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SUMMARY. Motivated by the conditional growth charts problem, we develop a method for

conditional quantile analysis when predictors take values in a functional space. The proposed

method aims at estimating conditional distribution functions under a generalized functional re-

gression framework. This approach facilitates balancing of model flexibility and the curse of

dimensionality for the infinite-dimensional functional predictors. Its good performance in com-

parison with other methods, both for sparsely and densely observed functional covariates, is

demonstrated through theory as well as in simulations and an application to growth curves,

where the proposed method can, for example, be used to assess the entire growth pattern of a

child by relating it to the predicted quantiles of adult height.
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1. Introduction

Quantile estimation is of interest in a variety of settings. For instance, growth charts, also known

as reference centile charts, are widely used to screen growth status. Conventional growth charts

are based on marginal percentile curves combined with a transformation to normality (Cole,

1988). Figure 1 shows an example of cross-sectional growth charts as well as the longitudinal

growth curves of two girls. Evaluation of children on the basis of their observed growth path

leads to much better understanding of their current auxological status than simply compar-

ing their height with a reference chart at a specific age. As a consequence, several authors,

including Cole (1994), Royston (1995), Thompson and Fatti (1997), have considered condi-

tional reference charts based on longitudinal measurements and advocated the importance of

adequately reflecting the longitudinal aspect when quantifying growth status. However, these

methods usually assume joint normality and a certain type of parametric structure of the lon-

gitudinal measurements and usually also require regular spacing of the measurement times;

an example is the LMS-AR model considered in Cole (1994). Wei and He (2006) proposed a

more general semiparametric model based on p prior measurements for the growth path when

constructing conditional quantiles for current height status. Their proposed model waives the

normality assumption and to some extent allows for varying time spacing of the measurements,

by incorporating the time spacing into the coefficients through a linear structure.

It is not obvious how to compare a child with prior measurements (Y1, . . . , Ym) with the

growth status of a reference group, especially as the measurements often have variable time

spacing and their timing may be subject-specific. Addressing these issues, we suggest con-

structing conditional quantiles and adopting a functional data analysis perspective, by viewing

the entire growth history of a child as a functional but latent covariate, for which the only

information available is a series of irregularly timed and potentially noisy measurements. For

growth measurements, the noise is due to direct measurement error and also diurnal and sea-

sonal variations in height. Taking the potentially irregular nature of the timing of the available

measurements and noise into account, we aim at recovering the underlying growth curves, con-

structing conditional reference charts for current status and quantifying and assessing current
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growth status through the predicted conditional quantiles of a future defined growth status,

such as adult height.

The smooth functional nature of growth curves has been explored in various previous sta-

tistical analyses, including Gasser et al. (1984, 1985), Gasser et al. (1991), Kneip and Gasser

(1992), Gasser and Kneip (1995) and Sheehy et al. (1999). For individual trajectories measured

at a dense grid of regularly spaced time points, there exists an extensive literature on recovering

the underlying functions. Older approaches have focused on parametric modeling (Marubini

et al., 1971; Ellozy, 1978), while modern approaches tend to be more flexible, allowing for more

variable shapes of the growth trajectories and their derivatives, often by employing nonpara-

metric methods. Such flexible approaches for the analysis of irregular, noisy or sparsely sampled

longitudinal data have for example been developed by Shi et al. (1996) and Rice and Wu (2001),

based on modeling with B-splines that include random effects, and James et al. (2000) and Yao

et al. (2005), based on modeling with functional principal components. Overviews of the rapidly

evolving interface between longitudinal and functional methodology are provided in Rice (2004),

Zhao et al. (2004) and Müller (2005).

Mainstream approaches to estimate conditional quantiles when covariates are vectors include

(1) the estimating equation approach, introduced by Koenker and Bassett (1978), which has

spawned a large literature and more recently has been modified and extended to more general

cases (Koenker et al., 1994; Li et al., 2007), and (2) obtaining quantiles by inverting a conditional

distribution function. Regarding the latter, which is the approach we adopt here, various

nonparametric methods for estimating conditional distribution functions and then quantiles

with low-dimensional covariates have been proposed over the years (Fan et al., 1996; Yu and

Jones, 1998; Hall et al., 1999; Cai, 2002; Hall and Müller, 2003).

For the case of functional covariates, Cardot et al. (2005) extended the estimating equation

approach to a linear functional quantile regression model, while Ferraty et al. (2005) proposed to

extend the double kernel method for estimating a conditional distribution function to functional

covariates. Due to the nature of the estimating equations, these methods assume structural

constraints in the quantiles, which we abandon here by proposing to estimate the conditional
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distribution function under a functional generalized regression framework. The proposed ap-

proach facilitates balancing of model flexibility and of the so called curse of dimensionality,

which affects direct “nonparametric” approaches. Although this paper is inspired and illus-

trated by the growth charts problem, our proposed methods and theoretical results pertain to

a general setting and can be used in a variety of situations where the need arises to estimate

conditional quantiles when covariates are functions.

The paper is organized as follows. In section 2, we introduce the proposed model and an

extended time-varying model framework. Methods for estimation are discussed in section 3.

In section 4, we highlight some features of the proposed method using simulated data. This is

followed by an analysis of the Berkeley Growth Data in section 5. A description of asymptotic

consistency properties is in section 6 and further discussion in section 7.

2. Modeling Conditional Distributions With Functional Covariates

The covariates we consider are random trajectories X, for which one records an associated

response Y , a one-dimensional random variable. Predictor processes X are assumed to be

square integrable on a domain T = [0, T ], with mean function EX(s) = µ(s) and a continuous

covariance function cov(X(s), X(t)) = G(s, t). The covariance function G(s, t) has an orthog-

onal expansion G(s, t) =
∑

k λkφk(s)φk(t) with nonincreasing eigenvalues λk and functions φk,

which correspond to the eigenfunctions of the associated autocovariance operator AG, defined

by AG(f)(t) =
∫
T G(s, t)f(s)ds, for any f in L2. Then one may represent random processes X

by a Karhunen-Loève expansion X(t) = µ(t)+
∑∞

k=1 ξkφk(t), where ξk =
∫
T (X(t)−µ(t))φk(t)dt

are the functional principal components (FPCs). The FPCs form a sequence of uncorrelated

random variables with mean zero and decreasing variances, which correspond to the eigenvalues,

i.e. E(ξ2
k) = λk, and serve as random coefficients in functional statistical models.

The conditional distribution of Y given X, denoted as F (y | X) = P (Y ≤ y | X) =

E(I(Y ≤ y) | X), where I is the indicator function, may be viewed as the regression of the

indicator I(Y ≤ y) on the functional predictor X. Then, a reasonable approach is to connect

the functional quantile problem with the functional generalized linear regression model with
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known link function g and functional predictors X. Such models have been widely studied in

the literature (James, 2002; Cardot and Sarda, 2005; Müller and Stadtmüller, 2005; Leng and

Müller, 2006; Escabias et al., 2007).

More precisely, for a fixed y, the indicator I(Y ≤ y), given the covariate function X, has a

binomial distribution with mean parameter F (y | X), leading to a functional generalized linear

regression model with link function g,

F (y | X) = E(I(Y ≤ y) | X) = g−1{β0(y) +

∫
Xc(t)β(y, t)dt}, (1)

where Xc(t) = X(t)−µ(t), and g is a monotone link function, for example, the logit link, with

g−1(z) = exp(z)/(1 + exp(z)).

The coefficient function β(y, t), for fixed y, is assumed to be square integrable on T

and can then be represented in the orthogonal eigenbasis, β(y, t) =
∑∞

k=1 βk(y)φk(t), where∫
φj(t)φk(t)dt = δjk, δjk = 1 for j = k and δjk = 0 for j 6= k. Then the model in eq. (1) can be

equivalently written as

F (y | X) = E(I(Y ≤ y) | X) = g−1
(
β0(y) +

∞∑
k=1

βk(y)ξk
)
, (2)

where the ξk are the FPCs of X, and the βk(·), k = 1, 2, . . . , are assumed to be smooth functions

of y.

The desired conditional quantiles Q(α), 0 < α < 1, of Y may be obtained by inverting the

conditional distribution function F (y | X), defining

Q(α) = inf{y : F (y | X) ≥ α}, for 0 < α < 1. (3)

Model (2) can be easily extended to a time-varying model, where the right endpoint of T

is increasing (adapting an approach described in Müller and Zhang, 2005). For time-varying

conditional quantiles that depend on the domain on which predictors have been observed, we

consider the extended model

F (y | X[0,s]) = E(I(Y ≤ y) | X[0,s]) = g−1{β0(y, s) +
∞∑
k=1

βk(y, s)ξk}, (4)
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where y denotes response levels at a time τ ≥ s and X[0,s] denotes the predictor curve on the

interval [0, s]. A motivating example is provided by selecting y as adult height and s as an age

at which the status of a child is to be assessed, using the available growth data from birth to

age s. Then the entire growth history of a child up to age s is used for predicting the quantile of

adult height for this child. This device allows to associate an overall growth status assessment

that is based on the predicted adult height, with the specific growth history of the child on

currently available domains from birth to age s, for varying ages s of the child.

3. Estimating the Model Components

To address the difficulty caused by the infinite dimensionality of the predictors, we approximate

model (2) with a series of models, for which the number of predictors is truncated at p = pn

included components, and the dimension pn increases asymptotically, as the sample size n→∞;

compare with Müller and Stadtmüller (2005).

A heuristic motivation for this truncation strategy is as follows: Setting

ηp(y) = β0(y) +

p∑
j=1

βj(y)ξj , Rp(y) =

∞∑
j=p+1

βj(y)ξj , Z(y) = I(Y ≤ y), Xp = µ+

p∑
k=1

ξkφk,

model (2) can be written as F (y | X) = E(Z(y) | X) = g−1(ηp(y) + Rp(y)). If the FPC’s are

independent, as is the case for a Gaussian random process, Rp(y) is independent of Xp . With

distribution function FRp(y) of Rp(y),

E(Z(y) | Xp) = E[g−1(ηp(y) +Rp(y)) | Xp] =

∫
g−1(ηp(y) + s)dFRp(y)(s) = g−1

p,y(ηp(y)),

for suitable functions gp,y(·), and var(Z(y) | Xp) = g−1
p,y(ηp(y))(1 − g−1

p,y(ηp(y))). Therefore the

conditional distribution of Z(y), conditioning on Xp, is a binomial distribution with parameter

F (y | Xp) = g−1
p,y(ηp(y)), motivating the consideration of an increasing series of truncated

binomial models. The approximation error of these truncated models is directly tied to the

eigenvalues λj = var(ξj) and vanishes asymptotically as p → ∞ (see proof of the Theorem in

Section 6).

A feature that complicates theoretical analysis is that the link functions gp,y must be consid-

ered as unknown, as they depend on ηp and the distribution of Rp(y), which are both unknown.
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In actual estimation, we are confined to fit the model using the fixed known link function g,

instead of using the actual and changing link function gp,y, therefore fitting

F̂ (y | X) = g−1
(
β̂0(y) +

p∑
k=1

β̂k(y)ξk
)
. (5)

Examining the discrepancy between link functions g and gp,y carefully, it can be proved that

the discrepancy between these functions vanishes asymptotically under some mild conditions

(see proof of the Theorem). This leads to the uniform consistency of our estimate F̂ (y | X)

under regularity conditions, and as a consequence, one obtains a consistent estimate Q̂(α) of

Q(α) from (3),

Q̂(α) = inf{y : F̂ (y | X) ≥ α}, for 0 < α < 1. (6)

In practice, the choice of the number of components p to be included in eq. (5) can be

determined by leave-one-curve-out cross-validation or by the fraction of variance explained by

the first p components. One can also adopt AIC or BIC type criteria, see Yao et al. (2005) or

Müller and Stadtmüller (2005) for further details.

To estimate the coefficients in a truncated model, an initial step is to obtain the first p

FPCs {ξik, k = 1, . . . , p}, for each predictor function Xi. The predictor trajectories Xi are

usually recorded at a grid of time points, which could differ from subject to subject, and

the measurements might be contaminated by measurement errors and other aberrations. For

example, in auxology it is well known that children and also adults are taller in the morning

than in the evening. To model functional data that are contaminated with measurement errors,

denoting the observation of the random trajectory Xi at time til by Uil, the corresponding error

by εil and the number of observations made for the ith subject by Li, we may represent the

observed data as follows:

Uil = Xi(til) + εil = µ(til) +

∞∑
k=1

ξikφk(til) + εil, 1 ≤ i ≤ n, 1 ≤ l ≤ Li, (7)

where Xi is the smooth underlying random trajectory for the ith subject and the errors εil are

assumed to be i.i.d. with Eεil = 0, Eε2
il = σ2, and to be independent of the FPCs.

As mean, covariance and eigenfunctions are assumed to be smooth, we propose using local

linear smoothing to obtain the estimated mean function µ̂(t), and a two-dimensional weighted
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least squares smoother, omitting the diagonal elements, for the estimated covariance surface

Ĝ(s, t) (for further details see Yao et al., 2005). Smoothing bandwidths are chosen by cross-

validation or generalized cross-validation. Estimated eigenfunctions and eigenvalues are then

the solutions of the eigenequations,∫
G(s, t)φk(s)ds = λkφk(t),

where Ĝ is substituted for G and the eigenfunctions are subject to the constraints
∫
φk(s)

2ds = 1

and
∫
φj(s)φk(s)ds = 0, for j < k. These solutions are obtained by discretizing the estimated

covariance surface and then using the corresponding matrix procedures; FPCs then are de-

termined by ξ̂ik =
∫

(Xi(t) − µ̂(t))φ̂k(t)dt for densely observed data or through conditional

expectation (BLUP) in the case of sparse irregular observations. More details can be found

in Yao et al. (2005); these procedures are available in the PACE package, which is written in

Matlab and available at http://anson.ucdavis.edu/∼mueller/data/pace.html. We specifically

note that the code for our proposed method is available in PACE version 2.14.

With the first p FPCs, estimates of the coefficients β̂0, . . . , β̂p are easily obtained through

the usual estimating equation for the generalized linear model, leading immediately to the

estimate of the distribution function F̂ (y | X) in eq. (5). Generally, we will be interested in

conditional distribution functions and quantiles over a certain range of values, which we denote

as [q1, q2]. We obtain coefficient functions β̂k(y), 0 ≤ k ≤ p, by fitting the model for a dense

grid of y ∈ [q1, q2]. An optional step is to additionally smooth the coefficient functions β̂k(y), or,

more directly, the estimates F̂ (y|X), across y, which may lead to smoother and better behaved

estimates. In our implementations, we use the second type of smoothing, using kernel smoothers

with approximately 5 data points in each smoothing window.

We note that the range [q1, q2] needs to be large enough to obtain desired quantiles for small

or large α. In practice, the choice of q1 and q2 depends on the observed range of the responses
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Y . For a subject with trajectory Xi, the estimate for F (y | Xi) then becomes

F̂ (y | Xi) =


0 for y ≤ q1

g−1
(
β̂0(y) +

∑p
k=1 β̂k(y)ξ̂ik

)
for y ∈ (q1, q2)

1 for y ≥ q2

(8)

4. Simulation Results

To illustrate our methods for conditional quantile estimation with functional covariates, pairs

of (Xi, Yi), Xi ∈ L2[0, 10], Yi ∈ R, i = 1, . . . , 400, were generated, and of these, 300 randomly

selected pairs were used for training the model and the remaining 100 pairs for testing. We

compute and evaluate the proposed approach Q̂i(α) for the test data, and its performance was

compared with the following two methods: (a) a naive approach, obtained by using uncondi-

tional empirical quantiles, denoted by QU (α); and (b) the quantile linear regression model with

functional covariates as proposed in Cardot et al. (2005).

The method of Cardot et al. (2005) is an extension of the well known quantile linear regres-

sion approach for vector covariates X, based on the estimating equation E(lα(Y − β0 − β1X)),

where lα(u) = |u|+ (2α−1)u. For a functional predictor X(t), Cardot et al. (2005) proposed to

replace β0 + β1X by c+
∫

Ψα(t)X(t)dt, where the coefficient function Ψα(t) is expanded in the

B-spline basis. The corresponding coefficient vector θ is estimated via the following penalized

estimating equation,

min
c∈R,θ∈Rk+q

{ 1

n

n∑
i=1

lα(Yi − c−
∫
BT
k,q(t)θXi(t)dt) + ρ‖(BT

k,qθ)
(m)‖2}. (9)

The predicted quantiles, denoted by Q̂Ci (α), are obtained by substituting estimates of the coef-

ficients in the equation QCi (α) = c+
∫

Ψα(t)Xi(t)dt.

Predictor trajectories Xi were generated from a L2 random process with mean function

µ(t) = t+ sin(t), 0 ≤ t ≤ 10, and a covariance function derived from K eigenfunctions, φi(t) =

cos((i + 1)πt/10)/
√

5 for odd values of i and φi(t) = sin(iπt/10)/
√

5 for even values of i, 0 ≤

t ≤ 10, for K = 2, 4, 6, 8, 10. The corresponding non-zero eigenvalues were chosen as the first

K numbers from the sequence L = {42, 32, 2.752, 2.252, 1.752, 1.252, 1, 0.752, 0.52, 0.252},
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i.e. λk = L(k), k = 1, . . . ,K, and λk = 0, for k > K. The underlying FPCs in eq. (7) were

generated as ξik
iid∼ N(0, λk), and the measurement errors as εil

iid∼ N(0, 0.52). For the generation

of Yi, we consider two scenarios: A Gaussian case, Yi | Xi ∼ N(2
∑K

k=1 ξik, 5
2), and a mixture

distribution, Yi | Xi ∼ 0.5N(
∑K

k=1 ξik, 1
2) + 0.5N(3

∑K
k=1 ξik, 4

2).

Regarding the measurement locations at which predictor trajectories were sampled, two

settings were considered, a sparse irregular setting, where the number of measurements for each

subject was chosen from {4, . . . , 14} with equal probability, the locations were chosen separately

and were uniformly distributed on [0, 10]; and a regular dense case, where 30 equally spaced

observations on [0, 10] were generated for each subject. The method of Cardot et al. (2005)

requires densely observed functional data, and thus will not work for the first scenario with

sparse design. For comparison purposes, we created a modified version of Cardot’s method,

specifically for the sparse design case, and this modified version was used for the comparisons

pertaining to this case. To summarize, there are four simulation scenarios, referred to in the

following as Gaussian sparse, Gaussian dense, Gaussian mixture sparse and Gaussian mixture

dense cases, respectively.

The smoothing bandwidths for the proposed method were chosen by generalized cross-

validation. For the sparse case, these bandwidths were approximately 0.59 for the mean function

and 1.1 for the covariance surface, and for the dense case, 0.6 and 0.5 for mean and covari-

ance function, respectively, slightly differing between simulation runs. The number of included

components p was chosen by AIC, using a marginal likelihood (pseudo-likelihood) of the ob-

servations. This method and several alternative selectors are discussed in Yao et al. (2005).

Alternative methods include BIC, minimizing leave-one-curve-out prediction error, or control-

ling the fraction of variance explained (FVE), FV E =
∑p

k=1 λ̂k/
∑M

k=1 λ̂k, where M is chosen

large. For all simulations, we used the logit link function.

For the functional quantile linear regression model proposed by Cardot et al. (2005), the

estimator depends on the number of knots k, the degree q of the spline, the order m of the

derivative chosen for the penalization term, and the smoothing parameter ρ. It seems that only

ρ has a major impact on the resulting estimate, provided that the number of knots is chosen
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large enough (Besse et al., 1997; Cardot et al., 2007). We use cubic B-splines with 8 inner

knots and penalty terms based on second order derivatives, the same specifications as in Cardot

et al. (2007) and also investigated alternatively choosing 6 and 10 knots, which led to nearly

identical results as using 8 knots. We therefore only report the results for this case. The tuning

parameter ρ in eq. (9) was chosen by generalized cross-validation.

In Tables 1 and 2, the results are listed for mean absolute error (MAE), based on 200 simu-

lation runs for each simulation scenario and quantile levels α ∈ (0.05, 0.1, 0.25, 0.5); estimates of

the upper quantiles were found to behave similarly (not reported). Additional information can

be found in Figure 2, which contains the boxplots of MAE for conditional quantile estimation,

α ∈ (0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95), over 200 simulation runs for Gaussian (left) and mixture

Gaussian (right) distributions, for densely sampled designs generated from 10 eigenbases.

The simulation results in Table 1, Table 2 and Figure 2 indicate that the proposed method

outperforms the two comparison methods for all quantiles in the case of sparsely and irregularly

observed predictor functions. For the case of a mixture of Gaussians, the proposed method

outperforms the approach of Cardot et al. for all quantiles, for both sparsely and densely

observed predictor functions (Table 2 and Figure 2 right part). For the case of a Gaussian setting

coupled with densely observed predictor functions, the approach of Cardot et al. performs better

than the proposed method for the median, and comes close to the proposed method for first

and third quartiles, but for more extreme quantiles, its performance is clearly inferior to that of

the proposed method. We note that for the growth status screening application, small quantiles

such as those with levels α = 0.05 or α = 0.1 matter most, as the goal is to indicate which

children might need additional health screening, based on their predicted very low adult height

status. We conclude that the proposed method is preferable for this and similar applications.

5. Application to Berkeley Growth Data

One of the most important roles of growth monitoring is to screen the growth status of children

and to identify children with underlying health problems that are reflected in stunted height

growth. Growth reference charts are widely used by pediatricians and auxologists for this
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purpose. We demonstrate the proposed functional conditional quantile estimation with an

application to the Berkeley growth data (Tuddenham and Snyder, 1954). These data contain

height measurements for 54 girls, with 31 measurements taken between ages 1 year and 18 years.

Assume we wish to make a growth assessment for a given girl at age T based on a series of

unequally spaced and randomly numbered height growth measurements that are available for

this particular girl in the age interval [0, T ]. The ultimate outcome of interest is the girl’s adult

height Y . Accordingly, evaluation and auxological assessment of growth patterns in [0, T ] will

benefit from linking observed growth in the interval [0, T ] to adult height Y , which serves as a

natural summary of health status over the entire growth phase. This motivates to predict the

distribution function of adult height Y conditional on the growth history [0, T ], a particularly

low quantile indicating that pediatric follow-up might be needed.

To exemplify this approach, we choose T = 12 years. Leave-one-out cross-validation is

used to assess prediction performance, i.e. when predicting the conditional quantiles of adult

height for the ith subject, we omit the data of this subject when fitting the model. The fitted

coefficient functions β̂0(y) and β̂k(y), defined in eq. (5), with logit link and p = 2, the number

of components selected by the AIC criterion (explaining more than 95% of the total variance),

are shown in Figure 3. The predicted 100α% quantiles Q̂i(α) of adult height Y , conditional on

the growth history on [0, 12], for α ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}, were obtained from (6).

The resulting predicted quantiles for four randomly selected girls are displayed in Figure 4.

Assessing the quality of estimated quantiles is not straightforward, as commonly only one

pair of data (Xi, Yi) at a particular predictor level X = Xi is available, Xi indicating the predic-

tor function and Yi adult height. There are no observations pertaining to the true conditional

distribution. For an indirect assessment of the quality of predicted quantiles observe that for

the indicator function Ii(α) = I(Yi ≤ Qi(α)), it holds that E(Ii(α) | Xi) = α. Therefore

Ī(α) =
1

n

n∑
i=1

I(Yi ≤ Q̂i(α)) (10)

should be close to α, if the quantile estimation method gives reasonable estimates. The scat-

terplot of Ī(α) against α is found to be indeed close to the identity line in Figure 5, indicating
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that the proposed method performs reasonably well with regard to this criterion.

Another approach, previously used in Wei and He (2006), is to compare the empirical dis-

tribution of Y with the simulated distribution from the conditional distribution model. Con-

sidering conditional quantiles Qi(α) = F−1
i (α), where Fi(y) denotes P (Y ≤ y|X = Xi), for

α ∼ U(0, 1) and a fixed Xi, P (Qi(α) < y) = P (F−1
i (α) < y) = P (α < Fi(y)) = Fi(y) =

P (Y ≤ y|X = Xi). Therefore the marginal distribution of Qi(α) for randomly sampled Xi and

α ∼ U(0, 1) should be the same as the marginal distribution of the responses, which can be

checked as follows: Sample Xi from the empirical distribution of X and α from U(0, 1). Setting

z = Q̂i(α), repeat this procedure L times and obtain a sample {z1, z2, . . . , zL}. If the quan-

tile estimates are reasonable, the two marginal distributions defined by the observed responses

in the original data and by the simulated responses {z1, z2, . . . , zL} should match. Choosing

L = 3000, we find from the Q-Q plot in Figure 5 that the match is indeed quite good. We

conclude that the proposed functional quantile estimation passes both of these diagnostic tests.

Assessing the growth status of girls at age 12, we use conventional unconditional reference

charts to identify two girls, whose heights at age 12 are below the 10th cross-sectional percentile

of girl’s height at age 12, measuring 142.1 cm (girl A) and 141.3 cm (girl B), respectively. In

order to obtain a longitudinal assessment of growth status, based on the growth history from

birth to age 12, we proceed to estimate the conditional distribution of adult height for these two

girls, with results given in Figure 6. These two conditional distribution functions demonstrate

different patterns. Choosing as response Y = H18, we obtain the conditional probabilities

P (H18 < 157cm | XA
[0,12]) = 0.2235 and P (H18 < 157cm | XB

[0,12]) = 0.8868, where 157 cm is the

empirical 10th percentile of height for female adults.

Thus, the event that girl B ends up shorter than 157 cm as an adult is predicted to occur

with high probability, indicating that further pediatric evaluation and possibly intervention is

needed, while the probability for girl A to have a short adult height is estimated to be much

lower. The actual adult height for girl A was observed at 164 cm and for girl B at 154.5 cm.

The proposed method thus correctly identifies the girl with actual height corresponding to a low

quantile. From the derivatives of the growth curves in the bottom panels of Figure 6, obtained
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with local polynomial fitting, girl B is seen to have reached the pubertal growth spurt ahead

of girl A. As a consequence, at age 12, growth of girl B was steadily decelerating, while girl A

had not reached the point where pubertal growth acceleration starts. Thus the difference in the

estimated distribution functions is due to differences inherent in the entire growth pattern up

to age 12; it is not evident from the small difference in heights observed at age 12.

Current growth status for a girl at age s may be evaluated by comparing current height

with a set of conditional quantiles estimated from model (4), trained on the interval [0, s− δ],

for a suitable δ > 0. We applied this idea to screen the height of girls at age 13, based on their

growth history on the age interval [0, 12], so that s = 13, δ = 1, and the response Y corresponds

to the height at age 13. Growth trajectories on [0, 12] and height at age 13 are shown for four

girls (C,D,E and F) in Figure 6, along with the corresponding estimated conditional quantiles

Qi(α), for α ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95} and the actual height attained at age 13.

The height of 157.8cm observed for girl C is far below expectation, although it is slightly

above the trend of this girl’s growth trajectory. Specifically, from the predicted quantiles, height

at age 13 is seen to fall below the 5th percentile. So what is happening? Interestingly, girl C

grew very fast subsequently, between year 14 and 15, and ended up with a normal adult height

of 170.3cm. It turns out that this girl had an unusually late occurring pubertal growth spurt, in

comparison with the timing of the pubertal growth spurt for the other girls across the sample.

The relative delay in the pubertal growth spurt is the reason for the unexpectedly short height

at age 13 and the correspondingly low conditional quantile. For the other girls, the observed

height at age 13 by and large falls within the middle range of the predicted quantiles.

6. Asymptotic Properties

Recall the conditional distribution model

F (y | X) = E(Z(y) | X) = g−1
(
β0(y) +

∞∑
k=1

βk(y)ξk
)
,

where Z(y) = I(Y ≤ y). The estimator based on the first p components is F̂ (y | X) =

g−1(
∑p

k=0 β̂k(y)ξk), where we set ξ0 ≡ 1, and β̂
p
(y) = (β̂0(y), . . . , β̂p(y)) is a solution of the

13



following minimization problem:

β̂
p
(y) = arg min

(β̃0,...,β̃p)

n∑
i=1

L(g−1(

p∑
k=0

β̃kξik), Zi(y)), (11)

where

L(θ, u) = −u log
θ

1− θ
− log(1− θ) (12)

is the negative log likelihood function of a binomial random variable U with mean parameter θ.

We define η̃p =
∑p

k=0 β̃kξk for any β̃k, and ηp(y) =
∑p

k=0 βk(y)ξk for the linear part with true

coefficients βp(y) = (β0(y), . . . , βp(y)).

The following conditions will be needed.

(A.1) Assume that there exist ζ > 0 and an interval I such that P (I ⊂ Dζ(X)) = 1, where

Dζ(X) = {y ∈ R : ζ ≤ F (y | X) ≤ 1− ζ}.

This assumption basically requires that F (y | X) stays away from 0 and 1 with probability

1 on a suitably defined interval I. This is needed for establishing the uniform consistency of

the estimated conditional distribution function on the interval I.

(A.2) supz∈R |(g−1)′(z)| ≤ C.

This assumption requires a uniform bound on the derivative of the inverse link function.

This is satisfied for many important link functions, including the logit link function.

(A.3) The functional principal components (FPCs) {ξ1, ξ2, . . .} are independent random

variables.

This is for example satisfied in the commonly considered case where the predictors are

Gaussian random processes. But Gaussianity of predictors is not required. Of course, the

FPCs will always be uncorrelated by definition. Assumption (A.3) is used to prove that the

discrepancy between link function g and actual link function gp,y vanishes asymptotically.

(A.4) For any p ≥ 1, define the Hessian p×pmatrixMp = ∂2

∂2(β̃0,...,β̃p)
EL(g−1(

∑p
k=0 β̃kξk), Y ).

There exists γp > 0 such that
{
Mp − γpIp

}
is positive definite, where Ip is the p × p identity

matrix.

(A.5)
∑∞

j=p+1 βj(y)2 → 0,
∑∞
j=p+1 βj(y)2

γ2p
→ 0, uniformly on the interval I, for γp as in (A.4).
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(A.4) and (A.5) reflect strong convexity around the maximum of EL(g−1(
∑p

k=0 β̃kξk), Y )

and assumptions on the asymptotic behavior of the curvature around the maximum as p in-

creases. Importantly, for the case of a logit link function, we observe that Mp ≥ C ′E(ξp(ξp)T ),

where C ′ > 0 is a constant, ξp = (ξ0, . . . , ξp)
T and E(ξp(ξp)T ) = diag(1, λ1, . . . , λp), implying

that γp can be chosen as min(C ′, C ′λp) in this case.

Our main result is the following

Theorem. Provided that conditions (A.1)-(A.5) hold, for a suitably chosen sequence p(n)→∞,

as n→∞, on intervals I as in (A.1),

sup
y∈I
|F̂ (y | X)− F (y | X)| P−→ 0

where F̂ (y | X) = g−1(
∑p(n)

k=0 β̂k(y)ξk). Therefore, for any 0 < α < 1, the estimator Q̂(α) =

inf{y : F̂ (y | X) ≥ α} of the 100α% conditional quantile of Y given X is a consistent estimator

of Q(α) = inf{y : F (y | X) ≥ α}.

The proof of this uniform consistency result can be found in the Appendix.

7. Discussion

We propose estimating conditional distribution functions under a generalized functional regres-

sion framework, where the response is a binary variable and the predictors are in a functional

space. The corresponding generalized functional linear model approach for estimation is in-

vestigated through simulations, growth data analysis and asymptotic study. Other generalized

functional regression models are also of potential interest for extensions to quantile estimation,

such as generalized functional additive models or generalized functional single index models. Af-

ter estimating conditional distribution functions, one obtains conditional quantiles by inverting

the distribution function. Smoothing and monotonization steps can be added as desired.

The quantile linear regression approach in general works better than the inversion of esti-

mated conditional distribution functions, when the assumptions for this approach are satisfied

(Koenker, 2005). These assumptions include that the quantiles are linear in the predictors,

as in the Gaussian case. The superiority of the quantile linear regression approach has been
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established for the case where predictors are directly observed without errors. However, in the

functional predictor case the situation is different and more complex. A distinctive feature is

that one usually does not directly observe entire predictor functions, but only has sparsely or

densely sampled measurements of each random function. The available measurements of each

random function are made at a sample of time points (in the sparse case perhaps as few as 2-5

measurements), which are additionally contaminated with error. Therefore one needs to recover

individual random functions from these measurements, for which in the approach of Cardot et

al. B-splines are used, while in our proposed approach we use eigenfunctions and functional

principal components. The estimated functional principal components or spline components are

contaminated with estimation error, a distinctive feature compared with the usual situation in

multivariate linear regression where the predictors are assumed to be observed without error.

To illustrate these issues in a non-functional simple bivariate linear model, consider Y =

X + U , where X ∼ N(0, σ2) and U ∼ N(0, σ2
1); X and U are independent. Then the τth

quantile of Y conditional on X is QY |X(τ) = X + σ1C(τ), where C(τ) is the τth quantile of

a standard normal. Suppose we do not observe X but instead observe a contaminated version

X̃ = X + V , V ∼ N(0, σ2
2), where V is independent of X. Then

QY |X̃(τ) =
σ2

σ2
2 + σ2

X̃ +
{
σ2 + σ2

1 −
σ4

σ2 + σ2
2

}1/2
C(τ)

=
σ2

σ2
2 + σ2

X +
{
σ2 + σ2

1 −
σ4

σ2 + σ2
2

}1/2
C(τ) +

σ2

σ2
2 + σ2

V, (13)

and one finds that the contamination in the predictor has the effect of altering the slope and

in addition introducing a constant deviation term (note that the factor in the second term of

(13) differs more and more from σ1 with increasing contamination variance σ2
2) and a random

deviation term (the third term in (13), which has expectation 0). The constant deviation term

is seen to increase for more extreme quantiles, and vanish for the median.

Considering the case with functional predictors and the simulation results for the Gaussian

case (Table 1 and Figure 2 left panel), in the light of the above, the approach of Cardot et

al. seems indeed affected by the estimation error in the components. This is seen especially

for the estimation of the more extreme quantiles, as predicted by the simplified considerations
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above. For example, from Table 1, for the case of K = 8 underlying functional components, the

approach by Cardot et al. is found to perform better than the proposed method for the median,

and comes reasonably close although is slightly worse for the first and third quartile. For more

extreme quantiles, it performs much worse than the proposed method. The comparisons for

the densely sampled case are visualized in Figure 2. We note that the more extreme quantiles

are of particular interest for growth charts applications, and for their estimation the proposed

method is seen to be particularly advantageous.

The comparative performance of the approach of Cardot et al. worsens considerably in the

sparse case. This case is typical for longitudinal studies, including longitudinal growth studies.

The likely reason for this worsening is that this approach has been designed for densely observed

functional data and is negatively affected by the increased estimation error of the B-spline coef-

ficients that comes with the longitudinal design case, due to the sparse and noisy measurements.

The proposed method is based on Principal Analysis by Conditional Expectation, a functional

method that is geared towards recovering the underlying random functions well especially for

the case of sparsely sampled functional data.

In the second simulation scenario the functional predictors correspond to a mixture of Gaus-

sian random processes. In this case the quantiles are not linear, and so it is not surprising that

linear quantile regression does not work very well, not only because of the estimation error in

the predictor components, but also because of the violation of a central model assumption. In

this situation, the proposed method outperforms the approach of Cardot et al. for all quantiles

in both densely and sparsely sampled cases (Table 2 and Figure 2 right panel).

The proposed method relies on a functional generalized regression model with a fixed link

function to model binary responses with the mean parameter F (y | X), and also relies on some

other model assumptions. In some situations, links other than the logit, e.g., nonsymmetric

links, may be of interest. The varying coefficient setting provides considerable flexibility to

model the conditional distribution. A completely nonparametric approach seems infeasible for

functional predictors due to the low values of the small ball probabilities in function space (Hall

et al., 2009). The proposed functional generalized regression framework provides a sensible
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balance between model flexibility and the curse of dimensionality.

In summary, the proposed method shows promise for quantile estimation in functional data

analysis. It is particularly advantageous when data are longitudinally sampled, with relatively

sparse and noise-contaminated measurements, and for situations where quantiles are not linear

in the predictors. Since it performs relatively well for the estimation of quantiles away from

the median, the proposed method is particularly suited for growth studies and other situations

where functional regression quantiles beyond the median are of interest.

Appendix: Auxiliary results and proofs

We begin by stating an auxiliary lemma.

Lemma. Let Wj, j = 1, . . . , n, be a random sample and h(w, θ) a Borel measurable function

on W×Θ, where W ⊂ Rk is a Borel set such that P [Wj ∈W] = 1, and Θ is a compact subset

of Rm, such that for each w ∈ W, h(w, θ) is a continuous function on Θ, Furthermore, let

E[supθ∈Θ |h(Wj , θ)|] <∞. Then

sup
θ∈Θ

∣∣∣∣∣∣(1/n)
n∑
j=1

h(Wj , θ)− E[h(W1, θ)]

∣∣∣∣∣∣ P→ 0, as n→∞

This is usually called the uniform weak law of large numbers, and details and proofs can be

found in Jennrich (1969) and Bierens (2004) (Appendix to Chapter 6).

Proof of the Theorem.

By (A.1) and (A.2), the difference between the true F (y | X) in eq. (2) and the estimator

F̂ (y | X) in eq. (5), for any fixed p, is bounded by

sup
y∈I
|F (y | X)− F̂ (y | X)| < C sup

y∈I
|
p∑

k=0

β̂k(y)ξk −
p∑

k=0

βk(y)ξk|+ C sup
y∈I
|
∞∑

k=p+1

βk(y)ξk|

<C sup
y∈I
||βp(y)− β̂

p
(y)||2||ξp||2 + C sup

y∈I
|
∞∑

k=p+1

βk(y)ξk|,

where ξp = (ξ0, . . . , ξp)
T , βp(y) = (β0(y), . . . , βp(y)) and β̂

p
(y) = (β̂0(y), . . . , β̂p(y)).

Now assume that ε > 0, and δ > 0 are given. Owing to the fact that var(||ξp||2) <

1 +
∑∞

k=1 λk ≡ M , one can find Cδ > 0 such that M/C2
δ < δ/3. By Chebyshev’s inequality,
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P (||ξp||2 > Cδ) < δ/3, for all p. If one can find pε,δ and n(ε, δ, pε,δ) such that

P (sup
y∈I
|

∞∑
k=pε,δ+1

βk(y)ξk| >
ε

2C
) < δ/3, (14)

and

P (sup
y∈I
||βpε,δ(y)− β̂

pε,δ
(y)||2 >

ε

2CδC
) < δ/3, for n > n(ε, δ, pε,δ), (15)

then for all n > n(ε, δ, pε,δ),

P (sup
y∈I
|F (y | X)− F̂ (y | X)| > ε)

≤P (
{
C sup

y∈I
|
pε,δ∑
k=0

β̂k(y)ξk −
pε,δ∑
k=0

βk(y)ξk|+ C sup
y∈I
|

∞∑
k=pε,δ+1

βk(y)ξk|
}
> ε)

≤P
(

sup
y∈I
||βpε,δ(y)− β̂

pε,δ
(y)||2 >

ε

2CδC

)
+ P (||ξpε,δ ||2 > Cδ) + P

(
sup
y∈I
|

∞∑
k=pε,δ+1

βk(y)ξk| >
ε

2C

)
<δ/3 + δ/3 + δ/3 = δ,

which will complete the proof.

It remains to show (14) and (15). For any y ∈ I, let

ηp(y) = β0(y) +

p∑
k=1

βk(y)ξk, Rp(y) =

∞∑
k=p+1

βk(y)ξk, Z(y) = I(Y ≤ y), Xp = µ+

p∑
k=1

ξkφk.

According to model (2), we have F (y | X) = E(Z(y) | X) = g−1(ηp(y) + Rp(y)), where

assumption (A.3) implies that Rp(y) and Xp are independent. Let FRp(y) be the distribution

function of Rp(y). Then

E(Z(y) | Xp) = E(E(Z(y) | X) | Xp) = E(g−1(ηp(y)+Rp(y)) | Xp) =

∫
g−1(ηp(y)+s)dFRp(y)(s),

which demonstrates that E(Z(y) | Xp) depends on Xp only through the linear part ηp(y).

Therefore, E(Z(y) | Xp) = g−1
p,y(ηp(y)), for g−1

p,y(θ) =
∫
g−1(θ + s)dFRp(y)(s). Furthermore,

var(Z(y) | Xp) = g−1
p,y(ηp(y))(1− g−1

p,y(ηp)(y)).

Then Z(y), conditional on Xp, has a Bernoulli distribution with mean parameter E(Z(y) |

Xp) = g−1
p,y(
∑p

k=0 βk(y)ξk). Following the properties of a likelihood function as in eq. (12), we
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find that for any fixed p,

βp(y) = (β0(y), . . . , βp(y)) = arg min
(β̃0,...,β̃p)

EL
(
g−1
p,y(

p∑
k=0

β̃kξk), Z(y)
)
. (16)

Since for any η̃p =
∑p

k=0 β̃kξk, one has g−1
p,y(η̃p) =

∫
g−1(η̃p + s)dFRp(y)(s), we conclude

|E
(
g−1(η̃p)− g−1

p,y(η̃p)
)
| ≤ |E

{∫
(g−1(η̃p)− g−1(η̃p + s))dFRp(y)(s)

}
|

≤E
{∫
|g−1(η̃p)− g−1(η̃p + s)|dFRp(y)(s)

}
≤
∫

(g−1)′(ζ)|s|dFRp(y)(s)

≤CE(|Rp(y)|) ≤ C
{ ∞∑
j=p+1

βj(y)2
∞∑

j=p+1

λj
}1/2

,

where Rp =
∑∞

j=p+1 βj(y)ξj , and (A.2) has been used.

Observing that L(θ, u) in (12) is Lipschitz continuous in θ, for θ ∈ [ζ, 1 − ζ], where ζ is as

in (A.1), one finds

|EL
(
g−1
p,y(

p∑
k=0

β̃kξk), Z(y)
)
− EL

(
g−1(

p∑
k=0

β̃kξk), Z(y)
)
|

≤ C1|E
(
g−1(η̃p)− g−1

p,y(η̃p)
)
| ≤ C1C

{ ∞∑
j=p+1

βj(y)2
∞∑

j=p+1

λj
}1/2

, (17)

where C1 is a constant which only depends on the link function g and the domain I. Using

assumption (A.5) and the fact that
∑∞

j=1 λj <∞, we can find p = pε,δ such that both

C1C

{∑∞
j=pε,δ+1 βj(y)2

∑∞
j=pε,δ+1 λj

}1/2

γpε,δ
<

ε

4CδC
, for any y ∈ I, (18)

and { ∞∑
j=pε,δ+1

βj(y)2
∞∑

j=pε,δ+1

λj
}1/2

<
δ

3

ε2

4C2
, for any y ∈ I, (19)

are satisfied.

Therefore, by assumption (A.4), eq. (17) and eq. (18),

||(βpε,δ)∗(y)− βpε,δ(y)||2 < C1C

{∑∞
j=pε,δ+1 βj(y)2

∑∞
j=pε,δ+1 λj

}1/2

γpε,δ
<

ε

4CδC
for any y ∈ I,

(20)

where βp(y) is as in eq. (16) and (βp)∗(y) is defined as

(βp)∗(y) = arg min
β̃0,...,β̃p

EL(g−1(

p∑
k=0

β̃kξk), Z(y)). (21)
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To connect to the sample minimization problem (11), we use a uniform weak law of large

numbers as in the Lemma. First, we verify the following condition: For a fixed p,

E[ sup
(β̃0,...,β̃p)∈Bp, y∈I

|L(g−1(

p∑
k=0

β̃kξk), Z(y))|] <∞,

where Bp is a compact subset of Rp and βp(y) ∈ Bp, for all y ∈ I. Note that

E[ sup
(β̃0,...,β̃p)∈B, y∈I

|L(g−1(

p∑
k=0

β̃kξk), Z(y))|]

< 2E[sup | log(1− g−1(η̃)|] + E[sup | log(
g−1(η̃)

1− g−1(η̃)
|] = I + II,

where η̃ =
∑p

k=0 β̃kξk. Using Taylor expansions of I and II over η̃, one finds that under

condition (A.2),

E[ sup
(β̃0,...,β̃p)∈Bp, y∈I

|L(g−1(

p∑
k=0

β̃kξk), Z(y))|]

<C ′E[ sup
(β̃0,...,β̃p)∈Bp, y∈I

|
p∑

k=0

β̃kξk|] < Cp

p∑
k=1

λk < ∞,

where Cp is a finite constant depending on Bp. Therefore, according to the Lemma, for any

fixed p,

sup
(β̃0(y),...,β̃p(y))∈Bp, y∈I

∣∣∣∣∣(1/n)
n∑
i=1

L(g−1(

p∑
k=0

β̃kξik), Zi(y))− E[L(g−1(

p∑
k=0

β̃kξk), Z(y))]

∣∣∣∣∣ P→ 0.

(22)

Combining (22) with condition (A.4), for p = pε,δ, one can find n(ε, δ, pε,δ) such that for all

n ≥ n(ε, δ, pε),

P (sup
y∈I
||(βpε,δ)∗(y)− β̂

pε,δ
(y)||2 >

ε

4CδC
) < δ/3, (23)

where (βp)∗(y) is defined in eq. (21) and β̂
p
(y) is in eq. (11). Combining (20) and (23), eq.

(15) follows and combining Chebyshev’s inequality and (19) leads to eq. (14), completing the

proof.
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Table 1: Simulation results for mean absolute error (MAE), based on 200 simulation runs, for

estimating quantiles at level α = {0.05, 0.1, 0.25, 0.5}, for Gaussian data under sparse and dense

scenarios. Methods compared are the proposed conditional functional quantiles, functional

quantile linear regression (Cardot et al., 2005), and unconditional empirical quantiles. The

best results for each scenario are bolded; K is the number of basis functions used to generate

the predictor functions. For the proposed method, the number of included functional principal

components is selected data-adaptively by the AIC criterion.

Method α = 0.05 α = 0.10 α = 0.25 α = 0.50

Sparse Dense Sparse Dense Sparse Dense Sparse Dense

Proposed 1.95 1.57 1.75 1.39 1.62 1.25 1.59 1.22

K = 2 Cardot et al. 6.85 5.89 6.23 4.46 5.63 2.32 5.40 0.89

Unconditional 11.89 11.76 10.42 10.37 8.69 8.68 8.02 8.07

Proposed 3.56 1.79 3.27 1.64 3.03 1.51 2.98 1.46

K = 4 Cardot et al. 8.37 5.93 8.09 4.50 7.85 2.38 7.79 1.15

Unconditional 15.21 15.36 13.20 13.31 10.77 10.90 9.77 9.90

Proposed 5.75 2.11 5.18 1.97 4.68 1.85 4.54 1.80

K = 6 Cardot et al. 9.11 5.87 8.90 4.42 8.71 2.41 8.62 1.38

Unconditional 16.48 16.28 14.22 14.11 11.40 11.42 10.33 10.39

Proposed 6.72 2.59 5.98 2.45 5.32 2.32 5.14 2.28

K = 8 Cardot et al. 9.36 5.82 9.13 4.41 8.96 2.53 8.92 1.61

Unconditional 16.64 16.74 14.43 14.37 11.73 11.67 10.56 10.56

Proposed 6.80 2.62 5.74 2.50 5.40 2.38 5.16 2.28

K = 10 Cardot et al. 9.36 5.79 9.15 4.38 8.99 2.54 8.94 1.71

Unconditional 16.82 16.84 14.50 14.57 11.79 11.76 10.65 10.54
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Table 2: Simulation results for mean absolute error (MAE), based on 200 simulation runs, for

estimating quantiles at level α = {0.05, 0.1, 0.25, 0.5}, for Gaussian mixture data under sparse

and dense scenarios. Methods compared are the proposed conditional functional quantiles,

functional quantile linear regression (Cardot et al., 2005), and unconditional empirical quantiles.

The best results for each scenario are bolded; K is the number of basis functions used to generate

the predictor functions. For the proposed method, the number of included functional principal

components is selected data-adaptively by the AIC criterion.

Method α = 0.05 α = 0.10 α = 0.25 α = 0.50

Sparse Dense Sparse Dense Sparse Dense Sparse Dense

Proposed 2.84 2.45 2.24 1.91 2.22 1.95 1.83 1.64

K = 2 Cardot et al. 7.46 5.08 6.88 4.32 5.96 3.29 3.95 2.01

Unconditional 14.88 14.73 11.65 11.53 8.57 8.54 5.57 5.56

Proposed 4.88 2.90 3.89 2.31 3.59 2.57 2.91 2.09

K = 4 Cardot et al. 9.39 5.57 8.90 4.92 8.05 4.02 5.64 2.69

Unconditional 18.91 18.85 14.36 14.55 10.49 10.74 6.76 6.96

Proposed 7.24 3.37 5.90 2.79 5.09 2.96 3.92 2.34

K = 6 Cardot et al. 10.25 5.69 9.76 5.09 8.90 4.29 6.26 2.86

Unconditional 19.48 19.94 15.16 15.35 11.27 11.32 7.24 7.30

Proposed 8.35 3.84 6.79 3.30 5.75 3.30 4.32 2.58

K = 8 Cardot et al. 10.67 5.89 10.16 5.31 9.27 4.53 6.52 3.01

Unconditional 20.14 20.22 15.46 15.42 11.52 11.44 7.42 7.40

Proposed 8.40 3.82 6.84 3.34 5.77 3.32 4.40 2.59

K = 10 Cardot et al. 10.63 5.84 10.15 5.29 9.25 4.56 6.51 3.08

Unconditional 20.45 20.52 15.68 15.71 11.54 11.52 7.44 7.43
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Figure 1: Conventional cross-sectional reference growth charts, for percentiles α in

{0.05, 0.2, 0.5, 0.8, 0.95}, overlaid with the growth curves of two girls from the Berkeley Lon-

gitudinal Growth Study.
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Figure 2: Boxplots of mean absolute error (MAE) over 200 simulation runs for conditional

quantile estimation for α ∈ {0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95}. The predictor trajectories are

generated from 10 eigenfunctions and are densely sampled. Conditional distributions are either

Gaussian (left) or follow a Gaussian Mixture (right). The gray boxplots correspond to the

functional quantile linear regression approach (Cardot et al., 2005) and the black boxplots to

the proposed method.
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Figure 3: For the Berkeley growth data, a model with two functional principal components ex-

plains more than 95% of the variation. The corresponding three estimated coefficients functions

β̂0, β̂1, β̂2, defined before eq. (5), are shown above.
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Figure 4: For four randomly selected girls, estimated growth paths obtained from functional

principal component analysis (left panels) and predicted distribution functions for adult height,

conditioning on the observed growth history in the interval [0, 12] (right panels). Estimated

quantiles Qi(α) are marked by ’x’, for α ∈ [0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95]. The subsequently

observed adult height is indicated by the vertical line.
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Figure 5: Diagnostic plots for the proposed functional conditional quantile estimates Q̂i(α),

displaying the function Ī(α) (top panel, see eq. (10)) and the Q-Q plot of the empirical sample

against the model based simulated data (bottom panel). Both plots should be close to the

identity line if the estimation works well, and indeed there is no indication of lack of fit.
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Figure 6: Estimated conditional distribution functions and quantiles Qi(α), marked as ’x’, for

α ∈ [0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95], for adult height, based on meeasurements of height on

[0, 12], for girl A (left upper panel) and girl B (right upper panel), with heights at age 12 of

142.1 cm (girl A) and 141.3 cm (girl B), respectively, both below the 10th percentile of height

at age 12. The vertical line indicates the 10th percentile of adult height in the sample. The

estimated probability for Girl B for an adult height below the 10th quantile is about 0.9 , while

it is smaller than 0.3 for girl A. Adult height turned out to be 164 cm for girl A and 154.5 cm for

girl B. The first (left lower panel) and second (right lower panel) derivative of the growth curves

for girl A (solid line) and girl B (dashed line) show clear differences in the growth patterns of

the two girls up to age 12.
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Figure 7: Growth curves of four randomly selected girls (girls C-F, from top to bottom) in the

interval [0,12] years, with corresponding height at age 13 marked by an asterisk (left panels),

and estimated conditional quantiles of height at age 13, obtained from model (4), for α ∈

[0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95], with a horizontal line indicating the actual height at age 13

(right panels).
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