Supplemental Materials: Interpoint-Ranking Sign Covariance

In this supplementary material we prove technical results and present additional simulation results in the article "Interpoint-Ranking Sign Covariance" by Moon and Chen. All references, as well as theorem and equation numbering, refer to the original paper.

S-I. Proofs

LEMMA 1. Assume θ is discrete or continuous, or a mixture of the two, that is, assume there exists a probability mass function $P_{X Y}$ and a density function h such that

$$
\theta(A \times B)=\sum_{x_{i}, y_{i}} P_{X Y}\left(x_{i}, y_{i}\right)+\int_{A \times B} h(x, y) G(d x) G(d y)
$$

where $A \subset \mathcal{X}, B \subset \mathcal{Y}$ are any two open sets and G is the abstract Wiener measure on \mathcal{X} and \mathcal{Y}. Then, induced random variables defined by $U_{x}=\rho(x, X), V_{y}=\zeta(y, Y)$ with $U_{x}: \mathcal{X} \rightarrow \mathbb{R}$, $V_{y}: \mathcal{Y} \rightarrow \mathbb{R}$ are well-defined and has a jointly discrete or continuous distribution, or a mixture of the two.

Proof. Denote the closed ball with center x and radius r_{1} in \mathcal{X} as $\bar{B}_{\rho}\left(x, r_{1}\right)$ or $\bar{B}\left(x, r_{1}\right)$, and the closed ball with center y and radius r_{2} in \mathcal{Y} as $\bar{B}_{\zeta}\left(y, r_{2}\right)$ or $\bar{B}\left(y, r_{2}\right)$.

For U_{x},

$$
\operatorname{pr}\left(U_{x} \in[0, a]\right)=\operatorname{pr}(X \in \bar{B}(x, a))=\mu(\bar{B}(x, a))
$$

So U_{x} is a well-defined Borel probability measure on \mathbb{R}. Same applied for V_{y} and the joint variable.

Now we show that U_{x} and V_{y} has a jointly discrete, continuous or a mixture of two distribu- ${ }^{20}$ tions.

$$
\begin{aligned}
\operatorname{pr}\left(U_{x} \leq a, V_{y} \leq b\right) & =\operatorname{pr}(\bar{B}(x, a) \times \bar{B}(y, b)) \\
& =\sum_{a^{\prime} \in[0, a], b^{\prime} \in[0, b]} \sum_{x_{i} \in \partial B\left(x, a^{\prime}\right), y_{i} \in \partial B\left(y, b^{\prime}\right)} P_{X Y}\left(x_{i}, y_{i}\right) \\
& +\int_{0}^{a} \int_{0}^{b} \int_{\partial B\left(x, a^{\prime}\right) \times \partial B\left(y, b^{\prime}\right)} h(x, y) G(d x) G(d y) d b^{\prime} d a^{\prime}
\end{aligned}
$$

Here, $P_{U_{x} V_{y}}\left(a^{\prime}, b^{\prime}\right)=\sum_{x_{i} \in \partial \bar{B}\left(x, a^{\prime}\right), y_{i} \in \partial \bar{B}\left(y, b^{\prime}\right)} P_{X, Y}\left(x_{i}, y_{i}\right)$ is a probability mass function and 25 $\int_{\partial B\left(x, a^{\prime}\right) \times \partial B\left(y, b^{\prime}\right)} h(x, y) G(d x) G(d y)$ is a density function.

Proof of Theorem 1

Proof. Let's define $\eta(x, y)$ for $(x, y) \in \mathcal{X} \times \mathcal{Y}$ as
$\eta(x, y)=E\left[a\left\{\rho\left(x, X^{1}\right), \rho\left(x, X^{2}\right), \rho\left(x, X^{3}\right), \rho\left(x, X^{4}\right)\right\} a\left\{\zeta\left(y, Y^{1}\right), \zeta\left(y, Y^{2}\right), \zeta\left(y, Y^{3}\right), \zeta\left(y, Y^{4}\right)\right\}\right]$,
where $\left(X^{1}, Y^{1}\right), \ldots,\left(X^{4}, Y^{4}\right)$ are independent copies of (X, Y). If we define new random vari-
ables induced by x, y as $U_{x}=\rho(x, X), V_{y}=\zeta(y, Y)$, respectively, which are well-defined by Lemma $1, \eta(x, y)$ becomes $\tau^{*}\left(U_{x}, V_{y}\right)$. Therefore, under the consistency condition of τ^{*} met by Lemma $1, \eta(x, y)$ is zero if U_{x} and V_{y} are independent and positive otherwise. Then IPR$\tau^{*}(X, Y)=E_{(x, y) \sim \theta}\{\eta(x, y)\} \geq 0$ is derived.

5

If X and Y are independent, then U_{x} and V_{y} are independent for every $(x, y) \in \mathcal{X} \times \mathcal{Y}$. So $\operatorname{IPR}-\tau^{*}(X, Y)=0$. In the following, we will show that $\operatorname{IPR}-\tau^{*}(X, Y)=0$ only if X and Y are independent.

Step 1) We claim that if $\theta \neq \mu \times \nu$, there exist a point of dependence in the support set of θ. Since $h(x, y)$ is continuous on any continuous point of θ, we have marginal density funtion $f(x)$ and $g(y)$ for any continuous point (x, y) of θ. Denote support sets of θ, μ and ν as S_{θ}, S_{μ} and S_{ν}.

Then, since $S_{\theta} \subset S_{\mu} \times S_{\nu}$, we have

$$
\begin{aligned}
1= & \sum_{S_{\mu} \times S_{\nu}} P_{X, Y}(x, y)+\int_{S_{\mu} \times S_{\nu}} h(x, y) G(d x \times d y) \\
& =\sum_{S_{\theta}} P_{X}(x) P_{Y}(y)+\sum_{S_{\mu} \times S_{\nu} / S_{\theta}} P_{X}(x) P_{Y}(y) \\
& +\int_{S_{\theta}} f(x) g(y) G(d x \times d y)+\int_{S_{\mu} \times S_{\nu} / S_{\theta}} f(x) g(y) G(d x \times d y)
\end{aligned}
$$

If the claim is not true, we must either have a discrete point $(x, y) \in S_{\theta}^{c}$ such that $P_{X, Y}(x, y) \neq P_{X}(x) P_{Y}(y)$, and/or sets A and B such that $\int_{A \times B} h(x, y) G(d x \times$ $d y) \neq \int_{A} f(x) G(d x) \int_{B} g(x) G(d y)$. In the first case, $P_{X, Y}(x, y) \neq P_{X}(x) P_{Y}(y)$ implies $P_{X}(x) P_{Y}(y)>0$, so $(x, y) \in S_{\mu} \times S_{\nu} / S_{\theta}$. Then there should exists another point $\left(x^{\prime}, y^{\prime}\right) \in S_{\theta}$ such that $P_{X, Y}\left(x^{\prime}, y^{\prime}\right)>P_{X}\left(x^{\prime}\right) P_{Y}\left(y^{\prime}\right)$ to balance the above equation. The same argument applies to the later case.

Step 2) With the results of Step 1), if (x, y) is a discrete point and $P_{X, Y}(x, y) \neq P_{X}(x) P_{Y}(y)$, we can find balls $B_{\rho}\left(x, r_{1}\right)$ and $B_{\zeta}\left(y, r_{2}\right)$ such that

$$
\theta\left(B_{\rho}\left(x, r_{1}\right) \times B_{\zeta}\left(y, r_{2}\right)\right) \neq \mu\left(B_{\rho}\left(x, r_{1}\right)\right) \nu\left(B_{\zeta}\left(y, r_{2}\right)\right),
$$

with small enough r_{1} and r_{2}. Since $\left\{U_{x}<r_{1}\right\}=B_{\rho}\left(x, r_{1}\right)$ and $\left\{V_{y}<r_{2}\right\}=B_{\zeta}\left(y, r_{y}\right)$, this equation is reduced to

$$
P_{U_{x}, V_{y}}\left(r_{1}, r_{2}\right) \neq P_{U_{x}}\left(r_{1}\right) P_{V_{y}}\left(r_{2}\right) .
$$

So U_{x} and V_{y} are not independent, i.e. $\eta(x, y)>0$. Then,

$$
\operatorname{IPR}-\tau^{*}(X, Y) \geq \eta(x, y) \theta(x, y)>0
$$

If (x, y) is a continuous point, we can say that $h(x, y)>f(x) g(y)$ without a loss of generosity. Since $h(x, y)$ is continuous, so are $f(x), g(y)$. We can find an area A of nonzero measure such that there exist balls $B_{\rho}\left(v, r_{v}\right), r_{v}>0$ and $B_{\zeta}\left(w, r_{w}\right), r_{w}>0$ for every $(v, w) \in A$ where $h\left(v^{\prime}, w^{\prime}\right)>f\left(v^{\prime}\right) g\left(w^{\prime}\right)$ for $v^{\prime} \in B_{\rho}\left(v, r_{v}\right)$ and $w^{\prime} \in B_{\zeta}\left(w, r_{w}\right)$.

Then,

$$
\begin{aligned}
\theta\left(B_{\rho}\left(v, r_{v}\right) \times B_{\zeta}\left(w, r_{w}\right)\right) & =\int_{B_{\rho}\left(v, r_{v}\right) \times B_{\zeta}\left(w, r_{w}\right)} h\left(v^{\prime}, w^{\prime}\right) G\left(d v^{\prime} \times d w^{\prime}\right) \\
& >\int_{B_{\rho}\left(v, r_{v}\right)} f(w) G(d w) \int_{B_{\zeta}\left(w, r_{w}\right)} g\left(w^{\prime}\right) G\left(d w^{\prime}\right) \\
& =\mu\left(B_{\rho}\left(v, r_{v}\right)\right) \nu\left(B_{\zeta}\left(w, r_{w}\right)\right)
\end{aligned}
$$

Same as the discrete case, the inequality is reduced to $P_{U_{v}, V_{y}}\left(\left(-\infty, r_{v}\right) \times\left(-\infty, r_{w}\right)\right)>$ $P_{U_{v}}\left(\left(-\infty, r_{v}\right)\right) P_{V_{w}}\left(\left(-\infty, r_{w}\right)\right)$. So U_{v} and V_{w} are not independent and $\eta(v, w)>0$ for every
$(v, w) \in A$. Then,

$$
\operatorname{IPR}-\tau^{*}(X, Y) \geq \int_{A} \eta(v, w) h(v, w) G(d v \times d w)>0
$$

and IPR- $\tau^{*}(X, Y)=0$ only if X and Y are independent.

S-II. Results for Simulation III

In Simulation III, we consider variables in a non-Euclidean space with Riemannian Metric as a distance. We first consider variables on a spherical coordinate of the unit sphere S^{2}. In a spherical coordination, each point on a sphere, denoted by $(\theta, \phi)_{s}$, is uniquely represented with longitude θ and latitude ϕ, where θ specifies the east-west position on a spherical surface and ϕ specifies an angle which range from 0 at the equator to $\pi / 2$ at the north, and $-\pi / 2$ at the south; so $\theta \in[-\pi, \pi]$ and $\phi \in[-\pi / 2, \pi / 2]$. We use the great-circle distance, the shortest distance over the surface of a sphere between two points.

Example S1. (Type I) $X=\left(X_{1}, X_{2}\right)$ where $X_{1}, X_{2} \sim \mathcal{U}(0,1), Y=(\theta, \phi)_{s} \in S^{2}$ with $\theta \sim$ $\mathcal{U}(-\pi, \pi), \phi \sim \mathcal{U}(-\pi / 2, \pi / 2)$.

Example $S 2$. (Sphere 1) X is same as Example $S 1, Y=(\theta, \phi)_{s} \in S^{2}$ with $\theta \sim \mathcal{U}(-\pi, \pi)$, $\phi=\pi\left(X_{1}+X_{2}\right) \epsilon / 2-\pi / 2, \epsilon \sim \mathcal{U}(0,1)$.

Example S3. (Sphere 2) X is same as Example $S 1, Y=(\theta, \phi)_{s} \in S^{2}$ with $\theta \sim \mathcal{U}(-\pi, \pi)$, $\phi=\pi\left|X_{1}-X_{2}\right| \epsilon-\pi / 2, \epsilon \sim \mathcal{U}(0,1)$.

Example S4. (Sphere 3) X is same as Example $S 1, Y=(\theta, \phi)_{s} \in S^{2}$ with $\theta \sim \mathcal{U}(-\pi, \pi)$, $\phi=\pi\left(X_{1}+X_{2}\right)^{2} \epsilon / 4-\pi / 2, \epsilon \sim \mathcal{U}(0,1)$.

We also consider symmetric positive matrices. Specifically, we consider a 3 by 3 symmetric positive matrix variable whose every non-diagonal element equal to ρ. We use the affine invariant Riemannian metric, $d(A, B)=\left\|\log \left(A^{-1 / 2} B A^{-1 / 2}\right)\right\|_{F}$, where $\log (A)$ is the matrix logarithm of A, and $\|A\|_{F}$ is the Frobenius norm of A.

Example S5. (Type I) $X=\left(\begin{array}{ccc}1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1\end{array}\right), Y=\epsilon$ with $\rho \sim \mathcal{U}(0,0.3), \epsilon \sim N(0,0.3)$.
Example S6. (PD 1) $X=\left(\begin{array}{ccc}1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1\end{array}\right), Y=\rho+\epsilon$ with $\rho \sim \mathcal{U}(0,0.3), \epsilon \sim N(0,0.3)$.
Example S7. (PD 2) $X=\left(\begin{array}{ccc}1 & \rho & \rho \\ \rho & 1 & \rho \\ \rho & \rho & 1\end{array}\right), Y=\epsilon$ with $\rho \sim \mathcal{U}(0,0.3), \epsilon \sim N(0, \rho / 3)$.
Example S8. (PD 3) $X=\left(\begin{array}{ccc}1 & \rho_{1} & \rho_{1} \\ \rho_{1} & 1 & \rho_{1} \\ \rho_{1} & \rho_{1} & 1\end{array}\right), Y=\left(\begin{array}{ccc}1 & \rho_{2} & \rho_{2} \\ \rho_{2} & 1 & \rho_{2} \\ \rho_{2} & \rho_{2} & 1\end{array}\right), \rho_{1}=1 /\left(1+\lambda_{1}^{2}\right), \rho_{2}=1 /\left(1+\lambda_{2}^{2}\right)$ with $\binom{\lambda_{1}}{\lambda_{2}} \sim N\left(\binom{1}{1},\left(\begin{array}{cc}1 & 0.5 \\ 0.5 & 1\end{array}\right)\right)$.

We observed that the Type-I error rates for all methods are well-controlled. The empirical powers are shown in Figure $S 1$. All methods have increasing power towards 1 as the sample size increases. The "dCov" method seems to perform the best in linear relationships and is less

Fig. S1. Simulation III: Empirical power of the tests for IPR- $\tau^{*}(\bullet$, red), dCov (\quad, blue), HHG (\times, black), BCov1 ($\mathbf{\Delta}$, green), $B \operatorname{Cov} 2(\triangle$, orange) and $\operatorname{HISC}(\diamond$, purple). Power values are computed for each of the sample sizes 20,50,100, 200 with 1,000 simulations.

