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Abstract

The stochastic block model and its variants have been a popular tool for analyzing large network

data with community structures. In this paper we develop an efficient network cross-validation

(NCV) approach to determine the number of communities, as well as to choose between the regular

stochastic block model and the degree corrected block model. The proposed NCV method is based

on a block-wise node-pair splitting technique, combined with an integrated step of community

recovery using sub-blocks of the adjacency matrix. We prove that the probability of under-selection

vanishes as the number of node increases, under mild conditions satisfied by a wide range of popular

community recovery algorithms. The solid performance of our method is also demonstrated in

extensive simulations and two data examples.
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1. INTRODUCTION

In the last few decades, the amount of network data and the need for relevant statistical inference

tools are growing at a rapid pace. One of the main research topics in network data analysis

is to identify hidden communities from a single observed network. Roughly speaking, network

community refers to the phenomenon that individuals close to each other are more likely to connect,

and hence the edge density varies from within coherent subpopulations to between subpopulations

(Newman and Girvan, 2004; Newman, 2006). The stochastic block model (Holland et al., 1983) and

its variants, such as the degree corrected block model (Karrer and Newman, 2011), are powerful

and mathematically elegant tools for modeling large networks with community structures, and have

been proved useful in many scientific areas such as social science, biology, and information science

(Faust and Wasserman, 1992; Kemp et al., 2006; Bickel and Chen, 2009).

The community recovery problem for stochastic block models has been the focus of much re-

search effort in several areas including statistics (Daudin et al., 2008; Bickel and Chen, 2009; Zhao

et al., 2012; Jin, 2015; Latouche et al., 2012; Fishkind et al., 2013; Lei and Rinaldo, 2015), machine

learning (McSherry, 2001; Chen et al., 2012; Chaudhuri et al., 2012; Anandkumar et al., 2014),

statistical physics (Decelle et al., 2011; Krzakala et al., 2013), and probability theory (Massoulié,

2014; Mossel et al., 2013; Abbe et al., 2016). These methods are based on a wide range of different

tools such as maximum likelihood, convex optimization, spectral methods, and belief propagation,

etc. However, almost all of these methods require K, the total number of communities, to be known

in advance.

Unlike community recovery, determining the number of communities has remained a challenging

problem and has gained much interest recently. In principle, one can transform the problem to

selecting the number of clusters in a regular multivariate data using techniques such as spectral

embedding (Sussman et al., 2012). But this would involve choosing a good embedding space

with appropriate dimensionality, which itself is a challenging task. Zhao et al. (2011) propose

to sequentially extract one significant community from the remaining of the network, and they

approximate the null distribution of their optimizing statistic by bootstrapping from an Erdős-

Rényi graph. Bickel and Sarkar (2016) propose to test K = 1 vs K > 1 at each step of a recursive

bipartition algorithm. They derive the asymptotic null distribution of the largest eigenvalue of a
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suitably scaled and centered adjacency matrix. But the convergence rate is slow and a bootstrap

correction is needed in practice. Moreover, these sequential or recursive testing procedures only

work for certain types of community structures. After the first draft of this work, there have been

some new developments along the line of testing K = K̃ for a given candidate value K̃ (Lei, 2016).

Some other model selection criteria have also been proposed, using various techniques including

likelihood-based methods (Handcock et al., 2007; Daudin et al., 2008; Airoldi et al., 2008; Saldana

et al., 2014; Wang and Bickel, 2015), Bayesian inference (Latouche et al., 2012; McDaid et al.,

2013), and information theory (Rosvall and Bergstrom, 2007; Peixoto, 2013).

In this paper, we focus on a generic idea of network cross-validation. Cross-validation is a very

popular and appealing method in many model selection problems. The adaptation to network data

is usually through a node splitting procedure and has been considered by Airoldi et al. (2008),

among others. A random node-pair splitting method has been used in Hoff (2008) for model

selection under a Bayesian framework. These methods, even though applicable to the community

recovery problem, are usually computationally intensive. Moreover, the theoretical investigation

for cross-validation methods in network model selection remains open.

The network cross-validation (NCV) method developed in this paper is based on a block-wise

node-pair splitting technique. Simply speaking, the splitting step divides the nodes randomly into

two groups N1 and N2. The observed edge formation between node pairs {(i, j) : i ∈ N1, j ∈ N1 ∪

N2} are used as the fitting set, and the node pairs {(i, j) : i, j ∈ N2} are used as the testing set. Such

a node-pair splitting is superior to a simple node splitting. It originates from two key observations.

First, the fitting set carries full information about the network model parameters. That is, we can

consistently estimate, using only data in the fitting set, the membership of all the nodes as well

as the community-wise edge probability matrix. Second, given the community membership, the

data in the fitting set and in the testing set are independent. The second observation reflects a

significant difference between the traditional parameterization of the stochastic block model that

treats the node memberships as missing variables, and the conditional parameterization that treats

the memberships as parameters. The traditional parameterization can model networks of arbitrary

size and has a motivation from exchangeable random graphs (Bickel and Chen, 2009). However, for

community recovery based on a single observed realization of the stochastic block model, the useful
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information for statistical inference is largely contained in the randomness of edge formation. In

contrast, by treating the membership as parameters, the conditional parameterization substantially

simplifies the relationship between the distributions of edge formation in the fitting set and in the

testing set.

We describe the algorithm in detail in Section 2. The proposed V-fold NCV method is novel

and is of substantial practical interest for several reasons. First, it is computationally efficient,

requiring only one model fitting for each fold. Second, it is tuning free except the number of folds.

Moreover, it is general enough to be combined with different community recovery techniques. In

Section 3, we characterize the theoretical properties of the proposed NCV method. We show that

under appropriate conditions, when combined with popular community recovery techniques, such as

modularity based optimization and spectral clustering, the proposed NCV does not underestimate

the number of communities with probability tending to one. Protection against overestimation is

also discussed. In Section 5, we demonstrate the effectiveness of our method via extensive numerical

experiments, where different types of network community structures are investigated.

The NCV method can be applied to select the best model from a general collection of candidate

models, which does not need to be nested or hierarchical. For example, one can use NCV to

choose between the regular stochastic block model and the degree corrected block model, with

simultaneous choice of number of communities. Moreover, the block-wise node-pair splitting idea

behind NCV can be further extended to other network models with conditional edge independence.

These extensions are described in Section 4 and Section 6, and are illustrated in an application to a

political blog data in Section 5, where the NCV method chooses the degree corrected block model

with two communities, matching pervious findings in the literature.

2. NETWORK CROSS-VALIDATION FOR STOCHASTIC BLOCK MODELS

In a stochastic block model with n nodes and K communities, the observed random graph is

often represented by an n × n symmetric binary adjacency matrix A. The community structure

is represented by a vector g = (g1, . . . , gn) with gi ∈ {1, ...,K} being the community that node

i belongs to. Given the membership vector g, each edge Aij (i < j) is an independent Bernoulli

variable satisfying

P (Aij = 1) = 1− P (Aij = 0) = Bgigj , (1)
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where B is a K × K symmetric matrix representing the community-wise edge probabilities. In

this section we focus on the problem of estimating K, the number of communities, from a single

observed network A. Generalization to other model selection problems will be discussed in later

sections.

We first describe the overall algorithm of the V-fold network cross-validation procedure. Each

step will be explained in details for a single fold in subsequent subsections.

Algorithm 1: V-fold network cross-validation

Input: adjacency matrix A, a set K of candidate values for K, number of folds V ≥ 2.

1. Block-wise node-pair splitting:

Randomly split the nodes into V equal-sized subsets {Ñv : 1 ≤ v ≤ V }, and split the

adjacency matrix correspondingly into V × V equal sized blocks

A = (Ã(uv) : 1 ≤ u, v ≤ V ), (2)

where Ã(uv) is the submatrix of A with rows in Ñu and columns in Ñv.

2. For each 1 ≤ v ≤ V , and each K̃ ∈ K

(a) Estimation from the rectangular matrix:

Estimate model parameters (ĝ(v), B̂(v)) using the rectangular submatrix obtained by

removing the rows of A in subset Ñv

Ã(−v) = (Ã(rs) : r 6= v, 1 ≤ r, s ≤ V ) .

(b) Validation:

Calculate the predictive loss evaluated on Ã(vv):

L̂(v)(A, K̃) =
∑

i,j∈Ñv ,i 6=j

`(Aij , P̂
(v)
ij ) , (3)

where P̂
(v)
ij = B̂

(v)

ĝ
(v)
i ,ĝ

(v)
j

.

3. Let L̂(A, K̃) =
∑V

v=1 L̂
(v)(A, K̃) and output

K̂ = arg min
K̃∈K

L̂(A, K̃) .
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In our experiments we found the performance of NCV insensitive to the choice of V , and we

used V = 3 for all numerical experiments. Further discussion on the choice of V and its difference

from the regular cross-validation is given in Section 6. There is some randomness in K̂ due to the

randomness in V-fold splitting. We recommend to perform NCV multiple times with independent

V-fold splits and output the most frequent value of K̂. In our simulation, twenty repetitions was

sufficient to stabilize the output.

2.1 Step 1: block-wise node-pair splitting

Now we further discuss the block-wise node-pair splitting for a single fold v. Recall that in the

V -fold split of adjacency matrix A, we denote Ã(rs) the submatrix of A that corresponds to the

rows in the rth fold and columns in the sth fold. When fold v is used for validation, we only need to

consider nodes inside and outside of the vth fold. To emphasize this point and facilitate discussion,

let A(11) = (Ã(rs) : r 6= v, s 6= v), A(22) = Ã(vv), A(12) = (Ã(rv) : r 6= v). We can re-arrange the

V × V block adjacency matrix in a collapsed 2× 2 block form.

A =

 A(11) A(12)

A(21) A(22)

 , (4)

Such a splitting puts node pairs in A(11) and A(12) as the fitting sample and those in A(22) as the

validating sample. Finally for ease of presentation we use N1 to denote Ñ c
v and N2 for Ñv.

The block-wise node-pair splitting arranges the fitting sample and validating sample in a block

matrix form. An important consequence is that one can accurately estimate all model parameters,

including the community membership of all nodes, from the fitting sample. Such a splitting method

has several appealing features when compared with existing cross-validation methods for network

data that are mostly based on a node splitting technique. In the node splitting method, where

the nodes, instead of the node pairs, are split into a fitting set and a testing set, one typically

assumes that the node memberships are generated independently with probability P (gi = k) = πk

for some π = (π1, ..., πK) such that πk > 0 and
∑K

k=1 πk = 1. After the node splitting, the

model parameter (π,B) is estimated on the subnetwork confined on the fitting set of nodes, and

evaluated on the subnetwork confined on the testing subset of nodes. This approach has some

drawbacks. First, calculating the full likelihood in terms of π and B in presence of a missing

membership vector g is computationally demanding. Second, it introduces unnecessary randomness
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in the validation step by treating the node memberships as random variables, which often leads to

inaccurate model selection. Third, it does not use the observed edge formation between the fitting

and testing nodes. The first two drawbacks are also present in the regular BIC approach using

full likelihood, as pointed out by Handcock et al. (2007); Airoldi et al. (2008). They proposed a

hybrid criterion, which combines a conditional log-likelihood given an estimated membership, with

a BIC-type penalty term based on the unconditional parameterization. In the current paper, the

NCV framework fully takes a conditional perspective, where the node memberships are treated as

fixed and estimated from the fitting submatrix, which makes NCV fundamentally different from the

regular cross-validation based on node splitting. In addition, NCV fully exploits the information

carried in node pairs between Ñv and Ñ c
v , making the model fitting and validation statistically and

computationally more efficient.

2.2 Step 2: estimating model parameters from the rectangular matrix

After splitting, we estimate model parameters (g,B) from the n1 × n rectangular matrix A(1) =

(A(11), A(12)). Many standard community recovery procedures designed for the full adjacency ma-

trix can be extended to this case. In our numerical examples we have implemented spectral clus-

tering and a least squares estimator. We first illustrate the implementation of spectral clustering.

For a given candidate value K̃ of K, the simple spectral clustering method first performs a

singular value decomposition on A(1), and estimates g by applying k-means clustering on the rows

of the n× K̃ matrix consisting of the leading d right singular vectors.

Rectangular spectral clustering:

Input: Rectangular n1 × n matrix A(1), a candidate number of communities K̃, number of

spectral components d (default choice of d is K̃)

1. Let Û be the n× d matrix consisting of the top d right singular vectors of A(1).

2. Output ĝ by applying the k-means clustering algorithm with K̃ clusters to the rows of Û .

The selection of d in spectral clustering concerns the problem of choosing the number of sig-

nificant singular values of the adjacency matrix (Owen and Perry, 2009; Josse and Husson, 2012;

Chatterjee, 2014). In a stochastic block model, d also corresponds to the rank of the community-

wise edge probability matrix B. Choosing d is not necessarily the same as choosing the number

of communities (Fishkind et al., 2013; Lei, 2016). In practice, one may choose d by looking at the
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scree plot of singular values of A. In our simulation studies, we use d = K̃ according to the fact

that in a stochastic block model with K̃ communities the rank of B does not exceed K̃. Such a

choice may include more singular vectors than necessary, but the number of redundant singular

vectors will not be large for moderate values of K̃.

Next we describe the least squares estimator, which can be written as

ĝls = arg max
g∈{1,...,K̃}n

max
B∈[0,1]K̃×K̃

∑
1≤i<j≤n

(Aij −Bgigj )
2 .

The least squares estimator has been studied in the network data literature (Gao et al., 2015; Borgs

et al., 2015) and can be viewed as a variant of the likelihood estimator (Bickel and Chen, 2009)

ĝmle = arg max
g∈{1,...,K̃}n

max
B∈[0,1]K̃×K̃

 ∏
i,j∈N1,i<j

B
Aij
gigj (1−Bgigj )

1−Aij

×
 ∏

i∈N1,j∈N2

B
Aij
gigj (1−Bgigj )

1−Aij

 .

In practice, both maximization problems can be solved using heuristic search methods such as

the label switching algorithm (Bickel and Chen, 2009) and the tabu search (Zhao et al., 2012).

Empirically these two estimators have similar performance. In this paper we focus on the least

squares method which is slightly more stable when the network is sparse.

Once ĝ is obtained, let Nj,k be the nodes in Nj with estimated membership k, and nj,k = |Nj,k|

(j = 1, 2, 1 ≤ k ≤ K̃). We can estimate B using a simple plug-in estimator:

B̂k,k′ =



∑
i∈N1,k,j∈N1,k′∪N2,k′

Aij

n1,k(n1,k′ + n2,k′)
, k 6= k′ ,

∑
i,j∈N1,k,i<j Aij +

∑
i∈N1,k,j∈N2,k

Aij

(n1,k − 1)n1,k/2 + n1,kn2,k
, k = k′ .

(5)

We provide theoretical analysis of these estimators in Section 3. The success of these estimators

requires adequate presence of all communities in the training subsample. Thus the NCV method

typically works well when the communities are balanced, a condition typically holds when the

number of communities is not too large. This is reflected in our simulation studies in Section 5.

2.3 Step 3: validation using the testing set

After estimating the parameters (ĝ, B̂), we can assess the goodness-of-fit by validating on the testing

set.
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For each observation in the testing set, Aij (i 6= j, i, j ∈ N2) is a Bernoulli random variable

with parameter Pij = Bgigj , which is estimated by P̂ij = B̂ĝiĝj . Some natural choices of the loss

function ` in (3) include negative log-likelihood `(x, p) = −x log p− (1− x) log(1− p), and squared

error `(x, p) = (x−p)2. In our numerical experiments, these two loss functions give almost identical

performance.

In the validation step, if the candidate value K̃ is too small, then the fitted model cannot capture

the fine structures in the data, and will likely lead to poor predictive loss on testing data. If K̃ is

too large, then the model overfits the data, with noisy prediction on the testing data. Therefore, it

is natural to expect the validated predictive loss L̂(A, K̃) =
∑

i,j∈N2,i 6=j `(Aij , P̂ij) , to be minimized

when K̃ = K, the true number of communities. Partial theoretical supports and further heuristic

arguments are given in the following section.

3. THEORETICAL PROPERTIES FOR NCV IN STOCHASTIC BLOCK MODELS

For two sequences of positive numbers an and bn, we denote an = Ω(bn) if lim infn→∞ an/bn > 0,

and an = ω(bn) if an/bn →∞. We also adopt the standard notation where an = O(bn) means that

lim supn→∞ an/bn <∞ and an = o(bn) means that an/bn → 0.

To study the asymptotic behavior of the estimator, we consider a sequence of SBM’s parame-

terized by (g(n), B(n) : n ≥ 1) such that

(A1) g(n) is a membership vector of length n with K distinct communities, and the minimum

community size is at least π0n for some constant π0.

(A2) B(n) = ρnB0 where B0 is a K×K symmetric matrix with entries in (0, 1], and the rows of B0

are all distinct. The rate ρn, which controls the network sparsity, satisfies ρn = Ω(log n/n).

The first condition requires the block sizes to be relatively balanced. It is satisfied with high

probability if the memberships are independently generated from a multinomial distribution. The

second condition allows the edge probability to decrease at a rate ρn as n increases. The lower

bound on the sparsity ρn makes it possible to obtain accurate community recovery.

Community recovery is an integrated part in the proposed NCV method and its accuracy plays

an important role in the performance of model selection. We introduce two notions of community

recovery consistency.
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Definition 1 (Exactly consistent recovery). Given a sequence of SBM’s with K blocks parame-

terized by (g(n), B(n)), we call a community recovery method ĝ exactly consistent if P (ĝ(A,K) =

g(n)) → 1, where A is a realization of SBM (g(n), B(n)) and the equality is up to a possible label

permutation.

Definition 2 (Approximately consistent recovery). For a sequence of SBM’s with K blocks param-

eterized by (g(n), B(n)) and a sequence ηn = o(1), we say ĝ is approximately consistent with rate ηn

if,

lim
n→∞

P [Ham(ĝ(A,K), g) ≥ ηnn] = 0,

where Ham(ĝ, g) is the smallest Hamming distance between ĝ and g among all possible label per-

mutations.

Exactly consistent community recovery can be achieved under mild assumptions on g(n) and

B(n). It is known that likelihood methods (Bickel and Chen, 2009) are exactly consistent when

ρnn/ log n→∞, and variants of spectral methods (McSherry, 2001; Vu, 2014; Lei and Zhu, 2014)

are exactly consistent when ρnn/ log n > C for some constant C depending on π0, B0 only. Con-

sistency of the least squares estimator are provided in Gao et al. (2015); Borgs et al. (2015). The

proposed NCV method can be combined with any of these community recovery methods. For the

simple spectral clustering algorithm, the exact consistency result has not been established. But its

highly competitive empirical performance has been observed in extensive numerical studies and it

is popular due to its simple implementation. In the following, we first establish the approximately

consistent recovery result for the simple spectral clustering algorithm described in 2.2.

Theorem 1 (Consistency of spectral clustering). Assuming that B0 is non-singular and A1-A2

hold, for each fold split in NCV, the ĝ estimated using spectral clustering as described in Section 2.2

is approximately consistent with rate (nρn)−1.

Now we state the main theorem. For a given V -fold block-wise partition of A, recall that Ñv is

the set of nodes in the vth fold. Let

L(A) =
V∑

v=1

∑
i,j∈Ñv ,i 6=j

`(Aij , Bgigj ) .
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Theorem 2. Under conditions A1–A2, with the loss function `(a, p) = (a − p)2, for a candidate

K̃, we have

(a) When K̃ < K, for any estimator (ĝ, B̂), we have

L̂(A, K̃)− L(A) ≥ c(nρn)2 +OP (1) .

(b) When K̃ = K, if ĝ is exactly consistent and B̂ is estimated as in (5), then∣∣∣L̂(A, K̃)− L(A)
∣∣∣ = OP (nρ3/2

n ).

(c) When K̃ = K, if ĝ is approximately consistent with rate ηn and B̂ is estimated as in (5),

then ∣∣∣L̂(A, K̃)− L(A)
∣∣∣ = OP (nρ3/2

n + n2ρnηn) .

As a consequence, when the candidate set K is fixed and contains the truth, we have the

following guarantee against under selection.

Corollary 3. Assume that the candidate set K is fixed, independent of n, and contains K. Assume

also that conditions A1–A2 hold. Consider loss function `(a, p) = (a− p)2.

(a) When ĝ is exactly consistent and B̂ is estimated as in (5), we have

lim
n→∞

P (K̂ < K) = 0

(b) When ĝ is obtained by the simple spectral clustering method described in Section 2.2, and B̂

is estimated as in (5), we have

lim
n→∞

P (K̂ < K) = 0 ,

provided that ρn = ω(n−1/2) and B0 is non-singular.

The proofs of Theorem 1 and Theorem 2 are given in Appendix A. Part (a) of Corollary 3 is a

direct consequence of part (a) and (b) of Theorem 2. Part (b) of Corollary 3 can be easily derived

by combining Theorem 1 and part (a), (c) of Theorem 2.

As commonly known for cross-validation methods, there is no corresponding theoretical guar-

antee against overestimation. Here we provide some heuristic understanding why the NCV method
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will tend not to give K̂ > K in stochastic block models. The estimated communities must belong

to one of two scenarios. In the first scenario, each of the estimated community contains mostly

nodes from one true community. So if K̃ > K, at least one true community is artificially split,

and the corresponding Bk,k′ is estimated separately in these artificially split blocks. The difference

between these separate estimates mainly reflects spurious random fluctuations, which will only lead

to a larger predictive loss on an independent testing data. In the second scenario, at least one

estimated community contains a substantial proportion of nodes from two true communities. In

this case, the cross-validated predictive loss can be shown to be large regardless of K̃ > K or

K̃ < K, using the same argument as in part (a) of Theorem 2.

4. DEGREE CORRECTED BLOCK MODELS AND FURTHER EXTENSIONS

4.1 Choosing K for degree corrected block models

The degree corrected block model (Karrer and Newman, 2011) is a generalization of the stochastic

block model. Given membership vector g and community-wise connectivity matrix B, the presence

of an edge between nodes i and j is represented by a Bernoulli random variable Aij with

P (Aij = 1) = 1− P (Aij = 0) = ψiψjBgigj , (6)

where ψi > 0 represents the individual activeness of node i. Thus the degree corrected block

model is parameterized by a triplet (g,B, ψ), with identifiability constraint maxi:gi=k ψi = 1 for

all k = 1, ...,K. The regular stochastic block model is a special case with ψi = 1 for all i.

Efficient community recovery methods have been developed for degree corrected block models with

high accuracy under mild conditions (see, for example, Zhao et al., 2012; Jin, 2015; Chaudhuri

et al., 2012; Lei and Rinaldo, 2015). Algorithm 1 is general enough to cover degree-corrected block

model. We only need to modify the parameter estimation step. Similarly, we can use many different

methods to estimate (g,B, ψ), such as spectral clustering, maximum likelihood, and least squares.

Here we describe a rectangular spherical spectral clustering method.

Rectangular spherical spectral clustering:

Input: Rectangular n1 × n matrix A(1), a candidate number of communities K̃.

1. Let Û be the n× K̃ matrix consisting of the top K̃ right singular vectors of A(1).

2. Let Ũ be the matrix obtained by scaling each row of Û to unit norm.
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3. Output ĝ by applying the k-median clustering algorithm with K̃ clusters to the rows of Ũ .

This algorithm is adapted from the spherical spectral clustering for full adjacency matrix in

Lei and Rinaldo (2015). The normalization step in the spherical spectral clustering algorithm

decouples the effect of node activeness ψ from the community structure. As shown in the proof of

Theorem 4 below, the community information is contained in the normalized matrix Ũ , whereas

the node activeness information is contained in the row norms of Û .

The community recovery is obtained by solving a k-median clustering problem

min
u1,...,uK̃

∈RK̃ , g∈{1,...,K̃}n

n∑
i=1

‖ũi − ugi‖ , (7)

where ũi is the ith row of Ũ . Let (û1, ...ûK , ĝ) be a solution to (7), then the estimated community is

ĝ. Finding the global optimum of (7) is computationally hard. But our method and corresponding

theory also work for any approximate solution whose object value is within a constant factor from

the global optimum. Such approximate solutions can be found using efficient algorithms (Charikar

et al., 1999; Li and Svensson, 2013). If the matrix Û has zero rows, one can apply the spherical

clustering algorithm on the non-zero rows and assign arbitrary membership to the zero rows. Our

theoretical analysis shows that with high probability the number of zero rows in Û is negligible

under mild conditions.

Now we define a community-normalized version of ψ

ψ′i =
ψi√∑

j:gj=gi
ψ2
j

.

Recall that ψ and B are only identifiable up to a scaling factor, for our purpose of estimating Pij ,

it is sufficient to obtain estimates of ψ′ and B′, the correspondingly scaled version of B.

We propose to estimate ψ′i as the `2 norm of the ith row of Û :

ψ̂′i =

 K̃∑
j=1

Û2
ij

1/2

. (8)
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We will show, in the proof of Theorem 4 below, that ψ̂′ is a good estimate of ψ′ under appropriate

conditions. We estimate B′ with the plug-in estimator:

B̂′k,k′ =



∑
i∈N1,k,j∈N1,k′∪N2,k′

Aij∑
i∈N1,k,j∈N1,k′∪N2,k′

ψ̂′iψ̂
′
j

, k 6= k′ ,

∑
i,j∈N1,k,i<j Aij +

∑
i∈N1,k,j∈N2,k

Aij∑
i,j∈N1,k,i<j ψ̂

′
iψ̂
′
j +

∑
i∈N1,k,j∈N2,k

ψ̂′iψ̂
′
j

, k = k′ .

(9)

The estimated Pij = E(Aij) to be used for validation is then

P̂ij = ψ̂′iψ̂
′
jB̂
′
ĝi,ĝj

.

To investigate theoretical properties of these estimators, we assume that there are no overly

inactive nodes.

(A3) inf1≤i≤n ψi ≥ ψ0 for a positive constant ψ0.

Theorem 4. Under (A1)–(A3), assume B0 is non-singular and (ĝ, B̂, ψ̂) is obtained by spherical

spectral clustering combined with Equations (8) and (9), then for each fold split we have

(a) if ρn ≥ c log n/n for a large enough constant c, then, with probability tending to one, ĝ agrees

with g on all but O(
√
n/ρn) nodes;

(b) if ρn = ω(n−1/3), then P̂ij = Pij(1 + op(1)) for all but a vanishing proportion of node pairs.

Theorem 4 is proved in Appendix A.2. Part (a) establishes approximate consistency of spherical

spectral clustering applied on the rectangle fitting set of node pairs. Part (b) requires a larger

average edge probability so that the estimation error of B̂ is well-controlled. In this case, part (a)

of the theorem suggests that the proportion of mis-clustered nodes is o(n−1/3).

4.2 Choosing model type and K simultaneously

Sometimes it is desirable to tell if the degree heterogeneity in an observed network can be explained

by pure random fluctuation in a stochastic block model. The problem of choosing between the

regular stochastic block model and the degree corrected model is first considered in Yan et al.

(2014) with a focus on Poisson networks. They use a likelihood ratio approach combined with

belief propagation for fast computation. In the context of binary network models, our V-fold NCV
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can simultaneously choose between the regular stochastic block model and the degree corrected

block model, and determine the number of communities. To this end, one just needs to calculate

the regular stochastic block model validation error L̂sbm(A, K̃), and the degree corrected block

model validation error L̂dcbm(A, K̃), for a collection of values of K̃ as described in Algorithm 1.

The best model is chosen by finding the overall smallest cross-validation loss. We illustrate this

method on simulated data and on a political blog data in Section 5.

5. NUMERICAL EXPERIMENTS

5.1 Simulation studies

We first demonstrate the performance of NCV in both stochastic block models (Simulation 1)

and degree corrected block models (Simulation 2), then we compare NCV with other state-of-art

methods (Simulation 3).

Simulation 1: edge sparsity and community imbalance. This simulation is designed to

investigate the performance of NCV for stochastic block models under different levels of edge

sparsity and community size imbalance. We set the community-wise edge probability matrix B =

rB0, where the diagonal entries of B0 are 3 and off-diagonal entries are 1. The sparsity levels are

chosen at r ∈ {0.01, 0.02, 0.05, 0.1, 0.2}, so that for n = 1000 the smallest expected degree ranges

from 12 to 400. For community sizes, we set the size of the smallest community to be n1, and

the size of each of the remaining K − 1 communities to be (n − n1)/(K − 1). We generate edges

according to the stochastic block model (1). For each combination of (r,K, n1), three-fold NCV

model selection based on simple spectral clustering is carried out for 200 independently drawn

adjacency matrices. Figure 1 shows the proportion of correct model selection among these 200

repetitions as functions of r for different n1 and K ∈ {2, 3, 4}. As expected, the performance is

better as r and n1 increase. In particular, for K = 2, in the most balanced case (n1 = 500), NCV

can perfectly choose the true number of clusters even in the sparsest case r = 0.01, whereas in the

most imbalanced case (n1 = 100), there is a phase transition near r = 0.1. The curve for n1 = 200

is in between. The same phenomenon is observed for K = 3 and K = 4. The proposed NCV can

almost perfectly pick out K for relatively balanced community sizes, even for very sparse cases.

For imbalanced cases, NCV needs moderate expected node degrees for successful model selection.

Community recovery for a given K is an integrated step in the proposed NCV method, so the
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Figure 1: Results for Simulation 1: the proportion of correct estimate of K for stochastic block

models over 200 repetitions, for K = 2, 3, 4, under sparsity levels r ∈ {0.01, 0.02, 0.05, 0.1, 0.2}, and

various sizes of the first community n1. The number of nodes is 1000.

performance of NCV is closely related to the difficulty of the community recovery problem when

knowing the true K, which may depend on the particular community recovery method used in

NCV.

Simulation 2: degree corrected block models. This simulation is designed to demonstrate

the performance of NCV in selecting between the stochastic block model and the degree-corrected

block model with simultaneous selection of K. We use B matrices whose diagonal is 0.25 and

off-diagonal is 0.1, which give a moderate sparsity level for stochastic block models. For degree-

corrected block model, the degree parameter ψ is generated from Uniform(0.2, 1), and normalized

to have block-wise maximum value of 1. The network is much sparser due to the degree parameter

ψ. We use three-fold NCV based on spectral clustering to simultaneously choose the model type

T from T = “SBM” or T = “DCBM”, and the number of communities K. Table 1 shows the

proportion of correct model type selection T̂ = T and proportion of correct choice of K given

correct model type selection. We generate 200 independent adjacency matrices from both the

stochastic block model and the degree corrected block model, for each combination of K = 1, 2, 3, 4

and n = 300, 600, 1200. When the true model type is the stochastic block model, NCV can almost

always pick out the correct model and correct K for various combinations of K and n. As expected,

a relatively larger sample size is needed to get good performance when the true model is the degree

corrected block model. Our simulation shows that for n = 1200, NCV can almost always pick out

the correct DCBM model with the right K. With a smaller n, the method sometimes fails to select
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Table 1: Results for Simulation 2: proportion of selecting the correct model type, and choosing the

correct K given correct model type selection, over 200 independent simulations. The true models

are generated from stochastic block models (SBM) or degree corrected block models (DCBM), for

K = 1, 2, 3, 4 and n = 300, 600, 1200.

SBM DCBM

K = 1 2 3 4 K = 1 2 3 4

n = 300 P̂ (T̂ = T ) 1 1 1 1 1 0.825 0.605 0.450

P̂ (K̂ = K|T̂ = T ) 0.99 1 0.995 0.905 0.995 0.424 0 0

n = 600 P̂ (T̂ = T ) 1 1 1 1 1 1 0.99 0.99

P̂ (K̂ = K|T̂ = T ) 1 1 1 0.995 1 1 0.374 0

n = 1200 P̂ (T̂ = T ) 1 1 1 1 1 1 1 1

P̂ (K̂ = K|T̂ = T ) 0.99 1 0.995 0.985 1 1 1 0.985

the right K even when the correct DCBM model is selected. For the case of n = 300,K = 2, when

the true model DCBM is selected, the distribution of the selected K is 57% for K = 1, 43% for

K = 2, and 1% for K = 5. For the case of (n = 600,K = 3), when the true model DCBM is

selected, the distribution of the selected K is 62% for K = 1, 37% for K = 2, and 1% for K = 4.

Simulation 3: general block-wise edge probability structures and comparison to other

methods. This simulation is designed to further investigate the overall performance of NCV under

general stochastic block models, and meanwhile to compare it with the conditional BIC method

proposed in Handcock et al. (2007); Airoldi et al. (2008), the variational Bayes method (Latouche

et al., 2012), and the recursive testing procedure proposed in Bickel and Sarkar (2016). We consider

four elements in designing the simulation.

1. Network size: n ∈ {600, 1200}, where n is the number of nodes in the network.

2. Network sparsity: r ∈ {0.05, 0.1, 0.15, 0.2}, where r controls the overall network sparsity.

3. Number of communities: K ∈ {2, 3, 4, 5}.

4. Type of community-wise edge probability: assortative-mixing and general structure. In the

assortative-mixing model, the within-community edge probability is higher than between-
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community edge probability. In particular, we set Bk,k′ = 2r for k 6= k′ and Bk,k = 3r. In

the general structure model, we also set Bk,k′ = 2r but the diagonal entries are (3, 1)× r for

K = 2, (3, 2, 1)× r for K = 3, (3, 3, 1, 1)× r for K = 4, and (3, 3, 2, 1, 1)× r for K = 5.

The membership vector g is generated from multinomial distribution (n, π) with equal probability

π = (1/K, . . . , 1/K). For each simulated data, we apply four different versions of three-fold NCV.

The first one is based on spectral clustering, called ncv.spec. The second one, called ncv2.spec,

repeats ncv.spec 20 times and chooses the most frequent output. The third one, called ncv.ls,

is NCV combined with community recovery using the least squares estimate. We implement the

least squares method using the label-switching algorithm as described in Bickel and Chen (2009);

Stephens (2000). The fourth one, called ncv2.ls, repeats ncv.ls 20 times and chooses the most

frequent output. For comparison, we implement the conditional BIC method first proposed by

Handcock et al. (2007), where the membership is recovered using spectral clustering (bic.spec)

or the least squares method (bic.ls). This method combines a conditional log-likelihood with a

BIC-type penalty. We also compare with two other methods, the variational Bayes method (vB)

developed by Latouche et al. (2012), and the recursive bipartition algorithm developed in Bickel

and Sarkar (2016) with type I error lavel α = 0.01 (BiPart). The recursive bipartition method

divides the nodes into two clusters if K = 1 is rejected at level α, and then recursively test K = 1

vs K > 1 on each of the two sub-networks until failing to reject K = 1.

In Tables 2 and 3, we present the proportion of correct model selection over 200 independently

generated networks for each combination of simulation setting (Due to space limitation, we omitted

the results for K = 2 where all the methods work well, and the results for the recursive bipartition

algorithm (BiPart), which is overall less competitive). As expected, all methods benefit from a

larger sample size or a denser network. The task of choosing K gets harder as the true number of

communities gets larger.

Under the assortative mixing model (Table 2), the B matrices are well-conditioned so that both

least squares and spectral methods can successfully recover the hidden community. The proposed

NCV methods with repetitions work best. The two conditional BIC methods are on a par with

NCV with repetitions. The single round NCV methods are less stable when n = 600, but still work

well when n = 1200. The variational Bayes method tends to require a denser network in order to
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perform well. For example, when K = 5, it started to work when r = 0.15 and n = 1200.

Under the general structure model (Table 3), the least squares based NCV with repetitions

(ncv2.ls) has the most satisfactory performance. The least squares based conditional BIC method

is very close. The variational Bayes method still exhibits a stronger requirement on network density,

when compared to the two leading methods. In this setting spectral based methods, such as

ncv2.spec, ncv.spec, and bic.spec, are not as good as their least squares based counterparts.

This is because of a much worse condition number of the B matrix, which makes spectral clustering

less accurate. This observation reflects the theoretical superiority of likelihood and least squares

methods in community recovery (Amini et al., 2013; Abbe et al., 2016; Gao et al., 2015).

Overall, NCV has very satisfactory performance for selecting K in SBM, under different struc-

tures of B. we found that for a relatively easy B with reasonable dense data or large n, the accuracy

of one split ncv is almost close to 1 and so as multiple splits. In the case of relatively difficult B

and smaller n, we do see some variability in one split of ncv, where the multiple splits helps to

largely reduce the variability and improve the accuracy to almost 1. For example, the setting in

with general B structure, K = 4, r = 0.1 and n = 600, the selected K is highly concentrated on

the true K = 4, with a small proportion of over selection of K = 5. The conditional BIC method

has comparable performance. However, as we have seen in Simulation 2, NCV is directly applica-

ble for general model comparison purposes, while the conditional BIC method cannot be used to

compare two different models such as SBM and DCBM. If condition on the estimated ψ, then the

conditional log-likelihoods of SBM and DCBM are not comparable, as DCBM is always preferred.

How to appropriately incorporate the conditional perspective into BIC-type penalties and calibrate

the measure of model complexity remains an open problem.

5.2 Data examples

Here we apply the NCV method to two well-known network data sets with community structure.

Data example 1: political weblogs. The political blog data was collected and analyzed in

Adamic and Glance (2005). The data set contains snapshots of over one thousand weblogs shortly

before the 2004 U.S. Presidential Election, where the nodes are weblogs, and edges are hyperlinks.

The nodes are labeled as being either liberal or conservative, which can be treated as two well-

defined communities. The degree corrected block model with two communities is believed to fit
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Table 2: Results for Simulation 3, Assortative Mixing. Reported are proportions of correct model

selection in 200 independently generated data. Community sizes are equal, with B(k, k′) = 2r for

k 6= k′ and B(k, k) = 3r.

n K r ncv.ls ncv2.ls ncv.spec ncv2.spec vB bic.ls bic.spec

600 3 0.05 0.00 0.00 0.01 0.00 0.00 0.00 0.00

0.1 0.95 1.00 1.00 1.00 0.92 1.00 1.00

0.15 0.97 1.00 1.00 1.00 1.00 1.00 1.00

0.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.23 0.29 0.55 0.60 0.00 0.46 0.04

0.15 0.96 1.00 1.00 1.00 0.99 1.00 1.00

0.2 0.97 1.00 0.99 1.00 1.00 1.00 1.00

5 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.15 0.78 1.00 0.78 0.96 0.06 1.00 0.95

0.2 0.94 1.00 1.00 1.00 1.00 1.00 1.00

1200 3 0.05 0.92 1.00 0.99 1.00 0.02 0.99 1.00

0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.15 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 0.05 0.01 0.00 0.15 0.03 0.00 0.03 0.00

0.1 0.99 1.00 1.00 1.00 0.98 1.00 1.00

0.15 0.99 1.00 1.00 1.00 1.00 1.00 1.00

0.2 1.00 1.00 0.98 1.00 1.00 1.00 1.00

5 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.95 1.00 1.00 1.00 0.02 1.00 1.00

0.15 0.95 1.00 1.00 1.00 1.00 1.00 1.00

0.2 1.00 1.00 0.96 1.00 1.00 1.00 1.00
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Table 3: Results for Simulation 3, General Structure. Reported are proportion of correct model

selection in 200 independently generated data, with equal community sizes. The B matrix is chosen

such that B(k, k′) = 2r for k 6= k′, and the diagonal entries are (3, 1)× r for K = 2, (3, 2, 1)× r for

K = 3, (3, 3, 1, 1)× r for K = 4, and (3, 3, 2, 1, 1)× r for K = 5.

n K r ncv.ls ncv2.ls ncv.spec ncv2.spec vB bic.ls bic.spec

600 3 0.05 0.15 0.00 0.00 0.00 0.00 0.04 0.00

0.1 0.84 1.00 0.08 0.02 1.00 1.00 0.08

0.15 0.96 1.00 0.80 1.00 1.00 1.00 0.98

0.2 0.98 1.00 1.00 1.00 1.00 1.00 1.00

4 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.70 0.99 0.04 0.00 0.33 0.96 0.00

0.15 0.97 1.00 0.34 0.08 1.00 1.00 0.32

0.2 0.97 1.00 0.91 1.00 1.00 1.00 0.99

5 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.15 0.82 1.00 0.05 0.00 0.64 1.00 0.00

0.2 0.94 1.00 0.18 0.08 1.00 1.00 0.15

1200 3 0.05 0.64 0.94 0.03 0.00 1.00 1.00 0.00

0.1 0.98 1.00 0.96 1.00 1.00 1.00 1.00

0.15 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 0.05 0.40 0.52 0.00 0.00 0.03 0.68 0.00

0.1 0.88 1.00 0.70 0.88 1.00 0.86 0.90

0.15 0.92 1.00 1.00 1.00 1.00 0.96 1.00

0.2 0.98 1.00 1.00 1.00 1.00 1.00 1.00

5 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.1 0.83 1.00 0.16 0.02 0.82 1.00 0.01

0.15 0.99 1.00 0.42 0.42 1.00 1.00 0.34

0.2 1.00 1.00 0.78 0.98 1.00 1.00 0.42
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Figure 2: Results for the political blogs data: reporting the three-fold cross-validated negative

log-likelihood of all candidate models from one random block splitting. Dashed line: stochastic

block models; solid line: degree corrected block models. The results are consistent over 100 repeated

random block splittings.

better than the stochastic block model (Karrer and Newman, 2011; Zhao et al., 2012; Jin, 2015).

To illustrate the NCV method for simultaneously choosing between the regular stochastic block

model and the degree corrected block model, and choosing the number of communities K, we apply

three-fold NCV to the largest connected component in the network which contains 1222 nodes. The

cross-validated negative log-likelihood for all candidate models is plotted in Figure 2 for a typical

block splitting. Despite the randomness in block splitting, the NCV is very stable when applied

on this data set. We repeated the NCV procedure 100 times using independent random block

splittings. The NCV selected DCBM with K = 2 in 99 out of 100 repetitions, where the one failure

was due to non-convergence of k-means in spectral clustering.

Data example 2: political books. We consider a co-purchasing network data of political books

sold on Amazon.com. The data was collected by Krebs (2004). It has 105 nodes, each representing

a political book. An edge between a pair of nodes indicates frequent co-purchasing of these two
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books (defined as the “customers who bought this item also bought...” feature of Amazon.com).

The average degree is 4.2. The nodes are manually labeled by Mark Newman in one of the three

categories: “neutral” (13 nodes), “liberal” (43 nodes), “conservative” (49 nodes). This is a rather

small data set, and it would be unrealistic to estimate a DCBM with three communities from such

a small sample. So we focus on fitting this data set using SBM’s. We repeated the three-fold NCV

100 times using independent random block splittings, the most frequent output is K̂ = 3. We

also tried the most frequent output from 20 random splittings as used in Simulation 2, combined

with three-, four-, and five-fold NCV. They all gave the same estimate K̂ = 3. In comparison, the

conditional BIC approach chooses K̂ = 4. When spectral clustering is used for community recovery

with K = 3, the result evenly partitions the nodes into three groups, where two of the groups

contain mostly conservative or liberal nodes, and the other group contains a mixture of 11 neutral

nodes, 10 liberal nodes, and 16 conservative nodes. The interpretation is that while extreme nodes

are easy to cluster, the less extreme ones tend to mix with the neutral ones. A similar phenomenon

on the same data set has been observed and reported in Newman (2006).

6. DISCUSSION

The network cross-validation approach proposed in this paper is applicable to network models

where (i) edges form independently given an appropriate set of model parameters; and (ii) the

edge probabilities can be estimated accurately using a subset of rows of the adjacency matrix. The

stochastic block model and the degree corrected block model are good examples that satisfy these

two properties. There are other popular network models in this category, such as the random dot-

product graph. The random dot-product graph model (Young and Scheinerman, 2007) assumes

that each node i has an embedding vi on a subset of the d-dimensional unit sphere, and that given

the embedding the edge between node i and node j is an independent Bernoulli random variable

with parameter 〈vi, vj〉. This is a special case of the latent space model (Hoff et al., 2002). The

latent vectors can be accurately estimated using spectral methods (Sussman et al., 2013), which

can be adapted naturally to allow for estimation using only a subset of rows in A.

In general, cross-validation methods are insensitive to the number of folds. The same intuition

empirically holds true for the proposed NCV method. However, there is a slight difference between

the NCV framework and the traditional cross-validation. Unlike traditional cross-validation, where
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each data point is included in a testing sample, in V-fold NCV only the diagonal blocks are used

as testing samples and hence the ratio between the sizes of fitting and testing samples is (V 2 − 1)

to 1 for NCV, and (V − 1) to 1 for traditional cross-validation. Roughly speaking, having a larger

value of V will rapidly increase the estimation accuracy in the fitting stage but will reduce the

testing sample size. In our numerical experiments we found V = 3 a reasonable choice for most

cases, which is roughly comparable to a 9-fold traditional cross-validation in terms of the fitting

and testing sample size ratio.

A. PROOFS

A.1 Proof of Theorem 2

Proof. We focus on a single fold in NCV. The claimed results follow by summing over all folds.

Again let N1 be the nodes corresponding to the fitting part and N2 be those in the testing part.

Let Il = {i ∈ N2 : gi = l, } (1 ≤ l ≤ K) and Îk = {i ∈ N2 : ĝi = k} (1 ≤ k ≤ K̃).

Case 1: K̃ < K.

According to tail probability inequalities for hypergeometric distributions (see Lemma 5), with

overwhelming probability over the random data splitting, the testing block A(vv) is also a realization

of a K-block SBM satisfying assumptions A1–A2, with a different constant π′0.

When K̃ < K, there exist 1 ≤ k ≤ K̃, 1 ≤ l1 < l2 ≤ K such that |Îk ∩ Ilj | ≥ |Ilj |/K̃ ≥ π′0n/|K̃|

for j = 1, 2. Because B0 does not have identical rows, there exists 1 ≤ l3 ≤ K such that B0(l1, l3) 6=

B0(l2, l3). There exists a k′ such that |Îk′ ∩ Il3 | ≥ |Il3 |/K̃ ≥ π′0n/K̃. We focus on the case k 6= k′

and l1, l2, l3 are distinct. The other cases, such as k = k′ or l1 = l3, or both, can be dealt with

similarly. Without loss of generality, assume k = 1, k′ = 2, l1 = 1, l2 = 2, l3 = 3.

Let Tk,k′,l,l′ be the set of unique pairs (i, j) such that i ∈ Îk ∩ Il, j ∈ Îk′ ∩ Il, and i 6= j (that

is, (i, j) and (j, i) shall be counted as one unique pair in case of k = k′ and l = l′). Let p̂ be the

average of Aij over (i, j) ∈ T1,2,1,3 ∪ T1,2,2,3 and p̂k,k′,l,l′ be the average of Aij over (i, j) ∈ Tk,k′,l,l′ .

Then, letting L(v)(A) be the terms in L(A) corresponding to the vth fold,

L̂(v)(A, K̃)− L(v)(A)

=
∑

k,k′,l,l′

∑
(i,j)∈Tk,k′,l,l′

[
(Aij − P̂ij)

2 − (Aij − Pij)
2
]
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=
∑

k,k′,l,l′

∑
(i,j)∈Tk,k′,l,l′

[
(Aij − B̂k,k′)

2 − (Aij −Bl,l′)
2
]

=
∑

(i,j)∈T1,2,1,3

[
(Aij − B̂1,2)2 − (Aij −B1,3)2

]
+

∑
(i,j)∈T1,2,2,3

[
(Aij − B̂1,2)2 − (Aij −B2,3)2

]
+

∑
(k,k′,l,l′)/∈{(1,2,1,3),(1,2,2,3)}

∑
(i,j)∈Tk,k′,l,l′

[
(Aij − B̂k,k′)

2 − (Aij −Bl,l′)
2
]

≥
∑

(i,j)∈T1,2,1,3

[
(Aij − p̂)2 − (Aij −B1,3)2

]
+

∑
(i,j)∈T1,2,2,3

[
(Aij − p̂)2 − (Aij −B2,3)2

]
+

∑
(k,k′,l,l′)/∈{(1,2,1,3),(1,2,2,3)}

∑
(i,j)∈Tk,k′,l,l′

[
(Aij − p̂k,k′,l,l′)2 − (Aij −Bl,l′)

2
]

=I + II + III.

Let λ = |T1,2,1,3|/(|T1,2,1,3 + T1,2,2,3|). Then π′20 /(K̃
2 + π′20 ) ≤ λ ≤ K̃2/(K̃2 + π′20 ), and p̂ =

λp̂1,2,1,3 + (1− λ)p̂1,2,2,3. If |Tk,k′,l,l′ | > 0, using Bernstein’s inequality we have

|p̂k,k′,l,l′ −Bl,l′ | = OP

(√
ρn

|Tk,k′,l,l′ |

)
. (A.1)

I =|T1,2,1,3|
[
(p̂− p̂1,2,1,3)2 − (p̂1,2,1,3 −B1,3)2

]
=|T1,2,1,3|

[
(1− λ)2(p̂1,2,1,3 − p̂1,2,2,3)2 − (p̂1,2,1,3 −B1,3)2

]
≥|T1,2,1,3|

[
(1− λ)2

2
(B1,3 −B2,3)2 − (1− λ)2 ((p̂1,2,1,3 −B1,3)− (p̂1,2,2,3 −B2,3))2

− (p̂1,2,1,3 −B1,3)2

]
≥|T1,2,1,3|

[
(1− λ)2

2
(B1,3 −B2,3)2 − 2(1− λ)2 (p̂1,2,1,3 −B1,3)2

− 2(1− λ)2 (p̂1,2,2,3 −B2,3)2 − (p̂1,2,1,3 −B1,3)2

]
≥c(nρn)2 +OP (ρn) .

where the constant c depending on π0, B0 and K̃ only, the first term in the last inequality comes

from the fact that |T1,2,1,3| ≥ π2
0n

2/K̃2 and |B1,2 −B1,3| ≥ c′ρn for some c′ depending only on B0,

the second term comes from (A.1) and the fact that |T1,2,1,3| � |T1,2,2,3|.

Similarly,

II ≥ c(nρn)2 +OP (ρn) .
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and

III ≥ −
∑

(k,k′,l,l′)/∈{(1,2,1,3),(1,2,2,3)}

|Tk,k′,l,l′ |(p̂k,k′,l,l′ −Bl,l′)
2 = OP (ρn) .

Case 2: K̃ = K with exactly consistent recovery

In this case we focus on the event ĝ = g, which has 1−o(1) probability. Then εn := sup1≤l,l′≤K |B̂l,l′−

Bl,l′ | = OP (
√
ρn/n) by Bernstein’s inequality and B̂l,l′ are independent with Aij for (i, j) in the

testing set.

For 1 ≤ k, k′ ≤ K, let Tl,l′ be the collection of pairs (i, j) in the testing set such that i ∈ Ik,

j ∈ Ik′ and i 6= j.

∣∣∣L̂(v)(A, K̃)− L(v)(A)
∣∣∣ ≤∑

k,k′

∑
(i,j)∈Tk,k′

∣∣∣(Aij − B̂k,k′)
2 − (Aij −Bk,k′)

2
∣∣∣

=
∑
k,k′

∑
(i,j)∈Tk,k′

∣∣∣−2Aij(B̂k,k′ −Bk,k′) + (B̂k,k′ +Bk,k′)(B̂k,k′ −Bk,k′)
∣∣∣

≤
∑
k,k′

∑
(i,j)∈Tk,k′

[2εnAij + (2ρn + εn)εn]

≤Op(n
2ρn)εn + n2(2ρn + εn)εn = OP (nρ3/2

n ) .

Because nρ
3/2
n = o((nρn)2), we have

P (K̂ < K) ≤
∑
K̃<K

P
[
L̂(A, K̃) < L̂(A,K)

]
≤
∑
K̃<K

∑
1≤v≤V

P
[
L̂(v)(A, K̃) < L̂(v)(A,K)

]
= o(1) .

This proves part (a) of Corollary 3.

Case 3: K̃ = K with approximately consistent recovery

Without loss of generality we assume the optimal permutation to match ĝ and g is the identity.

Let Ûk,k′ be the set of distinct pairs (i, j) in the fitting subset such that ĝi = k, ĝi = k′, and i 6= j.

Let Uk,k′ be the set of distinct pairs (i, j) in the fitting subset such that gi = k, gi = k′, and i 6= j.

Let S =
⋃K

k=1 Îk∆Ik, S =
⋃

k,k′ Ûk,k′∆Uk,k′ . On the event |S| ≤ ηnn, under Assumptions (A1) and

(A2) we have |S| = O(ηnn
2), and hence |Ûk,k′ | = |Uk,k′ |(1 +O(ηn)) for all k, k′.

∣∣∣B̂k,k′ −Bk,k′

∣∣∣
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=

∣∣∣∣∣∣ 1

|Ûk|

 ∑
(i,j)∈Uk,k′

Aij

−Bk,k′

∣∣∣∣∣∣+
1

|Ûk,k′ |

∑
(i,j)∈Ûk,k′∆Uk,k′

Aij

≤
|Uk,k′ |
|Ûk,k′ |

∣∣∣∣∣∣ 1

|Uk,k′ |
∑

(i,j)∈Uk,k′

Aij −Bk,k′

∣∣∣∣∣∣+

∣∣∣∣∣ |Uk,k′ ||Ûk,k′ |
− 1

∣∣∣∣∣Bk,k′ +
1

|Ûk,k′ |

∑
(i,j)∈Ûk,k′∆Uk,k′

Aij

≤(1 +O(ηn))OP

(√
Bk,k′/|Uk,k′ |

)
+O(ηn)Bk,k′ + (1 +O(ηn))ηn

=OP (ρ1/2
n n−1 + ηn) .

Focusing on the vth fold in cross-validation, we similarly have, letting εn = supk,k′ |B̂k,k′ −Bk,k′ |,∣∣∣L̂(v)(A, K̃)− L(v)(A)
∣∣∣ ≤Op(n

2(ρn + εn)εn) = Op(nρ
3/2
n + n2ρnηn) .

A.2 Proof of Theorem 1 and Theorem 4

Next we prove Theorem 1 and Theorem 4. Let P be the n× n matrix such that Pij = Bgigj . For

a particular fold split in NCV, let A(1) and P (1) be the testing rectangular submatrix of A and P

respectively. Let N ∗j,k be the nodes in subsample Nj belonging to community k and n∗j,k = |N ∗j,k|

(j = 1, 2, k = 1, ...,K). For any matrix M , let σK(M) be its Kth largest singular value. In the

statement of results and the proof, constants c, C may take different values from line to line. We let

‖M‖ = σ1(M) be the spectral norm of M and ‖M‖F = (σ2
1(M)+σ2

2(M)+ ...)1/2 be the Frobenious

norm.

Preliminary results The following technical lemmas are needed in the proof of Theorem 1 and

Theorem 4.

Lemma 5 (Size of split community). Under Assumption (A1), for n large enough we have mink n
∗
1,k ≥

π0n/(2V ), with probability at least 1− n−1/2.

The proof of this lemma follows from a simple application of large deviation bounds for hyper-

geometric random variables (Skala, 2013) combined with union bound and is omitted.

Lemma 6 (Spectral norm error of partial adjacency matrix). Let A be the adjacency matrix gen-

erated from a degree corrected block model satisfying Assumption A2, with ρn ≥ c log n/n for a

positive constant c. Let Ã be an arbitrary subset of rows of A and P̃ be the corresponding submatrix
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of P . We have, for some constant C,

P
(
‖Ã− P̃‖ ≤ C√nρn

)
≥ 1− n−1/2 .

Proof. Observe that ‖Ã − P̃‖ ≤ ‖A − P‖. The claimed result follows easily from Theorem 5.2 of

Lei and Rinaldo (2015), where it has been shown that with high probability ‖A−P‖ ≤ C√nρn.

Lemma 6 covers both regular SBM and DCBM. It implies that ‖A(1) − P (1)‖ ≤ C
√
nρn with

high probability.

Lemma 7 (Singular subspace error bound). Let M̂ , M be two matrices of same dimension, and

Û and U be n ×K orthonormal matrices corresponding to the top K right singular vectors of M̂

and M , respectively. Then there exists a K ×K orthogonal matrix Q such that

‖Û − UQ‖ ≤ 2
√

2‖M̂ −M‖
σK(M)

.

Proof. If ‖M̂ −M‖ ≤ σK(M)/2, then using Wedin sin Θ theorem (Wedin, 1972) and Weyl’s in-

equality there exists an orthogonal Q such that ‖Û − UQ‖ ≤ ‖M̂ −M‖/(σK(M) − ‖M̂ −M‖) ≤

2‖M̂ −M‖/σK(M). If ‖M̂ −M‖ ≥ σK(M)/2, then ‖Û − UQ‖ ≤ 1 ≤ 2‖M̂ −M‖/σK(M).

Remark. The orthogonal matrix Q will have no particular impact on the argument below. For

presentation simplicity, we assume, without loss of generality, that Q = I in the rest of the proof.

Lemma 8 (Lemma 5.3 of Lei and Rinaldo (2015)). Let Û and U be two n × K matrices such

that U contains K distinct rows. Let δ be the minimum distance between two distinct rows of U ,

and g be the membership vector given by clustering the rows of U . Let ĝ be the output of a k-

means clustering algorithm on Û , with objective value no larger than a constant factor of the global

optimum. Assume that ‖Û − U‖F ≤ cnδ for some small enough constant c. Then ĝ agrees with g

on all but c−1‖Û − U‖F δ−1 nodes after an appropriate label permutation.

For the proof of Theorem 4, we need the analogous version of Lemma 8 for the k-median

algorithm, which is a simple adaptation of Lemma 8. For a matrix M , ‖M‖2,1 denotes the sum of

`2 norms of the rows in M .

Lemma 9. Let Û and U be two n ×K matrices such that U contains K distinct rows. Let δ be

the minimum distance between two distinct rows of U , and g be the membership vector given by
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clustering the rows of U . Let ĝ be the output of a k-median clustering algorithm on Û , with objective

value no larger than a constant factor of the global optimum. Assume that ‖Û − U‖2,1 ≤ cnδ for

some small enough constant c and that g satisfies Assumption A2. Then ĝ agrees with g on all but

c−1‖Û − U‖2,1δ−1 nodes after an appropriate label permutation.

Proof of Theorem 1

Proof of Theorem 1. Let G be the n × K matrix with Gij = 1 if j = gi, and Gij = 0 otherwise.

Let G(1) be the submatrix of G containing rows in N1. Then P (1) = G(1)BGT = GB̃G̃T , where

G̃ is an n×K matrix obtained by normalizing the columns of G. and B̃ is a K ×K matrix after

corresponding column scaling of B. It is easy to check that G̃ has orthonormal columns and hence

the top K-dimensional right singular subspace of P (1) is spanned by U = G̃Q, for any K × K

orthogonal matrix Q. Thus U contains K distinct rows and the distance between two distinct rows

is of order at least 1/
√
n.

We focus on the event that mink n
∗
1,k ≥ π0n/(2V ) and ‖A(1) − P (1)‖ ≤ C

√
nρn, which has

probability at least 1 − n−1 according to Lemmas 5 and 6. Then it can be directly verified that

σK(P (1)) ≥ Cnρn because the Kth largest singular values of both G(1) and G are of order at least

√
n. Then Lemma 7 implies that Û and U , the matrices consisting of n ×K top singular vectors

of A(1) and P (1), satisfy, with appropriate choice of Q,

‖Û − U‖2F ≤ C
1

nρn
.

Then applying Lemma 8, we know that the k-means clustering algorithm misclusters no more

than C/ρn nodes.

Proof of Theorem 4

Proof of Theorem 4. Let Ψ be an n×K matrix such that Ψij = ψ′i if j = gi and Ψij = 0 otherwise.

Let Ψ(1) be the corresponding submatrix of Ψ with rows in N1. Then P (1) = Ψ(1)B̃Ψ, where B̃ is a

K ×K matrix obtained after corresponding row/column scaling of B. It is easy to check that Ψ is

orthonormal so that the top K-dimensional right singular subspace of P (1) is spanned by U = ΨQ

for any K ×K orthogonal Q. It follows that the norm of ith row of U is ψ′i, and that any two rows

of U in distinct communities are orthogonal. Let Ũ and Ũ∗ be the row-normalized versions of Û
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and U , respectively. Then Ũ∗ contains K distinct rows and the distance between any two distinct

rows of Ũ∗ is
√

2.

We will focus on the event that mink n
∗
1,k ≥ c0π0n/2 and ‖A(1) − P (1)‖ ≤ C

√
nρn, which has

probability at least 1− n−1 according to Lemmas 5 and 6. Applying Lemma 7 we have,

‖Û − U‖2F ≤ C/(nρn) ,

where we take the matrix Q in Lemma 7 as identity. Because the minimum row norm of U is at

least ψ0/
√
n, the number of zero rows in Û is at most ‖Û −U‖2F /(ψ0/

√
n)2 = O(ρ−1

n ) = o(
√
n/ρn).

In the rest of the proof we can safely assume that Û has no zero rows.

Now let ui, ûi be the ith row of U , Û , respectively. We have, using the fact that ‖(u/‖u‖ − v/‖v‖)‖ ≤

2‖u− v‖/‖v‖ for all vectors u, v of same dimension, Cauchy-Schwartz, and Assumption A3,

‖Ũ − Ũ∗‖2,1 ≤2
n∑

i=1

‖ûi − ui‖
‖ui‖

= 2
n∑

i=1

‖ûi − ui‖
ψ′i

≤2‖Û − U‖F

(
n∑

i=1

(ψ′i)
−2

)1/2

≤ 2ψ−1
0 n‖Û − U‖F ≤ C

√
n/ρn .

Applying Lemma 9 to Ũ and Ũ∗, we conclude that ĝ agrees with g on all but O(
√
n/ρn) nodes.

Recall that ‖ui‖ = ψ′i for all i. Then Cauchy-Schwartz implies that

‖ψ̂′ − ψ′‖1 ≤
n∑

i=1

‖ûi − ui‖ ≤
√
n‖Û − U‖F ≤ Cρ−1/2

n . (A.2)

By Assumptions (A2) and (A3) we have infi ψ
′
i ≥ Cn−1/2 for some constant C.

Let Sn = {i : |ψ̂′i − ψ′i| ≤ n−1/2(n1/3ρn)−1/2}. Then for all i ∈ Sn, we have ψ̂′i = ψ′i(1 + o(1))

and

|Sc
n| ≤

‖ψ̂′ − ψ′‖1
n−2/3ρ

−1/2
n

≤ Cn2/3 . (A.3)

For 1 ≤ k < k′ ≤ K, consider the oracle estimator

B̂′∗k,k′ =

∑
i∈N ∗1,k,j∈N

∗
1,k′∪N

∗
2,k′

Aij∑
i∈N ∗1,k,j∈N

∗
1,k′∪N

∗
2,k′

ψ′iψ
′
j

.

It is obvious that P̂ ∗ij = ψ′iψ
′
jB̂
′∗
gigj = (1 + oP (1))ψiψjBgigj = (1 + oP (1))Pij . As a result, the claim

in part (b) of the theorem follows if we can show that B̂′k,k′ = (1 + oP (1))B̂′∗k,k′ because for all but
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a vanishing proportion of pairs (i, j) we have (ĝi, ĝj) = (gi, gj) and ψ̂′iψ̂
′
j = ψ′iψ

′
j(1 + o(1)) in view

of (A.3). To this end, we compare

n−1B̂′k,k′ =

∑
i∈N1,k,j∈N1,k′∪N ∗2,k′

Aij∑
i∈N1,k,j∈N1,k′∪N2,k′

(
√
nψ̂′i)(

√
nψ̂′j)

with

n−1B̂′∗k,k′ =

∑
i∈N ∗1,k,j∈N

∗
1,k′∪N

∗
2,k′

Aij∑
i∈N ∗1,k,j∈N

∗
1,k′∪N

∗
2,k′

(
√
nψ′i)(

√
nψ′j)

.

Note that
√
nψ′i � 1 for all i. It is easy to check that the numerators differ by at most o(n5/3). For

the denominators, first we compare the denominator of n−1B̂′∗k,k′ with∑
i∈N1,k,j∈N1,k′∪N2,k′

(
√
nψ′i)(

√
nψ′j) . (A.4)

It straightforward to check that their ratio tends to 1, because the index sets of these two summa-

tions differ by a vanishing proportion. Now compare (A.4) with the denominator of n−1B̂′k,k′ . We

have

∑
i∈N1,k,j∈N1,k′∪N2,k′

(
√
nψ̂′i)(

√
nψ̂′j) =

 ∑
i∈N1,k

√
nψ̂′i

 ∑
j∈N1,k′∪N2,k′

√
nψ̂′j


=(1 + o(1))

 ∑
i∈N1,k

√
nψ′i

 ∑
j∈N1,k′∪N2,k′

√
nψ′j


=(1 + o(1))

∑
i∈N1,k,j∈N1,k′∪N2,k′

(
√
nψ′i)(

√
nψ′j) ,

where the second line follows from the fact
∑

i∈Nj,k
ψ̂′i = (1 + o(1))

∑
i∈Nj,k

ψ′i for all j ∈ {1, 2},

1 ≤ k ≤ K, which is a consequence of (A.2). Now we conclude that the denominators of n−1B̂′k,k′

and n−1B̂′∗k,k′ are both of order at least n2 with ratio tending to one. Therefore, the absolute

difference between n−1B̂′k,k′ and n−1B̂′∗k,k′ is o(n−1/3) which is o(n−1B̂′∗k,k′). The same argument

can be used for the case k = k′.
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