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Distribution Free Prediction Intervals for Multiple
Functional Regression

Ryan Kelly and Kehui Chen

This paper applies conformal prediction techniques to
the problem of constructing prediction intervals in a mul-
tiple functional regression setting. After a short introduc-
tion to the Signature expansion and its favorable properties,
a method utilizing this feature set is developed with great
modeling flexibility. With minimal assumptions, the result-
ing algorithm produces a closed form solution for a predic-
tion set with guaranteed coverage. The good performance
of the proposed method is illustrated using simulations and
data examples.
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1. INTRODUCTION

One area of research in functional data analysis is the
seemingly simple task of using functional data to make pre-
dictions. Construction of prediction intervals in regression
settings is a classical problem in statistics with wide ranging
applications. From neuroscience to climatology, researchers
wish to use the functional data they have collected to predict
the future value of some other variable. Moreover, it is of-
ten valuable to obtain a prediction interval for this variable
rather than a single “most likely” estimate. Few methods to
create these intervals exist in functional data analysis, and
those that do exist require fairly strict conditions on the true
nature of the data. The research on model free or distribu-
tion free prediction intervals has gained increasing interest in
recent years, because it becomes more challenging to specify
a correct model or rigorously check the modeling assump-
tions when the data is so complex. In this research, we fo-
cused on developing computationally efficient methods for
conformal prediction intervals in multiple functional regres-
sion settings. The prediction intervals constructed by the
conformal method have guaranteed coverage (confidence)
without the heavy restrictions on the error distribution and
on the regression function, while the efficiency (implied by
the length of the intervals) will depend on the representa-
tion and information compression of the functional predic-
tors. To accommodate flexible regression relationships, we
developed multiple functional regression approaches based
on the Signature extraction, which is a mathematical tool

to represent the information contained in the functions by a
collection of iterated integrals. Then, we were able to derive
a closed form expression for the conformal prediction set us-
ing the Signature-based conformity score. Numerical studies
as well as a data application related to corn and soy yield
in Kansas confirmed the efficacy of the proposed method.

The rest of the paper is organized as follows. Section 2 in-
troduces the conformal prediction method in the context of
a multiple functional regression problem. Section 3 presents
the proposed conformity score using the Signature-based
functional regression approach, and derives the algorithm
for constructing the exact conformal prediction intervals for
multiple functional regression. Section 4 focuses on applica-
tion of this algorithm in simulated data settings, and section
5 applies it to a meteorological dataset. Some further details
are given in the Appendix.

2. CONFORMAL PREDICTION FOR
MULTIPLE FUNCTIONAL REGRESSION

Let us first look at the prediction problem in general.
In the prediction problem, i.i.d. (X,Y ) pairs of data are
observed. A new Xn+1 is then obtained, and we wish to
predict a range of likely values for Yn+1. More precisely, we
would like to construct a prediction set C which contains
Yn+1 with probability at least 1 − α, for some given α ∈
(0,1). In the simplest case, Y = βX + ϵ, X ∈ Rp, Y ∈ R,
ϵ ∼ N(0, σ2), this process results in the standard t interval:
Ŷ ±tn−p,α/2

√
MSE(1 +X ′

n+1(X
′X)−1Xn+1). Among other

nice properties, this interval is easy to calculate and has cor-
rect finite sample coverage, which makes it a natural choice
in this setting.

These properties begin to disappear once we start to
generalize the model. If we instead consider the model
Y = m(X) + ϵ, m an unknown function, X ∈ Rp, Y ∈ R,
ϵ ∼ N(0, σ2), then we must first use some nonparametric
method to estimate m, then construct an interval based on
the residuals and normal quantiles. If we further generalize
to a symmetric, but not necessarily normal ϵ, then we must
additionally estimate this distribution using nonparametric
methods. Not only do these methods only provide asymp-
totic coverage rather than finite sample coverage, but esti-
mating m is difficult when p is larger than 2 or 3, and even
more challenging when we consider multiple functional pre-
dictors, where Xi contains {xi1(t), xi2(t), . . . , xip(t), t ∈ T }.



Other methods of approaching this problem include non-
parametric conditional distribution or density estimation
of Y given X ([7], [10]), or nonparametric quantile re-
gression ([14]) in the form of fτ (x). If quantile regres-
sion assumptions hold for both τ = α/2 and τ = 1 −
α/2, one can have asymptotically valid prediction intervals

(f̂α/2(x), f̂1−α/2(x)). However, these nonparametric meth-
ods are difficult to generalize to functional data, where X
itself is in a functional space. There are a few functional
quantile regression methods with a single functional predic-
tor ([3], [4]), but all of them need modeling assumptions on
the true relationships.

2.1 Background on Conformal Prediction

[22] introduced the idea of conformal prediction as a
method of generating prediction intervals with finite sample
coverage with minimal assumptions. Conformal prediction is
based on the simple observation that if U1, . . . , Un+1 is a se-
quence of i.i.d. random variables, then the rank of Un+1 will
be uniform over {1, 2, . . . , n+1}. Therefore, P (rank(Un+1)
≤ ⌈(n + 1)(1 − α)⌉) ≥ 1 − α for any α ∈ (0,1) and we
can define the sample quantile based on the order statistics
U(1) ≤ U(2) ≤ · · · ≤ U(n+1) as

q̂1−α =

{
U(⌈(n+1)(1−α)⌉) if ⌈(n+ 1)(1− α)⌉ ≤ n

∞ otherwise

By this definition P (Un+1 ≤ q̂1−α) ≥ 1− α for all α.
Returning to our goal of constructing prediction intervals,

let σi(y) = σ({(X1, Y1), . . . , (Xn+1, Yn+1 = y)}, (Xi, Yi)),
i = 1, . . . , (n + 1) be a conformity score, where σ is some
function symmetric in the entries in its first argument.
This conformity score measures how similar (Xi, Yi) is to
the rest of the data. Although there are many reasonable
choices for σ, in the context of a regression problem a nat-
ural choice of conformity score would be based on residuals
from the regression model. For the rest of the paper, we let
σi(y) = |Yi − m̂(Xi)|, where m̂ is some regression function
trained on the augmented data {(X1, Y1), . . . , (Xn+1, y)}.
Note that a larger σi indicates a less similar observation.
Using the idea from above, we can say if (Xn+1, y) is
from the same distribution as (X1, Y1), . . . , (Xn, Yn) then
P (σn+1 ≤ σ(⌈(n+1)(1−α)⌉)) ≥ 1 − α (Although we omit the
argument y to simplify notation, the conformity scores σi do
depend on the value of y). Thus, our prediction set C(Xn+1)
of level 1− α consists of all values of y such that

(1)

n+1∑
i=1

1[σi ≤ σn+1] ≤ ⌈(n+ 1)(1− α)⌉

Conformal inference has a few useful properties. Perhaps
most important among them is the finite sample coverage
guarantee. [15] not only showed that P (Yn+1 ∈ C(Xn+1)) ≥

1−α, but also that P (Yn+1 ∈ C(Xn+1)) ≤ 1−α+ 1
n+1 under

the weak assumption that the residuals have a joint contin-
uous distribution. Crucially, this result holds even when the
model m̂(x) is not the true form of the data. Therefore,
regardless of choice of the regression model, we are guaran-
teed that the prediction set is neither too conservative nor
anti-conservative.

In general, a grid search must be used to construct the
conformal prediction interval C(Xn+1) as defined in (1). One
has to check every potential value y and the pair (Xn+1, y)
to determine if its conformity score meets the cutoff. Such
an approach would be unusable in most real world appli-
cations. To address this problem, [15] proposes a split con-
formal prediction method which reduces computational cost
by dividing the data into a training set and a ranking set.
However, this algorithm often results in larger intervals than
the exact prediction set. Fortunately, a closed form expres-
sion for the prediction set may be obtained with appropriate
choice of conformity score.

The finite sample coverage guarantee mentioned earlier
P (Yn+1 ∈ C(Xn+1)) ≥ 1 − α is over the joint distribution
of (X1, Y1), . . . , (Xn+1, Yn+1). A stronger claim of interest
would be P (Yn+1 ∈ C(x)|Xn+1 = x) ≥ 1 − α (we will call
this type of coverage conditional coverage). Unfortunately,
[16] showed a non-trivial (not infinite length) finite sample
guarantee for conditional coverage is impossible in the non-
parametric setting. At best, we can achieve asymptotic con-

ditional validity: supx[P (Yn+1 /∈ C(x)|Xn+1 = x) − α]+
p→

0. Later [15] shows that for i.i.d. (Xi, Yi) with homogenous
and symmetric noise, and a base estimator m̂(x) which is
consistent and stable under small perturbations, the confor-
mal prediction sets will have near optimal length and loca-
tion. Therefore, the choice and estimation of the conformity
score σi plays a crucial role in the application of conformal
prediction methods.

2.2 Multiple Functional Regression and the
Conformity Score

Assume that we observe i.i.d pairs (X1, Y1), . . . (Xn, Yn),
where Xi = {Xik(t), t ∈ T ⊂ R}k=1,...,p are multiple func-
tional predictors and Y1, . . . , Yn are scalar responses. We are
provided new observed functions Xn+1 and wish to predict
the value of Yn+1.

In the case of a single functional predictor, i.e., p = 1,
many common approaches to the functional regression prob-
lem are based on principal components analysis (FPCA)
([21], [9]).

In particular, several authors have published work
on FPCA based nonparametric functional regression
for single functional predictor. Early work by [8] fo-
cused on the Nadaraya-Watson type estimator m̂(x) =∑n

i=1 K(((x−Xi))/h)Yi∑n
i=1 K(((x−Xi))/h)

, where ((·)) is a semi-metric on L2(T ),

K is a univariate kernel, and h a scalar bandwidth.
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Given that the principal component functions ϕj form an
orthonormal basis, the function

((x−Xi))D =

√√√√ D∑
j=1

⟨x−Xi, ϕj⟩2

is a semi-norm. This function is simply the Euclidean dis-
tance between the first D principal component scores of x
and Xk. [1] extended the model to the local linear model
minimizing the weighted square error

∑n
i=1(Yi− a−⟨β, x−

Xi⟩)2K(((x−Xi))/h) over a and β ∈ L2. Based on FPCA,
one can express β and x −Xi in terms of ϕj , and truncate
the infinite sum after D terms, thus having to minimize the
sum

∑n
i=1(Yi−a−

∑D
j=1 bj(ξij − ξj))2K(((x−Xi))/h) over

a, b1, . . . , bD.
When we have multiple functional predictors, we can nat-

urally use multivariate FPCA methods to extract principal
component scores. Formally, consider a set of random func-
tions X = {Xk(t)}k=1,...,p, t ∈ T ⊂ R in Hilbert space H,
with each Xk square integrable, means µ1(t) . . . µp(t) and
covariance function G(s, t) = {Gkl(s, t)}1≤k,l≤p, Gkl(s, t) =
cov(Xk(s), Xl(t)), Gk = (Gk1, . . . , Gkp)

T . The autocovari-
ance operator is

(Af)(t) =

∫
s∈T

f(s)G(s, t) ds =

 ⟨G1(s, ·),f⟩H
...

⟨Gp(s, ·),f⟩H


with orthonormal eigenfunctions ϕj = (ϕ1j , . . . , ϕpj)

T , j ≥
1 and ordered eigenvalues λ1 ≥ λ2 ≥ . . . . Then for
j > 1, the j-th functional principal component score is
ξj =

∑p
k=1

∫
t∈T (Xk(t)− µk(t))ϕkj(t)dt. In practice, we ob-

serve our functions Xi at discrete time points t1, . . . , td, for
i = 1, . . . , n (assume that they are centered to have mean
zero), and we may estimate the covariance function by the
sample covariance matrix Ĝ = n−1XTX. Existing methods
for multivariate PCA may then be used to obtain discrete
approximations for the eigen-functions ϕ̂j(t), and principal

component scores ξ̂ij are obtained from numerical integra-
tion.

Based on the mFPCA, we were able to extend the local
linear nonparametric functional regression to the multiple
functional regression setting, and derived exact conformal
prediction sets (algorithm in the Appendix). The numeri-
cal results for this mFPCA based local linear approach are
included in the simulations (LL-mFPCA). Unfortunately,
local linear regression does not perform well in more than a
few dimensions, and it is difficult to express the information
in multiple functional predictors with only a few principal
components. While marginal coverage is always obtained,
these prediction sets may be unnecessarily large.

Papers such as [23] and [13] have tried to develop models
with structural assumptions such as additive or single index
models for multiple functional predictors. In principle, these

models can all be used to construct conformity scores, but
the derivation of exact conformal prediction sets (as opposed
to a grid search) is case by case, and the efficiency of the
constructed prediction intervals depends on the true nature
of the model and whether the added restrictions are met.

While functional PCA is a natural choice, other meth-
ods of extracting feature sets exist. The signature method,
one such approach first described by [5], has recently been
applied to rough path theory in areas of machine learning
[11, 6]. If we denote the k-th order Signature terms of X(t)
as [S(Xt)]

k (details given in the next section), and S(Xt) the
collection of all orders, we have the following approximate
equalities:1

f(X(t))

≈f̃(S(Xt))

=L(S(Xt))

≈L([S(Xt)]
1, [S(Xt)]

2, . . . , [S(Xt)]
k)

=L([S(Xt)]
k \ S(Xt)

1,1,...,1)

where f and f̃ are unknown regression functions, and L rep-
resents an unknown linear function. The ability to transform
any nonlinear function of multiple functional predictors to
a linear function of its Signature terms makes this approach
appealing in our problem.

In the next section, we describe the details of constructing
a Signature-based conformity score for multiple functional
regression, which offers modeling flexibility and algorithmic
efficiency.

3. SIGNATURE-BASED CONFORMITY
SCORE

3.1 Background on Signature Expansion

In the field of rough path research, a d-dimensional path
is defined as a continuous mapping from [a, b] to Rd. A sin-
gle function X(t) can be considered a specific case of a 2-
dimensional path Xt = {X1

t , X
2
t } = {t,X(t)}. Note that a

1-dimensional path alone is insufficient to capture the in-
formation contained within X(t), as the Signature of the 1-
dimensional path only depends on the image of the mapping.
Similarly, the p functions X1(t), X2(t), . . . Xp(t), if defined
on the same domain, can be considered a p+1-dimensional
path Xt = {t,X1(t), . . . , Xp(t)}.

Before defining the Signature of a path, we will first define
the path integral. The path integral of a 1-dimensional path
Yt against another 1-dimensional path Xt is defined as the
integral ∫ b

a

YtdXt =

∫ b

a

Yt
dXt

dt
dt.

1By Uniqueness of the signature, the shuffle property, the finite order
approximation, and the shuffle property in the functional data context,
respectively
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Noting that the path integral Zs =
∫ s

a
YtdXt is itself

a 1-dimensional path, we can define the Signature of a d-
dimensional path iteratively.

For all i ∈ {1, 2, . . . , d}:

S(Xt)
i
a,t =

∫
a<s<t

dXi
s,

and for k ≥ 2, i1, i2, . . . , ik ∈ {1, 2, . . . , d}, the k-fold
iterated integral is defined as:

S(Xt)
i1,i2,...,ik
a,t =

∫
a<s<t

S(Xt)
i1,i2,...,ik−1
a,s dXik

s

Defining S(Xt)
0
a,b to be 1, the Signature of a d-

dimensional path Xt, denoted by S(Xt)a,b is the infinite
sequence

S(Xt)a,b = {1,
S(Xt)

1
a,b, . . . , S(Xt)

d
a,b,

S(Xt)
1,1
a,b, S(Xt)

1,2
a,b, . . . , S(Xt)

d,d
a,b ,

S(Xt)
1,1,1
a,b , . . . , S(Xt)

d,d,d
a,b

. . .

}

where all dk k-fold iterated integrals with unique super-
scripts are included for k = 1, 2, . . . . If we use [S(Xt)]

k
a,b to

denote all k-fold iterated integrals with unique superscripts
(corresponding to one line in the above equation), then the
Signature S(Xt)a,b = (1, [S(Xt)]

1
a,b, [S(Xt)]

2
a,b, . . . ).

[5] provides a derivation and analysis of iterated integrals,
while [11] show how this definition of the Signature naturally
arises from the study of controlled differential equations. Al-
though it may be difficult to intuit the meaning of higher
order terms in the Signature, the terms of order 1 and 2 have
fairly straightforward geometric interpretations. The first
order terms S(Xt)

i
a,b are simply the displacements Xi

b −Xi
a

in each dimension. The second order terms S(Xt)
i,i
a,b are half

the square displacement (Xi
b − Xi

a)
2/2 in each dimension.

The cross second order terms S(Xt)
i,j
a,b satisfy the equation

Aij = (S(Xt)
i,j
a,b −S(Xt)

j,i
a,b)/2, where Aij is the signed area

enclosed by the two-dimensional path {Xi(t), Xj(t)} and the
chord connecting the endpoints.

3.2 Properties of the Signature in functional
regression setting

Without loss of generality, we will consider functions on
the domain [0, 1]. For convenience, we will ignore the domain
and path and write a Signature term S(Xt)

i1,...,ik
a,b as Si1,...,ik

when there is no confusion. Also, we use [S(Xt)]
k
a,b or [S]k

to represent all k-th order Signature terms.
Immediately clear from its definition is that the Signature

is invariant under translation. The following corollary was

first shown by [5] for all continuously differentiable functions
and later expanded to paths of bounded variance by [11].

Corollary : If, for two piecewise regular continuous paths
Xt and Yt in Rd, S(Xt)a,b = S(Yt)a,b then the irreducible
path of Yt can be obtained from the irreducible path of Xt

by translation and change of parameter.
In the context of functional regression, our functions can-

not cross themselves; therefore the corresponding paths are
irreducible. Furthermore, change of a path’s parameter does
not change the function. Thus, each unique Signature corre-
sponds to a unique family of functions which only differ by
vertical and horizontal translation. If all functions in a data
set have the same domain, then vertical location is the only
information lost.

The Signature method is a promising approach for func-
tional nonparametric regression because of the shuffle prop-
erty. First proved by [19], the shuffle property states that
any product of two terms Si1,i2,...,ik and Sj1,j2,...,jn can
be expressed as the sum of terms with the multi-indices
i1, i2, . . . , ik, j1, j2, . . . , jn. Specifically, for I = (i1, i2, . . . , ik)
and J = (j1, j2, . . . , jn),

SISJ =
∑

K∈I�J

SK

where I � J is the set of all (k+n)!
k!n! ways to interleave the

elements of I and J . This result allows us to express any non-
linear function of the Signature as a linear combination of
the Signature instead. Consider a setting with two functional
predictors X1(t) and X2(t) on t ∈ [0, 1]. The first two orders
of our 3 dimensional path’s Signature would be the sequence
{1, S1, S2, S3, S1,1, S1,2, S1,3, S2,1, S2,2, S2,3, S3,1, S3,2, S3,3}.
This shuffle property states that, for example:

S1,2 ∗ S2,3 = S1,2,2,3 + S1,2,2,3 + S1,2,3,2 + S2,1,2,3

+ S2,1,3,2 + S2,3,1,2

S1,2 ∗ S2,3 = 2S1,2,2,3 + S1,2,3,2 + S2,1,2,3 + S2,1,3,2

+ S2,3,1,2,

where indices corresponding to those from the first term are
bolded in the top equality to help demonstrate an interleav-
ing of superscripts.

The Signature as defined above is an infinite sequence,
which is not practical for regression problems. We must
therefore build the regression function based on a finite or-
der of Signature terms. As higher order Signature terms in
some sense correspond to more complex features of the orig-
inal function, this choice seems reasonable.

In functional data regression, we can further reduce the
number of terms needed for regression. Since we assume the
domain of the sample functions does not change, the Sig-
nature terms S1

i , S
11
i , S111

i , . . . , which only depend on the
first 1-dimensional path {t}, will take the same value for all
sample functions, and thus are unnecessary to include in our

4 R. Kelly and K. Chen



feature set. This fact, combined with the shuffle property, al-
lows us to express all Signature terms of order 1, 2, . . . , k−1
as linear combinations of Signature terms of order k. For ex-
ample, the shuffle property states S1S2 = S12 + S21. Since

S1 ≡ c, we can rearrange the equation to say S2 = S12+S21

c .
Therefore, in our regression, we only need to include the
dk−1 non-S11...1 terms of order k, i,e., [S]k \S1,1,...,1, rather
than all dk+1 − 1 terms of orders 1, 2, . . . , k, where p is the
dimension of the multiple functional predictors and d = p+1
is the dimension of the path.

To summarize, we can approximate any unknown regres-
sion relationship between Y and p-dimensional functional
predictors X(t) through a linear function of the k-th order
Signature terms of the p+1-dimensional path. Of course, any
dependence the response has on vertical location will not be
captured by this feature set. As such, additional predictors
capturing the vertical location of each predictor function
should be added to the Signature expansion.

Let [S]k be the k-th order Signature expansion for Xt =
{t,X1(t), . . . , Xp(t)}, and Zj be scalar predictors which cap-
ture the vertical location of each predictor function Xj(t),
j = 1, . . . , p. For example, Zj can be the sum of Xj(t) over
all t. One possibility for the semiparametric model would be
a multiple index model, i.e., Y = f([S]kβ, Z1, . . . , Zp) + ϵ,
where f is an unknown function. This model is very flex-
ible, but models of this sort are often fit iteratively, and
we could not find a closed-form solution for conformal pre-
diction interval. One could combine this model with the
sample-splitting method described in [15] to obtain an ap-
proximate conformal prediction set based on this model.

We propose to use the Signature-based multiple partial
linear model

(2) Yi = [Si]
kβ +

p∑
j=1

gj(Zji) + ϵi,

where gjs are unknown functions to be estimated nonpara-
metrically. This model makes the additional assumption
that the vertical locations Z have additive effects on the
response. We view this model as balance between model
flexibility and simplicity.

3.3 Derivation of the exact prediction
intervals

To derive the conformal prediction interval, we need
to fit the model (2) on the augmented data set
{(X1(t), Y1), . . . , (Xn+1(t), Yn+1)}, and obtain the residu-
als {r1, . . . , rn+1}. Let Y = (Y1, . . . , Yn+1)

T and [S]k =
([S]k1 , . . . , [S]

k
n+1)

T . Extending the work of [20], we first fit
the additive models Yi ∼ α1 + gy1(Z1i) + gy2(Z2i) + · · · +
gyp(Zpi) and [Si]

k ∼ α2+gs1(Z1i)+gs2(Z2i)+ · · ·+gsp(Zpi)
using the local constant approach with an exact equation
derived by [18]. These residuals will retain their linear rela-
tionship while having no remaining dependence on Z. Thus,

we can use OLS to regress the residuals from the first re-
gression on the residuals from the second. Using the nota-
tion from the [18], the equations for the Y -residuals and
S-residuals are:

r̂yi = Yi− ĝy(Zi) = Yi−WMi,Y = Yi−
∑n

j=1 WMi,j
Yj −

WMi,n+1
Yn+1

r̂si = [Si]
k − ĝs(Zi) = [Si]

k −WMi,[S]
k

As defined by [18], WM is the smoother matrix satisfying
ĝy = WMY in the regression of Y on Z and ĝs = WM [S]k

in the regression of [S]k on Z. Here, WMi, denotes the i-th
row of WM and WMi,j denotes the entry of WM in the i-th
row and j-th column, and r̂si is a vector as [Si]

k is a vector.

Our estimate for β in (2) is

β̂ = (

n+1∑
i=1

r̂sir̂
′
si)

−1
n+1∑
i=1

r̂sir̂yi

= (

n+1∑
i=1

r̂sir̂
′
si)

−1
n+1∑
i=1

r̂si(Yi −
n∑

j=1

WMi,j
Yj

−WMi,n+1Yn+1)

= (

n+1∑
i=1

r̂sir̂
′
si)

−1
n∑

i=1

r̂si(Yi −
n∑

j=1

WMi,j
Yj)

− (

n+1∑
i=1

r̂sir̂
′
si)

−1r̂s,n+1

n∑
j=1

WMn+1,j
Yj

− (

n+1∑
i=1

r̂sir̂
′
si)

−1
n∑

i=1

r̂siWMi,n+1
Yn+1

+ (

n+1∑
i=1

r̂sir̂
′
si)

−1r̂sn+1(1−WMn+1,n+1)Yn+1

= c1 + c2Yn+1

where c1 and c2 are terms not dependent on i or Yn+1.

Thus, the equation for the ith residual is

ri = Yi − Ŷi

= Yi − r̂siβ̂ − ĝy(Zi)

= Yi − r̂si(c1 + c2Yn+1)− (

n∑
j=1

WMijYj +WMi,n+1Yn+1)

= Yi − ai − biYn+1

(3)

where ai and bi are terms not dependent on Yn+1.

We wish to include in our prediction set every y for which∑n+1
i=1 1[σi ≤ σn+1] ≤ ⌈(n + 1)(1 − α)⌉, or equivalently∑n+1
i=1 1[|ri| ≤ |rn+1|] ≤ ⌈(n+1)(1−α)⌉. As we just derived,

|rn+1| > |ri| ⇔ |Yn+1−an+1−bn+1Yn+1| > |Yi−ai−biYn+1|.
Solving this inequality leads to the following four inequali-
ties:
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Inequalities to determine upper bound:

(4)

{
(1− bn+1 + bi)Yn+1 < Yi − ai + an+1

(1− bn+1 − bi)Yn+1 < −Yi + ai + an+1

Inequalities to determine lower bound:

(5)

{
(1− bn+1 + bi)Yn+1 > Yi − ai + an+1

(1− bn+1 − bi)Yn+1 > −Yi + ai + an+1

This results in the following algorithm for constructing
the exact conformal prediction intervals using the Signature-
based multiple partial linear conformity score:

Signature-based MPL Algorithm (Algorithm 1)

1. Calculate the k-th order Signature [Si]
k of each Xi,

i = 1, . . . , n + 1. Construct the matrix [S]k =
([S1]

k, . . . , [Sn+1]
k)T . You may append any linear scalar

covariates to this matrix.
2. Calculate Zij , for each Xij(t), i = 1, . . . , n + 1, j =

1, . . . , p. Construct the matrix Z = (Z1, . . . ,Zn+1)
T .

You may append any additive nonlinear scalar covari-
ates to this matrix.

3. Calculate r̂yi, r̂Si, β̂, and ai, bi as described in Eq. (3).
4. For each i ∈ {1, 2, . . . , n} calculate Ui= max((Yi − ai +
an+1)/(1−bn+1+bi), (−Yi+ai+an+1)/(1−bn+1−bi))
and Li= min((Yi − ai + an+1)/(1 − bn+1 + bi), (−Yi +
ai + an+1)/(1− bn+1 − bi))

5. Construct the 100(1 − α)% prediction interval for
Yn+1 = (L(⌊α(n+1⌋), U(⌈(1−α)(n+1)⌉))

The conformity score we use here is constructed on the
augmented data, and is symmetric in the entries in its first
argument. Therefore, we have guaranteed finite sample cov-
erage following the general proof in Theorem 2.1 in [15].

Lemma 3.1. If the observations (X1, Y1), . . . (Xn, Yn) are
i.i.d, the prediction interval produced by Algorithm 1 will
have coverage at least 100(1 − α)% for the a new i.i.d pair
(Xn+1, Yn+1). If the residuals have a joint continuous dis-
tribution, the coverage will be at most 100(1− α+ 1

n+1 )%.

To ensure the resulting set is a contiguous interval, this
algorithm assumes a Contiguity Condition

(6) 1− bn+1 ± bi > 0,∀i.

To better understand this condition, let us consider a sim-
pler setting. It is possible to derive a similar condition in the
simple linear regression problem. In that case, the analogous
condition is 1−Hn+1,n+1±Hi,n+1 > 0,∀i, where Hi,j is the
entry in the i-th row and j-th column of the augmented hat
matrix H = X(X ′X)−1X ′. As Hi,i is the leverage of the
i-th observation, Hn+1,n+1 will be large when Xn+1 is far
from the other data points. Additionally, one can see that
the magnitude of Hi,n+1 will be large when Xi and Xn+1

are both (approximately equally) far from the other data

points. Therefore, the restriction roughly translates into a
requirement that Xn+1 not be “too far” away from the rest
of the Xi. Back to the multiple partial linear approach, bi
similarly measures the leverage of the i-th observation, and
the restriction translates into a requirement that Xn+1 not
be “too far” away from the rest of the Xi. If this condition is
not satisfied, an extract conformal prediction set can still be
constructed with a more complex algorithm, although the
set is not a contiguous interval (see Algorithm 1b in the
Appendix).

Remark: [15] contains four assumptions necessary for re-
sults pertaining to asymptotic conditional coverage and in-
terval efficiency. While readers are referred to the source
paper for detailed assumptions; we briefly discuss the impli-
cation of these assumptions in the context of the Signature-
based multiple function regression. As noted in the source
paper, Assumption 1 (i.i.d. data) and Assumption 2 (sym-
metric noise) are relatively weak assumptions, and the sym-
metric noise assumption can even be dropped, but is in-
cluded for convenience.

Following the discussion after Eq. (6), it is obvious that
bi is the degree to which the value of Yn+1 affects ri and ŷi.
Thus, the contiguity condition is similar to Assumption 3
(the perturb one sensitivity) from that paper.

Assumption 4 (regarding consistency of the regression es-
timator) does not always hold for our Signature-based MPL
algorithm. While conformal sets have guaranteed marginal
coverage regardless, the conditional coverage and length of
the prediction interval approaches optimality in some re-
spect when the additive modeling assumption on the verti-
cal locations (Zj) as well as the finite order approximation
hold.

There are not many results concerning the finite order ap-
proximation of the Signature. The few results which do ap-
pear are within the context of Controlled Differential Equa-
tions. Expanding on earlier work in [17], focusing only on
Linear Controlled Differential Equations, [2] studied Con-
trolled Differential Equations of the form dYt = f(Yt)dXt,
Y0 = y0, and derived the finite order approximation error.

In the functional regression setting, this result implies
that the difference Y −⟨[ai]1:K , [S]1:K⟩ for some coefficients
[ai]

1:K is approximately proportional to 1
K! for large K.

Since the conformity score depends on the Signature terms
in a linear form, we are able to include a relatively large
number of order k and therefore the constructed prediction
intervals have empirical efficiency (measured by the length
of the intervals).

3.4 Computational aspects

The ESig python package provides various tools relating
to the signature. Most importantly, it includes a function to
convert any path into its signature expansion, up to any or-
der (https://github.com/kormilitzin/the-signature-method-
in-machine-learning). [24] discusses some practical consider-
ations of computing the signature in section 3.2.
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The R package for the Signature-based MPL algorithm
developed in this paper will be publicly available on authors
website and all simulation and data code are available upon
request. The various algorithms discussed in this paper re-
quire selection of a few tuning parameters. The mFPCA
methods require the user to select the number of principal
components retained, while the signature based method re-
quires selection of signature order. Additionally, the non-
parametric and semiparametric methods also necessitate
bandwidth selection. We have found best performance when
using the K-fold cross validation, with the “one standard-
error” rule, as described in section 7.10.1 of [12]. This pref-
erence for slightly simpler models increases the likelihood
of satisfying the Contiguity Condition and thus producing
contiguous prediction intervals. Since we derive the exact
conformal prediction set, the algorithm is very fast, and is
much more computationally efficient than any exhaustive
grid search algorithm otherwise required for conformal pre-
diction.

4. SIMULATIONS

To test the performance and robustness of the proposed
Signature-based multiple partial linear algorithm, we per-
formed multiple simulations under a variety of conditions.
Foremost, we wanted to empirically confirm the finite sam-
ple marginal coverage guarantee. To accomplish this, we per-
formed 1000 simulations at each combination of settings and
recorded the exact coverage of the prediction interval con-
structed at a random Xn+1 for each simulation. Note that
in simulations, we know the theoretical conditional distri-
bution of Yn+1 given Xn+1, so that we can compute the
exact coverage for a prediction interval constructed by our
proposed algorithms. In the tables below are the average
coverage under each combination of settings. The second
goal was to explore the efficiency of the algorithms’ resulting
intervals. As noted previously, the algorithms will produce
near-optimally efficient intervals under certain conditions.
To measure efficiency, the lengths of the prediction intervals
were recorded. The following tables include median interval
length for each combination of settings. We performed simu-
lations using different functions for the relationship between
Y and multiple predictors, using different sample sizes, and
using different error distributions. We included the results
for the Signature-based partial linear conformity score, as
well as the mFPCA-based local linear conformity score. As
a benchmark, we also included the asymptotic prediction
interval (m̂(xn+1) − Qα/2, m̂(xn+1) + Q1−α/2), where the
function m(x) and the quantiles Q were estimated as if we
knew the simulation settings. Therefore, we call this a naive
“oracle”.

We extended the simulation setting from [23] to a setting
with 4 functional predictors. The predictor X consisted of
the following four functions:

Xi1 = t+ sin(t) +

20∑
k=1

ξikψ
(1)
k (t),

Table 1. mFPCA based linear relationship: We report the
mean coverage (SD) of the constructed intervals from 1000

simulations for Signature-based multiple partial linear
conformity score, mFPCA-based local linear conformity score,

and naive “oracle”.

Error N MPL-Sig LL-mFPCA Naive oracle

N(0,1)
200 0.949 (0.063) 0.946 (0.116) 0.939 (0.022)
800 0.947 (0.058) 0.955 (0.089) 0.947 (0.009)

t3
200 0.949 (0.050) 0.947 (0.091) 0.943 (0.021)
800 0.953 (0.026) 0.951 (0.085) 0.949 (0.008)

Xi2 = t+ cos(t) +

20∑
k=1

ξikψ
(2)
k (t),

Xi3 = −t+ sin(t) +

20∑
k=1

ξikψ
(3)
k (t),

Xi4 = −t+ cos(t) +

20∑
k=1

ξikψ
(4)
k (t),

where ξik ∼ N(0, 28.96k−2), ψ
(1)
k = 1√

10
sin(πkt/10 + π/4),

ψ
(2)
k = 1√

10
sin(πkt/10+3π/4), ψ

(3)
k = 1√

10
sin(πkt/10), and

ψ
(4)
k = 1√

10
sin(πkt/10 + π/2), for t ∈ T = [0, 10]. Indepen-

dent, normally distributed measurement error with standard
deviation

√
0.2 was added to the functional predictors on the

regular grid of 100 points in T = [0, 10].
We generated Y in two different manners. In the first

setting, we let Yi = 1.4 −
∑10

j=1
(−1)jj

25 ξij + ϵi, and we used
a functional linear regression model based on mFPCA as
the naive “oracle” method. In the second setting, we let
Yi = −0.1+3ζi1+sin(2π(ζi2−1/2))+8(ζ2i4− 2

3ζi4)+ϵi, where

ζik = Φ( ξik√
28.96k−2

). The second setting is adapted from [23],

where the authors proposed a multivariate FPCA based
functional additive model for multiple functional data re-
gression, and their PLFAM method was used to obtain m̂(x)
in the naive “oracle”. In each case, the ϵi either ∼ N(0, 1)
or ∼ t3/

√
2. Bandwidths and number of predictors for the

algorithms were chosen via 10-fold cross validation. The
one standard error rule was utilized to prevent overfitting,
thereby reducing the frequency of the contiguity conditions
being violated.

As expected, the conformal prediction method produces
prediction intervals with the desired coverage, using both
the MPL-Signature and LL-mFPCA conformity scores. The
naive “oracles” prediction intervals do tend to undercover,
especially in smaller samples, but still serves as a good lower
bound for interval length.

As we can see, the local linear mFPCA based method
performs decently in the mFPCA based additive setting, al-
though slightly worse than the Signature based method. In
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Table 2. mFPCA based additive relationship: We report the
mean coverage (SD) of the constructed intervals from 1000

simulations for Signature-based multiple partial linear
conformity score, mFPCA-based local linear conformity score,

and naive “oracle”.

Error N MPL-Sig LL-mFPCA Naive oracle

N(0,1)
200 0.951 (0.086) 0.949 (0.100) 0.945 (0.048)
800 0.950 (0.070) 0.951 (0.087) 0.946 (0.017)

t3
200 0.951 (0.062) 0.950 (0.069) 0.941 (0.043)
800 0.948 (0.055) 0.950 (0.074) 0.948 (0.012)

Table 3. mFPCA based linear relationship: We report the
median length (MAD) of the constructed intervals from 1000

simulations for Signature-based multiple partial linear
conformity score, mFPCA-based local linear conformity score,

and naive “oracle”.

Error N MPL-Sig LL-mFPCA Naive oracle

N(0,1)
200 4.85 (0.48) 6.44 (0.49) 3.90 (0.27)
800 4.60 (0.44) 6.36 (0.21) 3.93 (0.14)

t3
200 5.37 (0.80) 6.80 (0.60) 4.53 (0.59)
800 5.16 (0.57) 6.71 (0.29) 4.54 (0.30)

Table 4. mFPCA based additive relationship: We report the
median length (MAD) of the constructed intervals from 1000

simulations for Signature-based multiple partial linear
conformity score, mFPCA-based local linear conformity score,

and naive “oracle”.

Error N MPL-Sig LL-mFPCA Naive oracle

N(0,1)
200 5.68 (0.58) 5.95 (0.44) 4.55 (0.32)
800 5.21 (0.47) 5.77 (0.21) 4.03 (0.13)

t3
200 6.08 (0.73) 6.31 (0.57) 4.92 (0.56)
800 5.66 (0.60) 6.27 (0.27) 4.59 (0.29)

the mFPCA based linear setting, we see much worse perfor-
mance from this method, due the limited number of com-
ponents it can utilize. We note that in the additive setting,
the relationship between Y and X is completely determined
through the first four functional principal components of X,
and indeed mostly captured by the first two components. So
this is a low dimensional case for the mFPCA-based non-
parametric regression. In the first simulation setting, how-
ever, the relationship between Y and X can not be well
captured if we only represent X using the first few func-
tional principal components. As a result, the nonparametric
regression based on mFPCA produced larger intervals that
still had valid coverage.

The Signature based partial linear algorithm performs
well. The length of intervals is a bit larger than the “ora-
cle”, but with more accurate coverage. It has great flexibil-
ity to capture the relationship between Y and X, performs
decently in small samples, and deals with fat-tailed error
fine. Overall we saw a small reduction in interval size when
increasing n, which likely corresponds to more accurately es-
timating the mean function m̂(x). Regardless of setting, the
finite sample coverage is guaranteed for conformal methods.

5. CROP YIELD DATA

To illustrate our method, we analyzed the crop yield
dataset described in [23]. This dataset consists of sev-
eral county-level corn and soybean yield related vari-
ables from 1999 to 2011, as well as annual averaged pre-
cipitation, daily maximum temperature, and daily min-
imum temperature. The raw dataset was from the Na-
tional Agricultural Statistics Agency (https://quickstats.
nass.usda.gov/) and the National Climatic Data Center
(https://www.ncdc.noaa.gov/data-access). Following the
source paper, we let Y be the average crop yield per acre
for a specific year and county, X1(t) and X2(t) be the daily
maximum and minimum temperatures for the same year
and county, and following the source paper, we also added
additional scalar covariates including the proportion of ir-
rigated land in that county and for that particular type of
crop, averaged annual precipitation, the interaction between
the two, and a year indicator. In Figure 1 we display both
predictor functions of four randomly selected observations.

Using our Signature-based multiple partial linear confor-
mity score, we constructed the out of sample 95% prediction
interval for each observation in the corn and soy datasets.
In line with expectations, 95.1% of the actual corn and soy
yields fell within the corresponding interval. The median in-
terval length was 75.7 for the corn data and 31.6 for the
soy data. To put these numbers in perspective, the [23] pa-
per produced a weighted mean square prediction error of
298.43 for the corn data and 35.64 for the soy data (weights
correspond to size of harvested land). We also tried the
mFPCA-based local linear conformity score for comparison.
This method also produced intervals with 95.1% empirical
coverage, but the median intervals for corn and soy were
longer, at 116.7 and 37.4, respectively.
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Figure 1. Daily minimum (blue) and maximum (red)
temperatures for 4 randomly selected observation sites.

Actual corn yield in bushels per acre reported alongside 95%
out of sample prediction interval.

6. APPENDIX

Signature-based MPL Algorithm for Non-
contiguous Prediction Sets (Algorithm 1b)

1. Calculate the k-th order Signature [Si]
k of each Xi,

i = 1, . . . , n + 1. Construct the matrix [S]k =
([S1]

k, . . . , [Sn+1]
k)T

2. Calculate Zij , for each Xij(t), i = 1, . . . , n + 1, j =
1, . . . , p. Construct the matrix Z = (Z1, . . . ,Zn+1)

T

3. Calculate r̂yi, r̂Si, β̂, and ai, bi as described in Eq. (3).
4. For each i ∈ {1, 2, . . . , n} calculate ci = (Yi − ai +
an+1)/(1− bn+1 + bi) and di = (−Yi + ai + an+1)/(1−
bn+1 − bi)

5. Construct n regions in the following manner:
If sgn (1− bn+1 + bi) = + and sgn (1− bn+1 − bi) = +,
then your region is (min(ci, di),max(ci, di)].
If sgn (1− bn+1 + bi) = − or sgn (1− bn+1 − bi) = −,
then your region is (−∞,min(ci, di)]∪ [max(ci, di),∞).

6. Take the intersection of unions of all combinations of
⌈(n+ 1)(1− α)⌉ of these sets. This resulting set is the
100(1− α)% prediction interval for Yn+1.

mFPCA-based Local Linear Algorithm (Algorithm
2)

1. Calculate the D eigenfunctions ϕ̂1, . . . , ϕ̂D correspond-
ing to the D largest eigenvalues where 1 ≤ D ≤
rank(X). Let ϕ = (ϕ̂1, . . . , ϕ̂D)T .

2. Calculate ξ = (ξ̂1, . . . , ξ̂D)T = XϕT , the scores of

X1, . . . , Xn+1 with respect to the basis ϕ̂1, . . . , ϕ̂D.
3. Calculate Ai and Bi for all i, where A and B are defined

below.
4. For all i ∈ 1, 2, . . . , n, calculate Li =

min(yi−Ai+An+1

1−Bn+1+Bi
, −yi+Ai+An+1

1−Bn+1−Bi
) and

Ui = max(yi−Ai+An+1

1−Bn+1+Bi
, −yi+Ai+An+1

1−Bn+1−Bi
).

5. Construct the 100(1 − α)% prediction interval for
Yn+1 = (L(⌊(n+1)α⌋), U(⌈(1−α)(n+1)⌉))

To calculate A and B in step 3, first construct the matri-
ces Zx = [1 ξi−ξx] and Wx = diag(K(||ξi−ξx||/h)), where
((·)) is a semi-metric on L2(T ), K is a univariate kernel, and
h a scalar bandwidth. Then m̂(x) = e1(Z

′
xWxZx)

−1Z ′
xWxY ,

where e1 is the D + 1 dimensional vector with a 1 followed
by D zeroes. Then

Ai = e1(Z
′
xi
Wxi

Zxi
)−1X ′

xi[1:n,]
Wxi[1:n,1:n]Y[1:n]

Bi = e1(Z
′
xi
Wxi

Zxi
)−1Xxi,n+1Wxi,n+1
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