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Supplemental Materials: Interpoint-Ranking Sign
Covariance

In this supplementary material we prove technical results and present additional simulation
results in the article “Interpoint-Ranking Sign Covariance” by Moon and Chen. All references,
as well as theorem and equation numbering, refer to the original paper. 5

S-I. PROOFS

LEMMA 1. Assume θ is discrete or continuous, or a mixture of the two, that is, assume there
exists a probability mass function PXY and a density function h such that

θ(A×B) =
∑
xi,yi

PXY (xi, yi) +

∫
A×B

h(x, y)G(dx)G(dy),

where A ⊂ X , B ⊂ Y are any two open sets and G is the abstract Wiener measure on X and 10

Y . Then, induced random variables defined by Ux = ρ(x,X), Vy = ζ(y, Y ) with Ux : X → R,
Vy : Y → R are well-defined and has a jointly discrete or continuous distribution, or a mixture
of the two.

Proof. Denote the closed ball with center x and radius r1 in X as B̄ρ(x, r1) or B̄(x, r1), and
the closed ball with center y and radius r2 in Y as B̄ζ(y, r2) or B̄(y, r2). 15

For Ux,

pr(Ux ∈ [0, a]) = pr(X ∈ B̄(x, a)) = µ(B̄(x, a)).

So Ux is a well-defined Borel probability measure on R. Same applied for Vy and the joint
variable.

Now we show that Ux and Vy has a jointly discrete, continuous or a mixture of two distribu- 20

tions.

pr(Ux ≤ a, Vy ≤ b) = pr(B̄(x, a)× B̄(y, b))

=
∑

a′∈[0,a],b′∈[0,b]

∑
xi∈∂B(x,a′),yi∈∂B(y,b′)

PXY (xi, yi)

+

∫ a

0

∫ b

0

∫
∂B(x,a′)×∂B(y,b′)

h(x, y)G(dx)G(dy)db′da′

Here, PUxVy(a
′, b′) =

∑
xi∈∂B̄(x,a′),yi∈∂B̄(y,b′) PX,Y (xi, yi) is a probability mass function and 25∫

∂B(x,a′)×∂B(y,b′) h(x, y)G(dx)G(dy) is a density function. �

Proof of Theorem 1

Proof. Let’s define η(x, y) for (x, y) ∈ X × Y as

η(x, y) = E[a{ρ(x,X1), ρ(x,X2), ρ(x,X3), ρ(x,X4)}a{ζ(y, Y 1), ζ(y, Y 2), ζ(y, Y 3), ζ(y, Y 4)}],

where (X1, Y 1), . . . , (X4, Y 4) are independent copies of (X,Y ). If we define new random vari- 30

ables induced by x, y as Ux = ρ(x,X), Vy = ζ(y, Y ), respectively, which are well-defined by
Lemma 1, η(x, y) becomes τ∗(Ux, Vy). Therefore, under the consistency condition of τ∗ met
by Lemma 1, η(x, y) is zero if Ux and Vy are independent and positive otherwise. Then IPR-
τ∗(X,Y ) = E(x,y)∼θ{η(x, y)} ≥ 0 is derived.
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If X and Y are independent, then Ux and Vy are independent for every (x, y) ∈ X × Y . So35

IPR-τ∗(X,Y ) = 0. In the following, we will show that IPR-τ∗(X,Y ) = 0 only if X and Y are
independent.

Step 1) We claim that if θ 6= µ× ν, there exist a point of dependence in the support set of θ.
Since h(x, y) is continuous on any continuous point of θ, we have marginal density funtion f(x)
and g(y) for any continuous point (x, y) of θ. Denote support sets of θ, µ and ν as Sθ, Sµ and40

Sν .
Then, since Sθ ⊂ Sµ × Sν , we have

1 =
∑
Sµ×Sν

PX,Y (x, y) +

∫
Sµ×Sν

h(x, y)G(dx× dy)

=
∑
Sθ

PX(x)PY (y) +
∑

Sµ×Sν/Sθ

PX(x)PY (y)

+

∫
Sθ

f(x)g(y)G(dx× dy) +

∫
Sµ×Sν/Sθ

f(x)g(y)G(dx× dy).45

If the claim is not true, we must either have a discrete point (x, y) ∈ Scθ such
that PX,Y (x, y) 6= PX(x)PY (y), and/or sets A and B such that

∫
A×B h(x, y)G(dx×

dy) 6=
∫
A f(x)G(dx)

∫
B g(x)G(dy). In the first case, PX,Y (x, y) 6= PX(x)PY (y) implies

PX(x)PY (y) > 0, so (x, y) ∈ Sµ × Sν/Sθ. Then there should exists another point (x′, y′) ∈ Sθ
such that PX,Y (x′, y′) > PX(x′)PY (y′) to balance the above equation. The same argument ap-50

plies to the later case.
Step 2) With the results of Step 1), if (x, y) is a discrete point and PX,Y (x, y) 6= PX(x)PY (y),

we can find balls Bρ(x, r1) and Bζ(y, r2) such that

θ(Bρ(x, r1)×Bζ(y, r2)) 6= µ(Bρ(x, r1))ν(Bζ(y, r2)),

with small enough r1 and r2. Since {Ux < r1} = Bρ(x, r1) and {Vy < r2} = Bζ(y, ry), this55

equation is reduced to

PUx,Vy(r1, r2) 6= PUx(r1)PVy(r2).

So Ux and Vy are not independent, i.e. η(x, y) > 0. Then,

IPR-τ∗(X,Y ) ≥ η(x, y)θ(x, y) > 0.

If (x, y) is a continuous point, we can say that h(x, y) > f(x)g(y) without a loss of generos-60

ity. Since h(x, y) is continuous, so are f(x), g(y). We can find an area A of nonzero measure
such that there exist balls Bρ(v, rv), rv > 0 and Bζ(w, rw), rw > 0 for every (v, w) ∈ A where
h(v′, w′) > f(v′)g(w′) for v′ ∈ Bρ(v, rv) and w′ ∈ Bζ(w, rw).

Then,

θ(Bρ(v, rv)×Bζ(w, rw)) =

∫
Bρ(v,rv)×Bζ(w,rw)

h(v′, w′)G(dv′ × dw′)65

>

∫
Bρ(v,rv)

f(w)G(dw)

∫
Bζ(w,rw)

g(w′)G(dw′)

= µ(Bρ(v, rv))ν(Bζ(w, rw))

Same as the discrete case, the inequality is reduced to PUv ,Vy((−∞, rv)× (−∞, rw)) >
PUv((−∞, rv))PVw((−∞, rw)). So Uv and Vw are not independent and η(v, w) > 0 for every



3

(v, w) ∈ A. Then, 70

IPR-τ∗(X,Y ) ≥
∫
A
η(v, w)h(v, w)G(dv × dw) > 0,

and IPR-τ∗(X,Y ) = 0 only if X and Y are independent.

S-II. RESULTS FOR SIMULATION III
In Simulation III, we consider variables in a non-Euclidean space with Riemannian Metric

as a distance. We first consider variables on a spherical coordinate of the unit sphere S2. In a 75

spherical coordination, each point on a sphere, denoted by (θ, φ)s, is uniquely represented with
longitude θ and latitude φ, where θ specifies the east-west position on a spherical surface and φ
specifies an angle which range from 0 at the equator to π/2 at the north, and −π/2 at the south;
so θ ∈ [−π, π] and φ ∈ [−π/2, π/2]. We use the great-circle distance, the shortest distance over
the surface of a sphere between two points. 80

Example S1. (Type I) X = (X1, X2) where X1, X2 ∼ U(0, 1), Y = (θ, φ)s ∈ S2 with θ ∼
U(−π, π), φ ∼ U(−π/2, π/2).

Example S2. (Sphere 1) X is same as Example S1, Y = (θ, φ)s ∈ S2 with θ ∼ U(−π, π),
φ = π(X1 +X2)ε/2− π/2, ε ∼ U(0, 1).

Example S3. (Sphere 2) X is same as Example S1, Y = (θ, φ)s ∈ S2 with θ ∼ U(−π, π), 85

φ = π|X1 −X2|ε− π/2, ε ∼ U(0, 1).

Example S4. (Sphere 3) X is same as Example S1, Y = (θ, φ)s ∈ S2 with θ ∼ U(−π, π),
φ = π(X1 +X2)2ε/4− π/2, ε ∼ U(0, 1).

We also consider symmetric positive matrices. Specifically, we consider a 3 by 3 symmetric
positive matrix variable whose every non-diagonal element equal to ρ. We use the affine invariant 90

Riemannian metric, d(A,B) = ||log(A−1/2BA−1/2)||F , where log(A) is the matrix logarithm
of A, and ||A||F is the Frobenius norm of A.

Example S5. (Type I) X =
( 1 ρ ρ
ρ 1 ρ
ρ ρ 1

)
, Y = ε with ρ ∼ U(0, 0.3), ε ∼ N(0, 0.3).

Example S6. (PD 1) X =
( 1 ρ ρ
ρ 1 ρ
ρ ρ 1

)
, Y = ρ+ ε with ρ ∼ U(0, 0.3), ε ∼ N(0, 0.3).

Example S7. (PD 2) X =
( 1 ρ ρ
ρ 1 ρ
ρ ρ 1

)
, Y = ε with ρ ∼ U(0, 0.3), ε ∼ N(0, ρ/3). 95

Example S8. (PD 3) X =
( 1 ρ1 ρ1
ρ1 1 ρ1
ρ1 ρ1 1

)
, Y =

( 1 ρ2 ρ2
ρ2 1 ρ2
ρ2 ρ2 1

)
, ρ1 = 1/(1 + λ2

1), ρ2 = 1/(1 + λ2
2)

with
(
λ1
λ2

)
∼ N(

(
1
1

)
,
(

1 0.5
0.5 1

)
).

We observed that the Type-I error rates for all methods are well-controlled. The empirical
powers are shown in Figure S1. All methods have increasing power towards 1 as the sample
size increases. The “dCov” method seems to perform the best in linear relationships and is less 100

competitive in other settings.
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(a) Sphere 1
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(b) Sphere 2
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(c) Sphere 3
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(d) PD 1
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(e) PD 2
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(f) PD 3

1
Fig. S1. Simulation III: Empirical power of the tests for IPR-τ∗ (•, red), dCov (�, blue), HHG (×, black), BCov1 (N,
green), BCov2 (4, orange) and HISC (�, purple). Power values are computed for each of the sample sizes 20, 50, 100,

200 with 1,000 simulations.


