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Proof of Theorem 1, Corollary 2, Theorem 2, and Theorem 3.

S1 Proof of Theorem 1

Proof of Theorem 1. First consider

1

mn
‖Â− P‖2F , (S1.1)

where Â is soft-threshold estimator, P = E(A) is the population parameter matrix, and

‖ · ‖F denotes the matrix Frobenius norm. Here A is a general notation for the truncation

matrix A(k) or A(k). The proof of this part mainly follows Lemma 1 in Xu (2018). Let the

error matrix E = A − P and let ‖E‖ denote the spectral norm of E. With the notation

that P = δn,mP̃i,j, we have Var(Ei,j) = δn,mP̃i,j − δ2n,mP̃2
i,j ≤ δn,m.

Let σr and σr(A) be the r-th singular values of P̃ and A. By Lemma 2 in Xu (2018), we
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know that there exist some positive constants c1 and η′, such that the following event

happens with probability at least 1-n−c1 .

Event = {‖E‖ ≤ η′
√
δn,mn}. (S1.2)

Note that to apply this lemma, we need the assumption that δn,m is lowered bounded by

c2
log(n)
n

for some positive constant c2, i.e., δn,m ≥ c2
log(n)
n

.

On Equation (S1.2), consider the singular value threshold for some positive constant c0,

λ = (1 + c0)η
′√δn,mn, (S1.3)

which means we only keep the singular values of A that are greater than λ for the soft-

threshold procedure and ‖E‖ ≤ 1
1+c0

λ. Consider

` = sup{r : δn,mσr ≥
c0

1 + c0
λ}. (S1.4)

If ` = m, it is easy to check the result. Now assume ` < m, by Weyl’s Theorem,

σ`+1(A) ≤ δn,mσ`+1 + ‖E‖ < λ,
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which implies the rank of Â is bounded by `. Let P` denote the best rank ` approximation

to P, then

‖Â− P‖2F ≤ 2‖Â− P`‖2F + 2‖P` − P‖2F

≤ 4`‖Â− P`‖2 + 2δ2n,m
∑
i=`+1

σ2
i

≤ 16`λ2 + 2δ2n,m
∑
i=`+1

σ2
i

≤ 16 min
0≤r≤m

{rλ2 + (
1 + c0
c0

)2
∑
i=r+1

δ2n,mσ
2
i }.

The second to last inequality holds since

‖Â− P`‖ ≤ ‖Â− A‖+ ‖A− P‖+ ‖P− P`‖ ≤ 2λ. (S1.5)

The last inequality holds since δn,mσ`+1 ≤ c0
1+c0

λ and by the definition that the last line

in inequality has minimum value at `. Therefore, on event Equation (S1.2), there exist

some constants C1, C2, such that

1

mn
‖Â− P‖2F ≤

C1 min
0≤r≤m

{rλ2 + C2

∑
i=r+1

δ2n,mσ
2
i }

mn
. (S1.6)

Recall that for each rating k, we recover the upper probability

Ŝki,j =
Â

(k)
i,j

max{Â(k)
i,j + Â(k)i,j, εn,m}

=
E(A

(k)
i,j )

E(A
(k)
i,j ) + E(A(k);i,j)

+ fx(ξ, η)(Â
(k)
i,j − E(A

(k)
i,j ))+

fy(ξ, η)(max{Â(k)
i,j + Â(k);i,j, εn,m} − E(A

(k)
i,j )− E(A(k);i,j)),
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where f(x, y) = x
y
, fx(x, y) = 1

y
, fy(x, y) = −x

y2
and (ξ, η)T is some point in the line segment

between the true value and the estimated value, i.e. there exists some value t between 0

and 1 such that [ξ, η]T = t[E(A
(k)
i,j ),max{EA(k)

i,j +EÂ(k);i,j, εn,m}]T +(1−t)[Â(k)
i,j ,max{Â(k)

i,j +

Â(k);i,j, εn,m}]T . The expectation element Ei,j corresponds to Pi,j that appeared previously.

The absolute value of two partial derivatives are bounded by 1
η
, since ξ

η2
≤ 1

η
.

Note that η is a point between true observation probability and the estimated proba-

bility. By the assumption that the true value is lower bounded by cδn,m and assumption

that εn,m is c′δn,m (c′ < c), the partial derivatives are upper bounded by 1
c3δn,m

for some

constant c3. So the overall MSE is

1

mn

∑
i,j

(Ŝki,j − P (Si,j ≥ k))2 ≤ min
0≤r≤m

{ C3r

mδm,n
+
C4

∑
i=r+1 σ

2
i

mn
}. (S1.7)

S2 Proof of Corollary 2

Proof of Corollary 2. From the proof in Theorem 1, we know that for the minimum point

`, we have δn,mσ` ≥ c
√
δn,mn and δn,mσ`+1 < c′

√
δn,mn. Use the assumption that σ` �

√
mn
`α

, we have ` � (mδn,m)1/(2α). Therefore the first term `
mδn,m

in MSE is in the order of

( 1
mδn,m

)1−
1
2α . For the singular value summation term, using the fact that

n∧m∑
r=`+1

r−2α = O(
1

`2α−1
),

we conclude that the second term in MSE is in the order of ( 1
mδn,m

)1−
1
2α .
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S3 Proof of Theorem 2

Proof of Theorem 2. Suppose the corresponding graphon W admits strong SVD in the

form of

W (s, t) =
∑
i

λiφi(s)ψi(t).

Let s and t be i.i.d. Unif(0, 1), and let u(s) = [u1(s), . . . , ur(s), . . . ]
T in which ur(s) =

√
λrφr(s), and v(t) = [v1(t), . . . , vr(t), . . . ]

T in which vr(t) =
√
λrψr(t). The norm of each

random variable is finite by the strong decomposition assumption. Moreover, W (s, t) =

u(s)Tv(t) almost everywhere. The sampling distribution generated by W with dimension

n,m is, by Aldous-Hoover Theorem, first samples s1, . . . , sn and t1, . . . , tm from i.i.d.

Unif(0, 1), then generate Bernoulli random variables with parameters W (si, tj). This is,

by the construction, the same as first independently sampling from the BGRD distribution

to get u(si) and v(tj), then form the exchangeable arrays by their inner-products, where

F1 is the probability measure induced by u(s) : [0, 1]→ K with s ∼ Unif(0, 1) and F2 is

the probability measure induced by v(t) : [0, 1]→ K with t ∼ Unif(0, 1).

S4 Proof of Theorem 3

Proof of Theorem 3. (⇐) Since orthogonal transform maintains inner product, this direc-

tion is clear.

(⇒) By Proposition 3.5 in Lei (2021), for a distribution F1 on a separable Hilbert space
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K, there exists an inverse transform sampling, i.e., a measurable function u : [0, 1] → K

such that if s ∼ Unif(0, 1) ⇒ u(s) ∼ F1. Therefore, for a sampling point in BGRD

F = F1×F2, we can write it as (u(s), v(t)), where u and v are inverse transform samplings,

and s, t ∼ Unif(0, 1). By equally-weighted assumption and without loss of generality, we

assume that (u, v) have the same diagonal second moment matrix Λ. Analogously, we

denote a sample point from G by (ũ(s), ṽ(t)), and their moment matrix Λ̃.

Define the graphon W corresponding to F as

W (s, t) = 〈u(s), v(t)〉

=
∑
j

λjλ
−1/2
j uj(s)λ

−1/2
j vj(t),

where λj is the jth diagonal value in Λ. Note that the above is the SVD decomposition

of W . We can define W̃ similarly for G. Since F and G lead to the same sampling

distribution of binary arrays, we have

W (s, t)
d
= W̃ (s, t).

By Theorem 4.1 in Kallenberg (1989), we have ∀ j, λj = λ̃j and there exists unitary

operator Q with Qj,j′ = 0 for λj 6= λj′ , such that for any measurable set A,

P (Λ−1/2u ∈ A) = P (QΛ−1/2ũ ∈ A),

P (Λ−1/2v ∈ A) = P (QΛ−1/2ṽ ∈ A).
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Therefore

P (u ∈ A) = P (Λ−1/2u ∈ Λ−1/2A)

= P (Qũ ∈ A).

The same result holds for v. Therefore F
o.t.
= G.

Bibliography

Kallenberg, O. (1989), “On the representation theorem for exchangeable arrays,” Journal

of Multivariate Analysis, 30, 137–154.

Lei, J. (2021), “Network representation using graph root distributions,” The Annals of

Statistics, 49, 745–768.

Xu, J. (2018), “Rates of convergence of spectral methods for graphon estimation,” in

International Conference on Machine Learning, PMLR, pp. 5433–5442.


