Supplemental Materials: Interpoint-Ranking Sign Covariance

In this supplementary material we prove technical results and present additional simulation results in the article "Interpoint-Ranking Sign Covariance" by Moon and Chen. All references, as well as theorem and equation numbering, refer to the original paper.

S-I. PROOFS

LEMMA 1. Assume θ is discrete or continuous, or a mixture of the two, that is, assume there exists a probability mass function P_{XY} and a density function h such that

$$\theta(A \times B) = \sum_{x_i, y_i} P_{XY}(x_i, y_i) + \int_{A \times B} h(x, y) G(dx) G(dy),$$

where $A \subset \mathcal{X}, B \subset \mathcal{Y}$ are any two open sets and G is the abstract Wiener measure on \mathcal{X} and \mathcal{Y} . Then, induced random variables defined by $U_x = \rho(x, X), V_y = \zeta(y, Y)$ with $U_x : \mathcal{X} \to \mathbb{R}$, $V_y : \mathcal{Y} \to \mathbb{R}$ are well-defined and has a jointly discrete or continuous distribution, or a mixture of the two.

Proof. Denote the closed ball with center x and radius r_1 in \mathcal{X} as $\bar{B}_{\rho}(x, r_1)$ or $\bar{B}(x, r_1)$, and the closed ball with center y and radius r_2 in \mathcal{Y} as $\bar{B}_{\zeta}(y, r_2)$ or $\bar{B}(y, r_2)$.

For U_x ,

$$pr(U_x \in [0, a]) = pr(X \in \bar{B}(x, a)) = \mu(\bar{B}(x, a)).$$

So U_x is a well-defined Borel probability measure on \mathbb{R} . Same applied for V_y and the joint variable.

Now we show that U_x and V_y has a jointly discrete, continuous or a mixture of two distributions.

$$pr(U_x \le a, V_y \le b) = pr(\bar{B}(x, a) \times \bar{B}(y, b))$$
$$= \sum_{a' \in [0,a], b' \in [0,b]} \sum_{x_i \in \partial B(x,a'), y_i \in \partial B(y,b')} P_{XY}(x_i, y_i)$$
$$+ \int_0^a \int_0^b \int_{\partial B(x,a') \times \partial B(y,b')} h(x, y) G(dx) G(dy) db' da'$$

Here, $P_{U_xV_y}(a',b') = \sum_{x_i \in \partial \bar{B}(x,a'), y_i \in \partial \bar{B}(y,b')} P_{X,Y}(x_i,y_i)$ is a probability mass function and $\int_{\partial B(x,a') \times \partial B(y,b')} h(x,y) G(dx) G(dy)$ is a density function.

Proof of Theorem 1

Proof. Let's define $\eta(x, y)$ for $(x, y) \in \mathcal{X} \times \mathcal{Y}$ as $\eta(x, y) = E[a\{\rho(x, X^1), \rho(x, X^2), \rho(x, X^3), \rho(x, X^4)\}a\{\zeta(y, Y^1), \zeta(y, Y^2), \zeta(y, Y^3), \zeta(y, Y^4)\}],$

where $(X^1, Y^1), \ldots, (X^4, Y^4)$ are independent copies of (X, Y). If we define new random variables induced by x, y as $U_x = \rho(x, X), V_y = \zeta(y, Y)$, respectively, which are well-defined by Lemma 1, $\eta(x, y)$ becomes $\tau^*(U_x, V_y)$. Therefore, under the consistency condition of τ^* met by Lemma 1, $\eta(x, y)$ is zero if U_x and V_y are independent and positive otherwise. Then IPR- $\tau^*(X, Y) = E_{(x,y)\sim\theta}\{\eta(x, y)\} \ge 0$ is derived.

5

15

2

40

45

If X and Y are independent, then U_x and V_y are independent for every $(x, y) \in \mathcal{X} \times \mathcal{Y}$. So IPR- $\tau^*(X, Y) = 0$. In the following, we will show that IPR- $\tau^*(X, Y) = 0$ only if X and Y are independent.

Step 1) We claim that if $\theta \neq \mu \times \nu$, there exist a point of dependence in the support set of θ . Since h(x, y) is continuous on any continuous point of θ , we have marginal density function f(x) and g(y) for any continuous point (x, y) of θ . Denote support sets of θ , μ and ν as S_{θ} , S_{μ} and S_{ν} .

Then, since $S_{\theta} \subset S_{\mu} \times S_{\nu}$, we have

$$1 = \sum_{S_{\mu} \times S_{\nu}} P_{X,Y}(x,y) + \int_{S_{\mu} \times S_{\nu}} h(x,y) G(dx \times dy)$$

=
$$\sum_{S_{\theta}} P_X(x) P_Y(y) + \sum_{S_{\mu} \times S_{\nu}/S_{\theta}} P_X(x) P_Y(y)$$

+
$$\int_{S_{\theta}} f(x) g(y) G(dx \times dy) + \int_{S_{\mu} \times S_{\nu}/S_{\theta}} f(x) g(y) G(dx \times dy).$$

If the claim is not true, we must either have a discrete point $(x, y) \in S_{\theta}^{c}$ such that $P_{X,Y}(x, y) \neq P_{X}(x)P_{Y}(y)$, and/or sets A and B such that $\int_{A \times B} h(x, y)G(dx \times dy) \neq \int_{A} f(x)G(dx) \int_{B} g(x)G(dy)$. In the first case, $P_{X,Y}(x, y) \neq P_{X}(x)P_{Y}(y)$ implies $P_{X}(x)P_{Y}(y) > 0$, so $(x, y) \in S_{\mu} \times S_{\nu}/S_{\theta}$. Then there should exists another point $(x', y') \in S_{\theta}$ such that $P_{X,Y}(x', y') > P_{X}(x')P_{Y}(y')$ to balance the above equation. The same argument ap-

plies to the later case. Step 2) With the results of Step 1), if (x, y) is a discrete point and $P_{X,Y}(x, y) \neq P_X(x)P_Y(y)$, we can find balls $B_{\rho}(x, r_1)$ and $B_{\zeta}(y, r_2)$ such that

$$\theta(B_{\rho}(x,r_1) \times B_{\zeta}(y,r_2)) \neq \mu(B_{\rho}(x,r_1))\nu(B_{\zeta}(y,r_2))$$

with small enough r_1 and r_2 . Since $\{U_x < r_1\} = B_\rho(x, r_1)$ and $\{V_y < r_2\} = B_\zeta(y, r_y)$, this equation is reduced to

$$P_{U_x,V_y}(r_1,r_2) \neq P_{U_x}(r_1)P_{V_y}(r_2).$$

So U_x and V_y are not independent, i.e. $\eta(x, y) > 0$. Then,

$$\operatorname{IPR-}\tau^*(X,Y) \ge \eta(x,y)\theta(x,y) > 0.$$

If (x, y) is a continuous point, we can say that h(x, y) > f(x)g(y) without a loss of generosity. Since h(x, y) is continuous, so are f(x), g(y). We can find an area A of nonzero measure such that there exist balls $B_{\rho}(v, r_v)$, $r_v > 0$ and $B_{\zeta}(w, r_w)$, $r_w > 0$ for every $(v, w) \in A$ where h(v', w') > f(v')g(w') for $v' \in B_{\rho}(v, r_v)$ and $w' \in B_{\zeta}(w, r_w)$. Then,

$$\theta(B_{\rho}(v,r_v) \times B_{\zeta}(w,r_w)) = \int_{B_{\rho}(v,r_v) \times B_{\zeta}(w,r_w)} h(v',w')G(dv' \times dw')$$
$$> \int_{B_{\rho}(v,r_v)} f(w)G(dw) \int_{B_{\zeta}(w,r_w)} g(w')G(dw')$$
$$= \mu(B_{\rho}(v,r_v))\nu(B_{\zeta}(w,r_w))$$

Same as the discrete case, the inequality is reduced to $P_{U_v,V_y}((-\infty, r_v) \times (-\infty, r_w)) > P_{U_v}((-\infty, r_v))P_{V_w}((-\infty, r_w))$. So U_v and V_w are not independent and $\eta(v, w) > 0$ for every

 $(v, w) \in A$. Then,

$$\operatorname{IPR-}\tau^*(X,Y) \ge \int_A \eta(v,w)h(v,w)G(dv \times dw) > 0,$$

and IPR- $\tau^*(X, Y) = 0$ only if X and Y are independent.

S-II. RESULTS FOR SIMULATION III

In Simulation III, we consider variables in a non-Euclidean space with Riemannian Metric as a distance. We first consider variables on a spherical coordinate of the unit sphere S^2 . In a spherical coordination, each point on a sphere, denoted by $(\theta, \phi)_s$, is uniquely represented with longitude θ and latitude ϕ , where θ specifies the east-west position on a spherical surface and ϕ specifies an angle which range from 0 at the equator to $\pi/2$ at the north, and $-\pi/2$ at the south; so $\theta \in [-\pi, \pi]$ and $\phi \in [-\pi/2, \pi/2]$. We use the great-circle distance, the shortest distance over the surface of a sphere between two points.

Example S1. (Type I) $X = (X_1, X_2)$ where $X_1, X_2 \sim \mathcal{U}(0, 1), Y = (\theta, \phi)_s \in S^2$ with $\theta \sim \mathcal{U}(-\pi, \pi), \phi \sim \mathcal{U}(-\pi/2, \pi/2)$.

Example S2. (Sphere 1) X is same as Example S1, $Y = (\theta, \phi)_s \in S^2$ with $\theta \sim \mathcal{U}(-\pi, \pi)$, $\phi = \pi(X_1 + X_2)\epsilon/2 - \pi/2$, $\epsilon \sim \mathcal{U}(0, 1)$.

Example S3. (Sphere 2) X is same as Example S1, $Y = (\theta, \phi)_s \in S^2$ with $\theta \sim \mathcal{U}(-\pi, \pi)$, $\phi = \pi |X_1 - X_2| \epsilon - \pi/2$, $\epsilon \sim \mathcal{U}(0, 1)$.

Example S4. (Sphere 3) X is same as Example S1, $Y = (\theta, \phi)_s \in S^2$ with $\theta \sim \mathcal{U}(-\pi, \pi)$, $\phi = \pi (X_1 + X_2)^2 \epsilon / 4 - \pi / 2$, $\epsilon \sim \mathcal{U}(0, 1)$.

We also consider symmetric positive matrices. Specifically, we consider a 3 by 3 symmetric positive matrix variable whose every non-diagonal element equal to ρ . We use the affine invariant Riemannian metric, $d(A, B) = ||log(A^{-1/2}BA^{-1/2})||_F$, where log(A) is the matrix logarithm of A, and $||A||_F$ is the Frobenius norm of A.

$$\begin{aligned} & Example \ S5. \ (\text{Type I}) \ X = \begin{pmatrix} 1 & \rho & \rho \\ \rho & \rho & 1 \end{pmatrix}, \ Y = \epsilon \text{ with } \rho \sim \mathcal{U}(0, 0.3), \ \epsilon \sim N(0, 0.3). \\ & Example \ S6. \ (\text{PD 1}) \ X = \begin{pmatrix} 1 & \rho & \rho \\ \rho & \rho & 1 \end{pmatrix}, \ Y = \rho + \epsilon \text{ with } \rho \sim \mathcal{U}(0, 0.3), \ \epsilon \sim N(0, 0.3). \\ & Example \ S7. \ (\text{PD 2}) \ X = \begin{pmatrix} 1 & \rho & \rho \\ \rho & \rho & 1 \end{pmatrix}, \ Y = \epsilon \text{ with } \rho \sim \mathcal{U}(0, 0.3), \ \epsilon \sim N(0, \rho/3). \end{aligned}$$

We observed that the Type-I error rates for all methods are well-controlled. The empirical powers are shown in Figure S1. All methods have increasing power towards 1 as the sample size increases. The "dCov" method seems to perform the best in linear relationships and is less competitive in other settings.

70

Fig. S1. Simulation III: Empirical power of the tests for IPR- τ^* (•, red), dCov (\blacksquare , blue), HHG (×, black), BCov1 (\blacktriangle , green), BCov2 (\triangle , orange) and HISC (\diamond , purple). Power values are computed for each of the sample sizes 20, 50, 100, 200 with 1,000 simulations.