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A  Proofs of Theorems

Recall that y; = (yi1,...,yr,)" and X; = [z - 2], Furthermore, we define Z; =
[zi1 - 2imy], eic = (€, .- emg), and e, = (en,...,€7..)". For notational sim-
plicity, we omit the subscription of a bandwidth A when there is no confusion. We present
three lemmas that will be used in the proof of main theorems.

Lemma 1: Under assumptions (A.1) (or (A.1b)), (A.2), (A.3), and (A.6)-(A.7), if log M =
o(Mh) and there exists y,, — oo, with n*/?y1=1 = o(1) and n='/2y,log M = o(1) for some
q > 2, that satisfies (A.7), we have

sup n?|(nM)~ ZX W (8m)eir(8m) Kn(sm — 8)| = 0,(1),

where Wi(s) is a T; x T; working covariance, and it is Lipchitz continuous along s.

Lemma 2: Under assumptions (A.1) (or (A.1b)), (A.2), (A.3), and (A.6)-(A.8), we have

sup|nM ZXW ($m)(ZEbi(5m) + €i.6(5m)) K (5m — 8)| = Op((log n/n)?),

where Wi(s) is a T; x T; working covariance, and it is Lipchitz continuous along s.
Lemma 3: Under assumptions (A.1), (A.3), and (A.6), for any r > 0, we have

(u—s)

d[Far(w) = F(w)]] = Op((Mh)~'/?). (34)

sup | | Kp(u—s) 3
s€[0,1]

If (A.1) is replaced with (A.1b), then we have

(u—s) B )
| [ =9 () - Pl = 0,0, (35)



Proof of Theorem 1. For each s, consider a T; x T, working variance matrix Wj(s), and define
Qi(s) = B(XiWi(s)7' X}),
and
Qa(s,s") = B(XiWi(s) ™' 2y, a(s, 8 )Wi(s) T X;).

We will derive asymptotic results for any W;(s) that is Lipschitz continuous along s and
for which @, Q2 exist. A special case when W; = I .7, leads to the asymptotic results
for B(s) obtained in Step 1 with Q(s) = E(X;X[) and Q4(s,s') = E(X;%,,a(s, s)XT).
Consequently, it can be shown (similar to the proof of Theorem 2) that 3, ¢(s, s) is a sup-
norm consistent estimator of 3, . Theorem 1 then follows by observing that the refined
estimator ((s) obtained in Step IIT used W;(s) = %, (s, s), which is a sup-norm consistent
estimator of ¥, . Note that (A.5) implies that ¥, (s, s) are Lipschitz continuous along s.

In this case,
Qi(s) = B(XiZy,c(s,5) 7' X}')
and
Qa(s,5") = E(X;5y, a(s,8) '8y, a(s, 82,68, 8) T X).
For v = 0, 1, we introduce some p, x 1 matrix notations:

Ry = 1/(nM)) X Wi (sm)yi(sm) Kn(sm = 8)[(sm — 8)/A]",

B = 1/(nM) 3 XW () (Z]bi(5m) + €i6(5m) En(sm = 5)[(sm = ) /R,
B = 1/(nM) Y0 XW (smei s (sm) Kn(sm = 5)(5m — ) /H]", (36)
Ry = /(M) 30 XWi (sm)lpi(5m) = X[(5) = XTB()(5 = sun) | Kn(sm — ) (5 — 5)/M].

For v = 0, 1, 2, we introduce a p, X p, matrix notation:

L, = 1/(nM)Y XiW. " (sm) X Kn(sm = 8)[(sm — 5)/], (37)

i,m



We define
1) (2) *
L = LO Ll 7R - RO 7R(1) - Rol 5 R(Q) == R02 ; R* = RO .
Ly Ly Ry rWY RrRP R}
(38)

Direct calculations lead to

B(s) = [(1,0)® [, ]JL7'R and f(s) = B(s) = [(1,0) @ L, ]L'R".

Proof of Theorem 1 (i): We first consider the bias part. Based on Lemma 3, under a random

design (A.1), we have
I Ly Ly _ Q1(s)f(s) 0 i Op(n_1/2 4 (Mh)—l/Q +h);
L1 LQ 0 Ql(S)f(S)UQ
or under a prefixed design (A.1b), we have
I Ly Ly _ Q1(s)f(s) 0 +0,( (
Ly L, 0 Q1(s) f(s)usg
Using W;(sm) = Wi(s) + O(h) and Lemma 3, we have

BRS) — ( Q1()(5)0.50 () ) ¢ o),

n1/2

+ (Mh)™" +h).

Q1(s)f(5)0.5h23(s)us
Bias(5(s)|S) = E(B(s)|S) — B(s) = %B(S)h%(l +o(1)). (39)
Next, we consider the variance part. Simple calculation shows that
var(Ro|S) = {o(1) + 1} ————var Z Ki(sm — 8)XiW(8) (ZFbi(sm) + €i(sm)) |S) (40)
- |- A}h[@<s> — Quls, ) ($)r - Qals,9)F(97](1+ o{1)

_ %QQ(S, $)£(s)2(1 + o(1)),



where Q(s) = E(X,W; 1(s)%,.,(s, s)W; ' (s)X]"). Note that

war@s) = [ 1Y ) wvarmgsy = [ 7 QST 00
o(1) o(1) 0 0

we have var(5(s)|S) = n ' Q71 (s)Qa(s, s)Q7 ' (s){1+0(1)}. This achieves the minimum when

Wi(s) = X,,c(s, s), and then var(3(s)|S) = n " H{E(X{Z,, c(s,8)} X} {1+ 0(1)}.

Proof of Theorem 1 (i): /n[f(s) — E(3|S)] can be decomposed as

V[(1,0) ® I, ] L7 (s)[RW(s) + R®)(s)],
where L(s), R (s) and R®(s) are defined in (38). Consider

L(s) = Ly Ly _ Q1(s)f(s) 0 + Ro(s),

Ly Ly 0 Q1(5)f (s)uz
in which it follows from Lemma 3 that sup, R,(s) = O,(n"*/? 4+ (Mh)~"2 + h). Lemma 1

implies that
sup v/n[(1,0) ® I, ] L (s)R® (s) = o(1), a.s.,

which is negligible relative to [(1,0) ® I,,]L71(s)RW(s).
For any vector a € RP, we define H,(s) = /na®[(1,0)® I, ]L 7 (s)RY(s) and show the

following two results.

e (l.a) For any set of finite points si,..., sk, the sequence (Hy(s1),..., H,(sk)) con-

verges in distribution to a multivariate Gaussian vector G(0,a™ Rxa), where
Ricij = Qu(s:) ™' Qalsi, 55)Qu(s;) ™"

This can be easily proved by using the standard central limit theorem, so we omit the

details.

e (1.b) For every €, n > 0, there exists a partition of [0,1] into to finitely many sets



S1,...,Sk such that

lim sup P(sup sup |H,(s) — H,(s')] >¢€) <.

n—00 I s,8'€5;

This condition is equivalent to the asymptotic tightness, which will be verified below.

Let Mi(sm) = XiW,  (8,)[Z5bi(5) + €i(5,,)] and

=M Zf " Q1 (8) T My (8) K (5m — 5).

With some algebraic calculations, we can obtain

nil/Q Z ¢Z(S) + é
=1

where R, (s) = O(R,(s)) and sup, R,(s) = O,(n="? + (Mh)~'/? + h).
For 6 > 0 and h < 0, it follows from (A.1)-(A.3) and (A.5) that there is a C' > 0 such
that with probability 1, we have

|pils) — M~ Zf )71 aT Qi (s) T Mi(s) K (sm — 5)| < Ch,

and sup, o, 1<5 0723 {@i(s1) — di(s2)} < C(0 4 h). Furthermore, for any e > 0 and 1),

one can find large enough n, M, and small enough h such that
P(sup R, (s) > ¢/4) <n and Ch < e/4.
So with a partition Si,5s, ..., Sk that sup,sup; scg, |s — 8’| < and § = ¢/(4C), we have

lim sup P(sup sup |H,(s) — Hu(s')] > ¢€) <.

noo | ss'ES)

It follows from Theorem 18.14 in Van der Vaart (2000) (1.a), and (1.b) that H,(s) con-
verges to a centered Gaussian process with covariance function a®R(s, s')a, with R(s,s’) =
Q1(5)71Qa(s,8)Q1(s") L. For Wi(s) = 5, (s, s), we have R(s, ') = Q*(s,s)1Q*(s,s")Q (s, ¢),
with Q*(s,s') = E(X;X,, (s, 8) '8y, ¢(s,8) 8y, (s, )1 XF). This completes the proof of
part (ii). O

Proof of Theorem 2:



Proof of Theorem 2 (i): For any fixed s and ¢/, f]eg(s, ') is given by

Sea(s,s)) = D Ku(sm— ) Kn(sm — )]
m#m/
X Z Kn($m — 8) K (8 — 8" )SE (s, 5],
m#m/

where 3555, ) = (1—a29™g) " (v(s, ') — asgT Gu(s, '), and details are given in Section
2 Step (II) (S1). For each fixed pair (m,m’), LL%(s,,, s,) is the least square estimate

~

based on @;(Sm )i (Sm), and ii(Sm) = Yij(Sm) — 7;58(sm) is an estimate of wu;(s,) =
yij(sm) - $;1; (5m)-
Here [((s) is the initial estimator in step (I), which can be viewed as one of the general

weighted estimator using W;(s) = Iz, xr,. As shown in the proof of Theorem 1,
B(s) = B(s) = [(1,0) @ L,,]L”'R",
and
sup B(s) — B(s)] = sup((1,0) ® L, LN (RY + RP) + O(h}).
It is easy to see that lemma 2 holds for W;(s) = I, xr,. From Lemma 2,

SUP[(L 0) ® Ipm]L_lR(l) = OP(<lOg n/n)l/Q),

S

and following the same argument as lemma 2, we have
sup[(1,0) ® Ipx]L_lR@) = Oyp((log n/n)l/Q)-

Together we have sup, |3(s) — 5(s)] = O,(h3 + (logn/n)'/?) and then sup, |i;(s) — ui;(s)] =
Op(h? + (logn/n)'/?) = Oy((logn/n)'7?).
Therefore direct calculation leads to

G |E[Sea(s, )] = Sea(s, o) = Op(hs, +hi+ (logn/n)"/?) = O,((logn/n)"/?). (41)
s,s')€[0,1

Now we show that

s (S5, )~ BlSo(s, )] = Oyllogn/m) ). (42)
s,s")€[0,1



Lemma 3 implies

sup |m[ S Ki(sm — ) Kn(smr — ]| = 0,(1).

s,s’ mtm!

By (A.2) and Law of large numbers, (1 —asg"g)™! = O,(1) and asg'G1,2,1 = O,(1), where
1,241 denotes a p? x 1 all-ones vector. Further combining with the result, sup, |a;;(s) —
ui;(s)] = O,((logn/n)*/?), we have

A ~

sup  |Xea(s,s) — EXea(s, )]
(s,8")€]0,1]2

=0p(sup [Di(s, 5") = ED1(s,s)]) + Op(sup |Da(s, s') — EDs(s, s')|) + Op((log n/n)'’?),

where
Diy(s,s) = ! Ui (S ) Ui (St ) Koyt (8, 8”)
12, M(M_l)zzlzlﬂ = ig\°om ) Wig\°om m,m ) )
i,J,m#m
and
1
D2(5> 5l> = M(M _ 1) Z@—l 2 Z Wijy (Sm)uih(‘sm’)lggxlzijl ® zij2KM,m'(S73/)7

1,1,52,m#m/
with Ky, (8, 8") = Kn(Sm — $)Kp(spy — &).
For Dy, let a,, = (logn/n)"?, Fimm = T% > Wi (8m)tij (S ), and Q, = a,'. We define

1
Gn(s,s') = T > Fml(=h < s — s < W)L(=h < §' — 5,0 < h),

i,m,m’

1

ng (Sa S,) = nM2h2

> Fin 1| Foe | < Qu)1(—h < 5 = 550 < h)1(=h < 8" — 5,0 < ),

where 1(z) is the indicator function. By (A.3) and lemma 4 of Li and Hsing (2010), we have
sup, ¢ |D1(s,s") — ED1(s,s")| < Csup, o |Gn(s,s') — EGy(s,s")|. To show sup, . |Di(s,s") —
ED(s,s")| = Oy(ay,), we will prove that

sup |Gg”(s, s') = Gn(s,s")| = op(an), (43)

8,8’

sup [ E(G7" (s, 8)) = op(an), (44)

s,s’



sup |G (s, 8) = B(G" (s, 8)| = Op(aw). (45)

The proof of Eq. (43), (44) and (45) mirrors the one-dimensional correspondences, Eq. 43,
44, and 45 given in the proof of lemma 2. See also lemma 3 and lemma 4 in Li and Hsing
(2010). The same arguments apply for D,.

Combining (41) and (42), part (i) follows.
Proof of Theorem 2 (ii) and (iii): It follows from Theorem 2 (i) that we have

1 1
o6 — Sealb = / / Soc(s,s) — Do (s, ) 2dsds'} 2
0 0

= 0,((logn/n)!"?).
It follows from Lemma 4.3 of Bosq (2000) that
A= < l1Bea = Tecll and 16 = éfll < 2v26"[Sea — Seall,

forl=1..., E, where ¢; is the minimum eigenvalue gap before [. It follows from assumption
(A.10) that §; is a positive constant. Therefore, it yields Theorem 2 (ii) and (iii). O

Almost identical arguments could be used to prove the following results regarding ¥, x .
Theorem 2b. Under (A.1) (or (A.1b)) and (A.2)-(A.8), (A.10), if hy = O((logn/n)'*) and
hy = O(logn/n)Y*, then we have the following results hold for 1 < k, k' < p,:

(i) sup, o [ Sy (5, 8') — Sy (s, 8')| = Op((logn/n)V/?);

(ii) For 1 <1< B, { [} [0 (5) — v (5)2ds}2 = O,((log n/n)1/2);

(iii) For 1 <1 < E, |\F — X | = 0, ((logn/n)"/?).

Proof of Theorem 3: Let d(s) = Cf(s) — bias(C3(s)) — Bo(s) and

w(s) = {CZX;%G(S, $) T XTI O 24 s).

Using similar argument as in Theorem 1 (ii), we can show that w(s) converges to a centered

Gaussian process G¢(+) with covariance function

Yo (s,8") ={CQ*(s, S)CT}_I/QR(S, sSH{CQ* (S, s’)C’T}_l/2,



which yields Theorem 3 (i).

We prove Theorem 3 (ii) as follows. Under Hy,, we have
w(s) "X GP(n,, ),

where n, (s) = {C[1, Xi%y, o(s,5) X ICTY 20 77/2d(s), (s, 1) = (um(s, £))1<ksi<qs
and v, k(s t) = cov(wg(s),w;(t)). We consider a Hilbert space of g-dimensional vectors of
functions in Ly(S), denoted by H. Define the inner product of two g-dimensional functions
as < f.g >u= Y i, < fi,q >. By the multivariate version of Mercer’s theorem, there

exists a set of orthonormal basis functions ¢, = (¢,1,- .., ¢rg) in H such that
Yo (s,t) = Z >‘T¢r(5)¢g(t);
r=1

in which v, . (s, t) = Y0 Mrdpi(s)dpt) and < @y, @ >p= Oy

Let & =< w, ¢, >g, we have & ~ N(m,, \,), where 7, =< 1, ¢}, >g. It is assumed
that the eigenvalues are ordered in decreasing values. Without loss of generality, the first m
eigenvalues are assumed to be positive. If all eigenvalues are positive, we set m = oo. It is
easy to see that

Sp = / w(s) w(s)ds = i{f L i)\TAT + i w2,
S r=1 r=1 r=m+1

where A, ~ x?(\;'7?). Similar results have been obtained and discussed in (Zhang, 2011;
Zhang and Chen, 2007).

Under the null hypothesis Hy, . = 0 holds for all . So the null distribution of S,, is a

mixture of 2. Under Hy,, we have 72 = n'~"§2, where ¢, is given by
q n
1 A
o = Z /{C[ﬁ ZXZE%C;(S, $)TIXETICTY Y2y (5) g (5)ds.
=1 7S i=1
Note that A, < [Z, + n=D/2)126,12 where Z, ~ N(0,1). Thus, we have

Sy 4 Z AN 22 A+ on=28, Z, 4+ n'782,

r=1

where 8y = S2™  A//%6, and 62 = 3™, 62 > 0.

r=1"r



We consider two cases of d,. For d, = 0, it is easy to show that the power tends to 1
as n — 00, since the second term is zero and the third term dominates the first term. For
63 > 0, the second term and the third term dominate the first term as n — oo. Following

similar arguments as in Theorem 3 in (Zhang, 2011), we can show that S, is asymptotically

normally distributed under Hy,, with mean n'~7§? and variance 4n'~783. Therefore, we have
9 nlfTé‘Q n(l—’?’)/252
P(S, > Sno | Hin) =1 — ®(————=—) + 0(1) = ®(————) + 0o(1),
( ) | 1 ) ( \/m ) ( ) ( 20 ) ( )
which tends to 1 as n — oo This completes the proof of Theorem 3. 0

Proof of Theorem /: The proof of Theorem 4 is basically the same as the proof of Theorem
5 in Zhu et al. (2012). We omit the details here.

B Proofs of Lemmas

Proof of Lemma 1: The proof of this Lemma is similar to Lemma 8 of Zhu et al. (2012).
We give a unified proof for both fixed and random designs and allow short-range correlation
of error processes. Without loss of generality, we only prove the case that p, = 1, since the
extension to p, > 1 is straightforward.

It follows from (A.3) and Lemma 2 of Li and Hsing (2010) that,
sup n'/2|(nM)~ Z X W (sm) €1 (Sm) Kn(Sm — 5)|

2

<Csupn'/?|(nMh)~ ZXW (Sm)€ir(sm)1(—h < s — s, < h)|. (46)

We introduce some notation and let

Gn(s) =n*?(hMn)~! ZXinl(sm)ei,L(sm)l(—h <s—5m < h).

i,m

For some 7, satisfing n'/2y1=% = o(1) and n='/27,log M = o(1), where ¢ satisfies (A.7),

10



define

G (s) = n'/2(nMh)~ ZX Wl (sm)eir(sm)1(ll€sn(sm)llz < )1 (=h < 5 — s < h).

By (46), we only need to prove sup, |G,(s)| = 0,(1), so we will complete the proof by

showing the following three results.

sup| Gy (s) — Gu(s)] = 0p(1), (47)
sup | E(G (s))] = 0p(1), (48)
sup| Gy (s) — E(G (s))] = 0,(1). (49)

For (47), we have

sup |Gy (s) = Gu(s)| < (50)

1
R Zsup X (s s)ll277 > llesc(sa)lst(llens(sm)le > 1) 1(~h < s = sm < h),

which is bounded by n'/2417¢ = 0,(1) from above. This leads to (47). Similarly, we can
prove (48).
For (49), let

Zi(s) = (WMD) S X, (sm)es s (sm)L(lens (sum)llo < ) L(—h < 5 — 5,0 < ).

Then sup, |G} (s) — E(Gy"(s))| = sup, n ™2 31" {Zi(s) — E(Zi(s))}]. Tt follows from (A.2)
and the Lipchitz continuity of W(s) that sup,cp X W, (s)||2 is bounded and

M
2fi < E[(hM)™" Y 1(—h < s, — 5 < h)] < 2f..

m=1
Therefore, if P(Qs) =1 —py — 1 in a set Qg, then we have | Z;(s) — E(Z;(s))| < Cyv, and

[Mh]

Zvar(Zi(s)) < Z E(Zi(s))> < n(Mh)?O(Mh Y k™°) = O(n(Mh)™"),

k=0
where C does not depend on s. If (A.1) is replaced by (A.1b), then |Z;(s) — E(Z;(s))| =
O(7n) and Y, var(Z;(s)) = O(n(Mh)~1) still hold.

11



For any design S, as s varies in [0, 1], (s — h, s+ h) covers some consecutive points of s,,.
The pair of starting point and ending point have M (M — 1)/2 possibilities, which does not
depend on the design S. So we have

P(sup n 1/2\ Z{Z Zi(s)} >z | S € Qg) (51)

s€[0,1]

1'2

< M2 exp(—

). (52)

Let

4
= —C’C n~Y2~, log M + 0. 5\/502012 log M?n=1~2 +16CCylog M (Mh)~!
It follows from (A.6) and log M = o(Mh) that x,, — 0 as n — oco. Then, we have

(sup n 1/2|X:Z ()] > 2, | S € Qg) < M?exp(—Clog M) = M*7°.

5601

For some C' > 2, we have

P(sup |G (s) — E(Gy ()] > xn)

s€[0,1]
~1/2 2-C _
(sup n |Zz ()] > 2,]S € Qg) +pur < M* 4 pyr=o0(1).  (53)
s€[0,1]
The proof of Lemma 1 is now complete. 0

Remark: This result is similar to Lemma 2 in Li and Hsing (2010), but the proof is much
simpler. We completely remove the constrains on i and n (C5 in their paper). The result is
almost surely for pre-fixed design as in (A.1b). For random design (A.1), we first prove the
result for relatively good (uniform) designs and add back the very small probability of bad

designs. So the result is in probability rather than almost surely.

Proof of Lemma 2: Without loss of generality, we prove the case with p, = 1, since it

is easy to prove the case with p, > 1. It follows from (A.3) and lemma 2 of Li and Hsing

12



(2010) that

supl (nM)~ ZX Wi (sm)(Z bi(5m) + €i.6(sm)) Kn(sm — 5]
<Csupy (nMh)~ ZX W, () (ZX i (5m) + €5.6(5m))1(=h < 5 — 5,3 < h)]. (54)

Moreover, it follows from (A.2) and the Lipchitz continuity of W;(s) that sup,¢(o 1) X W, (s)]]2

is bounded almost surely. Thus, we only need to show that

Slslp |(nMh)™" Z(Zini(sm) +eic(sm))l(—h < s—s, < h)| =0,((log n/n)'?).

Let a,, = (logn/n)% Q, = a;' = (n/logn)Y?, and Fi(s,,) = ZI'bi(sm) + €ic(sm).
Define G,(s) = (nMh)™' 37, Fi(spm)1(=h < s —s,, < h) and

G (s) = (nMh)~ ZF $m) (| Es(5m)ll2 < Qu)1(—=h < 5 — s, < h).

We will show that

sup |G (5) = Gu(s)] = 0p(an), (55)
sup [B(GE(s)) = op(an), (56)
sup |G () = E(GF(5))] = Oplaw). (57)

The proof of Lemma 2 will be complete by combining (55)-(57).
For (55), we have

o, ' sup |G (s) — Giu(s)|
1
<o Qu = ; I (sm) "L Ei(sm)[| > @u)1(=h < s = 8m < h)
<a;'QL10,(1) = 0,(1), (58)
in which (A,7) and (A.8) are used for some ¢ > 2. Similarly, we can prove (56).

For (57), we define an equally-spaced grid G = {v;} with v, = kha? for k = 0,...,[1/(ha?)],

13



where [.] denotes the greatest integer part. For any v, < s < 141, we have

|G (s) = EGE(s)]
=GP () = BGE ()] + G2 (5) = G (w)| + | EGRE (s) — BGE (wi)],

where |G@"(s) — G9 (1) is bounded from above by

M
_IZin(Sme [Vk_has_h]u[yk+h’s+h])|

M
Y Qul(Sm € [k — hvipr — WU (v + hy v + 1))
m=1

Define Iy = [vy — hyvpe1 — b U [vg + hyvpgr + B for £ =0,...,[1/(ha?)]. Tt follows from
(A.1) that

M
2fiMalh < EY (s € It) < 2f,Malh.
m=1

Bernstein inequality implies that P(sup, S0 (s, € L) > 20f,Ma2h) — 0 as M — oc.

Given (2g,, we have

M
Supz 1(sy € Iy) < 2Cf,Ma2h and P(Qgs,) =1 —pg\}l) — 1. (59)

k m=1

Using (59), we have

sup |G (s) — BG" ()|

<sup{|G9 (1) — EG" (1p,)| + |(Mh)~ Z Qul(sm € L)+ |(Mh)~ Z QuE1(s,, € I)|}
k m=1 m=1

< sup ’ng<yk> - GQn(Vk)| + (Mh)ilQnQCfuMaih + (Mh>71Qn2fuMa721h
k

<sup |G (vi) — GO ()| + 2C fua + 2 fucun,
k

= sup 1GF (i) = EGZ ()l + O(owm).

14



Let Zi(s) = (hM)™' Y Fi(sm)L(|Fi(sm)|| < Qn)1(—h < s — S,y < h). Then, we have

Sup |G (i) = B(G ()] = sup n Z Zi(ve) = E(Zi(vi))|-

=1

It also follows from (A.1) that

NE
=
|
=
IA
»

:
|
Va)
A
=
A
[\
o

2f1 < E[(hM)

3
Il

So in a set Qg, with P(Qg,) =1 — pg\? — 1, we have supy, | Z;(vx) — E(Z;(v))| < C1Q,, and
ivar(Zi) < iE(Zi)z < Cyn.
i=1 i=1
If (A.1) is replaced by (A.1b), sup, |Z; — E(Z;)| = Op(@») and ), var(Z;) = O(n) still hold.
Finally, we have
P(SL;p nt| Zil; Zi(vg) — E(Zj())| > Cay|S € (s, N Qs,))

n*C?a?
2C9n + 2/3C1Qnay,
where C* = C?/(2Cy + 2/3C}). For large enough C*, we have

<(aph) ™" exp(— ) = (a3h) " exp(—=C*logn),
P(sup |G (1y) — E(G2 (1)) > Can) < A0 4 pl) 4+ PP = 5(1),
k
which finishes the proof of Lemma 2. U

Proof of Lemma 3: Similar to Lemma 2 in Zhu et al. (2012), Eq. (22) can be proved by
using empirical process techniques. Specifically, it follows from (A.1) and (A.3) that

(K ( ;3) (. ;LTS) ,s €[0,1]} is a Donsker class.

Eq. (23) is the same as (60) in Lemma 8 of Zhu et al. (2012). It can be proved by using
Taylor expansion and (A.1b). O

C Additional Simulation Results

Simulation 4. The fourth simulation is to evaluate the accuracy of the estimators of the
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Table 1: ASD data analysis: Distributions of scan availability.

Available scans 1 2 3 5 6
Number of subjects 137 78 34 5 1

eigenvalues and eigenfucntions of the covariance functions ¥(.,.), X (.,.) and X, . We
used the same parameter values as those in Simulation 1. We set ¢ = 0.1 and n = 50 and 100,
and generated 100 datasets for each combination. The accuracy of all kinds of estimators
improves with the sample size. The estimated eigenfunctions were plotted in Figures 1 and
2, in which the mean and the pointwise 5th and 95th percentiles of the estimated functions
were plotted along with the true eigenfunctions. Figures 3 and 4 show the boxplots for the
estimates of the eigenvalues and o2, which are quite close to their true values.

ASD Data Analysis. Table 1 presents the distribution of scan availability. We compared
FMEM with WFMM and PFFR. Figures 5 and 6 present the estimated coefficient functions
with their 95% confidence intervals corresponding to WFMM and PFFR. Inspecting Figure
5 reveals that the estimated coefficient functions from WEFMM are very bumpy since wavelet

is a poor choice for intrinsically smooth functions.
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Figure 1: Simulations 4: the estimates of the first two eigenfunctions 1/)2 L) for Lk =1,2
and their pointwise confidence intervals. The red solid, green dashed and blue solid, curves
are, respectively, the true eigenfunctions, the pointwise means, and their pointwise 5th and
95th percentiles of estimated eigenfunctions based on 100 replications.
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Figure 2: Simulations 4: the estimates of the first two eigenfunctions 9;,k = 1,2 and

their pointwise confidence interval. The red solid, green dashed and blue solid, curves are,
respectively, the true eigenfunctions, the pointwise means and their pointwise 5th and 95th
percentiles of estimated eigenfunctions based on 100 replications.
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Figure 3: Simulation 4: boxplots of the differences between the estimated eigenvalues 5\2 and
A,k = 1,2 and their true values based on 100 replications.

Figure 4: Simulation 4: boxplots of the differences between the estimated o
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Figure 5: WFMM: 95% pointwise posterior credible intervals for coefficient functions. The
solid curves are the estimated coefficient functions and the dashed curves are the 95% credible
intervals. The thin horizontal line is the line crossing the origin (0, 0). Computational time
is 7.9 seconds.
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Figure 6: PFFR: 95% confidence bands for coefficient functions. The solid curves are the
estimated coefficient functions and the dashed curves are the 95% confidence bands. The
thin horizontal line is the line crossing the origin (0, 0). Computational time is 6.078 hours.
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