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Abstract: One of the main goals of recommendation systems is to predict unobserved ratings.

The majority of existing methods often implicitly assume that all entries are missing at

random and homogeneous, i.e., ratings are revealed with the same probability. Studies

show that this assumption is often too strong in real data applications. In this article, we

propose a Zero-imputation method to solve the prediction problems under heterogeneous

missing situations. Our algorithm has a closed form solution, scalable to large data sets and

can be extended to work for the cold start prediction problems, where one needs to predict

for a new user or a new item that does not have any prior ratings. We provide theoretical

guarantees of the proposed method and demonstrate its good performance in data analysis

as well as simulations.
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1. Introduction

A recommendation system is often represented by a rating matrix S ∈ Rn×m where rows

index users and columns index items, and the entries of the matrix correspond to users’



ratings for items. Missing is very common in these types of data, i.e., only the ratings to

a small portion of items are observed. One of the main goals of recommendation systems

is to predict these unobserved missing scores.

Two types of predicting approaches exist in the literature, content-based filtering and

collaborative filtering. Content-based filtering recommends items by comparing “key”

features of items with users’ profile (Lops et al., 2011), which often requires domain

knowledge. Collaborative filtering makes use of the observed “collaborative” interaction

data to make the predictions. Feuerverger et al. (2012) provides a nice review of some

popular approaches. The majority of existing methods and theory in collaborative fil-

tering approach assume or implicitly utilize the setting that missing is at random and

homogeneous, i.e., entries are revealed with the same probability, and therefore the main

part of the loss function is the average loss over observed entries (Webb, 2006; Paterek,

2007; Koren et al., 2009). Some other methods try to recover the missing ratings under

the uniform missing probability assumption in an exact sense, meaning that they treat the

observed entries are fixed without measurement errors (Candès and Recht, 2009; Kesha-

van et al., 2009, 2010; Recht, 2011; Mazumder et al., 2010). However, the probability of

missing in recommendation systems are often heterogeneous. For example, those entries

with higher underlying ratings may be more likely to be observed (Harper and Konstan,

2015; Marlin and Zemel, 2009). With heterogeneous missing data, averaging over only

observed ratings may lead to a bias in approximating the loss function for the complete



data (Ma and Chen, 2019; Dai et al., 2019; Schnabel et al., 2016; Wang et al., 2018, 2019;

Mao et al., 2021).

Let R denote the missing matrix where Ri,j = 1 if element Si,j is observed and 0 oth-

erwise, and let Ω be the set of entries that are observed. Homogeneous missing means that

Ri,j follows a Bernoulli distribution with a constant observation rate. We here assume

that Ri,j ∼ Ber(Oi,j) and is independent of others given Oi,j. The complete loss function

for a recommendation system takes the form of
∑n

i=1

∑m
j=1 L(Si,j, Ŝi,j). In practice, reg-

ularization methods and modeling assumptions may be applied to modify the observed

loss function
∑

(i,j)∈Ω L(Si,j, Ŝi,j) so that it may be close to the full loss function even in

the case of heterogeneous missing. For example, Bi et al. (2017) cluster items and users

into sub-groups based on their missing patterns and covariate patterns. There are two

existing approaches target directly at the full loss function. One is the inverse propen-

sity scoring (IPS) approach (Schnabel et al., 2016; Wang et al., 2019; Imbens and Rubin,

2015). The IPS loss function takes the form of
∑

(i,j)∈Ω
1
Oi,j
L(Si,j, Ŝi,j), and is proved to

be an unbiased estimate of the full loss function assuming Oi,js are known. One known

challenge of the IPS approach is that it is not stable when small observation probabili-

ties occur (Rubin, 2001; Schafer and Kang, 2008). Existing works have therefore utilized

parametric models, low-rank models or other regularization methods for the estimation of

the weighting matrix (Negahban and Wainwright, 2012; Klopp, 2014; Cai et al., 2016; Ma

and Chen, 2019; Mao et al., 2021). Another approach is an error-imputation-based (EIB)



method, where one estimates the loss L(Si,j, Ŝi,j) for unobserved entries (i, j) (Steck, 2010;

Wang et al., 2019; Dai et al., 2019). For example, Dai et al. (2019) propose to leveraging

information from observed neighbors to impute the errors for missing entries, where the

neighborhoods are constructed using user and item networks as well as relevant covari-

ates. All of these methods need to first construct the loss function and iteratively solve

optimization problems depending on the specific loss function.

In this paper, we propose a different approach, which we call Zero-imputation. For

illustration, let us assume that S is a binary matrix with 1 representing “like”, and 0

representing “dislike”. We assume that E(Si,j) = Pi,j and the entries are independently

formed given Pi,j. The goal is to estimate Pi,j and use that as the prediction for the non-

observed entries. Given Oi,j, Pi,j can be estimated by
E(Si,jRi,j)

E(Si,jRi,j)+E((1−Si,j)Ri,j) . Although

the matrix S is not entirely observable (contains many “NA” values), the matrix S ◦R is

available by imputing missing values with 0, and the matrix (1− S) ◦R can be obtained

by first flipping the binary values and then imputing the missing values with 0. Here

“◦” denotes the matrix element-wise product (Hadamard product). We then use a soft-

thresholding SVD to recover the mean matrix from the binary outcome matrices S◦R and

(1−S)◦R. Predicting ordered scale ratings can be decomposed into several parallel tasks

using this binary model. Comparing to existing approaches, the merits of the proposed

approach are three-fold. First the proposed approach utilized the “flip” relation of the

paired S◦R and (1−S)◦R and estimate the inverse weighting matrix as E(S◦R)+E((1−



S)◦R). This provides a self-stabilization and guarantees that the resulting estimate of the

probability is between 0 and 1. Second, while most of the IPS methods apply the inverse

weighting to the loss function and need an iterative optimization approach, we impute

missingness with zero and directly estimate the mean of two fully-observed binary matrix,

which can be achieved using a soft-thresholding SVD approach with simple tuning, and

end up with a closed form solution. With minimal assumptions, we are able to obtain

its rate of convergence for heterogeneous missing cases. Third, the simple form of the

Zero-imputation approach naturally extends to the cold start problems, where one needs

to predict for a new user or a new item that does not have any prior ratings. Details can

be found in Section 3.

In Section 4 and Section 5, we illustrate the proposed approach for predicting unob-

served values with heterogeneous missing and new users’/items’ ratings using the Movie-

lens data sets and simulated data sets. Theoretical proofs can be found in the Appendix.

2. Zero-imputation approach in predicting order-scaled ratings

Let S ∈ Rn×m be the score rating matrix, in which n represents the total number of people

and m total number of items. We assume that each entry takes an order-scaled rating

in {1, 2, . . . , K}. The data contains an incomplete matrix S with a large proportion of

missing values. Let R denote the data recording matrix where Ri,j = 1 if element (i, j) is

observed and 0 otherwise. We assume that Ri,j ∼ Ber(Oi,j) and is independent of others



given Oi,j.

For each 2 ≤ k ≤ K, we construct two binary matrices, A(k) and A(k), where the

upper matrix A
(k)
i,j = 1 if and only if Si,j is observed and Si,j ≥ k, and the lower matrix

A(k);i,j = 1 if and only if Si,j is observed and Si,j < k. By definition, A
(k)
i,j +A(k);i,j = Ri,j,

and in both matrices, the missing values are always imputed with zero. The two matrices

have the “flip” relation on observed ratings such that if one matrix is dichotomized as

0 and 1, then the other is dichotomized as 1 and 0. Given missing parameters Oi,j, for

2 ≤ k ≤ K,

P (Si,j ≥ k) = P (A
(k)
i,j = 1)/Oi,j =

E(A
(k)
i,j )

E(Ri,j)
=

E(A
(k)
i,j )

E(A
(k)
i,j ) + E(A(k);i,j)

, (2.1)

and then we predict the rating using E(Si,j) = 1 +
∑K

k=2 P (Si,j ≥ k). We call the

estimation approach based on Equation (2.1) the Zero-imputation method. We note that

the sum of E(A
(k)
i,j ) and E(A(k);i,j) equals Oi,j. We use Equation (2.1) approach since it

provides a self-stabilization and guarantees that the resulting estimate of the probability

is between 0 and 1.

Discussion of the missing heterogeneous assumption. Equation (2.1) holds under

the assumption that given Oi,j, {Ri,j} is independent of {Si,j}. This is satisfied since Ri,j is

independently generated from Ber(Oi,j). Although we require that Ri,j is independent of

the ratings Si,j given Oi,j, we allow the underlying missing probability Oi,j to freely change

over different entries, and may change with E(Si,j) or other parameters. This is much

more flexible than the conventional Missing Completely At Random (MCAR) notion. The



conventional missing terminologies are mainly developed for parametric settings where one

has i.i.d. samples and a set of low dimensional parameters. MCAR will then correspond

to a homogeneous missing case where all the data are revealed with the same probability.

Here we have relational data with n × m entries and allow each entry to have its own

missing parameter Oi,j. This kind of completely heterogeneous missing is impossible to

estimate in the conventional non-relational data. In the traditional framework of missing

data, Missing At Random (MAR) setting is used to relax the MCAR assumption so that

the missing probability can vary. In the recommendation systems, researchers found that

those entries with higher underlying ratings may be more likely to be observed. Some

authors (Marlin and Zemel, 2009; Chi and Li, 2019) tried to use MAR to model this

phenomenon where the missing probability is allowed to be different among entries but

can only through a function of the observed ratings. Heterogeneous missing is more

flexible to accommodate these features in data sets. For example, in our simulations,

missing probability Oi,j is a decreasing function of the expectation of the observed or

unobserved ratings.

At this end, we only need to estimate the mean of a fully-observed binary matrix, i.e.,

E(A(k)) or E(A(k)). There are well developed methods for this task, which enjoy computa-

tional advantages with theoretical guarantee. We choose to apply the soft singular value

thresholding approach (Cai et al., 2010; Xu, 2018). The estimation is a modification of

matrix SVD, where we replace the original singular values with the soft-thresholded values.



Let {·}+ = max{0, ·} be the positive part function. Let A(k) =
∑

1≤i≤(m∧n) σ̂
k
i Û

k
i (V̂ k

i )T

be the Singular Value Decomposition (SVD) of matrix A(k) where σ̂ki is the i-th singular

value, Ûk
i is the corresponding left singular vector, and V̂ k

i is the right singular vector.

Similarly let A(k) =
∑

1≤i≤(m∧n) σ̂k,iÛk,iV̂
T
k,i be the SVD of matrix A(k). We summarize our

Zero-imputation method in Algorithm 1.

Algorithm 1 Zero-imputation method for predicting unobserved ratings

Input: Observed S; a dimension p; minimum observation probability εn,m.

Output: Complete rating matrix Ŝ.

1: Parallel for k in 2,. . . , K do

2: Obtain A(k), A(k) by truncation and Zero-imputation.

3: A(k) =
∑

1≤i≤(m∧n) σ̂
k
i Û

k
i (V̂ k

i )T . . SVD of upper-truncation matrix

4: Â(k) =
∑

1≤i≤(m∧n){σ̂ki − λk}+Û
k
i (V̂ k

i )T . . Soft-thresholding using λk = σ̂kp+1

5: A(k) =
∑

1≤i≤(m∧n) σ̂k,iÛk,iV̂
T
k,i. . SVD of lower-truncation matrix

6: Â(k) =
∑

1≤i≤(m∧n){σ̂k,i − λk}+Ûk,iV̂
T
k,i. . Soft-thresholding using λk = σ̂k,p+1

7: end Parallel

8: Ŝk = Â(k)

max{Â(k)+Â(k),εn,m}
. . Scale back

9: Ŝ = 1 +
∑K

k=2 Ŝ
k. . Prediction

Remark 1. Instead of soft-thresholding, one may also use a hard-thresholding method,

where one directly cuts off singular values at λ and do not take the differences. Our



theoretical results are also valid for the hard-thresholding procedure.

Remark 2. As specified in Theorem 1, to be able to consistently estimate S, we require

that the minimum of observation probability Oi,j is lower bounded away from zero. In the

algorithm one can specify a very small number as the minimum observation probability to

stabilize the results in step 8. Also each element in Â(k) and Â(k) should be non-negative

since it is an estimation of probability. In our numerical results, we used εn,m = 10−4, and

a sensitivity analysis showed that the results are almost identical for ε = 10−4, 10−5 and

10−6. The data is allowed to be more sparse (higher missing rate) as n and m grow, and

accordingly the choice of εn,m should match the approximate sparsity level of the data.

In the asymptotic theory, one can apply the universal threshold value λ = C0

√
δn,mm ∨ n,

where C0 is some positive constant greater than 2 and often chosen as 2.01 (Chatterjee

et al., 2015) and δn,m is the sparsity parameter. In our algorithms, we first use 5-fold

cross-validation to choose a thresholding dimension p, and then set the soft-thresholding

values to be λk = σ̂kp+1 and λk = σ̂k,p+1, where σ̂kp+1 and σ̂k,p+1 are the (p+ 1)-th singular

value of A(k) or A(k). We also note that the problem is not assumed to be low-rank;

therefore the selected thresholding dimension p could be large. For example, the average

value of p is 60 in our simulations with (n,m) = (3000, 1500).

The proposed Zero-imputation algorithm can be decomposed into 2× (K − 1) paral-

lel tasks because of the independence of each parallel procedure. In each individual task,

sparsity matrix appears since we impute all missing values with zero. For large sparse ma-



trices, we can make use of existing tools to efficiently solve the truncated SVD procedure

(for example, using the “svds” function in R package RSpectra).

Optional one-step update. We can further improve the Zero-imputation estimator

using refinement methods developed for matrix completion. In recommendation systems,

common methods such as the regularized SVD (Webb, 2006; Paterek, 2007) usually in-

corporate ANOVA-type mean correction; therefore we recommend to consider a one-step

de-bias approach following the strategy proposed in Chen et al. (2019). Specifically, let Ŝ

be the original Zero-imputation estimation, we may apply the soft singular value thresh-

olding again on the matrix Ŝ − 1

R̂
◦ PΩ(Ŝ − S), where R̂ is the estimate of the missing

matrix and PΩ(Bi,j) = Bi,j if (i, j) is observed and 0 otherwise. The resulting matrix is

Ŝupdate.

Zero-imputation for continuous ratings. One may directly apply the Zero-imputation

approach to S ∈ [a, b]. First scale it into S
′ ∈ [0, 1] by subtracting a and then divided by

b− a. Then Equation (2.1) is modified as

E(S
′

i,j) =
E(AUi,j)

E(AUi,j) + E(AL;i,j)
,

where AUi,j = S
′
i,j if observed and 0 otherwise and AL;i,j = 1 − S

′
i,j if observed and 0

otherwise. The prediction for unobserved values are Ŝ = Ê(S ′)× (b− a) + a. We focus on

working with the binary indicator of Si,j ≥ k for two main reasons: first Bernoulli random

variables are fully characterized by their expectations, so we can discuss the Bipartite

Graph Root Distribution in the cold start problem with minimal assumptions; second, the



classification of Si,j at a cut-off value k is often of interest. Our numerical experiments

show that directly targeting at P (Si,j ≥ k) delivers better classification results.

In the following, we derive the theoretical property of Zero-imputation estimator. In

recommendation systems, the observation probabilities Oi,j could be very small and pro-

duce sparse bipartite graph. It is therefore of interest to set up the asymptotic theorems

that can allow sparser graph with growing sample size. To this end, we add a “sparsity

parameter” δn,m to the sampling scheme such that Oi,j = δn,mÕi,j, E(A(k)) = δn,mP̃
(k)

and E(A(k)) = δn,mP̃(k), where Õi,j, P̃
(k), P̃(k) take values between 0 and 1 and are consid-

ered to be at a constant level. In the following, we use σi(P̃
(k)) to denote the i-th singular

value of P̃ (k) and use C to denote positive constant values.

Theorem 1. For results simplicity, we assume m ≤ n. Let Ŝki,j be the estimator of

P (Si,j ≥ k) using the Zero-imputation method mentioned in Algorithm 1. Assume that the

sparsity parameter satisfies δn,m ≥ C1
log(n)
n

and mδn,m →∞ and mini,jÕi,j = C̃2 > 0. For

all C1, there exist C0, C2 and C3 such that if the singular value threshold λ in Algorithm

1 is C0

√
δn,mn and the lower truncation of observation probability εn,m is C2δn,m, smaller

than C̃2δn,m, then with probability at least 1− n−C3, we have for 2 ≤ k ≤ K,

1

mn

∑
i,j

(
Ŝki,j − P (Si,j ≥ k)

)2

≤ min
0≤r≤m

{ C4r

mδn,m
+
C5

mn

∑
i≥r+1

σ2
i (P̃

(k))}. (2.2)

Remark 3. The condition mδn,m → ∞ is used in other matrix estimation work, such

as Theorem 2.1 in Chatterjee et al. (2015), and Theorem 1.1 in Keshavan et al. (2010).



Intuitively, we need the number of observations to be at least in the order of n log n so

that with high probability, each row and column have at least one observation (Candès

and Tao, 2010). Under Bernoulli sampling of the set of observed entries, this essentially

requires nmδn,m to be of order n log n, which implies mδn,m →∞. If m and n are in the

same order, the sparsity level can reach the lower bound δm,n = Clog(n)/n and the (main

term of) convergence rate is 1
log(n)

, which matches the state-of-the-art results in sparse

matrix completion.

Remark 4. Theorem 1 provides a general bound to the error. The rate of convergence

depends on the structure of the singular values. Corollary 1 and Corollary 2 provide the

convergence rates for a finite rank structure and a polynomial decay structure.

Remark 5. The one-step update we mentioned earlier can be shown to have the same

general bound with smaller pre-constants. Refer to Theorem 3 in Chen et al. (2019) for

relevant discussions.

Xu (2018) and Chatterjee et al. (2015) provided asymptotic results for singular value

thresholding approaches for binary matrix completion with a homogeneous observation

probability. We modified some of their proofs to prove the above result and the error

bound is comparable to Xu (2018) and improved upon Chatterjee et al. (2015). For

example, if we assume that the singular values decay in a polynomial rate as σr �
√
mn
rα

for some α > 1, then the error is in the order of ( 1
mδn,m

)1− 1
2α , which slightly improves

upon the bounds in Theorem 1.1 in Chatterjee et al. (2015) and is comparable to the



bound proved in Corollary 1 in Xu (2018). If the singular values vanish to zero after

a finite number, then the error is in the order of 1
mδn,m

, which matches the result in

Xu (2018). Recall that E(Si,j) = 1 +
∑K

k=2 P (Si,j ≥ k). For the above mentioned two

singular value structures, it is straightforward to prove the following convergence results

for Ŝi,j = 1 +
∑K

k=2 Ŝ
k
i,j = 1 +

∑K
k=2 P̂ (Si,j ≥ k).

Corollary 1. Given conditions in Theorem 1, if all matrices P̃ has finite rank, then

1
mn

∑
i,j(Ŝi,j − E(Si,j))

2 = Op(
1

mδn,m
).

Corollary 2. Given conditions in Theorem 1, if for all matrices P̃ , the singular values

decay in a polynomial rate as σr �
√
mn
rα

for some α > 1, then 1
mn

∑
i,j(Ŝi,j − E(Si,j))

2 =

Op((
1

mδn,m
)1− 1

2α ).

3. Bipartite Graph Root Distribution (BGRD) and the Cold Start Problem

The cold start problem refers to the problem of predicting the rating for new users or new

items where we don’t have any observed scores yet. It naturally can be divided into three

sub problems: item-cold start, user-cold start and both-cold start. The rating matrix S

is then separated into four parts: Old-Old, Old-New, New-Old and New-New, as seen



below,

S =


Old-item New-item

Old-user S(1) S(2)

New-user S(3) S(4)

. (3.3)

Cold start problem asks to infer the ratings in S(2), S(3), and S(4) given the obser-

vations in S(1) and any available covariates of users and items. To efficiently use covari-

ate information to solve the “cold start” problems, we utilize the bipartite graph root

distribution (BGRD) theory, which states that each binary matrix, if viewed as an ex-

changeable random graph, can be generated by first generating independent user latent

positions {ui, 1 ≤ i ≤ n} from a distribution F1 and independent item latent positions

{vj, 1 ≤ j ≤ m} from a distribution F2, and then generating the (i, j)-th entry from a

Bernoulli distribution with parameter uTi vj. Our approach first estimates {ui : 1 ≤ i ≤ n}

and {vj, : 1 ≤ j ≤ m} from S(1) using the Zero-imputation algorithm and regards these as

training data for the bipartite graph root distribution. Then we utilize a nonparametric

regression framework to predict the latent positions (u0, v0) for a new entry. The last step

is to project (u0, v0) to the set of weighted summation estimates to ensure that all the

resulting inner products uTv will be between 0 and 1, and satisfy the BGRD requirement.

Before we talk about the details of the algorithm, we first state the existence and identi-

fiability of the bipartite graph root distribution, and derive the canonical form of ui and



vj. These results are adapted from the graph root distribution developed in Lei (2021)

for network data analysis.

Definition 1. Let K be a separable Hilbert space and F1, F2 are two probability measures

on K. A probability measure F = F1 × F2 is called a bipartite graph root distribution

(BGRD) if for any two points u ∼ F1 and v ∼ F2, we have

P (uTv ∈ [0, 1]) = 1.

BGRD is naturally connected to the concept of graphon for a random two-way binary

array A = (Ai,j). The Aldous-Hoover Theorem (Aldous, 1981; Hoover, 1982) says that any

separately exchangeable binary array can be generated by first i.i.d. sampling {si} and

{tj} from Uniform (0, 1), then generate Ai,j by a Bernoulli distribution with probability

W (si, tj) for a graph function (graphon) W : [0, 1]2 → [0, 1].

Considering square-integrable graphons W (s, t) ∈ L2([0, 1]2), we have the functional SVD,

W (s, t) =
∑
r

λrφr(s)ψr(t). (3.4)

A graphon W with SVD in Equation (3.4) is said to admit strong decomposition if

∑
r

λrφ
2
r(s) <∞,

∑
r

λrψ
2
r(t) <∞ a.e..

Theorem 2. (Existence of BGRD) Any exchangeable bipartite random graph generated

by a graphon W that admits strong SVD can be generated by a BGRD.



To avoid ambiguity due to scaling, we restrict ourselves to equally-weighted BGRD.

Definition 2. A BGRD is called equally-weighted if the second moments of u and v are

matched, i.e., EuuT = EvvT .

It is clear that an equally-weighted BGRD remains equally-weighted after rotation.

To deal with ambiguity due to rotation, we first define the following equivalence class.

Definition 3. We say two equally-weighted BGRDs F and G are equivalent up to or-

thogonal transforms, written as F
o.t.
= G, if there is an orthogonal transform Q such that

(u, v) ∼ F ⇔ (Qu,Qv) ∼ G.

Theorem 3. (Identifiability of BGRD) Two square-integrable equally-weighted BGRDs

F and G give the same exchangeable bipartite random graph sampling distribution if and

only if F
o.t.
= G.

Since all equally-weighted BGRD are identifiable up to a rotation Q, we call a repre-

sentative in the class canonical if the second moments for u and v are diagonal matrices.

Now for a binary matrix in each parallel step, according to Algorithm 1, the estimate of

the underlying probability matrix takes the form
∑

1≤i≤p(σ̂i−λ)ÛiV̂
T
i , where p = max{i :

σi > λ}. Assume we have n1 users and m1 items in S(1), our canonical representation of

the latent positions are as follows,

û = [û1, . . . , ûn1 ]
T = [

√
σ̂1 − λÛ1, . . . ,

√
σ̂p − λÛp] ∈ Rn1×p, (3.5)



and

v̂ = [v̂1, . . . , v̂n1 ]
T = [

√
σ̂1 − λV̂1, . . . ,

√
σ̂p − λV̂p] ∈ Rm1×p.

Each row represents the estimated p dimensional latent position of the user or item.

We would like to use the training points and node covariates/attributes to predict the

new user and new item’s latent positions in each parallel step 2 ≤ k ≤ K. We take new

users for illustration, and new items’ estimation is similar.

Given the estimates for old users {ûi}n1
i=1 and the user’s covariate {Xi}ni=1, where n1 is

the number of old users, the best estimation, in terms of the mean prediction error, for new

user’s latent position is E[u|X]. According to the definition of conditional expectation,

this can be approximated by a weighted version of empirical data, i.e.
∑n1

i=1wiui, where

the weights {wi} depend on the joint distribution of u and X as well as the marginal

distribution of X, and may have a complex form involving all the available data. One

observation here is that as long as the estimated latent positions take this weighted sum-

mation form, all the resulting inner products uTv will be between 0 and 1, and satisfy

the BGRD requirement. This motivates us to consider the following two-step approach.

First, use a nonparametric statistical learning method to estimate u given X, denoting

the learned position as u∗. In a second step, we project u∗ to the set of weighted esti-

mates. Specifically, we try to find the weighted version that is closest to the learning-based

prediction in terms of the link probability.



Recall the notations that û ∈ Rn1×p, v̂ ∈ Rm1×p are the estimated latent positions, and

u∗ ∈ Rp×1 is the statistical learning based prediction for a new user. Then the estimated

position ũ = ûTw ∈ Rp×1 could be obtained by solving the following optimization problem,

min
ũ

1

2
‖v̂ũ− v̂u∗‖2 (3.6)

s.t.



ũ = ûTw

∑n1

i=1wi = 1

wi ≥ 0 (i = 1, · · · , n1).

The above optimization problem is convex and has a unique solution in terms of

ũ, but the constrain set is complex to deal with. Solving Equation (3.6) is equivalent to

minimizing 1
2
‖v̂ûTw− v̂u∗‖2 +λIC{w} in terms of w, where IC is the set indicator function

and C stands for the probability simplex. This is a convex optimization problem, and

we can apply the Projected Gradient Descent algorithm to solve the above problem by

updating weights from iteration t to t+ 1 as wt+1 = ΠC(wt − η∇g(wt)), where ΠC is the

projection to simplex operator that can be computed using the algorithm discussed in

Wang and Carreira-Perpinán (2013), η is the learning rate and ∇g is the gradient of the

quadratic function that appeared in the objective function. While the solution may not

be unique in terms of w in the case that n1 > m1; they still correspond to the unique

solution ũ. In our numerical studies, we used the Random Forest method (Breiman, 2001)

to predict each dimension in u∗. We do not see a big difference in whether or not the



projection step is used, as the random forest output often is very close to a weighted

estimator. If some learning methods directly produce a u∗ in the form of a weighted

summation ûTw, the projection step is not needed.

We summarize our method for user’s cold start rating estimation in Algorithm 2, and

the method for new item’s or both new can be analogously derived.

Algorithm 2 Zero-imputation method for predicting new users’ ratings

Input: Observed rating matrix S(1) ∈ Rn1×m1 ; a dimension p; minimum observation

probability εn1,m1 ; covariate matrix X.

Output: Predicted rating matrix Ŝ(3) ∈ Rn2×m1 .

1: Parallel for k in 2,. . . K do

2: Obtain A(k), A(k) by truncation and Zero-imputation.

3: A(k) =
∑

1≤i≤(m1∧n1) σ̂
k
i Û

k
i (V̂ k

i )T . . SVD of upper-truncation matrix

4: Obtain the canonical form of the latent positions ûk, v̂k according to Equa-

tion (3.5).

5: Obtain uk,∗ ∈ Rn2×p by multivariate learning methods such as random forests.

6: Obtain ũk ∈ Rn2×p according to Equation (3.6).

7: Repeat steps 3-6 for A(k).

8: end Parallel

9: Ŝk(3) = ũk v̂kT

max{ũk v̂kT+ũk v̂
T
k ,εn,m}

. . Scale back

10: Ŝ(3) = 1 +
∑K

k=2 Ŝ
k
(3). . Prediction



4. Movie-Lens Data Analysis

We use the Movie-lens 100k (ML-100k) and Movie-lens 1M (ML-1M) data sets (https:

//grouplens.org/datasets/movielens/) to illustrate our method. The ML-100k data

set contains 100k ratings from 943 users and 1682 movies. Each user has rated at least

20 movies, the overall average rating is 3.53.

For the ML-1M data set, which involves over 1 million rating scores from 6040 users

and 3952 movies, the average score is 3.58 and each user has at least 20 ratings. The

distributions of the ratings are shown in Figure 1.
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Figure 1: Rating frequency plot for Movie-lens data: ML-100k on the left and ML-1M on

the right.

Both data have a large number of missing values with the observation rate about

5%. The missing is suspected to be heterogeneous with higher ratings more likely to

be observed (Harper and Konstan, 2015). We heuristically check the missing pattern by

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/


regressing the observation probabilities Oi,j on the ratings Si,j. The observation probabil-

ities are estimated by applying the soft-thresholding SVD method on the binary recording

matrix R. Figure 2 shows the estimated observing probability by ratings in the ML-1M

data set.

We can see from the graph that the average observation probabilities seem to be higher

in higher ratings.
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Figure 2: Box plot of the estimated observation probabilities by rating for the ML-1M

data.

There are many methods in the literature for predicting unobserved entries in the

recommendation systems under homogeneous missing schemes. Based on our knowledge,

very few of them may work for heterogeneous missing or for completely cold start prob-

lems. As a popular comparison, we include the results of the regularized SVD method



Table 1: Prediction error for unobserved values in the ML-100k and ML-1M data

sets. Here “Zero-imputation”, “Zero-imputation-1”, “rSVD”, “gSVD”, “1BITMC-rSVD”,

“ItemImpute” and “UserImpute” refer to the proposed method, one-step update of Zero-

imputation, regularized SVD (Paterek, 2007), group SVD (Bi et al., 2017), propensity

score de-biased rSVD (Ma and Chen, 2019), movie-based mean imputation and user-

based mean imputation, respectively.

ML-100k ML-1M

RMSE MAE RMSE MAE

Zero-imputation .9246 .7233 .8650 .6774

Zero-imputation-1 .9065 .7213 .8501 .6713

rSVD .9415 .7355 .8848 .6941

gSVD .9054 .7112 .8748 .6869

1BITMC-rSVD .9143 .7197 .8684 .6810

ItemImpute 1.023 .8159 .9799 .7831

UserImpute 1.042 .8336 1.036 .8295

with ANOVA-type mean correction (Webb, 2006; Paterek, 2007), denoted as “rSVD”

and implemented through R package rrecsys. This method is originally developed for

predicting unobserved entries with homogeneous missing schemes and is popular due to



its relatively simple objective function and competitive performance. In view of het-

erogeneous missing, we include the propensity score adjustment approach as a compar-

ison (Ma and Chen, 2019). In particular, the inverse propensity scores estimated from

one bit matrix completion (Davenport et al., 2014) is used as weights for de-biasing the

rSVD method, denoted as “1BITMC-rSVD” and implemented based on the public code

https://mdav.ece.gatech.edu/software/. We also include the results from group-

specific SVD (Bi et al., 2017), denoted as “gSVD”, and implemented based on the pub-

lic code https://sites.google.com/site/xuanbigts/software. This method utilizes

missing patterns and/or users’ and items’ covariates to create groups and provide more

accurate latent positions than rSVD for new users and items. Naive mean imputations

based on observed values are also included as baseline comparisons. We denote the one-

step update of the Zero-imputation method as “Zero-imputation-1”. Methods are tuned

as suggested by the original paper to provide best results.

To evaluate the performance, we randomly split the overall observed scores into 90%

for training and 10% for testing. The performance is measured by the Root Mean Squared

Error (RMSE) and the Mean Absolute Error (MAE),

RMSE =

√∑M
i=1(ŝi − si)2

M
,

MAE =

∑M
i=1 |ŝi − si|
M

,

where {si}Mi=1 represent the ratings in the unobserved set (or the new sets in completely

https://mdav.ece.gatech.edu/software/
https://sites.google.com/site/xuanbigts/software


cold start problems) and M is the test set size.

Table 2: Prediction error for cold start problems in the ML-100k and ML-1M data sets.

Here “Zero-imputation”, “rSVD”, “gSVD”, “1BITMC-rSVD”, “MeanImpute” refer to

the proposed method, regularized SVD (Paterek, 2007), group SVD (Bi et al., 2017),

propensity score de-biased rSVD (Ma and Chen, 2019), and the corresponding mean

imputation, respectively.

Item-Cold User-Cold Both-Cold

RMSE MAE RMSE MAE RMSE MAE

ML-100k

Zero-imputation .9836 .7724 .9640 .7716 1.038 .8280

rSVD 1.067 .8618 .9803 .7783 1.097 .9167

gSVD 1.030 .8227 .9606 .7734 1.066 .8608

1BITMC-rSVD 1.075 .8779 .9642 .7777 1.105 .9277

MeanImpute 1.043 .8322 .9645 .7765 1.097 .9165

ML-1M

Zero-imputation .9324 .7382 .9699 .7727 1.018 .8193

rSVD 1.090 .9014 .9781 .7811 1.131 .9613

gSVD .9998 .8021 .9740 .7799 1.058 .8647

1BITMC-rSVD 1.103 .9131 .9791 .7877 1.143 .9725

MeanImpute 1.036 .8313 .9742 .7791 1.117 .9366



Table 3: Classification for scores greater than or equal to 4 versus less than 4. The AUC

and overall accuracy are evaluated on the test set.

ML-100k ML-1M

AUC Accuracy AUC Accuracy

Zero-imputation .792 .725 .818 .747

rSVD .700 .703 .731 .737

gSVD .724 .728 .732 .739

1BITMC-rSVD .708 .705 .721 .728

ItemImpute .650 .654 .673 .681

UserImpute .625 .630 .636 .645

Table 1 records the performance of different methods for the within sample unobserved

predictions. We see that the performances of different methods are generally close except

for the two mean imputation methods. All of the methods have a better accuracy in the

larger data set. The proposed Zero-imputation method, “gSVD” method and ”“1BITMC-

rSVD” method produce slightly better results than the “rSVD” method as they account

for the heterogeneous missing.

For the completely cold start problem, the public movie-lens data include user covari-

ates named age, gender, and occupation, as well as one item covariate named movie genre.

We believe that it is easy to obtain more attributes for movie other than movie genre,



such as directors, actors and so on. These covariates contain information of the general

popularity and general quality of the movie. To better illustrate the cold start problem,

we created two movie covariates to roughly mimic the general popularity and quality. The

first is constructed as the total number of ratings of the movie. The second is the total

number of ratings above 3. Here “rSVD”, “1BITMC-rSVD” are not designed to handle

the cold start problem, we simply use the average of the user’s/item’s sample position

estimated from the Old-Old data to predict the new user’s or new item’s latent positions,

and then predict the ratings by the inner product of latent positions. For gSVD, we use

10-means method based on the user/items’ covariate to generate the group labels.

We randomly select 10% of users and movies for the cold start sections and use the

other 90% in the training. Table 2 summarizes the performance of different methods on

the cold start problems in the two data sets. Unsurprisingly, the proposed method and the

“gSVD” method perform better than other methods, and the proposed method performs

the best overall.

One by-product of the proposed Zero-imputation method is the binary classification

of ratings being “good” vs “bad” for any cut value k. We can classify S ≥ 4 vs S < 4

using the estimated A(4). Table 3 displays the classification results of our method as well

as the other methods. The proposed Zero-imputation method performs better in terms of

AUC and the overall accuracy. The overall accuracy is computed at a cut-off value that

the empirical proportions of ones match.



5. Simulations

In this section, we conduct a simulation study, where the data is generated to match the

features observed in the Movie-lens data.

We use three different sample sizes, namely, small (1500×800), medium (3000×1500)

and large (5000×2500). The small and large cases correspond to the ML-100k and ML-1M

sample sizes respectively. We first generate non-missing rating matrix S0, and a masking

procedure R, and then use S0 ◦R as the observed data.

Following the simulation setting in previous papers, we generate the rating matrix as

follows. First generate users’ latent positions {ui} from a 12-dimension normal distribution

N ((0.5 × 16,−0.1 × 16)T ,Σ), where Σi,j = 0.62I{i = j}. The items’ position {vj} are

generated by N ((0.5 × 16, 0.1 × 16)T ,Σ). Here S0
i,j is generated by first sampling from

N (uTi vj, 0.6
2), then clipping it into the interval [1,5], and finally rounding the number into

the nearest integer in {1,2,3,4,5}. We consider a heterogeneous missing scenario where we

have a higher chance to observe a higher score. The observed probability that were used

to generate R is (0.022, 0.02, 0.02, 0.05, 0.1)T for scores 1 to 5 respectively. The RMSE and

MAE are evaluated on all unobserved entries and averaged over 50 simulations. Regarding

the computational time, for (n,m) = (5000, 2500), one single simulation for the proposed

method takes 6.3 seconds, the “rSVD” method takes 1.6 seconds, the “gSVD” method

runs more than 20 seconds, and “1BIT-rSVD” takes more than 6 minutes. These values

include the time used for tuning parameter selections. While “rSVD” method is the



fastest, it does not have a special treatment for the heterogeneous missing scheme, and

produces a larger error in both data analysis and simulations. The results are run on a

PC with 8-core Intel Core i7-10700F processor and 32GB RAM.

For the cold start problems, we create two covariates. The first one is the average

of the first six latent dimensions of u/v and the second covariate is a normal nuisance

variable N (0, 0.62).

Table 4: Prediction error for unobserved values with heterogeneous missing in the simu-

lated data (the number in the parenthesis is the standard deviation).

(1500,800) (3000,1500) (5000,2500)

RMSE MAE RMSE MAE RMSE MAE

Zero-imputation .9954(.013) .8017(.011) .9421(.006) .7536(.006) .8890(.004) .7082(.003)

Zero-imputation-1 .9750(.012) .7420(.014) .9197(.005) .7048(.006) .8555(.004) .6566(.005)

rSVD 1.004(.038) .7645(.050) .9808(.032) .7444(.045) .9630(.019) .7304(.032)

gSVD .9847(.011) .7703(.010) .9649(.006) .7347(.006) .9356(.004) .7146(.004)

1BITMC-rSVD 1.002(.010) .7937(.011) .9790(.006) .7752(.015) .8748(.011) .6667(.010)

ItemImpute 1.151(.016) .9249(.015) 1.143(.009) .9220(.009) 1.141(.006) .9207(.006)

UserImpute 1.167(.017) .9331(.016) 1.151(.011) .9255(.010) 1.147(.006) .9241(.006)

Table 4 shows the result for the unobserved entries and Table 5 shows the result for

the cold start problem with sample size (n,m) = (5000, 2500). The results for other



Table 5: Prediction error for cold start problems in the simulated data with sample size

(n,m) = (5000, 2500) (the number in the parenthesis is the standard deviation).

Item-Cold User-Cold Both-Cold

RMSE MAE RMSE MAE RMSE MAE

Zero-imputation .9813(.023) .7582(.023) .9680(.017) .7475(.017) .9772(.026) .7646(.027)

rSVD 1.101(.020) .8927(.029) 1.089(.025) .8854(.033) 1.184(.033) .9907(.041)

gSVD 1.018 (.018) .8015(.016) 1.008(.018) .7959(.017) 1.058(.029) .8571(.028)

1BITMC-rSVD 1.082(.016) .8804(.012) 1.077(.018) .8762(.014) 1.176(.031) .9709(.023)

MeanImpute 1.151(.014) .9283(.013) 1.144(.016) .9237(.013) 1.254(.020) 1.123(.019)

sample sizes show similar pattern. The results are consistent to what we see in the

Movie-lens data. All of the methods have reasonable performances for unobserved entry

prediction and improve as the sample size grows. Comparing to “Zero-imputation”, “Zero-

imputation-1”, “gSVD” and “1BITMC-rSVD”, the “rSVD” method does not account for

the heterogeneous missing and shows larger error and larger variation. The one-step

update for the Zero-imputation method outperforms all other methods. The proposed

method and the “gSVD” method work reasonably well for the cold start predictions. We

see that the proposed method shows a sharper improvement in larger data sets and in

cold start problems.
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