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Abstract

In mixed longitudinal studies, a group of subjects enter the study at different ages (cross-

sectional) and are followed for successive years (longitudinal). In the context of such studies,

we consider nonparametric covariance estimation with samples of noisy and partially ob-

served functional trajectories. The proposed algorithm is based on a noniterative sequential-

aggregation scheme with only basic matrix operations and closed-form solutions in each step.

The good performance of the proposed method is supported by both theory and numerical

experiments. We also apply the proposed procedure to a study on the working memory of

midlife women, based on data from the Study of Women’s Health Across the Nation (SWAN).

Key words and phrases: longitudinal studies, cross-sectional, partial trajectories, functional

data, covariance estimation, consistency.

1 Introduction

A mixed longitudinal study is a mixture of a longitudinal and a cross-sectional study (Berger,

1986; Helms, 1992). Suppose the researchers intend to study the social and cognitive develop-
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ment of children aged four to twelve. In an ideal longitudinal design, a group of four-year-old

children will be recruited and followed over eight successive years. In a mixed longitudinal de-

sign, one can recruit a group of children between the ages of four and eight, and then follow

them for four years (within a typical funding period). Because the age requirement is more flex-

ible at recruitment, this type of mixed longitudinal design results in shorter completion times

and potentially larger group sizes. However, this type of mixed longitudinal design also brings

new challenges for statistical analysis, because the trajectory is only partially observed for each

subject.
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Figure 1: Left: For each of the 2016 subjects, measurements were between age x and x+ 5, for

some x ∈ [48, 58]. Right: The design plots for covariance G(s, t), that is, the assembled pairs of

(tij , til), for 1 ≤ i ≤ n, 1 ≤ j < l ≤ ni. The pooled pairs do not fill the entire domain T 2 because

there are no measurements available for pairs of (tij , til) whenever |j − l| > 5.

Specifically, we consider a data example from the Study of Women’s Health Across the Nation

(SWAN). The SWAN is a community-based, longitudinal study of midlife women. Women aged

between 42 and 52 years were enrolled around 1996/97, and followed annually thereafter. Cur-

rently, SWAN data up to the 10th follow up visit are available in a publicly accessible repository

managed by the ICPSR, at http://www.icpsr.umich.edu/icpsrweb/ICPSR/series/00253.

Although enormous studies have examined cognitive functioning in midlife, few are longitudi-

nal, and most are based on three or fewer cognition assessments (Karlamangla et al., 2017).As

a result, there are insufficient studies on within-person longitudinal decline in cognitive perfor-

mance in those under 60 years of age (Hedden and Gabrieli, 2004; Rönnlund et al., 2005). In
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contrast, the SWAN data contain more follow-ups and a wider age range, providing a good op-

portunity for a longer-term study of women’s midlife health. In particular, we focus on working

memory measurements available from Visits six to ten. By pooling the subjects, the age range

under consideration is a span of 15 years: T = [48, 62]. However, given its mixed longitudi-

nal design, the longitudinal follow-ups of each subject in the SWAN only capture a piece of

the chronological aging trajectory, and the shape might have a complex interaction with age

(Rönnlund et al., 2005; Fuh et al., 2006). As shown in the left panel of Figure 1, the mea-

surements for each subject are only a subset within a period of at most five years. Traditional

parametric models, such as linear mixed models (with age as a between-subject effect, and the

time of follow-up as a within-subject effect), often assume a linear trend over time. However,

the individual chronological aging trajectories of working memory might have a complex shape.

For example, working memory might improve first and then decline, and the age when work-

ing memory starts to decline varies among subjects. Therefore, we believe that nonparametric

models, such as a functional principal component analysis, may reveal interesting features.

We consider a mixed longitudinal design for n subjects, where for each subject k, measure-

ments are obtained at times tkj , for k = 1, . . . , n and j = 1, . . . , nk. We use the notation

Xk(tkj) = Zk(tkj) + εkj , tkj ∈ T , (1)

where εkj are zero mean independent and identically distributed (i.i.d.) measurement errors

that are uncorrelated with all other random components and satisfy var(εkj) = σ2. Here, Z(t),

for t ∈ T , is assumed to be a square-integrable random process with mean and covariance

functions µ(t) and G(s, t) = Cov(Z(s), Z(t)). In a mixed longitudinal design, the observed time

points {tkj}j=1,...,nk
for each subject k are restricted to a subject-specific partial domain. As

shown in the right panel of Figure 1, we do not have within-subject correlation information for

any two points that are more than five years apart in the SWAN data example. To apply a

functional data approach for mixed longitudinal studies, the main methodological challenge is

to nonparametrically estimate the covariance structure G of the underlying process.

Estimating the mean and covariance functions plays a fundamentally important role in a

functional data analysis. Useful tools, such as a functional principal component analysis, often

rely on a consistent covariance function estimation (Yao et al., 2005; Hall and Hosseini-Nasab,
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2006; Li and Hsing, 2010). For conventional functional data, where the pooled design (right

panel of Figure 1) for the covariance is complete, various methods based on kernel smoothing

and splines have been proposed (e.g., Rice and Silverman (1991); Yao et al. (2005); Peng and

Paul (2009); Xiao et al. (2013)). In a study in which the covariance information is incom-

plete, Fan et al. (2007) considered a semiparametric covariance estimation, where the variance

function G(t, t) = σ2(t) is modeled non-parametrically under smoothness conditions, while the

off-diagonal correlation structures are assumed to have a parametric form ρ(s, t, θ). However,

this problem differs from the banded covariance estimation considered in studies such as Bickel

and Levina (2008), Cai et al. (2010), Cai and Yuan (2012), Cai et al. (2016), and the references

therein, because there is no bandable covariance structure in our scenario, and the design pairs

are only within a banded area.

We propose estimating the covariance suing a sequential-aggregation scheme (see Section

2). The proposed algorithm is noniterative, with closed-form solutions and only basic matrix

operations (such as matrix multiplication and singular value decomposition (SVD)) in each step.

We prove that under moderate conditions (see Section 3), the proposed method consistently

recovers the nonparametric covariance structure using data within a banded area. A key step of

the proposed procedure is solving the orthogonal Procrustes or Wahba problem (Wahba, 1965),

that is, finding a rotation matrix to best align two sets of points in two different Euclidean

coordinate systems. This problem was first motivated by satellite attitude determination, then

later applied to many other applications. To theoretically analyze the procedure, we introduce a

new error bound for the solution to Wahba problem (Lemma 1). In the theoretical analysis, we

introduce a series of technical tools on perturbation inequalities of singular subspaces, including

Lemmas 3, 5, 7, and 8, which may be of independent interest.

Fragmentary functional observations have been studied under other modeling assumptions;

see, for example, Delaigle and Hall (2013) and Delaigle and Hall (2016). Descary and Panaretos

(2018) and Kneip and Liebl (2017) consider covariance estimation and reconstruction from frag-

mentary functional observations using an optimization framework. The implementations of both

works involve iterations. In particular, Descary and Panaretos (2018) formulates the problem as

a nonconvex optimization that aims to minimize the error within the observable diagonal band

under a rank constraint. In contrast, we introduce a novel sequential-aggregation approach that
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provides explicit solutions and new insights into the covariance estimation problem. We also

include numerical comparisons with the method of Descary and Panaretos (2018) in the simu-

lation section. In addition, this problem is related to several recent works on high-dimensional

covariance estimation with missing values. For example, Loh and Wainwright (2012) and Lounici

et al. (2014) consider a linear regression or covariance matrix estimation, where the observations

are missing randomly with a fixed rate. In contrast, Kolar and Xing (2012) and Cai and Zhang

(2016) consider a more general setting that allows a nonrandom missing pattern, but still re-

quires that each pair of covariates simultaneously appear in a sufficient number of samples. The

problem discussed in this paper is distinct from these existing settings, because a large portion

of the covariate pairs will never appear in the same sample (such as the pairs between the earlier

and latest observations in the longitudinal studies), by the nature of the design. Bishop and

Byron (2014) studied a similar sequential-aggregation scheme for matrix completion. However,

they mainly consider the completion of high-dimensional low-rank positive semidefinite matrices

in a deterministic setting, whereas we provide a statistical guarantee for covariance estimation

from partially observed noisy functional data.

The rest of this paper is organized as follows. The methodology and algorithm are described

in Section 2, followed by theoretical analyses in Section 3. In Section 4, we present a series of

numerical experiments, including the application to the SWAN data. Section 5 concludes the

paper. The proofs are collected in the Supplementary Materials.

2 Covariance Estimation for Mixed Longitudinal Design

We briefly introduce the notation that will be used throughout the paper. For a matrix A ∈

Rp1×p2 or bivariate function G, let {σ1(A), σ2(A), . . .} and {σ1(G), σ2(G), . . .} be singular values

in nonincreasing order. We adapt the R syntax to indicate matrices/functions restricted to the

subsets of indices/domains: if A ∈ Rp1×p2 , and a ≤ b and c ≤ d are four positive integers,

we use A[a:b,c:d] to denote the submatrix of A formed by its ath to bth rows and cth to dth

columns. Here, “:” alone represents the entire index set, so A[:,1:r] and A[a:b,:] represent the

first r columns of A and the {a, . . . , b}th rows of A, respectively; similarly, G[T1,T2] represents

a function G with domain T1 × T2. Let L(T ) be the Lebesgue measure of any domain T .
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Let ‖A‖F and ‖A‖ be the matrix Frobenius norm and operator norm, respectively: ‖A‖F =(∑
i,j A

2
ij

)1/2
=
(∑

i σ
2
i (A)

)1/2
, ‖A‖ = σmax(A). Denote Ir×r as the r-by-r identity matrix,

and Op,r = {V : V >V = Ir×r} as the set of all p-by-r matrices with orthonormal columns.

In particular, the set of all r-by-r orthogonal matrices can be denoted as Or = Or,r. Denote

‖G‖HS =
(∫∫
|G(s1, s2)|2ds1s2

)1/2
as the Hilbert–Schmidt norm of the bivariate function G.

Finally, we use C,C0, C1, c, c0, . . . to represent generic constants, the exact values of which may

vary from line to line.

Suppose T is the entire period of interest. Consider an equally spaced grid of time points

T = {t1, . . . , tp} on the time domain T . In a mixed-longitudinal design, suppose Tk is the

observational period for subject k, and we observe Xk(Tk) in the contiguous band of the domain

Tk:

Tk ⊆ T ,
L(Tk)
L(T )

= δ, Tk ⊆ T ∩ Tk = {t1, . . . , tp} ∩ Tk, k = 1, . . . , n.

Here, the fraction of observation δ is assumed to be a constant between zero and one and Tk

might not be consecutive, owing to missing values. If Tk is complete with no missing values,

the number of observations is d, with δ = d/p. Suppose the signal-noise decomposition (1)

holds for each observation: Xk(tkj) = Zk(tkj) + εkj . Let Σ0 denote the p× p discretized version

of covariance G, that is, the (i, j)th entry of Σ0 is equal to Cov(Z(ti), Z(tj)) = G(ti, tj). We

estimate G using the discretized version Σ0. Suppose G has approximate rank r. Then, we also

have Σ0 ≈ AA>, where A ∈ Rp×r can be regarded as the factors of Σ0.

We consider a sequential-aggregation-based algorithm. We first divide T into a series of

overlapping sub-domains, then obtain estimates of A on each sub-domain. Next, we aggregate

all estimates on the sub-intervals into a full estimate of A. Here, a crucial rotation operation

is involved in the aggregation step to ensure that the estimates of A on each sub-domain are

aligned. Finally, we obtain an estimate of Σ0 from ÃÃ>, where Ã is an estimate of A up to a

rotation. Then, G is recovered using a standard interpolation technique. The steps are as follows;

see Figure 2. For any sub-index set I ⊆ {1, . . . , p}, we use the notation T (I) = {ti : i ∈ I} and

(Xk)I = Xk(T (I)).

Step 1 For a chosen band parameter b and an increment parameter a satisfying 1 ≤ a ≤ b− r ≤

6



(a) Step 1. Construction of Il, l = 1, . . . , lmax

(b) Step 2 and 3. Construction of Σ̂l and Âl, for l = 1, . . . , lmax

(c) Step 4. Rotate Âl via Ôl

(d) Steps 5 and 6. Aggregate Âl to Ã and calculate Σ̂0 = ÃÃ>

Figure 2: Illustration of the procedure
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b ≤ d, we construct the following sub-index set:

Il = {(l − 1)a+ 1, . . . , {(l − 1)a+ b} ∧ p} , l = 1, . . . , lmax. (2)

Here, lmax = 1 + d(p− b)/ae is the total number of sub-index sets. Each Il except the last

one contains b indices, and the last one contains at most b indices.

Step 2 For l = 1, . . . , lmax, we search for all samples that have full observations in Il, and denote

the set of such samples as Jl:

Jl = {1 ≤ k ≤ n : T (Il) ⊆ Tk} .

Then, the sample covariance matrix for the indices in Il is calculated as

Σ̂l ∈ R|Il|×|Il|, Σ̂l =
1

n∗l

∑
k∈Jl

(
(Xk)Il − X̄Il

) (
(Xk)Il − X̄Il

)>
,

n∗l = |Jl|, X̄Il =
1

n∗l

∑
k∈Jl

(Xk)Il .

(3)

Step 2’ As an alternative to using only subjects that have full observations in Il, we can use all data

available for the pair (Il(i), Il(j)) when computing Σ̂l,[ij]. This scheme is preferred to Step

2 when large portions of subjects have missing values; that is, Xk(Tk) are not complete

consecutive observations (see Theorem 1 and Remark 4): Σ̂l ∈ R|Il|×|Il|, X̄Il ∈ R|Il|,

Σ̂l,[ij] =

∑
k:T (Il(i)),T (Il(j))∈Tk

(
(Xk)Il(i) − X̄Il(i)

) (
(Xk)Il(j) − X̄Il(j)

)
(n∗)i,j,l

,

n∗i,j,l = |{k : T (Il(i)), T (Il(j)) ∈ Tk}| ,

X̄Il(i) =

∑
k:T (Il(i)),T (Il(j))∈Tk(Xk)Il(i)

n∗i,l
, n∗i,l = |{k : T (Il(i)) ∈ Tk}| .

(4)

Step 3 Evaluate the eigenvalue decomposition and the rank-r truncation of Σ̂l as

Σ̂l = ÛlD̂lÛ
>
l , Σ̂

(r)
l = Ûl,[:,1:r]D̂l,[1:r,1:r]Û

>
l,[:,1:r]. (5)

Then, for l = 1, . . . , lmax, we evaluate σ̂2
l = ( 1

|Il|−r
∑|Il|

i=r+1 D̂l,[i,i])∨0 as the sample variance

of the noise and

Âl = Ul,[:,1:r]

{
(Dl,[1:r,1:r] − σ̂2

l · Ir×r) ∨ 0
}1/2 ∈ R|Il|×r (6)

as the estimate of A on the sub-domain Il. Here, Ir×r is the r-by-r identity matrix. By

these calculations, we expect that ÂlÂ
>
l ≈ Σ0,l = (Σ0)[Il,Il].
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Step 4 We construct a suitable right rotation on Âl so that all the pieces can be aligned. Specifi-

cally, we first let Ô1 = Ir×r, and then calculate Ôl+1 sequentially as

Ôl+1 = arg min
O∈Or

∥∥∥(Âl)[(a+1):b,:]Ôl − (Âl+1)[1:(b−a),:]O
∥∥∥2

F
, l = 1, . . . , lmax − 1. (7)

Here, the row indices of (Âl)[(a+1):b,:] and (Âl+1)[1:(b−a),:] both correspond to [la + 1, (l −

1)a+b] ⊆ {1, . . . , p}. Note that (7) is actually the orthogonal Procrustes or Wahba problem

(Wahba, 1965), which can be solved using

Ôl+1 = Ũ Ṽ >, where Ũ Σ̃Ṽ > = (Âl+1)>[1:(b−a),:](Âl)[(a+1):b,:]Ôl is the SVD. (8)

Step 5 In this step, we aggregate all pieces ÂlÔl into one complete factor Ã ∈ Rp×r. For conve-

nience of notation, we “frame” the |Il|-by-r matrix Âl to its original p-by-r factor scale,

Â∗l ∈ Rp×r, Â∗l,[Il,:] = ÂlÔl, and Â∗l,[Icl ,:]
= 0. For 1 ≤ i ≤ p and 1 ≤ j ≤ r, we calculate

Ã[i,j] =

∑
l:i∈Il Â

∗
l,[i,j]

|{l : i ∈ Il}|
. (9)

Step 6 After the sequential aggregation, we estimate Σ0 using

Σ̂0 = ÃÃ> ∈ Rp×p, (10)

then linear interpolate between grid points to obtain Ĝ (Press et al., 1992, Chapter 3.6).

Some smoothing instead of linear interpolation might be useful in data applications for

smoother results and better visualization.

Computation and Tuning Parameters: In summary, the proposed algorithm is noniterative,

and uses only basic matrix calculations, such as matrix multiplications and SVD, which can be

implemented efficiently. The algorithm takes input as a, b, and the rank r. According to our

simulation studies in Section 4, the performance of the method is not sensitive to the selection

of a and b. In our numerical implementation, we suggest selecting b to be slightly smaller than

bandwidth d, and selecting a to be a small increment (in practice a = 0.1× d usually provides

a good enough result). In the following, we describe the random sub-sampling cross-validation

method (Picard and Cook, 1984) used to select the rank r.

We first randomly split n observations {Xk(Tk)}nk=1 into training and testing groups of sizes

n1 ≈ (K−1)n
K and n2 ≈ n

K , respectively, T times. For the tth split, let J
(t)
train and J

(t)
test be the index

9



sets for the training and testing groups, respectively. For each r ∈ {1, . . . , b− a}, we apply the

proposed procedure to the training dataset {Xk(Tk)}k∈J(t)
train

, and denote the outcome as Σ̂(t)(r).

Then, we calculate the sample covariance matrix Σ̂
(t)
test ∈ Rp×p based on the samples from the

testing group,

(Σ̂
(t)
test)[i,j] =
∑

k∈J(t)
test

Tk3T (i),T (j)

(Xik − X̄i)(Xjk − X̄j)

/∑
k∈J(t)

test
Tk3T (i),T (j)

1, if
∑

k∈J(t)
test

Tk3T (i),T (j)

1 ≥ n0,

NA, otherwise,

where n0 is the lower threshold when evaluating the testing sample covariance matrix. Then,

we evaluate the prediction error as

E(r) =

T∑
t=1

∑
(Σ̂

(t)
test)[i,j] 6=NA

(
(Σ̂(t)(r))[i,j] − (Σ̂test)[i,j]

)2
.

Here, to improve accuracy, we only evaluate the prediction errors on those (i, j) pairs where

(Σ̂test)[i,j] is evaluated based on at least n0 samples. Finally, we choose r̂ = arg min1≤r≤b−aE(r),

and apply the proposed procedure with r̂ to obtain the final estimator Σ̂0. In our simulations,

we use K = 5, T = 10, and n0 = 4; other cross-validation methods are expected to yield similar

results.

In practice, we propose using the cross-validation method, because this usually prevents

under-selection. We observed a slight over-selection of r in our simulations, but this is not

a problem in a covariance estimation because the components (eigenvalues) beyond r are all

assumed to be very small. In Section 4, we examine the numerical performance of the proposed

procedure based on cross-validation and the effect of the tuning parameters.

3 Theoretical Analysis

Before presenting the main theoretical results, we first introduce the following assumptions.

Assumption 1. There is a positive integer r such that the eigenvalues of G satisfy λ1(G) ≥

· · · ≥ λr(G) > λr+1(G) ≥ · · · ≥ 0. Let G(r) be the best rank-r approximation for G and

G−(r) = G − G(r). We also assume ‖G‖HS < ∞, ‖G(−r)‖HS ≤ C√
n∗

, where n∗ is the effective

sample size, defined in Theorem 1.

10



The rank r is allowed to increase slowly as n and p grow. The (approximate) reduced-

rank covariance structure is explored by James et al. (2000) and Peng and Paul (2009) for

sparse functional data, where only a few irregularly (randomly) spaced observations are available

on each subject. They view the rank restriction as a form of regularization to avoid over-

parametrization. The same reasoning applies to our scenario, because only a fraction of the

trajectories are observed for each subject.

Assumption 2. For any contiguous subdomain T̃ ⊆ T , we define G
(r)

[T̃ ,T̃ ]
= G(r)(s, t)s∈T̃ ,t∈T̃ .

There exists a constant 0 < κ < δ, such that

γ = maxL(T̃ )
L(T )

≥κ
{tr(G)L(T̃ )

L(T )/λr

(
G

(r)

[T̃ ,T̃ ]

)
} satisfies γ = o((n∗)1/2).

Intuitively speaking, this assumption imposes a lower bound of C/γ on the rth eigenvalues

of G[T̃ ,T̃ ]. It essentially ensures that G restricted on different contiguous subdomain [T̃ , T̃ ] is

nonsingular, so that being able to estimate G using only segments of the functional observations

is possible. As a counter-example, if G has two “spikes” in the sense that only G[0:0.2,0:0.2]

and G[0.8:1,0.8:1] have significant amplitudes, while G[0.2:0.8,0.2:0.8] is zero, then the estimation of

the cross-covariance parts G[0:0.2,0.8:1] and G[0.8:1,0:0.2] is impossible when one can only observe

functional segments of length no more than 0.6. In addition, γ is allowed to increase moderately

as n and p grow. Note that γ ≥ r, and in the scenarios in which γ/r is big, the method using

complete observations only (step 2) is better than step 2’.

Assumption 3. Assume X satisfies the moment condition supt E|X(t)|4 ≤ C.

Assumption 4. There exists L > 0, such that |G(s, t)−G(s′, t′)| ≤ Lmax(|s− s′|, |t− t′|), for

all s, s′, t, t′ ∈ T .

Because we use sample covariance approach and interpolate between observed grid points,

the Lipschitz condition is almost necessary. It is easy to satisfy because we work with a finite

domain T , and it is weaker than the second differentiable conditions usually used in smoothing

methods.

We can now state the main results of this study.

Theorem 1. Suppose Assumptions 1–4 hold. We take b = βp, a = αp for some constants

0 < α < β ≤ δ < 1. Assume β − α ≥ κ ≥ 2r/p (κ and r were defined in the assumptions),

11



n ≥ Cp, and p ≥ Cγ. Then, the proposed procedure yields

E‖Ĝ−G‖HS = O
(√

γ2/n∗ + p−1
)
. (11)

Here, n∗ = minl n
∗
l and n∗l is defined in (3). If we use complete samples to calculate Σ̂l using (3)

of Step 2; n∗ = mini,j,l n
∗
i,j,l and n∗i,j,l is defined in (4) if we use both complete and incomplete

samples to calculate Σ̂l using (4) of Step 2’.

Remark 1. The first error term in (11) is due to estimating errors of the discretized covariance

Σ0. The second error term p−1 is from the linear interpolation of the discretized Σ0.

Remark 2. Theorem 1 provides theoretical guarantees for the proposed procedure under general

mixed longitudinal designs (conditional on Tk), where the effective sample size, n∗, is driven by

the minimum number of samples that cover each sub-interval Il. In a balanced design, where

Tk ⊆ T ({wk, . . . , wk+d−1}), with wk evenly chosen from {1, . . . , p−d+1}, for k = 1, . . . , n, the

boundary sub-intervals I1 and Ilmax have less effective sample sizes than those of middle ones,

which yield a higher estimation error for the boundary part of G. To overcome this bottleneck,

we recommend a boundary-enriched design: beyond the balanced design, as mentioned above,

we include na = cn additional ones with Tk = T ({1, . . . , d}) or T ({p − d + 1, . . . , p}) for a

small constant 0 ≤ c ≤ 1. Alternatively, one can apply an extended-domain design: for each

k = 1, . . . , n, Tk = T ({wk, . . . , wk + d − 1}) ∪ T ({1, . . . , p}), with wk uniformly chosen from

{(2 − d), . . . , p}. Under both the boundary-enriched and the extended-domain designs, the

result of Theorem 1 yields (11).

Remark 3 (Proof sketch of Theorem 1). After introducing some notation, we develop error

bounds for Âl (the outcome of Step 3), Ôl (the outcome of Step 4), Ã (the outcome of Step 5),

Σ̂0, and the final estimator Ĝ (the outcome of Step 6). In particular, Step 4 of the proposed

procedure involves solving the orthogonal Procrustes problem (or Wahba problem) (7). To derive

the error bound of Ôl from the error bound of Âl, we introduce 1, which provides a theoretical

guarantee for the solution of (7). In addition, Lemma 1 is stronger than previous results (cf.,

(Bishop and Byron, 2014, Lemma 16)), which may be of independent interest.

Lemma 1 (Perturbation bound for Wahba problem). Suppose A1, A2, A ∈ Rm×r, O1, O2 ∈ Or,

‖A1 − AO1‖F ≤ a1, ‖A2 − AO2‖F ≤ a2, and σr(A) ≥ λ. Suppose Ô is the solution to Wahba

12



problem,

Ô = arg min
O∈Or

‖A2O −A1‖F ,

or equivalently, Ô = UV > if A>2 A1 = UΣV > is the SVD.

Then, Ô satisfies ∥∥∥Ô −O>2 O1

∥∥∥
F
≤ 2(a1 + a2)

λ
. (12)

Proposition 1 provides a sharper convergence rate when Step 2 is applied (with only complete

pieces) and the random scores are sub-Gaussian distributed.

Proposition 1. Suppose Z(t) = µ(t) +
∑

k≥1 ξkφk(t) is the Karhunen–Loève decomposition,

where {φk(t)}k≥1 is the fixed eigenfunction and {ξk}≥1 are random scores. In addition to the as-

sumptions of Theorem 1, we further assume the normalized leading r scores, ξ̃ = {ξk/λ
1/2
k (G)}rk=1,

are sub-Gaussian distributed, such that E exp(tξ̃>u) ≤ exp(C‖u‖22), for any u ∈ Rr, the tail

part Z(−r)(t) =
∑

k≥r+1 ξkφk(t) satisfies supt E|Z(−r)(t)|4 ≤ Cr/(n∗γ), and the noise satisfies

(E|ε|4)1/2 ≤ Cr/γ. Then, the proposed procedure with Step 2 yields the following rate of conver-

gence:

E‖Ĝ−G‖HS = O
(√

rγ/n∗ + p−1
)
. (13)

Here, n∗ = minl n
∗
l and n∗l is defined in (3).

Remark 4. We briefly compare the convergence rates of step 2 and step 2’. First, n∗ when

using the complete sample is no greater than that when using both complete and incomplete

subjects. On the other hand, the factor γ2 in (11) is greater than rγ in the counterpart of

(13). This is because Âl calculated using the standard sample covariance matrix, as in Step 2,

possesses a sharper convergence rate than that calculated using the extended sample covariance

matrix, as in Step 2’, as demonstrated by Lemma 7. Therefore, there is a trade-off between using

Steps 2 or 2’. In general, we recommend using Step 2’ when most subjects have noncontiguous

observations (missing values); otherwise Step 2 is preferred.

4 Numerical Experiments

Simulations: In this section, we investigate the numerical performance for the proposed proce-

dure using a series of simulation studies. For each setting, we generate Xij =
∑K

k=1 ξikφk(tij) +

13
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Figure 3: The first three eigenfunctions used in the simulations to generate the data.

εij , where i = 1, . . . , n, j = 1, . . . , p, and tij are equally spaced p values on [0, 1]. We observe a

contiguous (δ = d/p) portion of the trajectory for each subject. All simulation results are based

on 100 repetitions.

The first simulation setting is designed to assess the basic performance of the proposed

method, and to explore the choices of the tuning parameters. In particular, we set p = 30, the

true rank K = 3, and the eigenfunctions {φk(t)} as linear combinations of M = 10 cubic B-

splines with equally spaced knots, as shown in Figure 3. The random scores {ξik} are i.i.d normal

with variances (λ1, λ2, λ3) = (42, 32, 22). The errors εij are i.i.d normal with variance one. We let

the length of the observation band d = 10, so that each observation band covers one-third (d/p)

of the total domain. We further let each contiguous subset of length d be observable by nrep =

{10, 20, 50} subjects, which means the total sample size n = nrep × (p− d+ 1) = 210, 420, 1050.

We apply the proposed method in Section 2, with the rank r selected by cross-validation, as

described in Section 2, and report the relative estimation errors for different choices of tuning

parameters b and a in Table 1. Here, the relative estimation error in all simulation settings is

defined as ‖Ĝ − G‖HS/‖G‖HS . We can see that the estimation error decreases as the sample

size increases, and the performance is not sensitive to the values of (b, a), as long as b is slightly

smaller than the bandwidth d and a is small. The cross-validation of the proposed method

tends to slightly over-select r, but over-selection does not affect the RMSE of the covariance

estimation significantly in our simulation settings. In the following simulations, we always use

the bandwidth b = d0.7 · de and the incremental parameter a = d0.1 · de

14



Table 1: Results for simulation 1: the average relative error over 100 simulations are shown, with

the standard error given in parentheses. Here, a and b are different choices of tuning parameters,

and the results are stable.

nrep = 10 nrep = 20 nrep = 50

b = 7, a = 1 0.324 (0.17) 0.224 (0.14) 0.123 (0.06)

b = 7, a = 2 0.325 (0.16) 0.221 (0.13) 0.132 (0.1)

b = 8, a = 1 0.314 (0.17) 0.23 (0.14) 0.13 (0.09)

b = 8, a = 2 0.364 (0.17) 0.292 (0.19) 0.126 (0.08)

b = 9, a = 1 0.326 (0.16) 0.227 (0.15) 0.119 (0.07)

b = 9, a = 2 0.347 (0.15) 0.214 (0.11) 0.145 (0.11)

The second simulation setting further explores the performance under different settings.

In particular, let p = 30 and the fraction of observable domain δ = {1/5, 1/3, 1/2}. In ad-

dition to the previous setting with K = 3, we also consider K = 10, the score variances

(λ1, . . . , λ10) = (42, 32, 22, 2−4, . . . , 2−10), φ1, φ2, φ3 are the same as in the previous settings,

and φk(t) =
√

2 sin(kπt), for k = 4, . . . , 10 (all 10 functions are orthonormalized). Similarly to

the first simulation setting, we implement the proposed procedure with r selected using cross-

validation, and let b = d0.7 · de and a = d0.1 · de; see Table 2. We can see that the proposed

procedure still performs well when there are moderate deviations to the reduced-rank structure.

The estimation error decreases as the observed partial trajectory covers a larger fraction of the

entire trajectory. Note that the selected rank r for the cases K = 10 increases as the sample

size increases, with an average value r = 4.25 for d/p = 1/3 and nrep = 50.

Table 2: Results for simulation 2: the average relative error over 100 simulations are shown,

with the standard error given in parentheses. Here, K is the total number of eigenfunctions

used to generate the covariance, and δ denotes the fraction of domains observed.

K = 3 K = 10

nrep = 10 nrep = 20 nrep = 50 nrep = 10 nrep = 20 nrep = 50

δ = 1/5 0.43 (0.17) 0.397 (0.2) 0.294 (0.21) 0.461 (0.16) 0.403 (0.18) 0.304 (0.19)

δ = 1/3 0.341 (0.17) 0.237 (0.16) 0.135 (0.1) 0.322 (0.16) 0.248 (0.14) 0.143 (0.06)

δ = 1/2 0.243 (0.11) 0.17 (0.07) 0.113 (0.05) 0.248 (0.1) 0.165 (0.05) 0.114 (0.04)
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The third simulation explores the performance when there are further missing values within

the observable fraction of the domain. The setting is the same as that in the first simulation,

except that the data have a 5%, 10%, or 15% missing rate. As in the previous two simulations,

we implement the proposed procedure with r selected by cross-validation, and let b = d0.7 · de,

and a = d0.1 · de; see Table 3. We can see that the proposed procedure performs reasonably

well when there is a moderate number of missing values, and the performance improves when

the sample size becomes large.

Table 3: Results for simulation 3: the average relative error over 100 simulations are shown,

with the standard error given in parentheses. Here, “missing” is the percentage of missing values

within the observed domain.

missing nrep = 10 nrep = 20 nrep = 50 nrep = 100

5% 0.36 (0.14) 0.24 (0.12) 0.16 (0.07) 0.12 (0.06)

10% 0.39 (0.16) 0.29 (0.13) 0.19 (0.08) 0.13 (0.05)

15% 0.42 (0.13) 0.32 (0.13) 0.22 (0.1) 0.16 (0.06)

The fourth simulation compares the performance of the proposed method with the matrix

completion method proposed in Descary and Panaretos (2018). The data-generating procedure

is the same as those of the previous simulations. The matrix completion method is implemented

using the Matlab code downloaded from the authors’ website. The method requires an input

of rank r, and they propose using a scree-plot to manually determine the rank (looking for an

“elbow” in the plot). Because this approach is not feasible in simulation settings, we use the

true rank r for both methods. The results are reported in Table 4. The relative performance

depends on the fraction of the domain observed. For δ = 1/2, both methods work fine, and the

matrix completion method is slightly better for a small sample size (nrep = 10). For δ = 1/3,

both methods work fine, and the proposed method is slightly better for larger sample sizes. For

δ = 1/5, neither of the methods work well for a small sample size (nrep = 10), although the

error for the matrix completion method is not as large as that of the proposed method. When

n increases, the error of the proposed method decreases to a reasonably small level; the matrix

completion method is less satisfactory in this case.

Application to a study on the working memory of midlife women: We downloaded
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Table 4: Results for simulation 4: the average relative error over 200 simulations are shown, with

the standard error given in parentheses. Here, “MatComp” is the matrix completion method

proposed in Descary and Panaretos (2018), and δ denotes the fraction of domains observed.

nrep = 10 nrep = 20 nrep = 50 nrep = 100

δ = 1/5 proposed 0.37 (0.11) 0.27 (0.09) 0.17 (0.06) 0.12 (0.04)

MatComp 0.32 (0.06) 0.27 (0.04) 0.23 (0.02) 0.22 (0.02)

δ = 1/3 proposed 0.26 (0.10) 0.2 (0.06) 0.12 (0.04) 0.08 (0.03)

MatComp 0.29 (0.08) 0.2 (0.05) 0.14 (0.03) 0.11 (0.02)

δ = 1/2 proposed 0.26 (0.11) 0.18 (0.07) 0.12 (0.05) 0.08 (0.03)

MatComp 0.24 (0.08) 0.17 (0.05) 0.11 (0.03) 0.08 (0.02)

the data from the SWAN database (link: http://www.icpsr.umich.edu/icpsrweb/ICPSR/

series/00253). The study examines the physical, biological, psychological, and social health

of women during their middle years. In this section, we focus on the measurement of working

memory, that is, the ability to manipulate information held in memory. In this study, working

memory was assessed using digit span backwards (DSB) (Corporation, 1997): participants repeat

strings of single-digit numbers backwards, with two trials at each string length, increasing from

two to seven, stop after errors in both trials at a string length; score as the number of correct

trials (range, 0–12). The testing was first administered at the fourth follow-up to 2709 women,

and then repeated in the sixth and subsequent visits. The data up to the tenth visit are publicly

available. We exclude those subjects who dropped out before the tenth follow-up visit, leaving a

sample size of n = 2016. Following previous literature, we did not use the first measurement in

order to alleviate the practice effect on the testing results (Karlamangla et al., 2017). Instead,

we focused on the age range T = [48, 62]. Each subject has up to five years of consecutive data,

and the average number of follow-ups is 3.3. We applied the proposed method described in

Section 2 to estimate the covariance function, using a rank r = 3 selected by cross-validation, a

band parameter b = 4, and an increment parameter a = 1. The estimated covariance surface is

shown in the left panel of Figure 4. We can see that the variance is bigger at the middle part

around age 55.

The nonparametric covariance estimation serves as a stepping stone for further functional
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Figure 4: Left: The estimated covariance surface of the working memory data for women aged

between 48 and 62. Right: The estimated mean function and estimated eigenfunctions cor-

responding to the largest three modes of variation, where the dashed lines are 95% bootstrap

simultaneous confidence bands.

data analysis. In the following, we perform a functional principal component analysis for the

working memory trajectories, and examine how the shapes of the trajectories depend on ed-

ucation (less than high school, high school, some college/technical school, college graduate,

postgraduate), controlling for race (Black, Chinese, Japanese, Caucasian/White, Non-Hispanic,

Hispanic) and difficulty paying for basics (no hardship, somewhat hard, very hard). These are

just for illustration of the functional data methods; a thorough analysis for this complex data

set is beyond the scope of this study.

Given the estimated covariance, we conducted a functional principal component analysis

based on the Karhunen–Loève expansion Z(t) = µ(t) +
∑

j ξjφj(t). Here, {φj(t), j ≥ 1} is an

orthonormal basis that consists of eigenfunctions of G, and {ξj =
∫

(Z(t)− µ(t))φj(t)dt : j ≥ 1}

are (random) scores. Intuitively, the first K terms expansion, µ(t) +
∑K

j=1 ξjφj(t), forms a K-

dimensional representation of Z(t) with the smallest unexplained variance. The smoothed mean

function and the first three estimated eigenfunctions {φj(t), j = 1, 2, 3} are visualized in the

right panel of Figure 4. We also constructed 95% confidence bands for these quantities using
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the nonparametric bootstrap method, as outlined in Hall and Hosseini-Nasab (2006). The best

linear prediction methods, as used in Yao et al. (2005), were applied to obtain estimates of ξj .

The mean function shows that the working memory function for a middle-age woman is, on

average, decreases as she gets older. With longitudinal declines, on average, there are individual

differences in working memory aging and possible improvements in performance over multiple

years. The first eigenfunction φ1(t) is close to a horizontal line. Therefore, φ1(t) can be inter-

preted as a size component: subjects with a positive score in the direction of this eigenfunction

have better working memory function than that of an average woman for all ages between 48

and 62. The regression analysis show that this component is significantly and positively corre-

lated with education level, which means that people with higher education tend to have higher

working memory scores over the entire period. The other two covariates, financial status and

race, are also statistically significant. The second eigenfunction φ2(t) has a reversed U-shape

with a maximum at around age = 55. This can be interpreted as a changing pattern before and

after age 55, which possibly relates to the menopausal transition, resilience, and compensatory

mechanisms (Fuh et al., 2006; Greendale et al., 2009; Hahn and Lachman, 2015). Subjects with

a positive score in the direction of this eigenfunction have an increase in working memory be-

fore age 55, and a fast decline after age 55. The regression analysis show that education is a

significant factor, with the postgraduate education group having a more prominent reversed U-

shape pattern. The other two covariates are not statistically significant. The third component

φ3(t) crosses the zero line around age 55, representing a complementary effect to the second

component.

This functional data analysis perspective differs from that of traditional linear mixed ef-

fect models, because the modes of variation for individual chronological aging trajectories are

extracted nonparametrically from the data (FPC components), and one can examine how the

shape of the trajectories interact with other covariates. In comparison, traditional linear mixed

effect models (Karlamangla et al., 2017) often control these covariates as fixed main effects.
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5 Conclusions

We have focused on data observed on a regular equally spaced grid. The proposed sequential

aggregating method can be readily extended to the setting in which the observational times are

irregular and random. However, adjustments need to be made to step 2. In particular, the

sample covariance estimate for Σl in step 2 is not applicable if the data are irregularly observed.

In this case, one can first adopt a bivariate local linear smoothing method (Yao et al., 2005)

to estimate the covariance on the observable part (the diagonal banded area), say G̃(s, t), for

|s− t| < δ. Then, for each piece l, take the corresponding sub-piece from G̃(s, t), evaluate that

on a predefined regular grid Il, and use that as Σ̂l. All other steps remain the same.
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Supplement to “Nonparametric covariance estimation for mixed

longitudinal studies, with applications in midlife women’s health”

Anru R. Zhang and Kehui Chen

Abstract

In this supplement, we provide the proofs for theoretical results of the paper.

A Proof of Theorem 1.

We prove Theorem 1 by steps. Some key technical procedures are postponed to Lemmas 4, 7,

and 8.

Step 1 Since we can always rescale the time domain, let T = [0, 1] throughout the proof without

loss generality. We introduce some notations and prove basic properties in this step. Recall

T = {t1, . . . , tp} is a regular grid on T . Denote

Σ = Cov((X(t1), . . . , X(tp))
>), Σ0 = Cov((Z(t1), . . . , Z(tp))

>) ∈ Rp×p,

Σl = Cov(XIl), Σ0l = Cov(ZIl) ∈ R|Il|×|Il|, l = 1, . . . , lmax.
(14)

Then

Σ = Σ0 + σ2Ip, Σl = Σ0l + σ2I|Il|,

Σl and Σ0l are submatrices of Σ and Σ0,

Σl = Σ[Il,Il], Σ0l = (Σ0)[Il,Il], l = 1, . . . , lmax. (15)

For each subject k, recall Xk(T ) = (Xk(t1), . . . , Xk(tp))
> is the discretization of the sample

path Xk. Given G = G(r) + G(−r), we also decompose Σ0 = Σ
(r)
0 + Σ

−(r)
0 , where (Σ

(r)
0 )ij =

G(r)(ti, tj), (Σ
(−r)
0 )ij = G(−r)(ti, tj). Suppose the eigenvalue decomposition of Σ

(r)
0 and Σ

(r)
0l

are

Σ
(r)
0 = UDU>, U ∈ Op,r, D ∈ Rr×r is diagonal; (16)

Σ
(r)
0l = (Σ

(r)
0 )[Il,Il], Σ

(−r)
0l = (Σ

(−r)
0 )[Il,Il], l = 1, . . . , lmax.

1



Namely, Σ
(r)
0l and Σ

(−r)
0l are the submatrices of Σ

(r)
0 and Σ

(−r)
0 . Then Σ

(r)
0l + Σ

(−r)
0l = Σ0l and

Σ
(r)
0l = U[Il,:]DU

>
[Il,:]

. It is also noteworthy that Σ
(r)
0l and Σ

(−r)
0l are not necessarily orthogonal,

and Σ
(r)
0l is not necessarily the best rank-r approximation of Σ0l. We also define

A = UD1/2 ∈ Rp×r, Al = U[Il,:]D
1/2 ∈ R|Il|×r, l = 1, . . . , lmax

then Σ
(r)
0 = AA>, Σ

(r)
0l = AlA

>
l .

(17)

Especially, A and Al can be seen as the factors of Σ0 and Σ0l.

Since G(s1, s2) is Liptchitz, by Weyl’s inequality (Weyl, 1949),

|σj(Σ0)/p− σj(G)| ≤ O(1/p), ∀j; ‖Σ(−r)
0 ‖F /p ≤ C‖G(−r)

0 ‖HS +O(1/p), (18)

‖Σ0‖ ≤ p · σ1(G) +O(1) ≤ Cp, (19)

‖Σ(r)
0 ‖F ≤ ‖Σ0‖F ≤ p · ‖G‖HS +O(1) ≤ Cp. (20)

We also have

E‖X(T )‖42 =E

(
p∑
i=1

X(T (i))2

)2
Cauchy-Schwarz

≤ p

p∑
i=1

EX(T (i))4

≤Cp2 sup
t

E|X(t)|4 ≤ Cp2.

(21)

Let Il = [t(l−1)a+1 − 1/(2p), {t(l−1)a+b + 1/(2p)} ∧ 1], then Il is the time sub-domain cor-

responding to the grid indices subset Il. By the construction of Il in (2), Il ∩ Il+1 =

{la + 1, . . . , (l − 1)a + b}, so |Il ∩ Il+1| = b − a, L(Il ∩ Il+1) ≥ b−a
p ≥ κ (introduced in

Assumption 2), thus

σr(G
(r)
[Il∩Il+1,Il∩Il+1]) ≥ c/γ ·

L(Il ∩ Il+1)

L(T )

based on the assumption. Provided that p > Cγ for large constant C > 0, we further have

σr

(
Σ

(r)
0,[Il∩Il+1,Il∩Il+1]

)
= σr

(
G

(r)
[Il∩Il+1,Il∩Il+1]

)
· p+O(1)

Assumption 2
≥ tr(G)p/γ · L(Il ∩ Il+1)

L(T )
+O(1) ≥ cp/γ.

(22)

The constant c here may depend on constant κ. Provided that ‖D‖/p = σ1(Σ0)/p ≤ σ1(G)+

O(1/p) ≤ C, A[Il∩Il+1,:]A
>
[Il∩Il+1,:]

= Σ
(r)
0,[Il∩Il+1,Il∩Il+1], we further have

σr
(
A[Il∩Il+1,:]

)
=

√
σr

(
Σ

(r)
0,[Il∩Il+1,Il∩Il+1]

)
≥ c
√
p/γ, l = 1, . . . , lmax. (23)

‖A‖ ≤
√
σ1(Σ0) ≤ C√p. (24)

2



Step 2 Our aim in this step is to develop a perturbation bound for Âl, i.e. to characterize the

distance between Âl and Al for each l = 1, . . . , lmax. Recall ∆l = ‖Σ̂l − Σl‖F , λ = ‖Σ(−r)
0 ‖F .

By Lemma 4 and b ≥ 2r,∥∥∥ÂlÂ>l − Σ
(r)
0l

∥∥∥
F

=
∥∥∥ÂlÂ>l −AlA>l ∥∥∥

F
≤ C

(
∆l + ‖Σ(−r)

0 ‖F
)
, l = 1, . . . , lmax. (25)

By Lemma 7, there exists Ql ∈ Or such that∥∥∥Âl −AlQl∥∥∥
F
≤
‖ÂlÂ>l −AlA>l ‖F√

σr(Al)σr(Âl)
≤ C (∆l + λ)√

σr(Al)σr(Âl)
∧
√
‖Â‖2F + ‖A‖2F . (26)

We analyze each term in (26) as follows. By (23),

σr(Al) ≥ c
√
p/γ;

σ2
r (Âl) = σr(ÂlÂ

>
l )

(25)

≥ σr(Σ
(r)
0l )− C (∆l + λ)

(22)

≥ cp/γ − C (∆l + λ) .

(27)

‖Al‖2F =tr(AlA
>
l ) =

r∑
j=1

σj(Σ
(r)
0l ) ≤

√
r‖Σ(r)

0l ‖F ≤
√
r‖Σ(r)

0 ‖F

(20)

≤
√
r(p · ‖G‖HS +O(1)) ≤ Cp

√
r,

‖Âl‖2F =tr(ÂlÂ
>
l ) ≤

√
r‖ÂlÂ>l ‖F

(25)

≤
√
r‖Σ0l‖F + C

√
r (p+ ∆l + λ)

≤C
√
r (p+ ∆l + λ) .

By combining the previous inequalities, we conclude that∥∥∥Âl −AlQl∥∥∥
F
≤ C(∆l + λ)(

p
γ

(
p
γ − C(∆l + λ)

)
+

)1/4
∧ C

{
r1/4(p1/2 + λ1/2 + ∆

1/2
l )

}

:=∆̃l,

(28)

for l = 1, . . . , lmax and some uniform constant C > 0. Here (x)+ = max{x, 0} for any x ∈ R.

Step 3 In this step, we assume (28) hold. Recall Ôl is calculated sequentially. In this step, we study

how the statistical error of Ôl is accumulated based on (28) in this step. Ideally speaking,

Ôl+1 can be seen as an estimation of (Q>l+1Q1Ô1). Specifically, we aim to show that there

exists a uniform constant C > 0 such that∥∥∥Ql+1Ôl+1 −Q1Ô1

∥∥∥
F
≤ C∆̃√

p/γ
, l = 0, . . . , lmax − 1. (29)
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and ∥∥∥ÂlÔl −AlQ1Ô1

∥∥∥
F
≤ C√γ∆̃, l = 1, . . . , lmax. (30)

Here, ∆̃ =
∑lmax

l=1 ∆̃l. First, for each l = 1, . . . , lmax − 1, we introduce

B
(2)
l := (Âl)[(a+1):b,:] · Ôl ∈ R(b−a)×r, B

(1)
l+1 := (Âl+1)[1:(b−a),:] ∈ R(b−a)×r.

Essentially, B
(2)
l contains the last (b−a) rows of Âl after rotation and B

(1)
l+1 contains the first

(b− a) rows of Âl+1 before rotation. According to the proposed procedure (7),

Ôl+1 = arg min
O∈Or

∥∥∥B(2)
l −B

(1)
l+1 ·O

∥∥∥
F
. (31)

Since B
(2)
l and B

(1)
l+1 are submatrices of Âl and Âl+1 respectively, they also satisfy∥∥∥B(2)
l −Al,[(a+1):b,:]QlÔl

∥∥∥
F

=
∥∥∥Âl,[(a+1):b,:]Ôl −Al,[(a+1):b,:]QlÔl

∥∥∥
F

≤
∥∥∥ÂlÔl −AlQlÔl∥∥∥

F
=
∥∥∥Âl −AlQl∥∥∥

F

(28)

≤ ∆̃l.

(32)

∥∥∥B(1)
l+1 −Al+1,[1:(b−a),:]Ql+1

∥∥∥
F

=
∥∥∥Âl+1,[1:(b−a),:] −Al+1,[1:(b−a),:]Ql+1

∥∥∥
F

≤
∥∥∥Âl+1 −Al+1Ql+1

∥∥∥
F

(28)

≤ ∆̃l+1.

(33)

More importantly, Al,[(a+1):b,:] = Al+1,[1:(b−a),:] = A[Il∩Il+1,:], as they actually represent the

same submatrix of A. Then (31)–(33) and Lemma 1 yield∥∥∥Ôl+1 −Q>l+1QlÔl

∥∥∥
F

=
∥∥∥Ql+1Ôl+1 −QlÔl

∥∥∥
F

≤
2
(∥∥∥B(2)

l −Al,[(a+1):b,:]QlÔl

∥∥∥
F

+
∥∥∥B(1)

l+1 −Al+1,[1:(b−a),:]Ql+1

∥∥∥
F

)
σr(AIl∩Il+1

)

≤ 2(∆̃l + ∆̃l+1)

σr(A[Il∩Il+1,:])

(23)

≤ C(∆̃l + ∆̃l+1)√
p/γ

.

(34)

Recall ∆̃ =
∑lmax

l=1 ∆̃l. Thus,

∥∥∥QlÔl −Q1Ô1

∥∥∥
F
≤

l−1∑
k=1

∥∥∥Qk+1Ôk+1 −QkÔk
∥∥∥
F

≤
l−1∑
k=1

C(∆̃l + ∆̃l+1)√
p/γ

=
C∆̃√
p/γ

,
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which has finished the proof for (29). Then∥∥∥ÂlÔl −AlQ1Ô1

∥∥∥
F
≤
∥∥∥ÂlÔl −AlQlÔl∥∥∥

F
+
∥∥∥AlQlÔl −AlQ1Ô1

∥∥∥
F

≤
∥∥∥Âl −AlQl∥∥∥

F
+ ‖Al‖ ·

∥∥∥QlÔl −Q1Ô1

∥∥∥
F

(28)(29)

≤ ∆̃l + ‖Σ0l‖1/2 ·
C∆̃√
p/γ

(19)

≤ C
√
γ∆̃

(35)

for l = 1, . . . , lmax, which has finished the proof for (30).

Step 4 In this step, we develop the error bound from sequential aggregation based on (30). Recall

Ã ∈ Rp×r, Ã[i,:] =

∑
l:i∈Il Â

∗
l,[i,:]

|{l : i ∈ Il}|
. (36)

The direct way to analyze Ã is complicated. We instead consider the following half integers

between 1/2 and p+ 1/2,

B = {.5, a+ .5, . . . , (lmax − 1)a+ .5}

∪ {b+ .5, b+ a+ .5, . . . , b+ (lmax − 1)a+ .5} ,
(37)

and divide the whole index set {1, . . . , p} into pieces, say K1, . . . ,Km, by inserting “bars”

with the half integers in (37). For example, when p = 10, b = 5, a = 3, then B = {.5, 3.5, 6.5}∪

{5.5, 8.5, 11.5}, and {1, . . . , 10} is divided as the following subsets

K1, . . . ,K5 = {1, 2, 3}, {4, 5}, {6}, {7, 8}, {9, 10}.

Such a division has two important properties,

• Given |B| ≤ 2lmax and 0.5 ∈ B, {1, . . . , p} is divided into at most 2lmax intervals, so

m ≤ 2lmax.

• For any piece Ks and two indices i, j ∈ Ks, we must have

{l : i ∈ Il} = {l : j ∈ Il},

namely Indices i and j belong to the same set of sub-intervals {Il}. Thus, we can further

denote JKs = {l : i ∈ Il,∀i ∈ Ks} as the sub-intervals that covers Ks. Then the following

equality holds,

Ã[Ks,:] =
1

|JKs |
∑
l∈JKs

Â∗l,[Ks,]
. (38)

Based on the definition of JKs , we also know

∀l ∈ JKs , Ks ⊆ Il. (39)
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Based on these two points, we analyze Ã on each piece Ks and then aggregate as follows,

∥∥∥Ã−AQ1Ô1

∥∥∥
F

=

√√√√ m∑
s=1

∥∥∥Ã[Ks,:] −A[Ks,:]Q1Ô1

∥∥∥2

F

(38)
=

√√√√√ m∑
s=1

∥∥∥∥∥∥ 1

|JKs |
∑
l∈JKs

(
Â∗l,[Ks,:]

−Al,[Ks,:]Q1Ô1

)∥∥∥∥∥∥
2

F

.

(40)

Now for each s = 1, . . . ,m,∥∥∥∥∥∥ 1

|JKs |
∑
l∈JKs

(
Â∗l,[Ks,:]

−A[Ks,:]Q1Ô1

)∥∥∥∥∥∥
F

≤ 1

|JKs |
∑
l∈JKs

∥∥∥(Â∗l,[Ks,:]
−A[Ks,:]Q1Ô1

)∥∥∥
F

(39)

≤ 1

|JKs |
∑
l∈JKs

∥∥∥(ÂlÔl −AlQ1Ô1

)∥∥∥
F

(30)

≤ Cγ1/2∆̃.

(41)

Combining (40) and (41), we obtain∥∥∥Ã−AQ1Ô1

∥∥∥
F
≤ C
√
mγ1/2∆̃ ≤ Clmaxγ

1/2∆̃. (42)

By definition of lmax, b/p ≤ Cl−1
max, thus lmax ≤ C. Provided that σmax(A) = ‖Σ0‖ and

n∗ ≥ Cγ2 for large constant C,

σmax(Ã) ≤ σmax(AQ1Ô1) + ‖Ã−AQ1Ô1‖F
(42)

≤ Cp1/2 + Cγ1/2∆̃.

Then the following inequality holds,∥∥∥Σ̂0 − Σ
(r)
0

∥∥∥
F

=
∥∥∥ÃÃ> −AA>∥∥∥

F

≤
∥∥∥ÃÃ> −AQ1Ô1Ã

>
∥∥∥
F

+
∥∥∥AQ1Ô1Ã

> −AQ1Ô1Ô
>
1 Q
>
1 A
>
∥∥∥
F

(42)

≤ σmax(Ã>) · Cγ1/2∆̃ + σmax(A) · Cγ1/2∆̃

≤Cγ1/2∆̃
(
Cp1/2 + Cγ1/2∆̃

)
.

(43)

Given Σ0 = Σ
(r)
0 + Σ

(−r)
0 and ‖Σ(−r)

0 ‖F ≤ λ, in summary, we have proved the upper bound∥∥∥Σ̂0 − Σ0

∥∥∥
F
≤ Cγ1/2∆̃

(
Cp1/2 + Cγ1/2∆̃

)
+ λ = C(γp)1/2∆̃ + Cγ∆̃2 + λ.
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Step 5 It remains to develop the expected error upper bound for Σ̂0 and Ĝ. Recall Cov(XIl) = Σl.

If Σ̂l is calculated from complete samples by (3) in Step 2, we have

E∆2
l =E

∥∥∥∥∥∥ 1

n∗l

∑
k∈Jl

((Xk)Il − X̄Il)((Xk)Il − X̄Il)
> − Σl

∥∥∥∥∥∥
2

F

≤ C
n∗l

E
∥∥∥((Xk)Il − µ(Il))((Xk)Il − µ(Il))

> − Σl

∥∥∥2

F

≤ C
n∗l

E‖(Xk)Il(Xk)
>
Il
‖2F ≤

1

n∗l
E‖X(T )‖42

(21)

≤ Cp2

n∗l
.

(44)

Under the incomplete observation scenario (Step 2’), we have

E∆2
l

=

|Il|∑
i,j=1

E

{∑
k:Il(i),Il(j)∈Tk

(
Xk(Il(i))− X̄(Il(i))

) (
Xk(Il(j))− X̄(Il(j))

)
(n∗)i,j,l

− Σl,ij

}

=

|Il|∑
i,j=1

E {(X(Il(i))− µ(Il(i))) (X(Il(j))− µ(Il(j)))− Σl,ij}2

(n∗)i,j,l

≤C
|Il|∑
i,j=1

E {X(Il(i)) ·X(Il(j))}2

(n∗)i,j,l
≤ C

|Il|∑
i,j=1

EX(Il(i))
4 + EX(Il(j))

4

2n∗i,j,l

≤C|Il|
2

n∗
sup
t

EX(t)4 ≤ Cp2

n∗
.

(45)

Now we analyze ‖Σ̂0 −Σ0‖F in two scenarios under the complete sample case (Step 2). The

incomplete sample case (Step 2’) similarly follows. Recall the definitions of ∆̃l and ∆̃,

∆̃l =
C(∆l + λ)(

p
γ

(
p
γ − C(∆l + λ)

)
+

)1/4
∧ C

{
r1/4(p1/2 + λ1/2 + ∆

1/2
l )

}
, ∆̃ =

∑
l

∆̃l.

Let

B = {p/γ − C(∆l + λ) ≥ p/(2γ),∀l = 1, . . . , lmax}

= {C(∆l + λ) ≤ p/(2γ),∀l = 1, . . . , lmax}
(46)

be a “good” event. By Markov’s inequality,

P(Bc) ≤
lmax∑
l=1

E{C(∆l + λ)}2

p2/(2γ)2

(44)(45)

≤ Clmaxp
2/n∗

p2/γ2
≤ Cγ2/n∗. (47)
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When B holds, note that n∗ ≥ Cp, we have

E
∥∥∥Σ̂0 − Σ0

∥∥∥
F

1B ≤ E
{
C(γp)1/2∆̃ + Cr∆̃2 + λ

}
1B

≤C(γp)1/2
lmax∑
l=1

E
(∆l + λ)

(p/γ)1/2
+ Cγ · E

{
∑lmax

l=1 (∆l + λ)}2

(p/γ)
+ λ

≤Cγ
√
p2/n∗ + Cγp/n∗ ≤ Cp

√
γ2/n∗.

When Bc holds, given n∗ ≥ γ2, p ≥ γ, we have

E
∥∥∥Σ̂0 − Σ0

∥∥∥
F

1Bc ≤ EC

{
γ1/4(p1/2 + λ1/2 +

lmax∑
l=1

∆
1/2
l )

}
1Bc

≤CP (Bc)γ1/4p1/2 +

lmax∑
l=1

Cγ1/4
(
E(∆

1/2
l )2

)1/2
·
(
E12

B

)1/2
≤Cγ

9/4p1/2

n∗
+ Clmaxγ

1/4
(
p/(n∗)1/2 · γ2/n∗

)1/2

≤Cγ
9/4p1/2

n∗
+
Cγ5/4p1/2

(n∗)3/4
≤ Cp

√
γ2/n∗.

In summary,

E
∥∥∥Σ̂0 − Σ0

∥∥∥
F
≤ Cp

√
γ2/n∗.

Finally, since Σ0 is a p-by-p linear interpolation for G, we finally have∥∥∥Ĝ−G∥∥∥
HS
≤ 1

p
‖Σ̂0 − Σ0‖F +O(p−1) = O(

√
γ2/n∗ + p−1).

�

B Proof of Proposition 1

The key of developing a sharper rate for Σ̂ is on a better estimation bound for ‖Âl − AlO‖F ,

where Âl is the estimated factor computed in Step 3 of the proposed procedure. The essence of

the sharper bound relies on the following lemma.

Lemma 2. Suppose all conditions in Theorem 1 and Proposition 1 hold. Recall Âl is the

estimation of the factor of each piece calculated in Step 3 in the proposed procedure. Then there

exists a “good event” B∗ (defined later in Equation 65) that happens with probability at least

1− Cγr/n∗, such that

E min
O∈Or

‖Âl −AlO‖2F · 1{B∗ holds} ≤ Cpr/n∗l , ∀l = 1, . . . , lmax.
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Proof of Lemma 2. We assume µ(t) = 0 without changing the covariance estimators essen-

tially. Note that the sample covariance Σ̂l is calculated in Step 2 as

Σ̂l =
1

n∗l

∑
k∈Jl

(
(Xk)Il − (X̄)Il

) (
(Xk)Il − X̄Il

)>
.

The proof of this lemma is divided into steps.

Step 1 We introduce a series of notation in addition to the symbols in the proof of Theorem 1

here. Based on Karhunen-Loève decomposition, the continuous sample trajectory Xk(t) =

Zk(t) + εk(t) can be decomposed into three parts: the leading part of signal, the non-leading

part of signal, and the noise:

Xk(t) =

r∑
j=1

ξjkφj(t) +
∑
j≥r+1

ξjkφj(t) + εk(t), k ∈ Jl. (48)

Then, λj(G) = Var(ξkj). Let ξ̄jk = ξjk/λ
1/2
j (G) be the normalized score. We further define

S =


ξ̄11 · · · ξ̄1n

...
...

ξ̄r1 · · · ξ̄rn

 ∈ Rr×n, (49)

Φl =


(φ1)Il(1) · λ

1/2
1 (G) · · · (φ1)Il(1) · λ

1/2
r (G)

...
...

(φ1)Il(|Il|) · λ
1/2
1 (G) · · · (φ1)Il(|Il|) · λ

1/2
r (G)

 ∈ R|Il|×r

as the matrix of leading scores and the discretized loadings, respectively. Then, Φl matches

the definition (15) in Theorem 1 as

ΦlΦ
>
l = Σ

(r)
0l ∈ R|Il|×|Il|. (50)

We further let Z
(−r)
k (t) =

∑
j≥r+1 ξjkφj(t) be the tail part of sample. By restricting (48) onto

the index set Il, one has

(Xk)Il =

r∑
j=1

ξjk(φj)Il +
∑
j≥r+1

ξjk(φj)Il + (εk)Il

=ΦlS[:,k] + (Z
(−r)
k )Il + (εk)Il , k ∈ Jl.

Based on the proof of Theorem 1, rank(Σ
(r)
0l ) = r and

σ2
j (Φ)

(50)
= σj(Σ

(r)
01 )

(22)
= pσj(G

(r)
[Il,Il]) +O(1), j = 1, . . . , r,
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‖Φ‖F = (tr(ΦΦ>))1/2 =
(

tr(Σ
(r)
0l )
)1/2

≤
(
p · tr(G(r)

[Il,Il]) +O(r)
)1/2

Assumption 2
≤ Cp1/2.

(51)

In particularly,

σr(Φ) = σr(Al) =

√
σr(Σ

(r)
0,[Il,Il]

)
(22)

≥ c
√
p/γ. (52)

Recall the central goal of this proposition is to provide an upper bound for minO∈Or ‖Âl −

AlO‖F . One can only show minO ‖Âl − AlO‖2F ≤ Cpγ/n∗l by directly applying Lemma 7 on

Σ̂0l and Σ
(r)
0l . Instead, we introduce a “bridge” covariance in this proof

Σ̄0l =
1

n∗l

∑
k∈Jl

(ΦlS[:,k])(ΦlS[:,k])
> =

1

n∗l
ΦlSJlS

>
Jl

Φ>l ∈ R|Il|×|Il|. (53)

Let Āl = ΦlSJl/
√
n∗l . Then for all Q ∈ Or, we have

min
O∈Or

‖Âl −AlO‖F ≤ min
O∈Or

{
‖Âl − ĀlQ‖F + ‖ĀlQ−AlO‖F

}
=‖Âl − ĀlQ‖F + min

O∈Or

‖Āl −AlOQ>‖F .

By taking the infimum over Q ∈ Or, we obtain the following triangle inequality,

min
O∈Or

‖Âl −AlO‖F ≤ min
O∈Or

‖Âl − ĀlO‖F + min
O∈Or

‖Āl −AlO‖F . (54)

In the next two steps, we give upper bounds for minO∈Or ‖Āl − AlO‖F and minO∈Or ‖Âl −

ĀlO‖F , respectively.

Step 2 Since rank(SJlS
>
Jl
/n∗l ) = r, we can further factorize

SJlS
>
Jl
/n∗l = FlF

>
l

for some Fl ∈ Rr×r. Then,

σmin

(
SJl/

√
n∗l
)

=

√
σmin

(
SJlS

>
Jl
/n∗l

)
= σmin(Fl),

σmax

(
SJl/

√
n∗l
)

=

√
σmax

(
SJlS

>
Jl
/n∗l

)
= σmax(Fl).

Suppose

F = UFΣFV
>
F , UF , VF ∈ Or, ΣF ∈ Rr×r

is the singular value decomposition. Since ΣF is diagonal, we have

‖ΣF − Ir×r‖ ≤max {σmax(Fl)− 1, 1− σmin(Fl)}

= max
{
σmax(SJl/

√
n∗l )− 1, 1− σmin(SJl/

√
n∗l )
}
.

(55)

10



We set Āl = ΦlFl ∈ R|Il|×r, then

Σ̄0l = ΦlFlF
>
l Φ>l = ĀlĀ

>
l .

On the other hand, we also recall that the true factor Al satisfies

AlA
>
l = Σ

(r)
0l = ΦlΦ

>
l . (56)

Since rank(Σ
(r)
0l ) = r and both Al,Φl ∈ R|Il|×r, there exists an orthogonal matrix Vl ∈ Or

such that Φl = AlVl. Therefore,

min
O∈Or

‖Āl −AlO‖2F = min
O∈Or

‖ΦlFl − ΦlV
>
l O‖2F

= min
O∈Or

‖ΦlUFΣFV
>
F − ΦlV

>
l O‖2F

≤‖ΦlUFΣFV
>
F − ΦlV

>
l VlUFV

>
F ‖2F = ‖ΦlUF (ΣF − Ir×r)V >F ‖2F

≤‖UF (ΣF − I)V >F ‖2 · ‖Φl‖2F
(51)

≤ Cp‖ΣF − I‖2

(55)

≤ Cpmax
{
σmax(SJl)/

√
n∗l − 1, 1− σmin(SJl)/

√
n∗l
}2
.

(57)

Let T = max
{
σmax(SJl)/

√
n∗l − 1, 1− σmin(SJl)/

√
n∗l
}

. Since (ξ̄1k, . . . , ξ̄rk) is a sub-Gaussian

vector, by random matrix theory (c.f. Theorem 5.39 in Vershynin (2010)),

P
(
T ≥ C

√
r/n∗l + t

)
=P
(

max
{
σmax(SJl)/

√
n∗l − 1, 1− σmin(SJl)/

√
n∗l
}
≥ C

√
r/n∗l + t

)
≤1− P

(
1− C

√
r/n∗l − t ≤ σmin

(
SJl/

√
n∗l
)
≤ σmax

(
SJl/

√
n∗l
)

≤ 1 + C
√
r/n∗l + t

)
≤C exp(−cn∗l t2), ∀t ≥ 0.

(58)
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Then,

ET 2 =

∫ ∞
0

2tP(T ≥ t)dt ≤
∫ C
√
r/n∗l

0
2t · 1 · dt+

∫ ∞
C
√
r/n∗l

2tP (T ≥ t) dt

≤Cr/n∗l +

∫ ∞
0

2
(
t+ C

√
r/n∗l

)
P
(
T ≥ C

√
r/n∗l + t

)
≤
∫ ∞

0
C
(
C
√
r/n∗l + t

)
exp(−cn∗l t2)dt

=Cr/n∗l + C
√
r/n∗l ·

√
1

n∗l
·
∫ ∞

0
exp(−ct2)dt+

∫ ∞
0

C

n∗l
t exp(−ct2)dt

≤Cr/n∗l .

E min
O∈Or

‖Āl −AlO‖2F
(57)

≤ CpEmax
{
σmax(SJl)/

√
n∗l − 1, 1− σmin(SJl)/

√
n∗l
}2

≤CpET 2 ≤ Cpr/n∗l .

(59)

Step 3 Then we consider minO∈Or ‖Âl − ĀlO‖F in this step. We apply Lemma 4 to ÂlÂ
>
l and

Σ̄0l + σ2I|Il|. Then,∥∥∥ÂlÂ>l − Σ̄0l

∥∥∥2

F
≤C|Il|/(|Il| − r)

(
‖Σ̂l − Σ̄0l − σ2I|Il|‖

2
F

)
≤C‖Σ̂0l − Σ̄0l − σ2I|Il|‖

2
F .

(60)

By setting M = Σ̄0l = ĀlĀ
>
l , M̂ = ÂlÂ

>
l in Lemma 7, we have

min
O∈Or

‖Âl − ĀlO‖2F ≤
‖ÂlÂ>l − Σ̄0l‖2F
σr(Āl)σr(Âl)

∧
(
‖Âl‖2F + ‖Āl‖2F

)
≤
C‖Σ̂0l − Σ̄0l − σ2I|Il|‖

2
F

σr(Āl)σr(Âl)
∧
(
‖Âl‖2F + ‖Āl‖2F

)
.

(61)
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Step 4 In this step, we give an upper bound for E‖Σ̂0l − Σ̄0l − σ2I|Il|‖
2
F . First,∥∥∥Σ̂0l − Σ̄0l − σ2I|Il|

∥∥∥
F

≤

∥∥∥∥∥∥ 1

n∗l

∑
k∈Jl

(
(Xk)Il − X̄Il

) (
(Xk)Il − X̄Il

)> − Σ̄0l − σ2I|Il|

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥ 1

n∗l

∑
k∈Jl

(Xk)Il(Xk)
>
Il
− X̄IlX̄

>
Il
− Σ̄0l − σ2I|Il|

∥∥∥∥∥∥
F

≤

∥∥∥∥∥ 1

n∗l

∑
k∈Jl

(
ΦlS[:,k] + (Z

(−r)
k )Il + (εk)Il

)(
ΦlS[:,k] + (Z

(−r)
k )Il + (εk)Il

)>
− 1

n∗l
(ΦlS[:,k])(ΦlS[:,k])

> − σ2I|Il|

∥∥∥∥∥
F

+
∥∥∥X̄IlX̄

>
Il

∥∥∥
F

≤2

∥∥∥∥∥∥ 1

n∗l

∑
k∈Jl

ΦlS[:,k](Z
(−r)
k )>Il

∥∥∥∥∥∥
F

+
1

n∗l

∥∥∥∥∥∥
∑
k∈Jl

(Z
(−r)
k )Il(Z

(−r)
k )>Il

∥∥∥∥∥∥
F

+

∥∥∥∥∥∥ 1

n∗l

∑
k∈Jl

(εk)Il(εk)
>
Il
− σ2I|Il|

∥∥∥∥∥∥
F

+
2

n∗l

∥∥∥∥∥∥
∑
k∈Jl

(
ΦlS[:,k] + (Z

(−r)
k )Il

)
(εk)

>
Il

∥∥∥∥∥∥
F

+
∥∥∥X̄IlX̄

>
Il

∥∥∥
F
.

We analyze each term separately.

• Since S[:,k] and Z
(−r)
k (t) correspond to different scores in the Karhunen-Loève decomposi-

tion, they must be with mean zero and uncorrelated, which implies that EΦlS[:,k]Z
(−r)
k (t) =

0. In addition,
{

ΦlS[:,k]Z
(−r)
k (t)

}
are i.i.d. for different k. Thus,

1

(n∗l )
2
E

∥∥∥∥∥∥
∑
k∈Jl

ΦlS[k,:](Z
(−r)
k )>Il

∥∥∥∥∥∥
2

F

=
1

(n∗l )
2

∑
k∈Jl

E
∥∥∥ΦlS[k,:](Z

(−r)
k )>Il

∥∥∥2

F
=

1

n∗l
E‖ΦlS[:,1](Z

(−r)
1 )>Il‖

2
F

=
1

n∗l
E
{
‖ΦlS[:,1]‖22 · ‖(Z

(−r)
1 )Il‖

2
2

}
≤ 1

n∗l

(
E‖ΦlS[:,1]‖42 · E‖(Z

(−r)
1 )Il‖

4
2

)1/2
.
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Here,

E‖(Z(−r)
1 )Il‖

4
2

=E

∑
i∈Il

Z
(−r)
1 (T (Il(i)))

2

2
Cauchy-Schwarz

≤ |Il|
∑
i∈Il

Z
(−r)
1 (T (Il(i)))

4

≤|Il|2 · sup
t

E(Z
(−r)
1 (t))4 ≤ Cp2r/(n∗γ),

where the last inequality is due to the assumption of this proposition.

E‖ΦlS[:,1]‖42

=E‖XIl − (Z
(−r)
k )Il − (εk)Il‖

4
2

≤C
(
E‖XIl‖

4
2 + ‖(Z(−r)

k )Il‖
4
2 + (εk)Il‖

4
2

)
≤C|Il|

∑
i∈Il

E|X(T (Il(i)))|4 +
∑
i∈Il

E|Z(−r)(T (Il(i)))|4 +
∑
i∈Il

E|ε(T (Il(i)))|4


≤C|Il|2
(

sup
t

EX(t)4 + sup
t

EZ(−r)(t)4 + Eε4
)
≤ Cp2.

Provided that n∗ ≥ Cγ2 ≥ Crγ, we have

1

(n∗l )
2
E

∥∥∥∥∥∥
∑
k∈Jl

ΦlS[k,:](Z
(−r)
k )>Il

∥∥∥∥∥∥
2

F

≤ C

n∗l

(
p2r/(n∗l γ) · p2

)1/2 ≤ Cp2r

γn∗l
.

• With the assumption that (Eε4)1/2 ≤ Cr/γ, we have

E‖(εk)Il‖
4
2 =E

∑
i∈Il

εk(T (Il(i)))
2

2
Cauchy-Schwarz

≤ |Il| ·
∑
i∈Il

Eεk(T (Il(i)))
4

≤Cp2(r/γ)2.

(62)

σ4 =
(
Eε2
)2 ≤ Eε4 ≤ C(r/γ)2.

Given E(εk)Il(εk)
>
Il
− σ2I|Il| = 0, we have

E

∥∥∥∥∥∥ 1

n∗l

∑
k∈Jl

(εk)Il(εk)
>
Il
− σ2I|Il|

∥∥∥∥∥∥
2

F

=
1

(n∗l )
2

∑
k∈Jl

E
∥∥∥(εk)Il(εk)

>
Il
− σ2I|Il|

∥∥∥2

F

=
1

n∗l
E
∥∥∥εIlε>Il − σ2I|Il|

∥∥∥2

F
≤ 2

n∗l

(
E
∥∥∥εIlε>Il∥∥∥2

F
+
∥∥σ2I|Il|

∥∥2

F

)

=
2

n∗l

(
E‖εIl‖

4
2 + σ4p

)
≤ 2

n∗l

|Il| ·∑
i∈Il

Eεk(T (Il(i)))
4 + σ4p

 ≤ Cp2r

n∗l γ
.
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• With the assumption that supt∈T EX(t)4 ≤ C, and Xk(t) = Zk(t) + εk(t), we have

E‖(Zk)Il‖
4
2 ≤CE‖(Xk)Il‖

4
2 + CE‖(εk)Il‖

4
2

≤CE

∑
i∈Il

Xk(T (Il(i)))
2

2

+ CE

∑
i∈Il

εk(T (Il(i)))
2

2

Cauchy-Schwarz
≤ C|Il| ·

∑
i∈Il

EXk(T (Il(i)))
4 + C|Il| ·

∑
i∈Il

Eεk(T (Il(i)))
4

≤C|Il|2 ≤ Cp2.

(63)

Given Eεk = 0, εk and (Sk, Z
(−r)
k (t)) are uncorrelated, we have

E
(

ΦlS[:,k] + (Z
(−r)
k )Il

)
(εk)

>
Il

= 0 and

E
1

(n∗l )
2

∥∥∥∥∥∥
∑
k∈Jl

(
ΦlS[:,k] + (Z

(−r)
k )Il

)
(εk)

>
Il

∥∥∥∥∥∥
2

F

=E
1

n∗l
E
∥∥∥(Zk)Ik · (εk)

>
Ik

∥∥∥2

F

=E
1

n∗l
‖(Zk)Ik‖

2
2 · ‖(εk)Ik‖

2
2 ≤

1

n∗l

(
E‖(Zk)Ik‖

4
2 · E‖(εk)Ik‖

4
2

)1/2
(62)(63)

≤ Cp2r

n∗l γ
.

• Given EXk(t) = 0 and X1(t), . . . , Xn(t) are independent,

E
∥∥∥X̄IlX̄

>
Il

∥∥∥2

F
=

1

(n∗l )
4
E

∥∥∥∥∥∥
∑
k∈Jl

(Xk)Il

∥∥∥∥∥∥
4

2

≤ C

(n∗l )
2
E‖(Xk)Il‖

4
2

≤ C

(n∗l )
2
· |Il| ·

∑
i∈Il

EXk(T (Il(i)))
4 ≤ C|Il|2

(n∗l )
2
≤ Cp2

(n∗l )
2
≤ Cp2

n∗l
· r
γ
.

In summary,

E
∥∥∥Σ̂0l − Σ̄0l − σ2I|Il|

∥∥∥2

F
≤Cp

2r

γn∗l
. (64)

Step 4 In this step, we further introduce the following “good” event,

B∗ =
{
σ2
r (Âl) ≥ σ2

r (Al)/4, σ
2
r (Āl) ≥ σ2

r (Al)/2,∀1 ≤ l ≤ lmax

}
. (65)

Then we develop the upper bound under this good event to finalize the proof. First, we aim

to show B∗ happens with high chance. By (60), we have∥∥∥ÂlÂ>l − ĀlĀ>l ∥∥∥
F
≤ C

∥∥∥Σ̂0l − Σ̄0l − σ2I|Il|

∥∥∥
F

⇒ σ2
r (Âl) ≥ σ2

r (Āl)− C‖Σ̂0l − Σ̄0l − σ2I|Il|‖F .
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By definition,

σ2
r (Āl) = σr

(
1

n∗l
ΦlSJlS

>
Jl

Φ>l

)
≥ σ2

min(Φl)σ
2
r (SJl/

√
nl).

In addition,

σ2
r (Al)

(56)
= σ2

min(Φl)
(52)

≥ cp/γ.

Thus, B∗ holds if the following two conditions hold for some small constant c > 0:

∀l, σ2
r (SJl/

√
nl) ≥ 1/2, and ‖Σ̂0l − Σ̄0l − σ2I|Il|‖F ≤ cp/γ. (66)

By Markov’s inequality and the sub-Gaussian random matrix tail bound (58),

P(B∗ holds) ≥ P((66) holds)

≥1− P
(
∃l, σ2

r (SJl/
√
nl) < 1/2

)
+ P

(
∃l, C‖Σ̂0l − Σ̄0l − σ2I|Il|‖F ≥ cp/γ

)
(58)

≥ 1− lmax exp(−cn∗l )− lmax

E‖Σ̂0l − Σ̄0l − σ2I|Il|‖2F
‖2F

c(p/γ)2

(64)

≥ 1− C exp(−cn∗)− Crγ/n∗

≥1− Crγ/n∗.

(67)

When B∗ holds, we must have

σr(Al), σr(Āl), σr(Âl) ≥ c
√
p/γ.

By combining (61), (64), and the previous inequality, we have for all 1 ≤ l ≤ lmax,

min
O∈Or

E‖Âl − ĀlO‖2F 1{B∗ holds} ≤
CE‖Σ̂0l − Σ̄0l − σ2I|Il|‖

2
F

σr(Āl)σr(Âl)
· 1{B∗ holds}

≤
CE‖Σ̂0l − Σ̄0l − σ2I|Il|‖

2
F

p/γ
≤ Cpr

n∗l
.

(68)

Finally, (54), (59), and (68) conclude the statement of this lemma. �

Now we consider the proof of Proposition 1. Similarly to the proof of Theorem 1, we develop

an upper bound on the probability of the “bad case,” i.e., B∗ does not hold. To this end, we
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define w ∈ Rp, wi = |{l : i ∈ Il}|−1 as the weight in Equation (9). Then,

‖Σ̂0‖F ≤‖ÃÃ>‖F =

∥∥∥∥∥∥diag(w)

(
lmax∑
l=1

Â∗l

)(
lmax∑
l=1

Â∗l

)>
diag(w)

∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥
(
lmax∑
l=1

Â∗l

)(
lmax∑
l=1

Â∗l

)>∥∥∥∥∥∥
F

≤ lmax ·
lmax∑
l=1

‖Â∗l (Â∗l )>‖F

=lmax

lmax∑
l=1

‖ÂlÂ>l ‖F
(6)

≤ lmax

lmax∑
l=1

‖Σ̂l‖F

Then,

E‖Σ̂l‖2F =E

∥∥∥∥∥∥ 1

n∗l

∑
k∈Jl

((Xk)Il − X̄Il)((Xk)Il − X̄Il)
>

∥∥∥∥∥∥
2

F

=E

∥∥∥∥∥∥ 1

n∗l

∑
k∈Jl

(Xk)Il(Xk)
>
Il
− X̄IlX̄Il

∥∥∥∥∥∥
2

F

Cauchy-Schwarz
≤ C

n∗l

∑
k∈Jl

E‖(Xk)Il(Xk)
>
Il
‖2F + CE‖X̄IlX̄Il‖

2
F

=
C

n∗l

∑
k∈Jl

E‖(Xk)Il‖
4
2 + CE‖X̄Il‖

4
2

(63)

≤ Cp2.

E‖Σ̂0 − Σ0‖2F ≤ CE‖Σ̂0‖2F + C‖Σ0‖2F ≤ Cp2.

By Cauchy-Schwarz inequality,

E‖Σ̂0 − Σ0‖F 1Bc
∗ ≤

(
E‖Σ̂0 − Σ0‖2F · E12

Bc
∗

)1/2

(67)

≤
(
Cp2 · γr/n∗

)1/2
.

Similarly to Steps 3 - 5 and based on Lemma 2, one can develop the upper bound for ‖Σ̂0−Σ‖F

on the “good event,”

E‖Σ̂0 − Σ‖F · 1{B∗ holds} ≤ C
√
p2rγ/n∗.

Thus,

E‖Σ̂0 − Σ‖F = E‖Σ̂0 − Σ‖F 1{B∗ holds} + E‖Σ̂0 − Σ‖F 1{Bc
∗ holds} ≤ C

√
p2rγ/n∗.

Finally, since Σ0 is a p-by-p linear interpolation for G, we finally have∥∥∥Ĝ−G∥∥∥
HS
≤ 1

p
‖Σ̂0 − Σ0‖F +O(p−1) = O(

√
γr/n∗ + p−1),

which has finished the proof of Proposition 1. �
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C Technical Lemmas

We collect all technical tools that were used in the main context of this paper in this section.

We first provide the proof for Lemma 1, which provides an error bound for Wahba’s problem

(Wahba, 1965).

Proof of Lemma 1. Based on our assumption,∥∥∥A2Ô −A1

∥∥∥
F
≤
∥∥∥A2O

>
2 O1 −A1

∥∥∥
F

=
∥∥∥A2O

>
2 −A1O

>
1

∥∥∥
F

≤
∥∥∥A2O

>
2 −A

∥∥∥
F

+
∥∥∥A1O

>
1 −A

∥∥∥
F

= ‖A2 −AO2‖F + ‖A1 −AO1‖F

≤a1 + a2.

On the other hand, ∥∥∥A2Ô −A1

∥∥∥
F

≥− ‖A1 −AO1‖F − ‖A2Ô −AO2Ô‖F + ‖AO1 −AO2Ô‖F

≥− a1 − a2 + σmin(A)‖O1 −O2Ô‖F

≥− a1 − a2 + λ‖Ô −O>2 O1‖F .

Therefore, ∥∥∥Ô −O>2 O1

∥∥∥
F
≤ 2(a1 + a2)

λ
.

Finally, ∥∥∥O2Ô − I
∥∥∥
F
≤
∥∥∥O2Ô −O1

∥∥∥
F

+ ‖O1 − I‖F ≤ ‖O1 − I‖F +
2(a1 + a2)

λ
.

�

The following lemma characterizes the least and largest singular value of semi-positive sym-

metric definite matrix factorization.

Lemma 3. Suppose a positive semidefinite matrix A ∈ Rp×p can be decomposed as A = HDH>.

Here D ∈ Rr×r is a non-negative diagonal matrix and H ∈ Rp×r is a general matrix that is not

necessarily orthogonal. Then(
max
i
Dii

)
σ2
r (H) ≥ σr(A) ≥

(
min
i
Dii

)
σ2
r (H),(

max
i
Dii

)
‖H‖2 ≥ ‖A‖ ≥

(
min
i
Dii

)
‖H‖2.
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Proof of Lemma 3. Suppose the singular value decomposition of H is H = UHDHV
>
H , where

UH ∈ Op,r, DH ∈ Rr×r is diagonal with non-increasing non-negative entries, VH ∈ Op,r. Then,

‖A‖ = max
‖u‖2≤1

u>Au = max
‖u‖2≤1

u>HDH>u ≥
(
U>H,[:,1]H

)
D
(
H>UH,[:,1]

)
≥σr(D) ·

∥∥∥H>UH,[:,1]

∥∥∥2

2
= min

1≤i≤r
Dii · σ2

1(H),

‖A‖ = max
‖u‖2≤1

u>Au = max
‖u‖2≤1

u>HDH>u

≤ max
‖u‖2≤1

‖u‖2 · ‖H‖ · ‖D‖ · ‖H>‖ · ‖u‖2 =

(
max
i
Dii

)
‖H‖2.

On the other hand, without loss of generality we assume Drr = miniDii, then

σr(A) =σr

(
UH

(
DHV

>
HDVHDH

)
U>H

)
= σr

(
DHV

>
HDVHDH

)
= min
u∈Rr:‖u‖2=1

u>DHV
>
HDVHDHu ≤ e>r DHV

>
HDVHDHer

≤‖D‖ · ‖e>r DHV
>
H ‖22 =

(
max
i
Dii

)
σ2
r (H),

σr(A) =σr

(
UH

(
DHV

>
HDVHDH

)
U>H

)
= σr

(
DHV

>
HDVHDH

)
≥σ2

min(DHV
>
H )σmin(D) =

(
min
i
Dii

)
σ2
r (H).

These have finished the proof for this lemma. �

Lemma 4. Suppose Σ = Σ0 +σ2I ∈ Rb×b. Here, Σ0 is positive semi-definite, Σ0 = Σ
(r)
0 +Σ

(−r)
0 ,

Σ
(r)
0 is a rank-r matrix. Suppose Σ̂ is another rank-r symmetric matrix satisfying ‖Σ̂−Σ‖F ≤ λ.

Suppose ÛD̂Û> is the eigenvalue decomposition and

Σ̂0 =

r∑
i=1

Û[:,i]

{
(D̂ii − σ̂2) ∨ 0

}
(Û[:,i])

>, where σ̂2 =

(
1

b− r

b∑
i=r+1

D̂ii

)
∨ 0, (69)

then the following inequality holds,∥∥∥Σ̂0 − Σ0

∥∥∥
F
≤ C

√
b/(b− r)

(
λ+ ‖Σ(−r)

0 ‖F
)
. (70)

for uniform constant C > 0.

Proof of Lemma 4. Since Σ̂ =
∑b

i=1 Û[:,i]D̂iiÛ
>
[:,i] is the eigenvalue decomposition of Σ̂, we

also have the following eigenvalue decomposition for Σ̂− σ2Ib×b,

Σ̂− σ2Ib×b = Σ(r) + Σ
(−r)
0 + (Σ̂− Σ) =

b∑
i=1

Û[:,i](D̂ii − σ2)Û>[:,i].
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Additionally, since Σ
(r)
0 is positive semi-definite, we can write down the eigenvalue decomposition

Σ
(r)
0 =

∑r
i=1 U[:,i]DiiU

>
[:,i], where U ∈ Ob,r, D ∈ Rr×r is non-negative diagonal. By Lemma 5,

‖{D̂ii − σ2}bi=r+1‖2 =

(
b∑

i=r+1

(
D̂ii − σ2

)2
)1/2

≤

(
r∑
i=1

(D̂ii − σ2 −Dii)
2 +

b∑
i=r+1

(D̂ii − σ2)2

)1/2

≤‖Σ̂− σ2Ib×b − Σ
(r)
0 ‖F = ‖Σ(−r)

0 + Σ̂− Σ‖F ≤ λ+ ‖Σ(−r)
0 ‖F .

(71)

Then

∣∣σ̂2 − σ2
∣∣ =

∣∣∣∣∣
(

1

b− r

b∑
i=r+1

D̂ii

)
∨ 0− σ2

∣∣∣∣∣ ≤
∣∣∣∣∣
(

1

b− r

b∑
i=r+1

D̂ii

)
− σ2

∣∣∣∣∣
≤ 1

b− r

b∑
i=r+1

∣∣∣D̂ii − σ2
∣∣∣ ≤ 1√

b− r

(
b∑

i=r+1

(D̂ii − σ2)2

)1/2

≤ 1√
b− r

(
λ+ ‖Σ(−r)

0 ‖F
)
.

(72)

Thus ∥∥∥(Σ̂− σ̂2Ib×b)− Σ0

∥∥∥
F
≤
∥∥∥Σ̂− Σ

∥∥∥
F

+ ‖σ̂2Ib×b − σ2Ib×b‖F

≤
√
b/(b− r)

(
λ+ ‖Σ(−r)

0 ‖F
)

+ λ.

(73)

On the other hand, note that Σ̂0 − σ̂2Ib×b =
∑b

i=1 Û[:,i](Σ̂ii − σ̂2)Û>[:,i] and Û[:,1], . . . , Û[:,b] are

orthonormal, the following inequality holds,∥∥∥Σ̂0 − Σ0

∥∥∥
F
≤
∥∥∥Σ̂0 − (Σ̂− σ̂2Ib×b)

∥∥∥
F

+
∥∥∥Σ̂− σ̂2Ib×b − Σ0

∥∥∥
F

(73)

≤

∥∥∥∥∥
r∑
i=1

Û[:,i]

{
(D̂ii − σ̂2) ∨ 0

}
Û>[:,i] −

b∑
i=r+1

Û[:.i](D̂ii − σ̂2)Û>[:.i]

∥∥∥∥∥
F

+
√
b/(b− r)

(
λ+ ‖Σ(−r)

0 ‖F
)
.

(74)

In particular, ∥∥∥∥∥
r∑
i=1

Û[:,i]

{
(D̂ii − σ̂2) ∨ 0

}
Û>[:,i] −

b∑
i=r+1

Û[:.i](D̂ii − σ̂2)Û>[:.i]

∥∥∥∥∥
2

F

=

r∑
i=1

{
{(D̂ii − σ̂2) ∨ 0} − (D̂ii − σ̂2)

}2
+

b∑
i=r+1

∣∣∣D̂ii − σ̂2
∣∣∣2 .

(75)
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Here, we note that the i-th eigenvalue of Σ satisfies λi(Σ) = Dii + σ2, Dii ≥ 0 for 1 ≤ i ≤ r, so

r∑
i=1

{
{(D̂ii − σ̂2) ∨ 0} − (D̂ii − σ̂2)

}2
=
∑

1≤i≤r

{(
σ̂2 − D̂ii

)
+

}2

≤3
∑

1≤i≤r

{(
σ̂2 − σ2

)
+

}2
+ 3

∑
1≤i≤r

{(
σ2 − (Dii + σ2)

)
+

}2

+ 3
∑

1≤i≤r

{(
λi(Σ)− D̂ii

)
+

}2

(72)

≤ 3r

b− r

(
λ+ ‖Σ(−r)

0 ‖F
)2

+ 0 + 3

b∑
i=1

{
λi(Σ)− D̂ii

}2

Lemma 5
≤ 3b

b− r

(
λ+ ‖Σ(−r)

0 ‖F
)2

+ 3‖Σ̂− Σ‖2F ≤
3b

b− r

(
λ+ ‖Σ(−r)

0 ‖F
)2

+ 3λ2;

∑
r+1≤i≤b

∣∣∣D̂ii − σ̂2
∣∣∣2 ≤ ∑

r+1≤i≤b

{
2
∣∣∣D̂ii − σ2

∣∣∣2 + 2
∣∣σ2 − σ̂2

∣∣2}
(71)(72)

≤ 2
(
λ+ ‖Σ(−r)

0 ‖F
)2

+
2b

b− r

(
λ+ ‖Σ(−r)

0 ‖F
)2
.

In summary, we have ∥∥∥Σ̂0 − Σ0

∥∥∥
F
≤ C

√
b/(b− r)

(
λ+ ‖Σ(−r)

0 ‖F
)
.

for some uniform constant C > 0. �

Lemma 5. Suppose A,B ∈ Rd×d are two symmetric matrices. λj(A) and λj(B) represent the

j-th eigenvalues of A and B, respectively. Then

‖A−B‖2F ≥
d∑
j=1

(λj(A)− λj(B))2 . (76)

Proof of Lemma 5. Since

‖A−B‖2F =tr
(

(A−B)>(A−B)
)

=‖A‖2F + ‖B‖2F − 2tr(A>B) =
d∑
j=1

λ2
j (A) +

2∑
j=1

(B)− 2tr(A>B),

we only need to show

tr(A>B) ≤
d∑
j=1

λj(A)λj(B). (77)
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Suppose the eigenvalue decomposition of B is B = UDU>, with D = diag(λ1(B), . . . , λd(B)).

Let U{j} = U[:,1:j], then

B =
d∑
j=1

U[:,j]U
>
[:,j] · λj(B) =

d∑
j=1

U{j}U
>
{j} · (λj(B)− λj+1(B)) ,

thus,

tr(A>B) =

d∑
j=1

tr
(
A>U{j}U

>
{j}

)
· (λj(B)− λj+1(B))

Lemma 6
≤

d∑
j=1

tr

(
j∑
i=1

λi(A)

)
(λj(B)− λj+1(B))

=

d∑
j=1

λj(A)λj(B),

which has finished the proof of this lemma. �

Lemma 6. Suppose A ∈ Rd×d is symmetric, U{j} ∈ Od,j, then

tr
(
A>U{j}U

>
{j}

)
≤

j∑
i=1

λi(A)

Proof of Lemma 6. Without loss of generality we can assume A = diag(λ1(A), . . . , λd(A)).

Since U{j} ∈ Od,j , we have

0 ≤ (U{j})ii ≤ 1,

d∑
i=1

(U{j})ii = j,

then by rearrangement inequality,

tr
(
A>U{j}U

>
{j}

)
=

d∑
i=1

λi(A)
(
U{j}U

>
{j}

)
ii
≤

j∑
i=1

λi(A).

�

The following lemma characterizes the square-root factorization perturbation. The proof

involves Abel’s summation identity in Lemmas 8 and 9, which is highly non-trivial.

Lemma 7. Suppose M̂,M ∈ Rp×r are two matrices with the same dimension, then there exists

an orthogonal matrix O ∈ Or such that∥∥∥M̂ −MO
∥∥∥2

F
≤
‖M̂M̂> −MM>‖2F

σr(M)σr(M̂)
∧
(
‖M̂‖2F + ‖M‖2F

)
. (78)
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Proof of Lemma 7. Suppose M>M̂ has singular value decomposition: M>M̂ = UΣV >, where

UM , VM ∈ Or, Σ ∈ Rr×r. We will show that when O = UV > (namely the solution to Wahba’s

problem), (78) holds.

Define xi = σi(M̂), yi = σi(M), zi = σi(M̂
>M), by Lemma 8, we know

x1 ≥ · · · ≥ xr ≥ 0, y1 ≥ · · · ≥ yr ≥ 0, z1 ≥ · · · ≥ zr ≥ 0,

and
∑s

i=1 zi ≤
∑s

i=1 xiyi for all 1 ≤ s ≤ r. Then by both inequalities of Lemma 9,

r∑
i=1

(x4
i + y4

i − 2z2
i )−

r∑
i=1

(
x2
i + y2

i − 2zi
)
xryr

≥2
r∑
i=1

(x2
i y

2
i − z2

i )− 2
r∑
i=1

(xiyi − zi)xryr ≥ 0.

On the other hand,∥∥∥M̂ −MO
∥∥∥2

F
= tr

(
M̂M̂> +MM> − M̂O>M> −MOM̂>

)
=‖M̂‖2F + ‖M‖2F − 2tr(O>M>M̂) = ‖M̂‖2F + ‖M‖2F − 2tr(V U>UΣV )

=

r∑
i=1

(
σ2
i (M̂) + σ2

i (M)− 2σi(M
>M̂)

)
=

r∑
i=1

(x2
i + y2

i − 2zi);

∥∥∥M̂M̂> −MM>
∥∥∥2

F

=tr
(
M̂M̂>M̂M̂> +MM>MM> − M̂M̂>MM> −MM>M̂M̂>

)
=‖M̂M̂>‖2F + ‖MM>‖2F − 2‖M>M̂‖2F

=
r∑
i=1

(
σ4
i (M̂) + σ4

i (M)− 2σ2
i (M

>M̂)
)

=
r∑
i=1

(x4
i + y4

i − 2z2
i ),

which means∥∥∥M̂ −MO
∥∥∥2

F
σr(M)σrM̂ = xryr

r∑
i=1

(x2
i + y2

i − 2zi) ≤
r∑
i=1

(
x4
i + y4

i − 2z2
i

)
≤
∥∥∥M̂M̂> −MM>

∥∥∥2

F
,

min
O∈Or

∥∥∥M̂ −MO
∥∥∥2

F
≤
‖M̂M̂> −MM>‖2F

σr(M)σr(M̂)
.

In addition,

min
O

∥∥∥M̂ −MO
∥∥∥2

F
≤ 1

2

(∥∥∥M̂ − IM∥∥∥2

F
+
∥∥∥M̂ + IM

∥∥∥2

F

)
= ‖M̂‖2F + ‖M‖2F .

Therefore, we have finished the proof of this lemma. �
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Lemma 8. Suppose M, M̂ ∈ Rp×r are two matrices of the same dimensions, we have the

following inequality for Ky Fan s-norm of M>M̂ (Fan, 1950) for any s ≥ 1,

‖M>M̂‖ks =
s∑
i=1

σi(M
>M̂) ≤

s∑
i=1

σi(M)σi(M̂).

Proof of Lemma 8. We first note the following property for Ky Fan norm (Fan, 1950),

‖X‖ks =
s∑
i=1

σi(X) = max
U∈Op,s

V ∈Or,s

tr(U>XV ).

Let M̂ = UM̂ΣM̂V
>
M̂

be the singular value decomposition, then (ΣM̂ )ii = σi(M̂). Now for any

U, V ∈ Or,s,

tr
(
U>M>M̂V

)
=tr

(
U>M>UM̂ΣM̂V

>
M̂
V
)

= tr
(
V >
M̂
V U>M>UM̂ΣM̂

)
=

r∑
i=1

(ΣM̂ )ii

(
U>
M̂
MUV >VM̂

)
ii

=
r∑
i=1

σi(M̂)
(
U>
M̂
MUV >VM̂

)
ii

=
r∑
i=1

(σi(M̂)− σi+1(M̂)
) i∑
j=1

(
U>
M̂
MUV >VM̂

)
jj

 ,

where is last equality is due to the Abel’s summation formula1. Note that U>
M̂
MUV >VM̂ is a

s-by-s projection of M , so it has smaller Ky Fan norms than M . Then

when i ≤ s,
i∑

j=1

(
U>
M̂
MV >UVM̂

)
jj

=

i∑
j=1

e>j U
>
M̂
MUV >VM̂ej

≤‖U>
M̂
MUV >VM̂‖ki ≤

i∑
j=1

σj(M);

when i > s,

i∑
j=1

(
U>
M̂
MUV >VM̂

)
jj
≤ ‖U>

M̂
MUV >VM̂‖ ≤

s∑
j=1

σj(M).

1https://en.wikipedia.org/wiki/Summation_by_parts
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Thus,

tr
(
U>M>M̂V

)
≤

s∑
i=1

(σi(M̂)− σi+1(M̂)
) i∑
j=1

(
U>
M̂
MUV >VM̂

)
jj


+

r∑
i=s+1

(σi(M̂)− σi+1(M̂)
) i∑
j=1

(
U>
M̂
MUV >VM̂

)
jj


≤

s∑
i=1

(σi(M̂)− σi+1(M̂)
) i∑
j=1

σj(M)


+

r∑
i=s+1

(σi(M̂)− σi+1(M̂)
) s∑
j=1

σj(M)


=

s∑
i=1

σi(M̂)σi(M),

since U and V are arbitrarily chosen from Or,s, we have finished the proof for this lemma. �

Lemma 9. Suppose {xi}ri=1, {yi}ri=1, {zi}ri=1 are three sequences of non-negative values satisfying

x1 ≥ · · · ≥ xr ≥ 0, y1 ≥ · · · ≥ yr ≥ 0, z1 ≥ · · · ≥ zr ≥ 0;

∀1 ≤ s ≤ r,
s∑
i=1

xiyi ≥
s∑
i=1

zi.

This means x1y1 ≥ z1, x1y1 + x2y2 ≥ z1 + z2, but not necessarily x2y2 ≥ z2. Then, we must

have the following two inequalities,

r∑
i=1

(
x2
i y

2
i − z2

i

)
−

r∑
i=1

(xiyi − zi)xryr ≥ 0.

x4
i + y4

i − (x2
i + y2

i )xryr − 2x2
i y

2
i + 2xiyixryr ≥ 0, ∀1 ≤ i ≤ r.

Proof of Lemma 9. The key to the first inequality is via Abel’s summation formula. First,

r∑
i=1

(x2
i y

2
i − z2

i ) +
r∑
i=1

(xiyi − zi)xryr −

{
r∑
i=1

(x2
i y

2
i − z2

i )−
r∑
i=1

(xiyi − zi)xiyi

}

=
r∑
i=1

(xiyi − zi)(xiyi − xryr) =
r−1∑
i=1

(xiyi − xi+1yi+1)
i∑

j=1

(xjyj − zj)

 ≥ 0.

If we let xr+1 = yr+1 = zr+1 = 0, then{
r∑
i=1

(x2
i y

2
i − z2

i )−
r∑
i=1

(xiyi − zi)xiyi

}
=

r∑
i=1

zi(xiyi − zi)

=
r∑
i=1

(zi − zi+1)
i∑

j=1

(xiyi − zi) ≥ 0.
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By combining the two inequalities above, we have finished the proof for the first part. In

addition, by some algebraic calculation we can show

x4
i + y4

i − (x2
i + y2

i )xryr − 2
(
x2
i y

2
i − xiyixryr

)
=x4

i + y4
i − (x2

i + y2
i )xiyi − 2

(
x2
i y

2
i − x2

i y
2
i

)
+ (x2

i + y2
i − 2xiyi)(xiyi − xryr)

=x4
i + y4

i − x3
i yi − xiy3

i + (xi − yi)2(xiyi − xryr)

=(xi − yi)2(x2
i + xiyi + y2

i ) + (xi − yi)2(xiyi − xryr) ≥ 0.

Therefore we have finished the proof for this lemma. �
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