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A. EXPLORING DIFFERENT SPARSITY LEVELS IN MORTALITY DATA

We explore the sensitivity to a and found that the resulting functions change gradually as a

increases. Figure 5 shows the estimated �j(t) for the mortality data with di↵erent a. As a

increases from 0 to 0.5, we see that the first eigenfunction, shown in the first column, becomes

more and more localized to mid 1990s; The third function (later becomes the second function

due to the trade-o↵ between localization and the ability of explaining variance) becomes more

concentrated at around early 1980s. We also explore the stability of the results while varying

a in the neighborhood of 0.3. As shown in the right panel of Figure 5, the results are quite

stable.

B. ADDITIONAL DATA EXAMPLE: BERKELEY GROWTH DATA

The smooth nature of growth curves has been explored in various previous statistical analy-

ses, including functional data analysis approaches. We apply the proposed LFPCA method

to the Berkeley growth data (Tuddenham and Snyder, 1954). These data contain height

measurements for 54 girls, with 31 measurements taken between ages 1 year and 18 years.

A sample covariance matrix is computed based on equally spaced measurements at every

half year from interpolated curves and then the proposed algorithm is used to solve problem

(5). The solution path along di↵erent levels of localization is investigated. The estimated

eigenfunctions without localization penalty are visualized in the top row of Figure 6, and the

estimated localized eigenfunctions are given in the bottom row of Figure 6. The localization

level is chosen to maintain rFV E = 70% in (12). The total number of components k = 2

is chosen to explain total variation of 85%. The first estimated localized basis function,

explaining 70.1% of the variation, indicates a variational mode in girls’ growth around age

twelve, which obviously matches the well known pubertal growth spurt. The second esti-
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Figure 5: The estimated �j(t), j = 1, 2, 3 for the mortality data with di↵erent values of a.

mated localized basis function, explaining 18.1% of the variation, is localized around ages

five and six, which remarkably matches the mid-growth spurt previously studied by many

researchers (Gasser et al., 1985; Sheehy et al., 1999). The mid-growth spurt is a growth

phenomenon during early childhood, expressed by a mild transitory acceleration of growth

velocity between years five and eight. The individual variations in timings, durations and

intensities of mid-growth spurt are of great interest and some hypotheses have been proposed

for the explanation of individual di↵erences (Mühl et al., 1991). This particular “mode of

variation” is not obvious in standard FPCA. The proposed LFPCA method finds a balance

between interpretability (localization) and amounts of variance explained.

C. PROOFS

Proof of Lemma 3.1. Because D⇧ is a compact set, we know that B = PD⇧
(A) exists and

is unique. Let G = UTBU , then we have G 2 F1 and B = UGUT . Note that G minimizes

kA� UGUTk2F over F1 and

kA� UGUTk2F =kAk2F � 2hA,UGUT i+ kUGUTk2F

=kAk2F � 2hUTAU,Gi+ kGk2F

=kAk2F � kUTAUk2F + kUTAU �Gk2F .
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Figure 6: Top Row: Estimated eigenfunctions for the growth data, b⇢1 is chosen by 5-fold

cross validation; Bottom Row: Estimated orthogonal basis functions, b⇢2 is chosen to maintain

rFVE at 70%, and the number of components k = 2 is chosen to explain at least 85% of the

total variance.

Therefore, G is the projection of UTAU onto F1 and by Lemma 4.1 of Vu et al. (2013) we

have

G =
p�dX

i=1

�+
i (✓)⌘i⌘

T
i

with �i, ⌘i, and ✓ specified in the theorem.

Proof of Theorem 3.2. For any given ⌧ > 0, define the augmented Lagrangian of (8) as

L⌧ (H,Z, Y ) = ID⇧
(H)� hS,Hi+ ⇢2kZk1,1 + hY,H � Zi+ ⌧

2
kH � Zk2F .

The update steps in Algorithm 1 now reads, letting W (r) = ⌧Y (r),

H(r) = argmin
H

L⌧ (H,Z(r�1),W (r�1)) ,

Z(r) = argmin
Z

L⌧ (H
(r), Z,W (r)) ,

Y (r) = Y (r�1) + ⌧(H � Z) .

It is obvious that ID⇧
(H) � hS,Hi and ⇢2kZk1,1 are closed, proper, and convex functions.

Here we say a function f is closed, proper and convex if {(x, t) : f(x)  t} is a closed
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non-empty convex set (Boyd et al. (2011), Section 3.2).

By strong duality, we can find a primal-dual pair of L0(H,Z, Y ), denoted as (H⇤⇤, Z⇤⇤, Y ⇤⇤).

It then follows from the primal and dual optimality that (H⇤⇤, Z⇤⇤, Y ⇤⇤) is a saddle point of

L0 and hence by Section 3.2.1 of Boyd et al. (2011), we have

Z(r) ! Z⇤ and H(r) � Z(r) ! 0, as t ! 1 ,

where (H⇤, Z⇤) is an optimal primal variable for L0.

Proof of consistency result. To prove Theorem 4.1, we need some additional lemmas and

notation as follows. The proof of lemmas are given after the proof of Theorem 4.1.

Let Ij = ((j � 1)/p, j/p] for j = 2, ..., p and I1 = [0, 1/p]. We define �⇤
j(t) = �j(ti) for

t 2 Ii, u⇤
j = p�1/2(�j(t1),�j(t2), ...,�j(tp))T , and uj = u⇤

j/ku⇤
jk2. Let e� : [0, 1]2 7! [0,1)

be such that e�(s, t) = �(ti, tj), if s 2 Ii, t 2 Ij . Define the discretized and diagonal-shifted

covariance matrix ⌃ by ⌃(l, l0) = �(tl, tl0) + a1(l = l0) . Let e�j be eigenfunctions of e� and vj

be eigenvectors of ⌃. Then p�1/2e�j(t) is the ith entry of vj if t 2 Ii. If we further denote the

jth eigenvalue of e� by e�j, then (pe�j + a, vj) is an eigenvalue-eigenvector pair of ⌃.

Let ⇧j =
Pj

i=1 viv
T
i , and ⌃j = ⌃� ⇧j�1⌃⇧j�1. Define ⇧0 = 0 for convenience. For any

measurable B : [0, 1]2 7! R, let kBkHS = [
R
[0,1]2

B(s, t)2dsdt]1/2 be the Hilbert-Schmidt norm.

Lemma C.1. Under Assumptions (A1-A4), let c0 = L(2/�+1) we have for p large enough,

we have kvj � ujk2  c0p�1 , for 1  j  k.

Lemma C.2. Under Assumptions (A1-A3), when p is large enough we have k⌃k2F  c22p
2,

where c22 = a2 + 4k�k2HS + L2. Moreover, the gap between the jth and (j + 1)th eigenvalues

of ⌃ is at least p�/2 for all 1  j  k.

The following lemma is elementary and can be found in Vu and Lei (2013).

Lemma C.3. Let u and v be vectors of same length with unit norm. Then

1p
2
ku� vk2  kuuT � vvTkF 

p
2ku� vk2 .

The same holds when u, v are functions and k·kF is replaced by k·kHS.
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The next lemma characterizes ui as an approximate leading eigenvector of ⌃i. It extends

Lemma 4.2 of Vu and Lei (2013).

Lemma C.4 (Approximate curvature). Let Hj be a solution to (6). Then under Assump-

tions (A2-A4), for p large enough,

p�

8
kHj � uju

T
j k

2
F � 3c0c2

2
h�⌃j, Hj � uju

T
j i , 8 1  j  k .

Proof of Theorem 4.1. The claim follows if we show that sup1jkkbvj � ujk2 = op(1).

For simplicity denote en := kS � ⌃k1,1, which is op(1) by assumption (A1). Let ⇧0 =

b⇧0 = 0, bv0 = 0, �0 = ✏0 = 0. We use induction to show that there exist (✏i, �i : 0  i  k)

such that

sup
0ik

✏i = op(1), sup
0ik

�i = op(p) , (A.1)

max{kbvi � vik2, kb⇧i � ⇧ik2}  ✏i (A.2)

⇢1hD, bvibvTi i  �i . (A.3)

Obviously the claim holds for k = 0. Now assume that the claim holds for k = j� 1, and

j � 1. We will construct ✏j = op(1) and �j = op(p) satisfying (A.2) and (A.3).

Let ⌃j = ⌃� ⇧j�1⌃⇧j�1 for j = 1, ..., k. By Lemma C.4 we have, for p large enough,

p�

8
kHj � uju

T
j k

2
F � 3c0c2

2
h�⌃j, Hj � uju

T
j i . (A.4)

Next we need to control h⌃ � ⌃j, Hj � ujuT
j i and hS,Hj � ujuT

j i, where the first one is

small because Hj and ujuT
j are nearly orthogonal to ⌃ � ⌃j, and the second term needs to

be controlled by the fact that Hj is a maximizer of (6).

For the first term h⌃� ⌃j, Hj � ujuT
j i, by the orthogonality constraint, we have

h⌃� ⌃j, Hji �1h⇧j�1, Hji = �1|h⇧j�1 � b⇧j�1, Hji|  �1✏j�1  c2p✏j�1 .

and similarly

h⌃� ⌃j, uju
T
j i =h⌃� ⌃j, uju

T
j � vjv

T
j i  k⌃j�1kFkuju

T
j � vjv

T
j kF 

p
2c2c0 ,
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where the last inequality follows from Lemma C.1 and Lemma C.3, and therefore

��h⌃� ⌃j, Hj � uju
T
j i
��  c2p(✏j�1 +

p
2c0p

�1) . (A.5)

Now we turn to the term hS,Hj � ujuT
j i. If we can show that

0 hS,Hj � uju
T
j i � ⇢1hD,Hji+Rj , (A.6)

for some Rj = op(p) then we have, combining (A.4) to (A.6),

p�

8
kHj � uju

2
jk

2
F hS � ⌃, Hj � uju

T
j i � ⇢1hD,Hji+R0

j

enpkHj � uju
T
j kF � ⇢1hD,Hji+R0

j , (A.7)

where R0
j = c2p(✏j�1 +

p
2c0p�1) +Rj + 3c0c2/2 . It follows that

kHj � uju
T
j kF  8en

�
+

s
8R0

j

�p
. (A.8)

Since bvjbvTj is the closest rank one, unit norm matrix to Hj, we have

kbvjbvTj � vjv
T
j kF  kbvjbvTj � uju

T
j kF + kuju

T
j � vjv

T
j kF

2kHj � uju
T
j kF +

p
2c0p

�1  16en
�

+ 2

s
8R0

j

�p
+
p
2c0p

�1 ,

and

kb⇧j � ⇧jkF  kb⇧j�1 � ⇧j�1kF + kbvjbvTj � vjv
T
j kF

✏j�1 +
16en
�

+ 2

s
8R0

j

�p
+
p
2c0p

�1 =: ✏j .

Now it remains to find �j. Using (A.7) we have

⇢1hD,Hji enpkHj � uju
T
j kF +R0

j  2enp✏j +R0
j .

On the other hand, let �j,1 be the largest eigenvalue of Hj. Then

✏2j
4

� kHj � uju
T
j k

2
F = kHjk2F � 2hHj, uju

T
j i+ 1 � �2

j,1 � 2�j,1 + 1 ,
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where we use the fact that kHjk2F � �2
j,1, and hHj, ujuT

j i  �j,1kujk22 (von Neumann trace

inequality). It then follows that �j,1 � 1� ✏j/2, which implies that

⇢1hD, bvjbvTj i (1� ✏j/2)
�1⇢1hD,Hji  (1� ✏j/2)

�1
�
2enp✏j +R0

j

�
=: �j .

Direct verification shows that if max0ij�1 ✏i = op(1), max0ij�1 �j = op(p), and Rj =

op(p), then ✏j = op(1) and �j = op(p).

The rest of the proof is to show (A.6) for some Rj = op(p). The main challenge is that

uj is not in the feasible set of problem (6) and hence ujuT
j is not directly comparable to Hj

using optimality condition of (6). To overcome this di�culty, we consider euj, a modified

version of uj so that (a) euj is close to uj in `2 norm; (b) eujeuT
j is feasible for (6); (c) euj is

almost as smooth as uj.

Define euj = (I � b⇧j�1)uj/k(I � b⇧j�1)ujk . We first check the validity of this definition.

kb⇧j�1ujk2 k(b⇧j�1 � ⇧j�1)ujk2 + k⇧j�1vjk2 + k⇧j�1(uj � vj)k2  ✏j�1 + c0p
�1 .

When ✏j�1 is small and p large, (I � b⇧j�1)uj 6= 0, and

keuj � ujk2 =

�����
(I � b⇧j�1)uj

k(I � b⇧j�1)ujk2
� uj

kujk2

�����
2

 2k(I � b⇧j�1)uj � ujk2  2(✏j�1 + c0p
�1) ,

(A.9)

where the last inequality holds when p is large and the first inequality follows from an

elementary fact that, for all u, v,

����
u

kuk2
� v

kvk2

����
2

 2
ku� vk2

max(kuk2, kvk2)
.

Now we establish (A.6). By feasibility of eujeuT
j we have

0 hS,Hj � eujeuT
j i � ⇢1hD,Hji+ ⇢1hD, eujeuT

j i � ⇢2(kHjk1,1 � keujeuT
j k1,1)

hS,Hj � uju
T
j i � ⇢1hD,Hji+ ⇢1hD, eujeuT

j i+ ⇢2p+ |hS, eujeuT
j � uju

T
j i| . (A.10)

We first bound |hS, eujeuT
j � ujuT

j i|:

|hS, eujeuT
j � uju

T
j i| kSkFkeujeuT

j � uju
T
j kF  (k⌃kF + kS � ⌃kF )keujeuT

j � uju
T
j kF
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2
p
2 (c2 + en) p(✏j + c0p

�1) ,

where the last step uses (A.9), Lemma C.2, and the fact that kS � ⌃k1,1 = en.

Now we control ⇢1hD, eujeuT
j i. When ✏j�1 and p�1 are small enough such that k(I �

b⇧j�1)ujk2 � 1/
p
2, we have

⇢1hD, eujeuT
j i = ⇢1k�eujk22  2⇢1k�(I � b⇧j�1)ujk22

4⇢1

2

4k�ujk22 +
 

j�1X

i=1

k�bvik2|hbvi, uji|
!2
3

5  4

"
2⇢1L

2p�4 +
j�1X

i=1

�i(✏j�1 + c0p
�1)2

#
,

where the first two inequalities follow from multiple applications of Cauchy-Schwartz, and the

last inequality holds by definition of �i, the smoothness of uj, and the fact that
Pj�1

i=1 |hbvi, uji|2 =

kb⇧j�1ujk22. As a consequence, we establish (A.6) from (A.10) with

Rj =2
p
2 (c2 + en) (✏j�1p+ c0) + ⇢2p+ 8

"
⇢1L

2p�4 +
j�1X

i=1

�i(✏j�1 + c0p
�1)2

#
= op(p) .

Proof of Theorem 4.2. From assumption A1 and Lemma C.1 it su�ces to prove that if

kS � ⌃k1,1 = O(en) then sup1jkkbvj � vjk2 = O(en + ⇢2).

Consider the estimation procedure given by (5) for j = 1. Let B1 be the collection of all

p⇥ p symmetric matrices with entries in [�1, 1]. The optimization problem can be written

in the following equivalent form.

max
H2F1

min
Z2B1

hS,Hi � ⇢2hZ,Hi .

Let H⇤ be any maximizer, then

H⇤ = arg max
H2F1

hS � ⇢2Z
⇤, Hi = arg max

H2F1
h⌃+W � ⇢2Z

⇤, Hi

where W = S � ⌃ and Z⇤ is the corresponding optimal dual variable.

By Lemma C.1 the eigengap of ⌃ is of order at least p while the operator norm of

W � ⇢2Z⇤ is at most p(kWk1,1 + ⇢2) which is o(p). Thus applying standard spectral

subspace perturbation theory we know that H⇤ = bv1bvT1 where bv1 is the leading eigenvector

of ⌃+W � ⇢2Z⇤, and satisfies for some constant c

kbv1 � v1k2  ckW � ⇢2Z
⇤kF/p  c(en + ⇢2) .
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For j = 2, ..., k, we use induction. Suppose that for j � 1 we have kbvj�1 � vj�1k2 and

kb⇧j�1 � ⇧j�1kF are bounded by O(en + ⇢2).

Now consider the procedure (5) for j. Similarly let H⇤ be any solution and Z⇤ the

corresponding optimal dual variable. We have

H⇤ =arg max
H2Db⇧j�1

hS � ⇢2Z
⇤, Hi

=arg max
H2F1

h(I � b⇧j�1)(S � ⇢2Z
⇤)(I � b⇧j�1), Hi .

The remainder of the proof focuses on analyzing the matrix (I � b⇧j�1)(S� ⇢2Z⇤)(I � b⇧j�1).

In particular, we show that its leading eigenvector is close to vj with the desired rate. We

first write this matrix in four terms

(I � b⇧j�1)(⌃+W � ⇢2Z
⇤)(I � b⇧j�1)

=(I � ⇧j�1)⌃(I � ⇧j�1)

+ (⇧j�1 � b⇧j�1)⌃(I � b⇧j�1) + (I � ⇧j�1)⌃(⇧j�1 � b⇧j�1)

+ (I � b⇧j�1)(W + ⇢2Z
⇤)(I � b⇧j�1)

=T0 + T1 + T2 .

The main term is T0. The leading eigenvector of T0 is vj with an eigengap at least �p/2

according to Lemma C.2. Next we bound T1 and T2. In fact we have

kT1kF  2k⇧j�1 � b⇧j�1kFk⌃k2  2c2k⇧j�1 � b⇧j�1kFp , (A.11)

where c2 is the constant in Lemma C.2 and

kT2kF  kW + ⇢2Z
⇤kF  (en + ⇢2)p .

Then we have

kT1 + T2kF  2c2k⇧j�1 � b⇧j�1kFp+ (en + ⇢2)p . (A.12)

When n and p are large enough, kT1 + T2kF is smaller than the gap between the first and

second largest eigenvalues of T0. Therefore, the induction completes by using Davis-Kahan
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sin⇥ theorem (Bhatia, 1997, Theorem VII.3.1)

kbvjbvTj � vjv
T
j kF  2kT1 + T2kF/(�p/2)  8c2�

�1k⇧j�1 � b⇧j�1kF + 4��1(en + ⇢2) , (A.13)

where c2 is the constant given in Lemma C.2.

Proof of Technical Lemmas

Proof of Lemma C.1. Note that e� is a compact self-adjoint operator from L2(0, 1) to

L2(0, 1) with eigen-decomposition e�(s, t) =
Pp

j=1
e�j

e�j(s)e�j(t) .

The Lipschitz condition on � implies that

ke�� �k2HS :=

Z Z
|�p(s, t)� �(s, t)|2dsdt  L2

4p2
. (A.14)

By Weyl’s inequality, |e�j � �j|  �/2 for large p. Let Ej and eEj be the projection operators

onto the one-dimensional subspaces spanned by �j and e�j, respectively. Then

ke�j � �jk2 
p
2k eEj � EjkHS  4ke�� �kHS

�
 2L

�p
, (A.15)

where the first inequality follows from Lemma C.3, and the second inequality follows from

the Davis-Kahan sin⇥ theorem (Chapter VII of Bhatia (1997)).

On the other hand, by assumption (A4) we have

k�⇤
j � �jk2  k�⇤

j � �jk1  L

2p
. (A.16)

which, together with (A.15), implies that

kvj � u⇤
jk2 

✓
2

�
+

1

2

◆
L

p
.

Also note that

ku⇤
j � ujk2 =

��ku⇤
jk2 � 1

��  k�⇤
j � �jk2  k�⇤

j � �jk1  L

2p
.

Combining the previous two inequalities, we have

kvj � ujk2 
✓
2

�
+ 1

◆
L

p
:= c0p

�1 .
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Proof of Lemma C.2. The first claim follows from, letting ⌃⇤ be the discretized � evalu-

ated at the grid,

k⌃k2F 2kaIpk2F + 2k⌃⇤k2F = 2a2p+ 2p2ke�k2HS

2a2p+ 2p2
⇣
2k�k2HS + 2ke�� �k2HS

⌘
 2a2p+ 2p2

✓
2k�k2HS +

L2

2p2

◆

p2
�
2a2p�1 + 4k�k2HS + L2

�
 c22p

2 ,

where (A.14) is used to bound ke�� �kHS.

The second claim follows from the fact that the eigengaps of ⌃ are the same as those of

⌃⇤, and by Weyl’s inequality:

e�j � e�j+1 ��j � �j+1 � 2ke�� �kHS � � � �

2
= �/2 .

Proof of Lemma C.4. Note that vj is the leading eigenvector of ⌃j, with eigengap at least

p�/2 as implied by Lemma C.2. Then we have

kHj � uju
T
j k

2
F 2kHj � vjv

T
j k

2
F + 2kvjvTj � uju

T
j k

2
F  8

p�
h�⌃, Hj � vjvji+ 4c20p

�2

 8

p�
h�⌃, Hj � uju

T
j i+

8

p�
k⌃kFkuju

T
j � vjv

T
j kF + 4c20p

�2

 8

p�
h�⌃, Hj � uju

T
j i+

8
p
2c0c2
p�

+ 4c20p
�2

 8

p�
h�⌃, Hj � uju

T
j i+

12c0c2
p�

,

where the first and third inequalities come from Cauchy-Schwartz, the second from the

curvature lemma of principal subspace (Vu and Lei (2013), Lemma 4.2), and the last holds

provided that p is su�ciently large.
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