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Abstract: The aim of this paper is to conduct a systematic and theoretical analysis

of estimation and inference for a class of functional mixed effects models (FMEM).

Such FMEMs consist of fixed effects that characterize the association between lon-

gitudinal functional responses and covariates of interest and random effects that

capture the spatial-temporal correlations of longitudinal functional responses. We

propose local linear estimates of refined fixed effect functions and establish their

weak convergence along with a simultaneous confidence band for each fixed-effect

function. We propose a global test for the linear hypotheses of varying coefficient

functions and derive the associated asymptotic distribution under the null hypoth-

esis and the asymptotic power under the alternative hypothesis are derived. We

also establish the convergence rates of the estimated spatial-temporal covariance

operators and their associated eigenvalues and eigenfunctions. We conduct exten-

sive simulations and apply our method to a white-matter fiber data set from a

national database for autism research to examine the finite-sample performance of

the proposed estimation and inference procedures.
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1. Introduction

There has been an increasing interest in the analysis of massive functional

data sets, many of which originate from brain imaging in large-scale longitudi-

nal biomedical studies such as the Alzeimer’s Disease Neuroimaging Initiative

(ADNI) (Evans and Group, 2006; Mueller et al., 2005; Greven et al., 2010; Yuan

et al., 2014; Zipunnikov et al., 2014). In such studies, longitudinal functional

data from n different subjects are usually observed at or are registered to a large

number of locations in a common space, denoted by S, across multiple time

points {tij : j = 1, . . . , Ti; i = 1, . . . , n}, where Ti is the total number of time
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points for the i−th subject. Here we use the term “functional data” for data

that are measured densely in S, “spatial correlation” for correlations within the

functional data, and “longitudinal data” and “temporal correlation” for data

that are measured sparingly in {tij : j = 1, . . . , Ti, i = 1, . . . , n} to distinguish

them.

The sheer size and complexity of longitudinal functional data poses substan-

tial challenges to most existing statistical methods for analyzing univariate or

multivariate longitudinal data (Diggle et al., 2002; Fitzmaurice et al., 2004). The

major challenges include: (i) complexity of the temporal-spatial covariance struc-

ture, (ii) determining how to take advantage of the temporal-spatial smoothness,

and (iii) theoretical justification of inference procedures. The first challenge is

how to introduce random effects to characterize the spatial-temporal covariance

structure of longitudinal functional responses. The second one is how to incorpo-

rate temporal-spatial smoothness into both estimation and inference procedures

to improve statistical efficiency (Ramsay and Silverman, 2005). The third one is

to systematically investigate the theoretical properties (e.g., consistency) of esti-

mation and inference procedures for statistical models developed for longitudinal

functional data.

Models for longitudinal functional data fall into a general functional mixed

effects modeling framework, which serves to characterize functional data with

various levels of hierarchical structures (Guo, 2002; Wu and Zhang, 2002, 2006;

Morris and Carroll, 2006; Di et al., 2009; Greven et al., 2010; Zhou et al., 2010;

Zhu et al., 2011; Shi and Choi, 2011; Cao et al., 2012; Chen and Müller, 2012;

Horvath and Kokoszka, 2012; Meyer et al., 2015; Reiss et al., 2014; Scheipl et al.,

2015; Zipunnikov et al., 2014; Staicu et al., 2015; Cederbaum et al., 2016). The

term functional mixed effects models (FMEMs) for correlated functional data

was introduced in Guo (2002), while Morris and Carroll (2006) and subsequent

work by this group developed general functional mixed effects models with mul-

tiple levels of random effect functions as well as curve-to-curve deviations. Re-

cently, a general framework of functional additive mixed models was introduced

by (Scheipl et al., 2015). Moreover, several FMEMs have been developed for

longitudinal functional data (Greven et al., 2010; Yuan et al., 2014; Zipunnikov

et al., 2014; Di et al., 2014). To the best of our knowledge, most papers on
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functional mixed effects models focus on challenges (i) and (ii) above, while our

focus in this paper is challenge (iii), the theoretical challenges.

To address challenge (iii), we provide a comprehensive theoretical analysis

for a class of FMEMs. Our FMEM consists of a measurement model at each

grid point s ∈ S and a hierarchical factor model. The measurement model

primarily includes fixed effects to characterize the varying association between

longitudinal functional responses and the covariates of interest. The hierarchical

factor model primarily uses random effects to capture the medium-to-long-range

spatial covariance and the local covariance structure. Formally, we establish

the weak convergence of the estimated varying association function, the uniform

convergence rate of the spatial-temporal covariance estimator, the asymptotic

distribution of a global test statistic for linear hypotheses of the regression co-

efficient functions, and an asymptotic simultaneous confidence band for each

varying fixed effect function. The code and documentation for FMEM written

in Matlab along with its documentation are freely accessible from the website

http://www.nitrc.org/projects/fadtts.

2. FMEM: Functional Mixed Effects Model

2.1 Model Setup

Suppose that we observe longitudinal functional data and clinical variables

from n independent subjects. Let Ti be the total number of longitudinal mea-

surements for the i-th subject, i = 1, . . . , n, and tij be the j-th measurement

time point for the i-th subject, so j = 1, . . . , Ti. Throughout this paper, we

focus on a fixed number of time points and sparse longitudinal data, that is,

maxi≤n Ti < T0 < ∞. Let sm represent a specific grid point of the functional

template space S for m = 1, . . . ,M . Specifically, for the i-th subject at time tij ,

we observe functional data, denoted by yij(sm) = yi(tij , sm) for 1 ≤ m ≤M , and

a px dimensional covariate vector xi of interest, denoted by xij = xi(tij), at time

tij . The xi may include time-independent as well as time-dependent covariates,

such as age, gender, and genetic markers. For ease of notation, it is assumed

throughout this paper that S = [0, 1] and 0 = s1 ≤ · · · ≤ sM = 1, but our results

can be easily extended to higher dimensions, when S is a compact subset of a

Euclidean space.

We consider a FMEM consisting of a measurement model and a hierarchi-
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cal factor model. This model aims to extend conventional linear mixed-effects

model to accommodate the additional spatial component. The measurement

model associated with the FMEM characterizes the varying association between

functional responses and their covariates at any s ∈ S as

yij(s) = µ(xij , β(s)) + zTijbi(s) + eij(s), (2.1)

where µ(·, ·) is a known function, β(s) = (β1(s), . . . , βpβ (s))T is a pβ × 1 vector

of the fixed-effect functions of s, and zij = zi(tij) = (zij1, . . . , zijpz)
T is a pz × 1

vector of the random-effect covariates associated with the random effects bi(s).

Here bi(s) = (bi1(s), . . . , bipz(s))
T is a vector of the random effects that charac-

terize the spatial temporal correlation structures across the functional domain

space; whereas eij(s) is a spatial random process delineated from bi(s), i.e., after

filtering out zTijbi(s). Moreover, eij(s) and bi(s) are independent. In many ap-

plications, µ(xij , β(s)) = xTijβ(s) is a linear function of xij , similar to the setting

of traditional linear mixed-effects model, so we focus on this special linear case

in the paper. Extensions to nonlinear cases is discussed in Remark 1. Since

marginally, for a fixed s, model (2.1) with µ(xij , β(s)) = xTijβ(s) is a standard

linear mixed effects model, this motivates us to adopt standard notation for lin-

ear mixed effects models. Moreover, since zij may include time-independent, as

well as time-dependent, covariates, the inclusion of zTijbi(s) allows us to capture a

large portion of the variation in the spatial and temporal correlation structures.

The spatial random process eij in (2.1) is further decomposed into two parts,

eij(s) = eij,G(s) + eij,L(s), (2.2)

where eij,G(s) is a smooth stochastic process representing the global dependency

that depicts the medium-to-long-range spatial dependence, eij,L(s) is a mea-

surement error representing local variability, and eij1,G(·) and eij2,L(·) are inde-

pendent for any j1 and j2. Since eij,L(s) are measurement errors, we assume

that eij1,L(s) and eij2,L(s′) are mutually independent whenever either j1 6= j2 or

s 6= s′. We also assume that, for any j1 6= j2, eij1,G(·) and eij2,G(·) are mutually

independent. This assumption is equivalent to assume that the random effects

bi(·) = (bi1(·), . . . , bipz(·))T explains all the within-subject correlation along the

longitudinal direction, which is a common assumption in linear mixed-effects
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model. However, it does not exclude correlations along the functional direction

as as eij,G(s) and eij,G(s′) are not required to be independent for s 6= s′.

Moreover, bi(s), eij,L(s), and eij,G(s) are mutually independent and are in-

dependent and identical copies of SP(0,Σe,L), SP(0,Σb), and SP(0,Σe,G), respec-

tively, where SP(µ,Σ) denotes a stochastic process vector with mean function (or

function vector) µ(s) and covariance function (or function matrix) Σ(s, s′). More-

over, Σb(s, s
′) is a pz × pz matrix with Σbkk′(s, s

′) as the (k, k′)-th element, and

the covariance structure of yi(s) = (yi1(s), . . . , yiTi(s))
T , denoted by Σy,i(s, s

′), is

Σy,ij1j2(s, s′) = zTij1Σb(s, s
′)zij2+Σe,G(s, s′)1(j1 = j2)+Σe,L(s, s′)1(j1 = j2, s = s′),

where 1(·) is an indicator function.

2.2 Estimation Procedure

Our primary goal is to find efficient procedures for estimation and inference

for β(·). Inspired by novel ideas from the literature (Yao et al., 2005; Greven

et al., 2010; Zipunnikov et al., 2014), we develop a procedure to estimate β(·),
Σbkk′(·, ·), Σe,G(·, ·), Σe,L(·, ·), and the eigenvalue-eigenvector pairs of Σbkk′(·, ·),
and Σe,G(·, ·). Compared with the estimation methods of Greven et al. (2010)

and Zipunnikov et al. (2014), our method is an improvement over the ordinary

least square methods to estimate β(·) by incorporating spatial and/or tempo-

ral smoothness in longitudinal functional data. Explicitly, we incorporate the

within-subject correlation among Ti longitudinal observations to gain statistical

efficiency as stated in Theorem 1.

From hereafter, we focus on µ(xij , β(s)) = xTijβ(s), but the proposed estima-

tion procedure can be extended to a nonlinear mean function µ(xij , β(s)), which

is discussed at the end of Section 2.2. There are four key steps in the estimation

procedure as described below.

Step (I): Calculate an initial estimator β̂(s) of β(s) for each s ∈ S.

Step (II): Calculate estimates of the covariance operators Σbkk′(·, ·) and

Σe,G(·, ·) and their spectral decompositions, and obtain the estimate of

Σe,L(·, ·).

Step (III): Use the estimated covariance operators obtained from Step (II)

to improve the estimate in step (I) with a refined estimator of β(s), denoted

by β̃(s).
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Step (IV): Obtain individual random effect functions uij,G(s) = zTijbi(s) +

eij,G(s).

Step (I): We employ a local linear smoother (Fan and Gijbels, 1996) to

obtain an initial estimator of β(·) without incorporating spatial-temporal corre-

lation. Specifically, we apply a Taylor expansion for β at s,

β(sm) ≈ β(s) + β̇(s)(sm − s) = A(s)sh1(sm − s), (2.3)

where sh1(sm − s) = (1, (sm − s)/h1)T and A(s) = [β(s) h1β̇(s)] is a px × 2

matrix. Here β̇(s) = (β̇1(s), . . . , β̇px(s))T is a px×1 vector and β̇l(s) = dβl(s)/ds

for l = 1, . . . , px. Let K(s) be a kernel function and Kh(s) = h−1K(s/h) be the

rescaled kernel function with bandwidth h. We estimate A(s) by minimizing the

following weighted least squares function:

n∑
i=1

Ti∑
j=1

M∑
m=1

{yij(sm)− xTijA(s)sh1(sm − s)}2Kh1(sm − s). (2.4)

Let a⊗2 = aaT for any vector a and C ⊗ D be the Kronecker product of

two matrices C and D. For an M1 ×M2 matrix C = (cjl), denote vec(C) =

(c11, . . . , cM11, . . . , c1M2 , . . . , cM1M2)T . Let Â(s) be the minimizer of (2.4). Then

vec(Â(s)) = Σ(s, h1)−1
n∑
i=1

Ti∑
j=1

M∑
m=1

Kh1(sm−s){sh1(sm−s)⊗xij}yij(sm), (2.5)

where Σ(s, h1) =
∑n

i=1

∑Ti
j=1

∑M
m=1Kh1(sm − s){sh1(sm − s)⊗2 ⊗ x⊗2

ij }. Thus,

we have

β̂(s) = (β̂1(s), . . . , β̂px(s))T = {(1, 0)⊗ Ipx}vec(Â(s)), (2.6)

where Ipx is a px× px identity matrix. In practice, we may select the bandwidth

h1 by using leave-one-curve-out cross-validation. Specifically, we pool the data

from all n subjects and select a bandwidth h1 by minimizing the cross-validation

score given by

CV(h1) = (

n∑
i=1

TiM)−1
n∑
i=1

Ti∑
j=1

M∑
m=1

{yij(sm)− xTi β̂(sm, h1)(−i)}2, (2.7)

where β̂(s, h1)(−i) is the local linear estimator of β(s) with the bandwidth h1

based on data excluding all the observations from the i-th subject.
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Step (II): We use a two-step procedure to estimate Σb(s, s
′) and Σe,G(s, s′).

Let Σe(s, s
′) be the covariance function of eij(s).

(S1) First, we use a least squares method to estimate Σb(sm, sm′) and Σe(sm, sm′)

form,m′ = 1, . . . ,M . Let ûij(s) = yij(s)−xTij β̂(s). We estimate Σb(sm, sm′)

and Σe(sm, sm′) by minimizing the following least squares function:

n∑
i=1

∑
j1 6=j2

{ûij1(sm)ûij2(sm′)− zTij1Σb(sm, sm′)zij2}2

+
n∑
i=1

Ti∑
j=1

{ûij(sm)ûij(sm′)− zTijΣb(sm, sm′)zij − Σe(sm, sm′)}2,(2.8)

where
∑

j1 6=j2 denotes the sum over all j1, j2 = 1, . . . , Ti such that j1 6= j2.

The least squares method in (2.8) has been considered in the literature (Di

et al., 2009; Greven et al., 2010; Cederbaum et al., 2016), where previous

authors used penalized splines smoothing instead of local linear regression.

Let Σ̂LS
b (sm, sm′) and Σ̂LS

e (sm, sm′) be the minimizers of (2.8). Then we

have

vec(Σ̂LS
b (sm, sm′)) = G{u(sm, sm′)− Σ̂LS

e (sm, sm′)g},

Σ̂LS
e (sm, sm′) = (1− a2g

T g)−1{v(sm, sm′)− a2g
TGu(sm, sm′)},(2.9)

where a2 = (
∑n

i=1 Ti)
−1, g =

∑n
i=1

∑Ti
j=1 zij ⊗ zij , G = {

∑n
i=1

∑Ti
j1,j2

(zij1 ⊗
zij2)⊗2}−1,

v(sm, sm′) = a2

n∑
i=1

Ti∑
j=1

ûij(sm)ûij(sm′),

u(sm, sm′) =
n∑
i=1

Ti∑
j1,j2=1

ûij1(sm)ûij2(sm′)(zij1 ⊗ zij2).

(S2) Next, for each (k, k′), with 1 ≤ k, k′ ≤ pz, we apply a local constant

smoother to Σ̂LS
bkk′(sm, sm′) for sm, sm′ ∈ S × S and m,m′ = 1, . . . ,M.

This provides the final estimate for Σb(s, s
′). Likewise, we can obtain an

estimate of Σe,G(s, s′) through a local constant smoother, where the diago-

nal elements of Σ̂LS
e (sm, sm′), i.e. Σ̂LS

e (sm, sm),m = 1, . . .M, are excluded

from the estimation of Σe,G(s, s′).
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Specifically, we estimate Σbkk′(s, s
′) and Σe,G(s, s′) by minimizing the fol-

lowing weighted least squares functions:

minΣbkk′ (s,s
′)

M∑
m,m′=1

{Σ̂LS
bkk′(sm, sm′)− Σbkk′(s, s

′)}2Kh2(sm − s)Kh2(sm′ − s′),(2.10)

minΣe,G(s,s′)

∑
m6=m′

{Σ̂LS
e (sm, sm′)− Σe,G(s, s′)}2Kh3(sm − s)Kh3(sm′ − s′).(2.11)

The bandwidths h2 and h3 are selected through the leave-one-curve-out

cross-validation method.

Finally, we perform the spectral decomposition of Σ̂bkk′(s, s
′) and Σ̂e,G(s, s′)

and then calculate Σ̂e,L(sm, sm) by using

Σ̂e,L(sm, sm) = {Σ̂LS
e (sm, sm)−Σ̂e,G(sm, sm)}1(Σ̂LS

e (sm, sm)−Σ̂e,G(sm, sm) > 0).

Step (III): We incorporate the estimated covariance function to improve

the local linear regression estimate of β(·). Similar but different ideas have

been used to iteratively improve the mean estimation (Cederbaum et al. (2016);

Di et al. (2014)). Letting Σyi,G(s, s′) be the covariance function of ui,G(s) =

(ui1,G(s), . . . , uiTi,G(s))T , we obtain its estimator Σ̂yi,G(s, s′) based on Σ̂b(s, s
′)

and Σ̂e,G(s, s′) from step (II). Let Xi = (xi1 · · ·xiTi) be a px × Ti matrix. We

estimate A(s) by minimizing the following weighted least squares function:

n∑
i=1

M∑
m=1

[{yi(sm)−XT
i A(s)shβ (sm−s)}T Σ̂yi,G(sm, sm)−1/2]⊗2Khβ (sm−s), (2.12)

where hβ is a bandwidth.

Let Ã(s) be the minimizer of (2.12). Then, we have

vec(Ã(s)) = Σ̃(s, hβ)−1
n∑
i=1

M∑
m=1

Khβ (sm−s){shβ (sm−s)⊗Xi}{Σ̂yi,G(sm, sm)}−1yi(sm),

where Σ̃(s, hβ) =
∑n

i=1

∑M
m=1Khβ (sm−s)[{shβ (sm−s)⊗Xi}Σ̂yi,G(sm, sm)−1/2]⊗2.

We have

β̃(s) = (β̃1(s), . . . , β̃px(s))T = {(1, 0)⊗ Ipx}vec(Ã(s)). (2.13)

To select the bandwidth hβ, we pool the data from all n subjects and select a
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bandwidth hβ that minimizes the cross-validation score,

CV(hβ) = (nM)−1
n∑
i=1

M∑
m=1

[{yi(sm)−XT
i β̃(sm, hβ)(−i)}T Σ̂yi,G(sm, sm)−1/2]⊗2,

(2.14)

where β̃(s, hβ)(−i) is the local linear estimator of β(s) with the bandwidth hβ

based on data excluding all the observations from the i-th subject.

Step (IV): We use the local linear regression method to smooth {ũij(sm) =

yij(sm) − xTij β̃(sm)}Mm=1 and then obtain an estimate of uij,G(s) = zTijbi(s) +

eij,G(s) for each i and j. Since the local linear regression is a standard method

(Fan and Gijbels, 1996; Wand and Jones, 1995), we omit the detailed steps for

the approximation of uij,G(s). Furthermore, if there is an interest in recovering

the subject-specific random effect bi(s), one could use the best linear unbiased

predictors, which are commonly employed in linear mixed-effects models, to es-

timate bi(s) at each point s and then smooth over s.

Remark 1: To extend the estimation procedure to nonlinear mean func-

tions µ(xij , β(s)), such as exponential functions or power functions, one needs to

modify steps (I) and (III) by applying a Taylor expansion for µ(xij , β(sm)) at s,

µ(xij , β(sm)) ≈ µ(xij , β(s)) + µ̇(xij , β(s))β̇(s)(sm − s) = µij(s)sh1(sm − s),

where µ̇(xij , β(s)) = ∂µ(xij , β(s))/∂β(s) and µij(s) = (µ(xij , β(s)), µ̇(xij , β(s))β̇(s)h1).

Then, one estimates A(s) by minimizing a nonlinear weighted least squares func-

tion:

Ln(A(s)) =
n∑
i=1

Ti∑
j=1

M∑
m=1

{yij(sm)− µij(s)sh1(sm − s)}2Kh1(sm − s).

In this general case, Â(s) does not have an explicit form, but it can be esti-

mated by using optimization algorithms, such as the Gaussian Newton algorithm

or Levenberg-Marquardt algorithm (Seber and Wild, 1989). Similar to Ln(A(s)),

we can modify (2.12) in step (III).

2.3 Computational Complexity

The computational complexity of our estimation procedure is extremely im-

portant for high-dimensional neuroimaging data, which usually contain a large
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number of locations, especially when they correspond to the voxel locations of

the image. For instance, M can have a magnitude of tens of thousands. For the

linear mean function, the computational complexity of our estimation procedure

in Section 2.2. is O(nh1T0M
2 +nT0(R0M)2 +nT0hsM

2). If we use leave-one-out

cross-validation, then the computational effort increases by a factor of n.

We first discuss steps (I) and (III). In step (I), we need to calculate the local

linear estimator of β(sm) at each grid point sm across S0 = {sm,m = 1, . . . ,M}.
The computational complexity of step (I) is almost the same as that in standard

point-wise linear regression analysis. An alternative is to fit a linear mixed-effect

model at each grid point sm using the maximum likelihood. However, this step

is not necessary as it only applies to an initial estimate, which then is improved

in step (III).

For step (III), we only need to calculate the weighted least squares esti-

mators β̃(sm) in (2.13) across sm ∈ S0, which is computationally straightfor-

ward. The computational complexity is O(nT0h1M) for each sm, so overall it is

O(nT0h1M
2).

To improve computational efficiency, we standardize all covariates and then

use a single tuning parameter h1 to smooth all the coefficient functions βj(s).

Since this strategy works best for coefficient functions that exhibit similar degrees

of smoothness, it may be necessary to use different tuning parameters for different

coefficient functions (Fan and Zhang, 2008) when the coefficient functions have

different level of smoothness.

Next, we discuss the computational complexity of step (II). First, estimating

ûij(s) is computationally fast for all possible (i, j). Second, we do not need to

calculate Σb(s, s
′) and Σe,G(s, s′) for all possible (s, s′). As discussed in step (III)

above, we only need the estimates of Σb(sm, sm) and Σe,G(sm, sm) for all sm ∈ S0.

Therefore, in step (S2), we can focus on solving Σb(sm, sm) and Σe,G(sm, sm) with

all (sm, sm′) in {(sm, sm′) ∈ S0 × S0 : |sm − sm′ | ≤ R0}, where R0 is a positive

scalar. In this case, step (II) is computationally feasible even for large M when

R0 is relatively small. The computational complexity is at most O(nT0(R0M)2)

for (sm, sm′) ∈ S0 × S0.

A major computational hurdle is to calculate Σb(s, s
′) and Σe,G(s, s′) for all

possible (s, s′). If M is relatively large, it can be computationally challenging
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to estimate Σb(sm, s
′
m) and Σe,G(sm, s

′
m) across all possible (sm, s

′
m) ∈ S0 × S0.

We take two different approaches. The first one is to estimate Σb(sm, s
′
m) and

Σe,G(sm, s
′
m) for a small subset of S0 × S0. Specifically, we can bin the data to

reduce the number of grid points substantially to a much smaller number M0 <<

M , and estimate Σb(s, s
′) and Σe,G(s, s′) on those M0 points and interpolate the

results elsewhere. The second approach is to apply the approaches proposed by

Zipunnikov et al. (2014) and Xiao et al. (2016) to the estimation of Σb(s, s
′)

and Σe,G(s, s′). These methods include a fast implementation of the sandwich

smoother for covariance smoothing and a two-step procedure where one first

obtains the singular value decomposition of the data matrix and then smooths

the eigenvectors.

Regarding the computational complexity of step (IV), we note that, similar

to step (II), smoothing uij,P (s) for all possible (i, j) is computationally light. The

overall computational complexity is approximately O(nT0hsM
2), where hs is the

bandwidth of the local linear method.

Remark 2: We discuss two possible extensions of (2.2). The first is to extend

the estimation procedure from S = [0, 1] to a D−dimensional compact subset of a

Euclidean space. For this, we only need to modify steps (I) and (III) by changing

β̇l(s) and sm − s into D × 1 vectors. The second extension is to assume that

eij1,G(s) and eij2,G(s) for j1 6= j2 are dependent and have a separable covariance

structure, cov(eij1,G(s), eij2,G(s)) = Σe,G(s, s′)ρ(tij1 , tij2 ; θ), where ρ(tij1 , tij2 ; θ)

is usually a pre-specified correlation function of unknown parameter θ, such as

the exponential correlation model with ρ(tij1 , tij2 ; θ) = exp(−θ|tij1−tij2 |) (Diggle

et al., 2002; Fitzmaurice et al., 2004). However, we found empirically that the use

of the correlation function dramatically increases the computational complexity

but does not lead to much efficiency gain for the estimation of β(·).
3. Theoretical Results

We systematically investigate the asymptotic properties of all estimators

proposed in Section 2.2 and investigate several inference procedures based on the

asymptotic properties. For any smooth function f(s), we use the notation ḟ(s) =

df(s)/ds and f̈(s) = d2f(s)/ds2. We use uq =
∫
K(v)vqdv and vq =

∫
Kq(v)dv

for q = 1 and 2, and || · ||2 for the Euclidean norm.
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3.1 Assumptions

Throughout the paper, the following assumptions are used to facilitate the

technical details. Some of the assumptions might be weakened but the current

version simplifies the proof.

(A.1) The grid points in S0 = {sm,m = 1, . . . ,M} are independently and iden-

tically distributed with a density function f(s), which has a continuous second-

order derivative and bounded support S. Moreover, for some fl > 0 and fu <∞,

fl < f(s) < fu for all s ∈ S.

(A.1b) The grid points S0 = {sm,m = 1, . . . ,M} are prefixed according to a

design density function f(s) such that
∫ sm

0 f(s)ds = m/M for m ≥ 1. Here f(s)

has continuous second-order derivative and bounded support [0, 1], and fl <

f(s) < fu for all s ∈ [0, 1], for some positive fl > 0 and fu <∞.

(A.2) The covariate vectors xij = (xij1, . . . , xijpx)T and zij = zi(tij) = (zij1, . . . , zijpz)
T ,

may or may not be time-dependent. Nevertheless, we use the notation xijl =

xil(tij) for 1 ≤ l ≤ px, and zijl = zil(tij) for 1 ≤ l ≤ pz. We assume that

supt∈T |xil(t)| and supt∈T |zil(t)| are almost surely bounded, where T is a finite

time domain.

(A.3) The kernel function K(t) is a symmetric density function with compact

support [−1, 1], and is Lipschitz continuous.

(A.4) All components of β(s) have continuous second derivatives on S.

(A.5) With probability one, the sample paths of eij,G(·) and bi(·) are Lipschitz

continuous.

(A.6) maxi Ti < T0, n,M → ∞, h → 0, Mh → ∞, nah → ∞ for some a > 0,

where T0 is a fixed constant, and h could be h1, hβ, h2, and h3.

(A.7) E{sups∈[0,1] |eij,G(s)|2q}+ E{sups∈S0
|eij,L(s)|2q} <∞ for some q > 2.

(A.8) E{sups∈[0,1] ‖bi(s)‖
2q
2 } <∞, for some q > 2.

(A.9) E{XiΣyi,G(s, s)−1Σyi,G(s, s′)Σyi,G(s′, s′)−1XT
i } exists for any (s, s′).

(A.10) There is a positive fixed integer E <∞ such that the eigenvalues of Σe,G

satisfy λe1 > . . . > λeE > λ, for some constant λ > 0, and analogously for the

eigenvalues of Σb.

Remark 3: Our theoretical results hold for both random and fixed designs. As-

sumptions (A.1) is a standard condition on random design points s, while (A.1b)

is for fixed designs. Assumption (A.2) is a condition on the boundedness of the
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covariate vectors. The bounded support restriction on K(·) in assumption (A.3)

is not essential and can be removed if we put restrictions on the tail of K(·).
Assumptions (A.4)-(A.5) are smoothness conditions on the coefficient functions,

random functions and their covariances. The smoothness condition in assump-

tion (A.5) can be relaxed with substantial additional efforts (Zhu et al., 2012).

Assumption (A.6) is a weak condition on n, M and h, where h1 is the bandwidth

used in Step (I) for the initial estimate of β. Assumptions (A.7) and (A.8) re-

quire uniform bounds on certain high-order moments of the random functions,

which are standard assumptions in the literature (Zhu et al., 2012; Li and Hsing,

2010). Assumption (A.10) on simple multiplicity of the first E eigenvalues is only

needed to investigate the asymptotic properties of the eigenfunctions. It is also

a standard assumption in the literature.

3.2. Asymptotics of Estimation Procedure

We state the following theorems, for which detailed proofs can be found in

the supplementary document. The first theorem tackles the theoretical properties

of {β̃(s) : s ∈ S} obtained from step (III).

Theorem 1. Under (A.1) (or (A.1b)) and (A.2)-(A.9), we have the following

results:

(i) The asymptotic bias and covariance of β̃(s) for s ∈ (0, 1) are

Bias(β̃(s)|S) =
1

2
β̈(s)h2

βu2{1 + o(1)}, (3.1)

var(β̃(s)|S) = n−1{n−1
n∑
i=1

E(Xi{Σyi,G(s, s)}−1XT
i )}−1{1 + o(1)}.

(ii) If logM = o(Mhβ) and there exists γn → ∞ with n1/2γ1−q
n = o(1) and

n−1/2γn logM = o(1) for some q > 2 that satisfies (A.7), then as n → ∞,
√
n{β̃(s) − E(β̃(s)|S)} converges weakly to a centered Gaussian process G(·) ∼
G(0, R), where R(s, s′) = {Q∗(s, s)}−1Q∗(s, s′){Q∗(s′, s′)}−1 with Q∗(s, s′) =

limn→∞ n
−1
∑n

i=1E(Xi{Σyi,G(s, s)}−1Σyi,G(s, s′){Σyi,G(s′, s′)}−1XT
i ).

Theorem 1 (i) provides theoretical justification of steps (I)-(III) for the re-

fined estimator β̃(s). It has several important implications. First, the estimator

β̂(s) obtained in step I has asymptotic covariance

n−1{n−1
n∑
i=1

E(XiX
T
i )}−1n−1

n∑
i=1

E(XiΣyi,G(s, s)XT
i ){n−1

n∑
i=1

E(XiX
T
i )}−1
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(details can be found in the proof of Theorem 1), which is larger than that

of β̃(s). The improvement by the refined estimator β̃(s) is due to the incor-

poration of within-subject correlations among Ti longitudinal observations, and

can lead to substantial efficiency gain in estimating {β(s) : s ∈ S}. Second, if

we use the maximum likelihood (or the restricted maximum likelihood) estima-

tors at each of the observed data at sm, the asymptotic covariance, given by

{
∑n

i=1E(Xi{Σyi(sm, sm)}−1XT
i )}−1, is larger than that of β̃(sm). The improve-

ment achieved by β̃(sm) is due to incorporating the smoothness in the functional

data. Therefore, one can construct more efficient estimators of β(s) by simulta-

neously accounting for the smoothness in functional data and the within subject

covariance, since these functions are measured repeatedly and longitudinally.

Moreover, the asymptotic bias of β̃(s) is of the order h2
β, which is similar to that

of nonparametric regression for independent responses; whereas the asymptotic

variance of β̃(s) is of the order n−1.

We note here that the efficiency gain discussed above is not in conflict with

the results in Lin and Carroll (2001), where they show that the most efficient

estimator of the nonparametric function through kernel smoothing is achieved by

ignoring the dependence structure among functional observations. In our setting,

this means that kernel smoothing in the direction of s should be implemented

as we did in Step (I) by ignoring the dependence structure among functional

observations. However, in the FMEM setting of longitudinal functional data, it

is possible to improve the β estimate as we did in Step (III) by incorporating the

covariance structure Σyi,G(s, s). The analogy here is the standard linear mixed-

effects model with just longitudinal data (i.e. no functional components), since

FMEM is an extension of linear mixed-effects model. It is clear that in linear

mixed-effects model one needs to do weighted least square to gain efficiency for

the β estimator and this is what we did in Step (III) to refine the β estimator

through a weighted least square estimator with weights from Σyi,G(s, s). We

emphasize that we could implement Step (III) only after we have obtained a

covariance estimate in Step (II), which relies on an initial unweighted least square

estimator of β in Step (I). This explains why we need three steps to complete

the estimation of β.

Theorem 1 (ii) establishes the weak convergence of the centered estimator
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β̃(s) − E(β̃(s)), which is essential to carry out the statistical inference for β(s)

in Section 3.3 below. Let h = nα, M = nβ and γn = nγ . Anything that satisfies

α < 0, α+ β > 0 and − 1
2(1−q) < γ < 1

2 will satisfy the assumptions, where q > 2

is a constant that satisfies the moment condition given in (A.7).

The second theorem provides the theoretical analysis of the estimators of

Σe,G(s, s′) obtained from step (II). Similar results can be obtained for Σb,kk′(s, s
′), 1 ≤

k, k′ ≤ pz and are provided in the online supplementary material.

Theorem 2. Under (A.1) (or (A.1b)) and (A.2)-(A.8), (A.10), if h1 = O((log n/n)1/4)

and h3 = O(log n/n)1/4, then we have the following results:

(i) sups,s′ |Σ̂e,G(s, s′)− Σe,G(s, s′)| = Op((log n/n)1/2);

(ii) For 1 ≤ l ≤ E, {
∫ 1

0 |ψ̂
e
l (s)− ψel (s)|2ds}1/2 = Op((log n/n)1/2);

(iii) For 1 ≤ l ≤ E, |λ̂el − λel | = Op((log n/n)1/2).

Theorem 2 characterizes the uniform convergence rates of Σ̂e,G(s, s′) and the

associated eigenvalues and eigenfunctions. It can be regarded as an extension of

Theorems 3.3-3.6 of Li and Hsing (2010), which established the strong uniform

convergence rates of these estimates under a simpler model.

3.3. Asymptotics of Inference Procedure

In this subsection, we derive the asymptotic theory of a global test for testing

linear hypotheses of β(·) and the theory for simultaneous confidence bands (SCB)

for each component of β(·). These are key tools for statistical inference for the

coefficient functions.

We first consider linear hypotheses for β(s),

H0 : Cβ(s) = β0(s) for all s vs. H1 : Cβ(s) 6= β0(s) for some s, (3.2)

where C is a q × px matrix with rank q, and β0(s) is a given q × 1 vector of

functions. We define a global test statistic Sn as

Sn =

∫ 1

0
d(s)T [C{

n∑
i=1

XiΣ̂yi,G(s, s)−1XT
i }−1CT ]−1d(s)ds, (3.3)

where d(s) = Cβ̃(s) − bias(Cβ̃(s)) − β0(s). For simplicity and computational

efficiency, we do not consider estimating the bias of Cβ̃(s), since it is negligible

based on our simulation results reported below. It follows from Theorem 1 that
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under H0, we have

[C{
n∑
i=1

XiΣ̂yi,G(s, s)−1XT
i }−1CT ]−1/2d(s)⇒ GC(s),

where ⇒ denotes weak convergence and GC(·) is a centered Gaussian process

with covariance function {CQ∗(s, s)CT }−1/2R(s, s′){CQ∗(s′, s′)CT }−1/2. Thus,

we can derive the asymptotic distribution of Sn under the null hypothesis and

its asymptotic power under local alternative hypotheses.

Theorem 3. Under assumptions (A.1)-(A.9), if logM = o(Mhβ) and there exists

γn → ∞ with n1/2γ1−q
n = o(1) and n−1/2γn logM = o(1) for some q > 2 that

satisfies (A.7), we have the following results:

(i) Sn ⇒
∫ 1

0 GC(s)TGC(s)ds under the null hypothesis H0,

(ii) P (Sn ≥ Sn,α|H1n)
n→∞−→ 1 for a sequence of local alternatives H1n :

Cβ(s)−β0(s) = n−τ/2d(s), where τ is any scalar in [0, 1), Sn,α is the upper 100α

percentile of Sn under H0, and 0 <
∫
S ||d(s)||2ds <∞.

Theorem 3 can be regarded as a generalization of theorem 7 of Zhang and

Chen (2007) and theorem 2 of Zhang (2011). The test statistic Sn has a weighted

χ2-type asymptotic distribution under H0. Zhang and Chen (2007) (after theo-

rem 7) provided a discussion of the estimation for the null distribution of Sn by

χ2- approximation and bootstrapping, which also applies to the case we consid-

ered here. It is easy to see that part (ii) still holds when the critical value Sn,α

is replaced by some estimated critical value.

Next, we construct simultaneous confidence bands for the coefficient func-

tions, which can then be used for statistical inference for FMEM. For a given

confidence level α, we construct a simultaneous confidence band for each βl(s),

1 ≤ l ≤ px, as

P (β̂L,αl (s) < βl(s) < β̂U,αl (s) for all s ∈ [0, 1]) = 1− α, (3.4)

where β̂L,αl (s) and β̂U,αl (s) are the lower and upper limits of the SCB. Specifically,

a 1− α simultaneous confidence band for βl(s) is:(
β̂l(s)− bias(β̂l(s))−

Cl(α)√
n
, β̂l(s)− bias(β̂l(s)) +

Cl(α)√
n

)
, (3.5)
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where Cl(α) is the critical value of sups∈S |G(s)| associated with β̂l(s) in Theorem

1.

To carry out the inference procedure developed above, we approximate both

Cl(α) and Sn,α. Because the asymptotic distribution of Sn is quite complicated

and it is difficult to directly approximate the percentiles of Sn under the null

hypothesis, we use a wild bootstrap method to approximate the critical values

of Sn. The wild bootstrap idea has been used by Zhu et al. (2012); details

are presented in the Appendix. Let G(q)(·) be the bootstrapped samples for

q = 1, · · · , Q, where Q is the total number of wild bootstrap samples. The

following theorem lays the ground for the wild bootstrap method to construct a

simultaneous confidence band of β(s) and to approximate the null distribution

of Sn.

Theorem 4. Under assumptions (A.1)-(A.9) and given the data, the bootstrapped

process G(q)(s) converges in distribution to G(0, R), which is defined in part (ii)

of Theorem 1, as n→∞.

4. Simulation Studies

In this section, we present four sets of simulations to examine the finite-

sample performance of the proposed estimation and inference procedures. In the

first two simulations, we consider two competing methods, including wavelet-

based functional mixed models (WFMM) (Morris and Carroll, 2006) and func-

tional additive mixed models (FAMM) (Scheipl et al., 2015). All computations

for these numerical examples were carried out using Windows 7, 3.60GHz quard-

core Intel Core i7 CPU and 16GB DDR3 1066MHz memory. One can further

reduce the computational time for FMEMs by using other computer languages,

such as C++.

All simulated data sets were generated from the model:

yij(s) = xTijβ(s) + zTijbi(s) + eij,G(s) + eij,L(s),

bi(s) =
2∑

k=1

bikψ
b
k(s), eij,G(s) =

2∑
k=1

eijkψ
e
k(s), (4.1)

where xij = (1, xij,1, xij,2)T , zij = (1, xij,2), bik ∼ N(0, λbk), eijk ∼ N(0, λek), and

eij,L(s) ∼ N(0,Σe,L) for i = 1, . . . , n. Each subject was observed up to 3 times

in this sample, among which 5%, 30% and 65% have only one, two and all three
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observations, respectively. We set sm = (m − 0.5)/M . The first covariate xij,1

was simulated from N(0, 1) and fixed across time for subject i and the second

covariate xij,2 was assumed to vary with time, where the increments xij,2 −
xi(j−1),2 were independently sampled from a uniform distribution on [0, 1]. Both

covariates were standardized to have zero mean and unit variance. Moreover, we

set λbk = λek = 21−k for k = 1, 2, and Σe,L = 0.01. The functional coefficients and

eigenfunctions were selected as

β1(s) = s2, β2(s) = (1− s)2, β3(s) = 4s(1− s)− 0.4,

ψb1(s)T = (ψb11(s), ψb12(s)) = (sin(2πs), cos(2πs)), ψe1(s) =
√

3(2s− 1),

ψb2(s)T = (ψb21(s), ψb22(s)) = (1/
√

2, sin(2πs)), ψe2(s) =
√

5(6s2 − 6s+ 1).

We fitted FMEM, WFMM, and FAMM to each simulated data set and cal-

culated all the unknown quantities. The average computational times per simu-

lated data set with n = 100 and M = 40 for FMEM, WFMM, and FAMM are,

respectively, 19.6 seconds, 2.32 seconds, and 1.15 hours.

Simulation 1. The first simulation aims at evaluating the performance of the

estimates for βj(·). We set n = 100 and M = 40 and 60 and then simulated 1,000

data sets from model (4.1) as described above. Table 1 summarizes the mean

integrated absolute error (MIAE) and mean integrated squared error (MISE)

of all estimated coefficient functions based on 1,000 simulations. The results

in Table 1 indicate satisfactory performance of our estimators since all MIAE

and MISE values are quite small. As expected, all the errors decrease as the

number of grid points increases. Moreover, FMEM outperforms WFMM and

FAMM in terms of both MIAE and MISE. However, this comparison may be

unfair to WFMM, since it is designed for spiky data, not the intrinsically smooth

functional data.

Simulation 2. The second simulation is to evaluate the accuracy of the esti-

mators of the eigenvalues and eigenfucntions of the covariance functions Σb(., .),

Σe,G(., .) and Σe,L. We used the same parameter values as those in Simulation

1. We set c = 0.1 and n = 50 and 100, and generated 1,000 datasets for each

combination. The accuracy of all kinds of estimators improves with the sample

size. The estimated eigenfunctions were plotted in Figures 4.1 and 4.2, in which

the mean and the pointwise 5th and 95th percentiles of the estimated functions
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were plotted along with the true eigenfunctions. Figures 4.3 and 4.4 show the

boxplots for the estimates of the eigenvalues and σ2, which are quite close to

their true values.

Simulation 3. The third simulation is designed to evaluate the type I error

rate and power of the global test statistics Sn. We are interested in testing

H0 : β3(s) = 0 for all s, against H1 : β3(s) 6= 0 for some s. All parameters in

FMEM were specified as above except that β3(s) was set as 4cs(1−s)−0.4c, where

we first set c = 0 to assess the type I error rate of Sn and then c = 0.04, 0.06, 0.08,

and 0.1 to examine the power of Sn at different effect sizes. Furthermore, we set

n = 50 and 100 and used 1, 000 replications to estimate the rejection rate of Sn.

The p-value of Sn was approximated by the wild bootstrap method with Q = 500

bootstrap samples.

Fig. 4.5 presents the rejection rates of Sn across all effect sizes at the two

significance levels α = 0.05 and 0.01. Type I error rates are well maintained at

the two significance levels for n = 100. Specifically, at α = 0.05 (or 0.01), the

Type I error rates of Sn is 0.066 (or 0.014) for n = 50 and 0.055 (or 0.012) for

n = 100, respectively. As expected, the statistical power for rejecting the null

hypothesis increases with the sample size, the effect size c and the significance

level.

Simulation 4. The fourth simulation aims at evaluating the coverage prob-

ability of the simultaneous confidence bands for βj(s). We use the same data

generated from Simulation 1 above. Based on the 1,000 simulated data sets, we

fitted FMEM, WFMM, and FAMM to each simulated data and then calculated

SCB for each component in β(s). Table 2 presents the empirical coverage prob-

abilities of all three methods for α = 0.01 and 0.05. The coverage probabilities

improve with the number of grid points M . When M = 60, the coverage prob-

abilities are quite close to the pre-specified confidence levels. Since FAMM only

provides level (1− α) confidence interval at each grid point, we use the Bonfer-

roni method to approximate its simultaneous cover probabilities. Again, FMEM

outperforms WFMM and FAMM in terms of the coverage probability. However,

this comparison may be unfair to WFMM and FAMM, since they do not have

any valid method to construct simultaneous confidence bands of βj(s) yet. Fig.

4.6 displays typical 95% and 99% simultaneous confidence bands for coefficient
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functions βl(s), l = 1, 2, 3 based on FMEM as M = 60.

5. Data Analysis

The data set was taken from the national database for autism research

(NDAR) (http: //http://ndar.nih.gov/), an NIH-funded research data repository

that aims at accelerating progress in autism spectrum disorders (ASD) research

through data sharing, data harmonization, and the reporting of research results.

A total of 416 MRI scans are selected for 253 normal children (126 males and 127

females) following standard protocol. Table 3 contains demographic information

and distribution of scan availability.

The diffusion tensor imaging (DTI) data were processed by two key steps

including a weighted least squares estimation method (Basser et al., 1994) to

construct the diffusion tensors and a pipeline for tract-based spatial statistics

(TBSS) (Smith et al., 2006) to register DTIs from multiple subjects to create a

mean image and a mean skeleton. Specifically, maps of fractional anisotropy (FA)

were computed for all subjects from the DTI after Eddy current correction and

automatic brain extraction using FMRIB software library. FA maps were then fed

into the TBSS tool, which is also part of the FSL. In the TBSS analysis, the FA

data for all subjects were aligned into a common space by a non-linear registration

method and the mean FA images were created and thinned to obtain a mean FA

skeleton, which represents the centers of all white matter tracts common to the

group. Subsequently, each subject’s aligned FA data sets were projected onto

this skeleton. While several DTI fiber tracts were tracked, we chose to focus in

this paper on the corpus callosum (see Fig. 4.7 (a)) to illustrate the applicability

of our method in assessing the effects of covariates of interest, such as patient

age and gender. In this case, there are M = 45 grid points along each fiber tract.

The FA values were extracted at each grid point across multiple times (1 to 9

times) along the selected fiber tracts for all 253 infants.

The goal of the data analysis is to delineate the development of skeleton

diffusion properties across time. We fitted FMEM (2.1) and (2.2) with xi =

(1,Gender, log(Age), {log(Age)}2)T and zi = (1, log(Age))T to the selected FA

tracts obtained from all 253 subjects. The coefficient functions associated with

log(Age) and {log(Age)}2 were included to detect age effect in FA changes. In

addition, as shown in Fig. 4.7, there are random subject-to-subject variations in
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FA measures at each grid point along this tract as well as those in the age effect

on FA measures. We included random intercept and age effects in the model in

order to account for the inter-subject variations.

We applied FMEM, WFMM, and FAMM to this data set and estimated

all unknown quantities but will only discuss the results based on FMEM below.

The results for WFMM and FAMM are provided in the supplementary document.

The computational times for FMEM, WFMM, and FAMM are, respectively, 55.8

seconds, 7.9 seconds, and 6.078 hours.

For FMEM, the estimated functional coefficients of β(s) and their 95% simul-

taneous confidence bands were constructed along with the global test statistic Sn

to test for the significance of gender and age effects on FA values. The p-value of

Sn was approximated using the resampling method with Q = 1, 000 replications.

Figure 4.8 presents the estimated coefficient functions corresponding to intercept,

gender, log(Age), and {log(Age)}2 along with their 95% simultaneous confidence

bands. The intercept function describes the overall trend of FA along the corpus

callosum. In general, the central regions of the corpus callosum show smaller FA

values, whereas the peripheral regions show larger FA values. In Figure 4.8, the

simultaneous confidence band contains the horizontal line crossing (0, 0) for the

gender effect, whereas the horizontal line is out of the 95% simultaneous confi-

dence band for the age effect, indicating a significant age effect. This agrees with

our analysis results based on Sn for the gender and age effects. We obtained

the p values of 0.215 and < 0.0001 for the gender and age effects, respectively,

indicating significant age but no gender effect.

Table 4 displays the estimated eigenvalues and the percentage of total vari-

ability explained by different components in FMEM. It shows that 31.41% of the

variability is explained by the first principal component for b and 18.22% by the

first principal component for eG. Overall, the first 8 principal components for b

explain 62.47% of the total variability, whereas the first 8 principal components

for eG explain 32.18% of the total variability. This indicates that the random

effects b capture most of the variation in the data. Within b, 53.57% and 8.90%

of the total variation are explained by the random functional intercept and the

subject-specific random slope, respectively. The within-curve measurement error

explains only 5.35% of the total variation. Figure 4.9 shows the first five and
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four eigenfunctions for b and eG, respectively.
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Appendix

Wild Bootstrap Method for Critical Values of Sn

We have shown that the asymptotic distribution of Sn is very complicated hence it

is difficult to directly approximate the percentiles of Sn under the null hypothesis.
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Instead, we propose using a wild bootstrap method to obtain critical values of

Sn. The wild bootstrap consists of the following three steps.

Step 1. Fit (2.1) and (2.2) under the null hypothesis H0, which yields β̂∗(sm),

û∗ij,G(sm) and ε̂∗ij(sm) = yij(sm) − xTij β̂
∗(sm) − û∗ij,G(sm) for all i, j and m =

1, . . . ,M .

Step 2. Generate a random sample τ
(q)
i and τij(sm)(q) from a N(0, 1) gener-

ator for all i, j and m = 1, . . . ,M and then construct

ŷij(sm)(q) = xTij β̂
∗(sm) + τ

(q)
i û∗ij,G(sm) + τij(sm)(q)ε̂∗ij(sm).

Then, based on ŷij(sm)(q), we recalculate β̂(s)(q), and d(s)(q) = Cβ̂(s)(q)−β0(s).

Subsequently, we compute

S(q)
n = n

∫ 1

0
d(s)(q)T [C{

n∑
i=1

XiΣ̂yi,G(s, s)−1XT
i }−1CT ]−1d(s)(q)ds.

Step 3. Repeat Step 2 Q times to obtain {S(q)
n : q = 1, . . . , Q} and then

calculate p = Q−1
Q∑
q=1

1(S
(q)
n ≥ Sn). If p is smaller than a pre-specified significance

level α, say 0.05, then one rejects the null hypothesis H0.

Wild Bootstrap Methods for Simultaneous Confidence Bands of

β(·)

Although there are several methods of determining Cl(α) including random field

theory (Worsley et al., 2004), we develop an efficient resampling method to ap-

proximate Cl(α) as follows (Kosorok, 2003).

• We calculate r̂i(sm) = yi(sm)−XT
i β̃(sm) for all i, j, and m.

• For q = 1, . . . , Q, we independently simulate {τ (q)
i : i = 1, . . . , n} from

N(0, 1) and calculate a stochastic process G(s)(q) given by

√
n[Ipx⊗(1, 0)]vec(Σ(s, h1)−1

n∑
i=1

τ
(q)
i

M∑
m=1

Kh(sm−s){sh(sm−s)⊗Xi}Σ̂yi,G(s, s)−1r̂i(sm)).

• We calculate sups∈[0,1] |elG(s)(q)| for all q, where el is a px × 1 vector with

the l-th element 1 and 0 otherwise, and use their 1−α empirical percentile

to estimate Cl(α).
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Table 1: Simulation 1. MIAE×10−2 and MISE ×10−2 and their standard deviations

×10−2 are reported. MIAE denotes the mean integrated absolute error and MISE de-

notes the mean integrated square error. Standard deviations are in the parentheses. For

each case, 100 simulated data sets were used.

Method MIAE×10−2 MISE×10−2

M β1(·) β2(·) β3(·) β1(·) β2(·) β3(·)
WFMM 40 1.63 (0.73) 1.67 (0.77) 1.88 (0.78) 0.04 (0.04) 0.05 (0.04) 0.06 (0.04)

60 1.37 (0.61) 1.39 (0.63) 1.55 (0.64) 0.03 (0.03) 0.03 (0.03) 0.04 (0.03)

FAMM 40 3.36 (2.11) 2.84 (1.88) 4.26 (3.27) 0.23 (0.56) 0.16 (0.35) 0.38 (0.77)

60 3.03 (1.93) 2.51 (1.58) 3.95 (3.29) 0.18 (0.36) 0.13 (0.21) 0.34 (0.95)

FMEM 40 1.57 (0.72) 1.44 (0.65) 1.69 (0.70) 0.04 (0.03) 0.03 (0.03) 0.05 (0.03)

60 1.29 (0.60) 1.23 (0.55) 1.37 (0.53) 0.03 (0.03) 0.03 (0.01) 0.03 (0.03)

Hongtu Zhu

Department of Biostatistics,

The University of Texas MD Anderson Cancer Center,

Houston, TX 77030, USA.

E-mail: hzhu5@mdanderson.org

Kehui Chen

Department of Statistics,

University of Pittsburgh,

PA 15260, USA.

E-mail: khchen@pitt.edu

Xinchao Luo

Statistics & Decision Sciences,

Janssen R&D, LLC,

Shanghai 200233, China.

E-mail: xluo27@its.jnj.com

Ying Yuan

E-mail: yy9615@hotmail.com

Jane-Ling Wang

Department of Statistics,



28 H. Zhu, K. Chen, X.C.Luo, Y. Yuan, and J.Wang

0 0.5 1

n=
50

-0.2

-0.1

0

0.1

0.2
A

11
b (s)

0 0.5 1
-0.4

-0.2

0

0.2

0.4
A

12
b (s)

0 0.5 1
-0.1

0

0.1

0.2
A

21
b (s)

0 0.5 1
-0.4

-0.2

0

0.2

0.4
A

22
b (s)

s
0 0.5 1

n=
10

0

-0.2

-0.1

0

0.1

0.2

s
0 0.5 1

-0.4

-0.2

0

0.2

0.4

s
0 0.5 1

0

0.05

0.1

0.15

0.2

s
0 0.5 1

-0.2

-0.1

0

0.1

0.2

Figure 4.1: Simulations 2: the estimates of the first two eigenfunctions ψb
l,k(·) for l, k =

1, 2 and their pointwise confidence intervals. The red solid, green dashed and blue solid,

curves are, respectively, the true eigenfunctions, the pointwise means, and their pointwise

5th and 95th percentiles of estimated eigenfunctions based on 1,000 replications.
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Figure 4.2: Simulations 2: the estimates of the first two eigenfunctions ψe
k, k = 1, 2 and

their pointwise confidence interval. The red solid, green dashed and blue solid, curves

are, respectively, the true eigenfunctions, the pointwise means and their pointwise 5th

and 95th percentiles of estimated eigenfunctions based on 1,000 replications.
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Figure 4.3: Simulation 2: boxplots of the differences between the estimated eigenvalues

λ̂bk and λ̂ek, k = 1, 2 and their true values based on 1,000 replications.
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Figure 4.4: Simulation 2: boxplots of the differences between the estimated σ2 and its

true values based on 1,000 replications.
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Figure 4.5: Simulation 3: Power curves as functions of c. Rejection rates of Sn using

the wild bootstrap method are calculated at five different values of the effect size c

(c = 0, 0.04, 0.06, 0.08 and 0.1) for two sample sizes (n = 50 and 100) at the 0.01 (a) and

0.05 (b) significance levels based on 1,000 replications.



FMEM: Functional Mixed Effects Models for Longitudinal Functional Responses 33

−0.06

1.07

95
%

 S
C

B

β
1
(s)

0 0.5 1
−0.07

1.08

s

99
%

 S
C

B

−0.06

1.05

β
2
(s)

0 0.5 1
−0.06

1.06

s

−0.12

0.15

β
3
(s)

0 0.5 1
−0.13

0.15

s

Figure 4.6: Simulation 4: Typical 95% (the first row) and 99% (the second row) simulta-

neous confidence bands for functional coefficients {βl(s)}3l=1. The magenta, green solid,

and red dash-dotted curves are, respectively, the true curves, the estimated functional

coefficients and their corresponding 95% and 99% confidence bands.

Table 2: Simulation 4: Coverage probabilities of estimated coefficient functions based on

1, 000 replications at simultaneous confidence levels 0.95 and 0.99. For each case, 1,000

simulated data sets were used.

Method 95% 99%

M β1 β2 β3 β1 β2 β3

WFMM 40 0.787 0.807 0.710 0.913 0.900 0.872

60 0.784 0.767 0.719 0.897 0.895 0.875

FAMM 40 0.991 1.000 0.993 0.996 1.000 0.996

(Bonferroni) 60 0.996 0.998 0.994 0.999 0.998 0.991

FMEM 40 0.945 0.948 0.924 0.989 0.992 0.992

60 0.933 0.920 0.938 0.984 0.985 0.987
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Figure 4.7: Data analysis: (a) 3D visualization of the corpus callosum in the sagittal

view, with the FA skeleton template overlaid on it. (b) and (c) FA’s along the corpus

callosum obtained from 2 selected subjects A (b) and B (c) with 2 or 3 visits. Different

visits for the same subjects are indicated by color. (d) and (e) FA values varying over

age at selected locations: arclength=18.66 (d) and arclength=31.49 (e) along the corpus

callosum for all 253 subjects, with green and blue lines corresponding to subjects A and

B, respectively. Red dashed lines represent the fitted lines for the male group.
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Figure 4.8: 95% simultaneous confidence bands for coefficient functions. The solid curves

are the estimated coefficient functions and the dashed curves are the 95% simultaneous

confidence bands. The thin horizontal line is the line crossing the origin (0, 0).
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Figure 4.9: (a) (b) The first five estimated eigenfunctions ψb
l,k(s), l = 1, 2 for the random

intercept and slope processes. ψb
1,k(s) and ψb

2,k(s) correspond to the random functional

intercept and random functional slope, respectively. (c) The first four estimated eigen-

functions ψe
k(s) for the visit specific deviation process.
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Table 3: Autism spectrum disorder data analysis: demographic information for partici-

pants.

Visit Number of subjects Age: mean(std) (years) Age: range (years)

1 58 10.53 (5.96) [0, 18]

2 148 12.25 (4.62) [0, 21]

3 160 12.29 (5.14) [1, 22]

4 19 1.84 (1.42) [1, 6]

5 7 1.57 (0.79) [1, 3]

6 10 2.70 (0.67) [2, 4]

7 6 3.17 (0.75) [2, 4]

8 5 3.40 (1.14) [2, 5]

9 3 3.67 (1.15) [3, 5]

Gender Male/Female 126/127

Table 4: Autism spectrum disorder data analysis: Estimated eigenvalues and the per-

centage of the total variability explained by different components in the functional mixed

effects model.

k λbk(×10−2) ψb
1,k(%) ψb

2,k(%) λek(×10−2) ψe
k(%) σ2(%)

1 7.96 31.41 0.71 4.51 18.22 5.35

2 3.08 9.34 3.08 1.31 5.28

3 1.44 3.52 2.28 0.56 2.26

4 1.15 3.53 1.09 0.43 1.72

5 0.74 2.54 0.43 0.36 1.45

6 0.59 1.45 0.93 0.34 1.38

7 0.32 1.06 0.23 0.25 1.03

8 0.22 0.74 0.15 0.21 0.85

53.57 8.90 32.18 5.35
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