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A Proofs of Theorems

Recall that yi = (yi1, . . . , yiTi)
T and Xi = [xi1 · · ·xiTi ]. Furthermore, we define Zi =

[zi1 · · · ziTi ], ei,G = (ei1,G, . . . , eiTi,G)T, and ei,L = (ei1,L, . . . , eiTi,L)T. For notational sim-

plicity, we omit the subscription of a bandwidth h when there is no confusion. We present

three lemmas that will be used in the proof of main theorems.

Lemma 1: Under assumptions (A.1) (or (A.1b)), (A.2), (A.3), and (A.6)-(A.7), if logM =

o(Mh) and there exists γn → ∞, with n1/2γ1−q
n = o(1) and n−1/2γn logM = o(1) for some

q > 2, that satisfies (A.7), we have

sup
s
n1/2|(nM)−1

∑
i,m

XiW
−1
i (sm)ei,L(sm)Kh(sm − s)| = op(1),

where Wi(s) is a Ti × Ti working covariance, and it is Lipchitz continuous along s.

Lemma 2: Under assumptions (A.1) (or (A.1b)), (A.2), (A.3), and (A.6)-(A.8), we have

sup
s
|(nM)−1

∑
i,m

XiW
−1
i (sm)(ZT

i bi(sm) + ei,G(sm))Kh(sm − s)| = Op((log n/n)1/2),

where Wi(s) is a Ti × Ti working covariance, and it is Lipchitz continuous along s.

Lemma 3: Under assumptions (A.1), (A.3), and (A.6), for any r ≥ 0, we have

sup
s∈[0,1]

|
∫
Kh(u− s)

(u− s)r

hr
d[FM(u)− F (u)]| = Op((Mh)−1/2). (34)

If (A.1) is replaced with (A.1b), then we have

sup
s∈[0,1]

|
∫
Kh(u− s)

(u− s)r

hr
d[FM(u)− F (u)]| = Op((Mh)−1). (35)
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Proof of Theorem 1. For each s, consider a Ti×Ti working variance matrix Wi(s), and define

Q1(s) = E(XiWi(s)
−1XT

i ),

and

Q2(s, s′) = E(XiWi(s)
−1Σyi,G(s, s′)Wi(s

′)−1XT
i ).

We will derive asymptotic results for any Wi(s) that is Lipschitz continuous along s and

for which Q1, Q2 exist. A special case when Wi ≡ ITi×Ti leads to the asymptotic results

for β̂(s) obtained in Step 1 with Q1(s) = E(XiX
T
i ) and Q2(s, s′) = E(XiΣyi,G(s, s′)XT

i ).

Consequently, it can be shown (similar to the proof of Theorem 2) that Σ̂yi,G(s, s) is a sup-

norm consistent estimator of Σyi,G. Theorem 1 then follows by observing that the refined

estimator β̃(s) obtained in Step III used Wi(s) = Σ̂yi,G(s, s), which is a sup-norm consistent

estimator of Σyi,G. Note that (A.5) implies that Σyi,G(s, s) are Lipschitz continuous along s.

In this case,

Q1(s) = E(XiΣyi,G(s, s)−1XT
i )

and

Q2(s, s′) = E(XiΣyi,G(s, s)−1Σyi,G(s, s′)Σyi,G(s′, s′)−1XT
i ).

For γ = 0, 1, we introduce some px × 1 matrix notations:

Rγ = 1/(nM)
∑
i,m

XiW
−1
i (sm)yi(sm)Kh(sm − s)[(sm − s)/h]γ,

R(1)
γ = 1/(nM)

∑
i,m

XiW
−1
i (sm)(ZT

i bi(sm) + ei,G(sm))Kh(sm − s)[(sm − s)/h]γ,

R(2)
γ = 1/(nM)

∑
i,m

XiW
−1
i (sm)ei,L(sm)Kh(sm − s)[(sm − s)/h]γ, (36)

R∗γ = 1/(nM)
∑
i,m

XiW
−1
i (sm)[yi(sm)−XT

i β(s)−XT
i β̇(s)(s− sm)]Kh(sm − s)[(sm − s)/h]γ.

For γ = 0, 1, 2, we introduce a px × px matrix notation:

Lγ = 1/(nM)
∑
i,m

XiW
−1
i (sm)XT

i Kh(sm − s)[(sm − s)/h]γ, (37)
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We define

L =

 L0 L1

L1 L2

 , R =

 R0

R1

 , R(1) =

 R
(1)
0

R
(1)
1

 , R(2) =

 R
(2)
0

R
(2)
1

 , R∗ =

 R∗0

R∗1

 .

(38)

Direct calculations lead to

β̃(s) = [(1, 0)⊗ Ipx ]L−1R and β̃(s)− β(s) = [(1, 0)⊗ Ipx ]L−1R∗.

Proof of Theorem 1 (i): We first consider the bias part. Based on Lemma 3, under a random

design (A.1), we have

L =

 L0 L1

L1 L2

 =

 Q1(s)f(s) 0

0 Q1(s)f(s)u2

+Op(n
−1/2 + (Mh)−1/2 + h);

or under a prefixed design (A.1b), we have

L =

 L0 L1

L1 L2

 =

 Q1(s)f(s) 0

0 Q1(s)f(s)u2

+Op(n
−1/2 + (Mh)−1 + h).

Using Wi(sm) = Wi(s) +O(h) and Lemma 3, we have

E(R∗|S) =

 Q1(s)f(s)0.5h2β̈(s)u2

Q1(s)f(s)0.5h2β̈(s)u3

+ o(h2),

Bias(β̃(s)|S) = E(β̃(s)|S)− β(s) =
1

2
β̈(s)h2u2(1 + o(1)). (39)

Next, we consider the variance part. Simple calculation shows that

var(R0|S) = {o(1) + 1} 1

(Mn)2
var(

∑
i,m

Kh(sm − s)XiW
−1
i (s)

(
ZT
i bi(sm) + ei(sm)

)
|S) (40)

= [
1

nMh
[Q̃(s)−Q2(s, s)]f(s)v2 +

1

n
Q2(s, s)f(s)2](1 + o(1))

=
1

n
Q2(s, s)f(s)2(1 + o(1)),
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where Q̃(s) = E(XiW
−1
i (s)Σy,i(s, s)W

−1
i (s)XT

i ). Note that

var(R|S) =

 1 o(1)

o(1) o(1)

⊗ var(R0|S) =

 n−1Q2(s, s)f(s)2 0

0 0

+ o(n−1),

we have var(β̃(s)|S) = n−1Q−1
1 (s)Q2(s, s)Q−1

1 (s){1+o(1)}. This achieves the minimum when

Wi(s) = Σyi,G(s, s), and then var(β̃(s)|S) = n−1{E(Xi{Σyi,G(s, s)}−1XT
i )}−1{1 + o(1)}.

Proof of Theorem 1 (ii):
√
n[β̃(s)− E(β̃|S)] can be decomposed as

√
n[(1, 0)⊗ Ipx ]L−1(s)[R(1)(s) +R(2)(s)],

where L(s), R(1)(s) and R(2)(s) are defined in (38). Consider

L(s) =

 L0 L1

L1 L2

 =

 Q1(s)f(s) 0

0 Q1(s)f(s)u2

+Rn(s),

in which it follows from Lemma 3 that supsRn(s) = Op(n
−1/2 + (Mh)−1/2 + h). Lemma 1

implies that

sup
s

√
n[(1, 0)⊗ Ipx ]L−1(s)R(2)(s) = o(1), a.s.,

which is negligible relative to [(1, 0)⊗ Ipx ]L−1(s)R(1)(s).

For any vector a ∈ Rpx , we define Hn(s) =
√
naT[(1, 0)⊗ Ipx ]L−1(s)R(1)(s) and show the

following two results.

• (1.a) For any set of finite points s1, . . . , sK , the sequence (Hn(s1), . . . , Hn(sK)) con-

verges in distribution to a multivariate Gaussian vector G(0, aTRKa), where

RK;i,j = Q1(si)
−1Q2(si, sj)Q1(sj)

−1.

This can be easily proved by using the standard central limit theorem, so we omit the

details.

• (1.b) For every ε, η > 0, there exists a partition of [0, 1] into to finitely many sets
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S1, . . . , SK such that

lim sup
n→∞

P (sup
l

sup
s,s′∈Sl

|Hn(s)−Hn(s′)| ≥ ε) ≤ η.

This condition is equivalent to the asymptotic tightness, which will be verified below.

Let Mi(sm) = XiW
−1
i (sm)[ZT

i bi(sm) + ei(sm)] and

φi(s) = M−1

M∑
m=1

f(s)−1aTQ1(s)−1Mi(sm)Kh(sm − s).

With some algebraic calculations, we can obtain

Hn(s) = n−1/2

n∑
i=1

φi(s) + R̃n(s),

where R̃n(s) = O(Rn(s)) and sups R̃n(s) = Op(n
−1/2 + (Mh)−1/2 + h).

For δ > 0 and h < δ, it follows from (A.1)-(A.3) and (A.5) that there is a C > 0 such

that with probability 1, we have

|φi(s)−M−1

M∑
m=1

f(s)−1aTQ1(s)−1Mi(s)Kh(sm − s)| ≤ Ch,

and sup|s1−s2|<δ |n
−1/2

∑n
i=1{φi(s1)− φi(s2)}| ≤ C(δ + h). Furthermore, for any ε > 0 and η,

one can find large enough n, M , and small enough h such that

P (sup
s
R̃n(s) > ε/4) < η and Ch ≤ ε/4.

So with a partition S1, S2, . . . , SK that supl sups,s′∈Sl
|s− s′| ≤ δ and δ = ε/(4C), we have

lim sup
n→∞

P (sup
l

sup
s,s′∈Sl

|Hn(s)−Hn(s′)| ≥ ε) ≤ η.

It follows from Theorem 18.14 in Van der Vaart (2000) (1.a), and (1.b) that Hn(s) con-

verges to a centered Gaussian process with covariance function aTR(s, s′)a, with R(s, s′) =

Q1(s)−1Q2(s, s′)Q1(s′)−1. ForWi(s) = Σyi,G(s, s), we haveR(s, s′) = Q∗(s, s)−1Q∗(s, s′)Q−1(s′, s′),

with Q∗(s, s′) = E(XiΣyi,G(s, s)−1Σyi,G(s, s′)Σyi,G(s′, s′)−1XT
i ). This completes the proof of

part (ii). �

Proof of Theorem 2:
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Proof of Theorem 2 (i): For any fixed s and s′, Σ̂e,G(s, s′) is given by

Σ̂e,G(s, s′)) = [
∑
m6=m′

Kh(sm − s)Kh(sm′ − s′)]−1

×[
∑
m 6=m′

Kh(sm − s)Kh(sm′ − s′)Σ̂LS
e (sm, sm′)],

where Σ̂LS
e (sm, sm′) = (1−a2g

Tg)−1(v(s, s′)−a2g
TGu(s, s′)), and details are given in Section

2 Step (II) (S1). For each fixed pair (m,m′), ΣLS
e (sm, sm′) is the least square estimate

based on ûij(sm)ûij(sm′), and ûij(sm) = yij(sm) − xT
ijβ̂(sm) is an estimate of uij(sm) =

yij(sm)− xT
ijβ(sm).

Here β̂(s) is the initial estimator in step (I), which can be viewed as one of the general

weighted estimator using Wi(s) ≡ ITi×Ti . As shown in the proof of Theorem 1,

β̂(s)− β(s) = [(1, 0)⊗ Ipx ]L−1R∗,

and

sup
s
|β̂(s)− β(s)| = sup

s
[(1, 0)⊗ Ipx ]L−1(R(1) +R(2)) +O(h2

1).

It is easy to see that lemma 2 holds for Wi(s) ≡ ITi×Ti . From Lemma 2,

sup
s

[(1, 0)⊗ Ipx ]L−1R(1) = Op((log n/n)1/2),

and following the same argument as lemma 2, we have

sup
s

[(1, 0)⊗ Ipx ]L−1R(2) = Op((log n/n)1/2).

Together we have sups |β̂(s)−β(s)| = Op(h
2
1 + (log n/n)1/2) and then sups |ûij(s)−uij(s)| =

Op(h
2
1 + (log n/n)1/2) = Op((log n/n)1/2).

Therefore direct calculation leads to

sup
(s,s′)∈[0,1]2

|E[Σ̂e,G(s, s′)]−Σe,G(s, s′)| = Op(h
2
Σe

+h2
1 + (log n/n)1/2) = Op((log n/n)1/2). (41)

Now we show that

sup
(s,s′)∈[0,1]2

|Σ̂e,G(s, s′)− E[Σ̂e,G(s, s′)]| = Op(log n/n)1/2). (42)
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Lemma 3 implies

sup
s,s′
| 1

M(M − 1)
[
∑
m6=m′

Kh(sm − s)Kh(sm′ − s′)]| = Op(1).

By (A.2) and Law of large numbers, (1− a2g
Tg)−1 = Op(1) and a2g

TG1p2z×1 = Op(1), where

1p2z×1 denotes a p2
z × 1 all-ones vector. Further combining with the result, sups |ûij(s) −

uij(s)| = Op((log n/n)1/2), we have

sup
(s,s′)∈[0,1]2

|Σ̂e,G(s, s′)− E[Σ̂e,G(s, s′)]|

=Op(sup
s,s′
|D1(s, s′)− ED1(s, s′)|) +Op(sup

s,s′
|D2(s, s′)− ED2(s, s′)|) +Op((log n/n)1/2),

where

D1(s, s′) =
1

M(M − 1)
∑n

i=1 Ti

∑
i,j,m6=m′

uij(sm)uij(sm′)Km,m′(s, s
′),

and

D2(s, s′) =
1

M(M − 1)
∑n

i=1 T
2
i

∑
i,j1,j2,m6=m′

uij1(sm)uij2(sm′)1
T
p2z×1zij1 ⊗ zij2Km,m′(s, s

′),

with Km,m′(s, s
′) = Kh(sm − s)Kh(sm′ − s′).

For D1, let αn = (log n/n)1/2, Fimm′ = 1
Ti

∑
j uij(sm)uij(sm′), and Qn = α−1

n . We define

Gn(s, s′) =
1

nM2h2

∑
i,m,m′

Fimm′1(−h ≤ s− sm < h)1(−h ≤ s′ − sm′ < h),

GQn
n (s, s′) =

1

nM2h2

∑
i,m,m′

Fimm′1(|Fimm′ | < Qn)1(−h ≤ s− sm < h)1(−h ≤ s′ − sm′ < h),

where 1(x) is the indicator function. By (A.3) and lemma 4 of Li and Hsing (2010), we have

sups,s′ |D1(s, s′)−ED1(s, s′)| ≤ C sups,s′ |Gn(s, s′)−EGn(s, s′)|. To show sups,s′ |D1(s, s′)−

ED1(s, s′)| = Op(αn), we will prove that

sup
s,s′
|GQn

n (s, s′)−Gn(s, s′)| = op(αn), (43)

sup
s,s′
|E(GQn

n (s, s′)) = op(αn), (44)
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sup
s,s′
|GQn

n (s, s′)− E(GQn
n (s, s′))| = Op(αn). (45)

The proof of Eq. (43), (44) and (45) mirrors the one-dimensional correspondences, Eq. 43,

44, and 45 given in the proof of lemma 2. See also lemma 3 and lemma 4 in Li and Hsing

(2010). The same arguments apply for D2.

Combining (41) and (42), part (i) follows.

Proof of Theorem 2 (ii) and (iii): It follows from Theorem 2 (i) that we have

||Σ̂e,G − Σe,G||2 = {
∫ 1

0

∫ 1

0

|Σ̂e,G(s, s′)− Σe,G(s, s′)|2dsds′}1/2

= Op((log n/n)1/2).

It follows from Lemma 4.3 of Bosq (2000) that

|λ̂el − λel | ≤ ||Σ̂e,G − Σe,G||2 and ||φ̂el − φel ||2 ≤ 2
√

2δ−1
l ||Σ̂e,G − Σe,G||2,

for l = 1 . . . , E, where δl is the minimum eigenvalue gap before l. It follows from assumption

(A.10) that δl is a positive constant. Therefore, it yields Theorem 2 (ii) and (iii). �

Almost identical arguments could be used to prove the following results regarding Σb,kk′ .

Theorem 2b. Under (A.1) (or (A.1b)) and (A.2)-(A.8), (A.10), if h1 = O((log n/n)1/4) and

h2 = O(log n/n)1/4, then we have the following results hold for 1 ≤ k, k′ ≤ pz:

(i) sups,s′ |Σ̂b,kk′(s, s
′)− Σb,kk′(s, s

′)| = Op((log n/n)1/2);

(ii) For 1 ≤ l ≤ E, {
∫ 1

0
|ψ̂bkk′l (s)− ψbkk′l (s)|2ds}1/2 = Op((log n/n)1/2);

(iii) For 1 ≤ l ≤ E, |λ̂bkk′l − λbkk′l | = Op((log n/n)1/2).

Proof of Theorem 3: Let d(s) = Cβ̃(s)− bias(Cβ̃(s))− β0(s) and

ω(s) = {C
n∑
i=1

XiΣ̂yi,G(s, s)−1XT
i ]−1CT}−1/2d(s).

Using similar argument as in Theorem 1 (ii), we can show that ω(s) converges to a centered

Gaussian process GC(·) with covariance function

γω(s, s′) = {CQ∗(s, s)CT}−1/2R(s, s′){CQ∗(s′, s′)CT}−1/2,
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which yields Theorem 3 (i).

We prove Theorem 3 (ii) as follows. Under H1n, we have

ω(s)
asymp∼ GP (ηω,γω),

where ηω(s) = {C[
∑n

i=1XiΣ̂yi,G(s, s)−1XT
i ]−1CT}−1/2n−τ/2d(s), γω(s, t) = (γω,kl(s, t))1≤k≤l≤q,

and γω,kl(s, t) = cov(ωk(s), ωl(t)). We consider a Hilbert space of q-dimensional vectors of

functions in L2(S), denoted by H. Define the inner product of two q-dimensional functions

as < f , g >H=
∑q

l=1 < fl, gl >. By the multivariate version of Mercer’s theorem, there

exists a set of orthonormal basis functions φr = (φr1, . . . , φrq) in H such that

γω(s, t) =
∞∑
r=1

λrφr(s)φ
T
r (t),

in which γω,kl(s, t) =
∑∞

r=1 λrφrk(s)φrlt) and < φr,φ
′
r >H= δrr′ .

Let ξr =< ω,φr >H, we have ξr ∼ N(πr, λr), where πr =< ηω,φr >H. It is assumed

that the eigenvalues are ordered in decreasing values. Without loss of generality, the first m

eigenvalues are assumed to be positive. If all eigenvalues are positive, we set m = ∞. It is

easy to see that

Sn =

∫
S
ω(s)Tω(s)ds =

∞∑
r=1

ξ2
r
d
=

m∑
r=1

λrAr +
∞∑

r=m+1

π2
r ,

where Ar ∼ χ2(λ−1
r π2

r). Similar results have been obtained and discussed in (Zhang, 2011;

Zhang and Chen, 2007).

Under the null hypothesis H0, πr = 0 holds for all r. So the null distribution of Sn is a

mixture of χ2. Under H1n, we have π2
r = n1−rδ2

r , where δr is given by

δr =

q∑
l=1

∫
S
{C[

1

n

n∑
i=1

XiΣ̂yi,G(s, s)−1XT
i ]−1CT}−1/2dl(s)φrl(s)ds.

Note that Ar
d
= [Zr + n(1−τ)/2λ

−1/2
r δr]

2, where Zr ∼ N(0, 1). Thus, we have

Sn
d
=

m∑
r=1

λrZ
2
r + 2n(1−τ)/2δλZr + n1−τδ2,

where δλ =
∑m

r=1 λ
1/2
r δr and δ2 =

∑m
r=1 δ

2
r > 0.
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We consider two cases of δλ. For δλ = 0, it is easy to show that the power tends to 1

as n → ∞, since the second term is zero and the third term dominates the first term. For

δ2
λ > 0, the second term and the third term dominate the first term as n → ∞. Following

similar arguments as in Theorem 3 in (Zhang, 2011), we can show that Sn is asymptotically

normally distributed under H1n with mean n1−τδ2 and variance 4n1−τδ2
λ. Therefore, we have

P (Sn > Sn,α | H1n) =1− Φ(
S∗n,α − n1−τδ2√

4n1−τδ2
λ

) + o(1) = Φ(
n(1−τ)/2δ2

2δλ
) + o(1),

which tends to 1 as n→∞ This completes the proof of Theorem 3. �

Proof of Theorem 4: The proof of Theorem 4 is basically the same as the proof of Theorem

5 in Zhu et al. (2012). We omit the details here.

B Proofs of Lemmas

Proof of Lemma 1: The proof of this Lemma is similar to Lemma 8 of Zhu et al. (2012).

We give a unified proof for both fixed and random designs and allow short-range correlation

of error processes. Without loss of generality, we only prove the case that px = 1, since the

extension to px > 1 is straightforward.

It follows from (A.3) and Lemma 2 of Li and Hsing (2010) that,

sup
s
n1/2|(nM)−1

∑
i,m

XiW
−1
i (sm)ei,L(sm)Kh(sm − s)|

≤C sup
s
n1/2|(nMh)−1

∑
i,m

XiW
−1
i (sm)ei,L(sm)1(−h ≤ s− sm < h)|. (46)

We introduce some notation and let

Gn(s) = n1/2(hMn)−1
∑
i,m

XiW
−1
i (sm)ei,L(sm)1(−h ≤ s− sm < h).

For some γn satisfing n1/2γ1−q
n = o(1) and n−1/2γn logM = o(1), where q satisfies (A.7),
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define

Gγn
n (s) = n1/2(nMh)−1

∑
i,m

XiW
−1
i (sm)ei,L(sm)1(‖ei,L(sm)‖2 < γn)1(−h ≤ s− sm < h).

By (46), we only need to prove sups |Gn(s)| = op(1), so we will complete the proof by

showing the following three results.

sup
s
|Gγn

n (s)−Gn(s)| = op(1), (47)

sup
s
|E(Gγn

n (s))| = op(1), (48)

sup
s
|Gγn

n (s)− E(Gγn
n (s))| = op(1). (49)

For (47), we have

sup
s
|Gγn

n (s)−Gn(s)| ≤ (50)

n1/2γ1−q
n

1

n

∑
i

sup
s
‖XiW

−1
i (s)‖2

1

hM

∑
m

‖ei,L(sm)‖q21(‖ei,L(sm)‖2 > γn)1(−h ≤ s− sm < h),

which is bounded by n1/2γ1−q
n = op(1) from above. This leads to (47). Similarly, we can

prove (48).

For (49), let

Zi(s) = (hM)−1
∑
m

XiW
−1
i (sm)ei,L(sm)1(‖ei,L(sm)‖2 < γn)1(−h ≤ s− sm < h).

Then sups |Gγn
n (s)−E(Gγn

n (s))| = sups n
−1/2|

∑n
i=1{Zi(s)−E(Zi(s))}|. It follows from (A.2)

and the Lipchitz continuity of Wi(s) that sups∈[0,1] ‖XiW
−1
i (s)‖2 is bounded and

2fl ≤ E[(hM)−1

M∑
m=1

1(−h ≤ sm − s ≤ h)] ≤ 2fu.

Therefore, if P (ΩS) = 1− pM → 1 in a set ΩS, then we have |Zi(s)−E(Zi(s))| < C1γn and

n∑
i=1

var(Zi(s)) ≤
n∑
i=1

E(Zi(s))
2 ≤ n(Mh)−2O(Mh

dMhe∑
k=0

k−δ) = O(n(Mh)−1),

where C1 does not depend on s. If (A.1) is replaced by (A.1b), then |Zi(s) − E(Zi(s))| =

O(γn) and
∑

i var(Zi(s)) = O(n(Mh)−1) still hold.
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For any design S, as s varies in [0, 1], (s−h, s+h) covers some consecutive points of sm.

The pair of starting point and ending point have M(M − 1)/2 possibilities, which does not

depend on the design S. So we have

P ( sup
s∈[0,1]

n−1/2|
n∑
i=1

{Zi(s)− E(Zi(s))}| > x | S ∈ ΩS) (51)

≤M2 exp(− x2

2C2(Mh)−1 + 2/3C1γnx/
√
n

). (52)

Let

xn =
1

3
CC1n

−1/2γn logM + 0.5

√
4

9
C2C2

1 logM2n−1γ2
n + 16CC2 logM(Mh)−1.

It follows from (A.6) and logM = o(Mh) that xn → 0 as n→∞. Then, we have

P ( sup
s∈[0,1]

n−1/2|
n∑
i=1

Zi(s)− E(Zi(s))| > xn | S ∈ ΩS) ≤M2 exp(−C logM) = M2−C .

For some C > 2, we have

P ( sup
s∈[0,1]

|Gγn
n (s)− E(Gγn

n (s))| > xn)

≤P ( sup
s∈[0,1]

n−1/2|
n∑
i=1

Zi(s)− E(Zi(s))| > xn|S ∈ ΩS) + pM ≤M2−C + pM = o(1). (53)

The proof of Lemma 1 is now complete. �

Remark: This result is similar to Lemma 2 in Li and Hsing (2010), but the proof is much

simpler. We completely remove the constrains on h and n (C5 in their paper). The result is

almost surely for pre-fixed design as in (A.1b). For random design (A.1), we first prove the

result for relatively good (uniform) designs and add back the very small probability of bad

designs. So the result is in probability rather than almost surely.

Proof of Lemma 2: Without loss of generality, we prove the case with px = 1, since it

is easy to prove the case with px > 1. It follows from (A.3) and lemma 2 of Li and Hsing

12



(2010) that

sup
s
|(nM)−1

∑
i,m

XiW
−1
i (sm)(ZTi bi(sm) + ei,G(sm))Kh(sm − s)|

≤C sup
s
|(nMh)−1

∑
i,m

XiW
−1
i (sm)(ZTi bi(sm) + ei,G(sm))1(−h ≤ s− sm < h)|. (54)

Moreover, it follows from (A.2) and the Lipchitz continuity ofWi(s) that sups∈[0,1] ‖XiW
−1
i (s)‖2

is bounded almost surely. Thus, we only need to show that

sup
s
|(nMh)−1

∑
i,m

(ZTi bi(sm) + ei,G(sm))1(−h ≤ s− sm < h)| = Op((log n/n)1/2).

Let αn = (log n/n)1/2, Qn = α−1
n = (n/ log n)1/2, and Fi(sm) = ZT

i bi(sm) + ei,G(sm).

Define Gn(s) = (nMh)−1
∑

i,m Fi(sm)1(−h ≤ s− sm < h) and

GQn
n (s) = (nMh)−1

∑
i,m

Fi(sm)1(‖Fi(sm)‖2 < Qn)1(−h ≤ s− sm < h).

We will show that

sup
s
|GQn

n (s)−Gn(s)| = op(αn), (55)

sup
s
|E(GQn

n (s)) = op(αn)|, (56)

sup
s
|GQn

n (s)− E(GQn
n (s))| = Op(αn). (57)

The proof of Lemma 2 will be complete by combining (55)-(57).

For (55), we have

α−1
n sup

s
|GQn

n (s)−Gn(s)|

≤α−1
n Q1−q

n

1

nMh

∑
i,m

‖Fi(sm)‖q1(‖Fi(sm)‖ > Qn)1(−h ≤ s− sm < h)

≤α−1
n Q1−q

n Op(1) = op(1), (58)

in which (A,7) and (A.8) are used for some q > 2. Similarly, we can prove (56).

For (57), we define an equally-spaced grid G = {νk} with νk = khα2
n for k = 0, . . . , [1/(hα2

n)],

13



where [.] denotes the greatest integer part. For any νk ≤ s ≤ νk+1, we have

|GQn
n (s)− EGQn

n (s)|

=|GQn
n (νk)− EGQn

n (νk)|+ |GQn
n (s)−GQn

n (νk)|+ |EGQn
n (s)− EGQn

n (νk)|,

where |GQn
n (s)−GQn

n (νk)| is bounded from above by

|(Mh)−1

M∑
m=1

Qn1(sm ∈ [νk − h, s− h] ∪ [νk + h, s+ h])|

≤|(Mh)−1

M∑
m=1

Qn1(sm ∈ [νk − h, νk+1 − h] ∪ [νk + h, νk+1 + h])|.

Define Ik = [νk − h, νk+1 − h] ∪ [νk + h, νk+1 + h] for k = 0, . . . , [1/(hα2
n)]. It follows from

(A.1) that

2flMα2
nh ≤ E

M∑
m=1

1(sm ∈ Ik) ≤ 2fuMα2
nh.

Bernstein inequality implies that P (supk
∑M

m=1 1(sm ∈ Ik) > 2CfuMα2
nh)→ 0 as M →∞.

Given ΩS1 , we have

sup
k

M∑
m=1

1(sm ∈ Ik) < 2CfuMα2
nh and P (ΩS1) = 1− p(1)

M → 1. (59)

Using (59), we have

sup
s
|GQn

n (s)− EGQn
n (s)|

≤ sup
k
{|GQn

n (νk)− EGQn
n (νk)|+ |(Mh)−1

M∑
m=1

Qn1(sm ∈ Ik)|+ |(Mh)−1

M∑
m=1

QnE1(sm ∈ Ik)|}

≤ sup
k
|GQn

n (νk)−GQn(νk)|+ (Mh)−1Qn2CfuMα2
nh+ (Mh)−1Qn2fuMα2

nh

≤ sup
k
|GQn

n (νk)−GQn(νk)|+ 2Cfuαn + 2fuαn,

= sup
k
||GQn

n (νk)− EGQn
n (νk)||+O(αn).
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Let Zi(s) = (hM)−1
∑

m Fi(sm)1(‖Fi(sm)‖ < Qn)1(−h ≤ s− sm < h). Then, we have

sup
k
|GQn

n (νk)− E(GQn
n (νk))| = sup

k
n−1|

n∑
i=1

Zi(νk)− E(Zi(νk))|.

It also follows from (A.1) that

2fl ≤ E[(hM)−1

M∑
m=1

1(−h ≤ sm − s ≤ h)] ≤ 2fu.

So in a set ΩS2 with P (ΩS2) = 1− p(2)
M → 1, we have supk |Zi(νk)− E(Zi(νk))| < C1Qn and

n∑
i=1

var(Zi) ≤
n∑
i=1

E(Zi)
2 ≤ C2n.

If (A.1) is replaced by (A.1b), supk |Zi−E(Zi)| = Op(Qn) and
∑

i var(Zi) = O(n) still hold.

Finally, we have

P (sup
k
n−1|

n∑
i=1

Zi(νk)− E(Zi(νk))| > Cαn|S ∈ (ΩS1 ∩ ΩS2))

≤(α2
nh)−1 exp(− n2C2α2

n

2C2n+ 2/3C1Qnnαn
) = (α2

nh)−1 exp(−C∗ log n),

where C∗ = C2/(2C2 + 2/3C1). For large enough C∗, we have

P (sup
k
|GQn

n (νk)− E(GQn
n (νk))| > Cαn) ≤ h−1n1−C∗ + p

(1)
M + P

(2)
M = o(1),

which finishes the proof of Lemma 2. �

Proof of Lemma 3: Similar to Lemma 2 in Zhu et al. (2012), Eq. (22) can be proved by

using empirical process techniques. Specifically, it follows from (A.1) and (A.3) that

{K
(
.− s
h

)
(.− s)r

hr
, s ∈ [0, 1]} is a Donsker class.

Eq. (23) is the same as (60) in Lemma 8 of Zhu et al. (2012). It can be proved by using

Taylor expansion and (A.1b). �

C Additional Simulation Results

Simulation 4. The fourth simulation is to evaluate the accuracy of the estimators of the
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Table 1: ASD data analysis: Distributions of scan availability.

Available scans 1 2 3 5 6
Number of subjects 137 78 34 5 1

eigenvalues and eigenfucntions of the covariance functions Σb(., .), Σe,G(., .) and Σe,L. We

used the same parameter values as those in Simulation 1. We set c = 0.1 and n = 50 and 100,

and generated 100 datasets for each combination. The accuracy of all kinds of estimators

improves with the sample size. The estimated eigenfunctions were plotted in Figures 1 and

2, in which the mean and the pointwise 5th and 95th percentiles of the estimated functions

were plotted along with the true eigenfunctions. Figures 3 and 4 show the boxplots for the

estimates of the eigenvalues and σ2, which are quite close to their true values.

ASD Data Analysis. Table 1 presents the distribution of scan availability. We compared

FMEM with WFMM and PFFR. Figures 5 and 6 present the estimated coefficient functions

with their 95% confidence intervals corresponding to WFMM and PFFR. Inspecting Figure

5 reveals that the estimated coefficient functions from WFMM are very bumpy since wavelet

is a poor choice for intrinsically smooth functions.
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Figure 1: Simulations 4: the estimates of the first two eigenfunctions ψbl,k(·) for l, k = 1, 2
and their pointwise confidence intervals. The red solid, green dashed and blue solid, curves
are, respectively, the true eigenfunctions, the pointwise means, and their pointwise 5th and
95th percentiles of estimated eigenfunctions based on 100 replications.
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Figure 2: Simulations 4: the estimates of the first two eigenfunctions ψek, k = 1, 2 and
their pointwise confidence interval. The red solid, green dashed and blue solid, curves are,
respectively, the true eigenfunctions, the pointwise means and their pointwise 5th and 95th
percentiles of estimated eigenfunctions based on 100 replications.

17



−0.5

0

0.5

1

n=50 n=100

(a) λb
1

−0.4
−0.2

0
0.2
0.4
0.6

n=50 n=100

(b) λb
2

di
ff

−0.4
−0.2

0
0.2
0.4
0.6

n=50 n=100

(c) λe
1

−0.2

0

0.2

n=50 n=100

(d) λe
2

Figure 3: Simulation 4: boxplots of the differences between the estimated eigenvalues λ̂bk and

λ̂ek, k = 1, 2 and their true values based on 100 replications.
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Figure 4: Simulation 4: boxplots of the differences between the estimated σ2 and its true
values based on 100 replications.
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Figure 5: WFMM: 95% pointwise posterior credible intervals for coefficient functions. The
solid curves are the estimated coefficient functions and the dashed curves are the 95% credible
intervals. The thin horizontal line is the line crossing the origin (0, 0). Computational time
is 7.9 seconds.
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Figure 6: PFFR: 95% confidence bands for coefficient functions. The solid curves are the
estimated coefficient functions and the dashed curves are the 95% confidence bands. The
thin horizontal line is the line crossing the origin (0, 0). Computational time is 6.078 hours.
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