency blood-oxygen-level dependence

signal (BOLD) fluctuations of the brain. The relationship between RS-fMRI signals from differ-

ent regions is thought to reflect functional connectivity independent of any particular brain state

(Van Dijk et al., 2010). Functional connectivity between a pair of voxels is usually estimated

by calculating the Pearson correlation coefficient between their BOLD time series, treating the

observations as coming from a single bivariate distribution.

The brain network in this analysis contains 448 nodes (voxels) in the basal ganglia mask. The data

matrix Yij is the averaged Fisher’s z-transformed correlation values based upon all subjects. The

basal ganglia subserves a wide range of functions, including motor, cognitive, motivational, and

emotional processes and has been implicated in numerous neurological and psychiatric disorders.

There have been great interest in using RS-fMRI techniques to study the functional connectivity

in basal ganglia (Di Martino et al., 2008; Robinson et al., 2009; Barnes et al., 2010).

Given the fact that connectivity between adjacent nodes is sometimes over-represented due to

inevitable technical reasons in fMRI data acquisition process and data processing (Stanley et al.,

2013), we consider the Euclidean distance between two voxels as the covariate zij in applying
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FASBM to discover the underlying block structure of the functional brain network. Here the

spatial location of each node is defined as the coordinates of the center of the voxel in MNI

stereotactic space.

The estimated function f as shown in Figure 2d reflect the expected relationship between brain

connectivity and spatial locations. Figure 2e reveals that the pairs of voxels within the same

block are not exactly connected in the same way as evidenced by the noise patterns within blocks.

Fitting of the simple stochastic block model to the brain network can not characterize the het-

erogeneity within blocks, whereas the proposed FASBM with spatial feature zij incorporated is

a better approximation to the data by accounting for the spurious connection between adjacent

nodes. As shown in Figure 2f: the nonparametric function f in our model captures the additive

effect of the deviations from the block structure. It can be seen that the heterogeneity within the

blocks are well explained by the effect of local correlations as modeled by the nonparametric

function f .

As shown in the top panels of Figure 2, using FASBML yields functionally distinct but spatially

coherent parcellations of the brain region. Previous studies have parcellated the basal ganglia

based on its extrinsic functional connectivity with the cortex (Barnes et al., 2010; Choi et al.,

2012). It is unknown that whether or not the basal ganglia can be successfully parcellated by only

considering local, intrinsic functional information within the basal ganglia. Using the proposed

method, we have successfully identified basal ganglia subdivisions by only considering functional

connectivity pattern between basal ganglia voxels. This parcellation closely resembled those

reported using structural anatomical information (Tziortzi et al., 2011). By visual examination:

cluster 1(yellow) corresponds to the caudate body, cluster 3(green) corresponds closely to the

putamen, cluster 5(cyan) closely to the pallidum , and cluster 2(red), 4(blue) partially correspond

to the caudate head.

5.2 United States Air-transportation Network

For the second example, we analyze a US airline network. We extracted information of the

United States domestic airports and flights for the year 2012 from the OpenFlights/Airline Route

Mapper Route Database. The resulting air-transportation network comprises 300 nodes denoting

20



(a) (b) (c)

(d) (e) (f)

Figure 2: (a) The functional brain network: each voxel was represented by a single node at its

spacial location with the color reflecting the inferred community membership by the proposed

FASBML. (b) Projection of (a) in the x-y plane of the Montreal Neurological Institute (MNI)

stereotactic space. (c) Projection of (a) in the MNI y-z plane. (d) Estimated f function. (e)

Connectivity matrix of the brain network data with voxels ordered by inferred community mem-

bership. (f) Fitted f evaluated on the distance matrix zij of the brain network data with voxels

ordered by inferred community membership.

airports in the United States and about 6000 flight routes within the United States operated by

the major airlines (United Airlines (UA), American Airlines(AA), Delta Air Lines and Southwest

Airlines). The edges in the network indicate presence or absence of non-stop flights between two

airports. The full data set can be downloaded from http://www.openflights.org.

The air-transportation network is a complex network with heterogeneous degrees: a handful of

nodes in the air transportation network are busy airports having a significant number of connec-

tions to and from other airports. Therefore, it is expected that community-detection methods

solely based on the adjacency matrix will tend to form communities characterized by different
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degrees. For instance, SBML split the network into four groups by degree: high, relatively high,

medium and low.

In the following, we fit the proposed feature adjusted stochastic block model (FASBM) in the

hope to discover community structures that are not merely due to the degree distribution. The

node feature we consider is the number of airports it has connections to, i.e., fi =
∑m

l=1 Yil, and

let zij = fi + fj . The use of FASBM requires a pre-specified number of communities as input,

whereas it is unclear how many communities are in the airline network, 2-fold network cross-

validation (NCV) was applied to determine the number of communities. The NCV approach

is recently proposed by Chen and Lei (2018) to select the number of clusters through block-

wise edge splitting. With the negative log-likelihood as the loss functions, the NCV method

consistently selects K = 4 communities.

The community labeled in orange identifies almost all the "home base" airports of Southwest

airline: Las Vegas McCarran Int’l, Houston Hobby Int’l, Chicago Midway Int’l, Baltimore-

Washington Int’l, Lambert-St. Louis Int’l, Nashville Int’l and Kansas City Int’l, Austin-Bergstrom

Int’l and so on. The community labeled in red mainly consists of airports served as hubs for UA,

AA or Delta airlines, including Hartsfield Jackson Atlanta Int’l and Detroit Metropolitan Airport

as hubs for Delta, Chicago O’hare Int’l, Newark Liberty Int’l and Washington Dulles Int’l as

hubs for UA, Philadelphia Int’l, Charlotte Douglas Int’l and Ronald Reagan Washington Na-

tional Airport as hubs for AA. The community labeled in green comprises airports characterized

by varying node degrees, where the low degree airports have one of UA, AA or Delta airlines

as the only carrier, and busy airports serve as hubs for one of the UA, AA and Delta airlines.

The community labeled in blue corresponds to airports with low degree. Many members of this

community are regional airports that serve air traffic within a relatively local or lightly populated

regions. Additionally, we have shown in Figure 4 that, the shape of the estimated f function

reflects the general relationship between connectivity probability and the sum of degrees for a

pair of nodes - airports with high degrees tend to connect to other airports, and the opposite holds

true for low degrees airports.

Our results are in agreement with the fact that Southwest, as the fourth largest airlines in the U.S.,

after the big three legacy carriers (UA, AA and Delta), was less assertive in big travel markets and
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Figure 3: The communities inferred by Feature adjusted stochastic block model (FASBM). The

size of the vertex is proportional to the square root of the node degree and the color reflects

inferred community membership: Orange labels the community corresponding to almost all the

home base airports of Southwest airline; red labels the community of hubs for UA, AA or Delta;

green labels the community comprising airports characterized by varying node degrees; blue

labels the community of regional airports.

chose to avoid competing with the "big three" in their hub airports, and instead focuses on cities

other than these big hubs. Southwest Airlines adopts a point-to-point (PP) configuration wherein

airports are connected by direct routes. On the contrary, the "big three" adopt the hub-and-spoke
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Figure 4: Estimated f function for the US air-transportation network.

(HS) system (Aguirregabiria and Ho, 2010) , wherein most of the operations are concentrated in

the hubs and all other cities in the network (i.e., the spokes) are connected to the hubs by non-stop

flights. Although there is no "correct" way to partition the air transportation network, compared

to the partition by SBM, FASBM allows us to recover the hidden structural organization that is

beyond the groups of degrees. The node feature information incorporated in the block model

helps to provide more insights into the development and categorization of the air-transportation

network.

6 Discussion

In this paper, we have demonstrated how one can incorporate node feature information upon

stochastic block models, focusing on the problem of community detection beyond that explained

by the node features as well as learning the influence of features on the network topology. The

empirical results show that the proposed method can estimate f non-parametrically, requiring no

prior knowledge of how and the extent to which the network is affected by the features. The

proposed feature adjusted stochastic block model (FASBM) can be used as a generative model

for estimation and prediction in networks, making probabilistic statements about the impact of

features and so on. Useful extensions include models for directed networks and overlapped com-
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munities, and we leave these for future work.

In the following, we discuss several computational issues. First, the local polynomial maximum

likelihood estimation of f sometimes called be computational intensive. To produce Table 3

in simulation II, for the case m = 400, a = 1.8, and 100 simulation repetitions, our algorithms

fitting FASBM runs 1.5 hours on a Macbook Pro with 8GB RAM processor and 2 GHz Intel Core

i7. Fan and Chen (1999) and Cai et al. (2000) proposed to replace the iterative local MLE with

the one-step Newton Ralphson estimator and proved in theory that the one-step local MLE does

not deteriorate performance as long as the initial estimator is reasonably accurate. The choice of

bandwidth in the estimation of f controls how smooth the fit is. Since we have m × (m − 1)/2

data points for the curve fitting, the design is very dense. Our practical experience suggests

that use of one-tenth of the total range as bandwidth usually results in a relatively smooth f

function. Other data-driven methods developed in kernel smoothing although time consuming

can also be used. Given that the design can be extremely dense and the curve is usually fairly

smooth, we implemented the option allowing one to randomly sample a grid of points to fit

the curve. Alternative methods such as binned and updated method (Fan and Marron, 1994)

can also be considered. In addition to these accelerating methods, one can also adopt other non-

parametric smoothing methods to estimate f . We choose local polynomial approximation mainly

because it produce the estimate of derivative function at almost no additional cost. Second, like

the classic SBM and its variants, the number of communities K in the FASBM has to be pre-

specified. In the paper we adapted the network cross-validation (NCV) method for the stochastic

block model proposed by Chen and Lei (2018), because the extension of NCV to FASBM is

conceptually straightforward. Recently, there are other methods of choosing K developed for the

SBM based on likelihood approaches, which might also be useful for FASBM. Last but not least,

we used greedy-algorithm to avoid a full search of the possible partitions in the model fitting.

This algorithm works very well in practice but so far there is no theoretical guarantee of the

convergence to the global maximum. We believe that the development of approximation theories

for these greedy algorithms is of interest.
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