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SUMMARY 10

We consider multi-layer network data where the relationships between pairs of elements are
reflected in multiple modalities and may be described by multivariate or even high-dimensional
vectors. Under the multi-layer stochastic block model framework, we derive consistency results
for a least squares estimation of memberships. Our theorems show that, as compared to single-
layer community detection, a multi-layer network provides much richer information that allows 15

for consistent community detection from a much sparser network, with required edge density
reduced by a factor of the square root of the number of layers. Moreover, the multi-layer frame-
work can detect cohesive community structure across layers, which might be hard to detect by
any single-layer or simple aggregation. Simulations and a data example are provided to support
the theoretical results. 20
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1. INTRODUCTION

A single-layer network consists of a set of n elements and a measure of pairwise interaction
between them. The observed data is represented by an adjacency matrix or a more general re-
lationship matrix A ∈ Rn×n, where Ajk (j, k = 1, . . . , n) is a measure of interaction between 25

element j and element k. Recently, many examples have shown that the relationships between
different elements are reflected in multiple modalities, and that the observations may contain
multivariate or even high-dimensional vectors that describe the relationship between each pair
of elements. For example, in multimodal or multi-task brain connectivity studies, among a set
of brain regions, one may have one source of linkage inferred from electroencephalography 30

measures during a working memory task, and a second source of linkage inferred from resting
state functional magnetic resonance imaging measures. Other examples include social networks,
where the interaction between two people could be inferred from Facebook, LinkedIn, and more
intimate connections such as cell phone contacts. Moreover, time-evolving networks can also be
considered multi-layer network data when the set of elements remains the same over time. 35

A multi-layer network can be represented by a tensor object Y ∈ Rm×n×n, where each layer
Yi·· (i = 1, . . . ,m), represents a different aspect of the relationship between elements. In this
paper, we will focus on multi-layer relational data with community structures, and utilize a
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multi-layer stochastic block model point of view. The stochastic block model and its variants are
powerful tools for modeling large networks with community structures. A single-layer stochas-40

tic block model (Holland et al., 1983) can be parametrized by (g,B). The observed adjacency
matrix A satisfies Ajk ∼ Bernoulli(Bgjgk ) with g ∈ {1, . . . ,K}n and B ∈ [0, 1]K×K . A natural
extension to multi-layer stochastic block models allows the community-wise connectivity pa-
rameter B to depend on the layer. In this paper, we aim to find the overall clustering pattern
of the nodes that are characterized by multiple modalities in a network structure, not the indi-45

vidual clustering pattern in each modality. Therefore, in our setting, the membership g is the
same across layers. Allowing memberships to change in different layers could also be of interest
in some applications. For example, there are works on dynamic stochastic block models where
the memberships are allowed to change smoothly or follow some parametric patterns over time
(Ghasemian et al., 2016; Pensky & Zhang, 2019).50

In the last few years, a considerable amount of work has emerged on community detection for
multi-layer networks, including the weighted modularity approach, spectral methods based on
various versions of aggregation or tensor singular value decomposition, and probability model-
based approaches (Tang et al., 2009; Dong et al., 2012; Kivelä et al., 2014; Xu & Hero, 2014;
Han et al., 2015; Ghasemian et al., 2016; Paul & Chen, 2016, 2017; Chen & Hero, 2017; Zhang55

& Cao, 2017; Matias & Miele, 2017; Liu et al., 2018; Bhattacharyya & Chatterjee, 2018). De-
spite an explosion of disparate terminology and algorithms, there is limited work on theoretical
analysis of detection limits and consistency results for the multi-layer network structure.

Han et al. (2015) studied the consistency of clustering for the same multi-layer stochastic block
model studied here, but under a different asymptotic regime where the number of nodes n is fixed60

and the number of layers m grows to infinity. In the physics literature, Taylor et al. (2016) con-
sidered an identical edge probability matrix B across layers, in which case a signal boost can be
achieved by working on the average adjacency matrix of all layers. A recent manuscript by Bhat-
tacharyya & Chatterjee (2018) provided consistency results for spectral methods under sparse
multi-layer stochastic block models, but required each layer of the connectivity matrix B to be65

positive definite, with the smallest singular values bounded away from zero uniformly. Paul &
Chen (2017) considered other estimation methods and achieved a similar signal boost under the
same positivity conditions. Pensky & Zhang (2019) considered estimating the membership for
each individual layer in a dynamic stochastic block model. In the special case that memberships
do not change, the method works on the average adjacency matrix and allows a similar signal70

boost under the positivity assumption.
The main contribution of this paper is that we propose to work with the m-layer network

data directly without first averaging the adjacency matrices across layers, and the theoretical
results are for general structures of B in m layers. In the proposed research, we derive a least
squares estimation of memberships, and show that an m-layer network provides much richer75

information, allowing consistent estimation to be achieved for a sparser network, roughly by
a factor of m1/2, in each layer. The multi-layer framework only requires a well-defined block
structure on the overallm layers, i.e., it is possible that none of the individual layers contain a full
block structure. The theoretical analysis involves the development of a new spectral bound for
tensor network data, which uses a tensor adaptation of the combinatorial approach developed in80

Lei & Rinaldo (2015). This new tensor concentration bound is crucial to develop the consistency
result for multi-layer networks under weaker conditions on B.
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2. TENSOR STOCHASTIC BLOCK MODELS

We use the symbol ◦ to denote the outer product of vectors. For example, if x, y, and z are
vectors, then T = x ◦ y ◦ z is the three-way tensor with Tijk = xiyjzk. For two tensorsA andB, 85

both of dimension (m,n1, n2), the symbol A ∗B denotes the m× 1 vector obtained by taking
element-wise products of A and B, and then summing over the second and third dimensions.
Finally, ‖ · ‖2 denotes the sum of squares for all entries of a vector, matrix, or tensor.

A traditional single-layer stochastic block model with n nodes and K communities is pa-
rameterized by (g,B), where g ∈ {1, . . . ,K}n is a membership vector, and the K ×K matrix 90

B determines the community-wise connectivity. We also define the n×K membership ma-
trix G such that the jth row of G is 1 in the gj th column and 0 otherwise. The observed data
Ajk (j, k = 1, . . . , n) has expectation Pjk = Bgjgk . The key feature of a stochastic block model
is that the expectation P can be reorganized as a block-wise constant matrix by grouping nodes
in the same community. In the most commonly seen Bernoulli model,Ajk only takes two values, 95

0 and 1. The edges form independently with pr(Ajk = 1) = Pjk.
This generative model can be naturally extended to a multi-layer network. Let Y be an m×

n× n tensor, with each layer Yi·· being a random graph generated by a stochastic block model
parametrized by (g,Bi··). The expectation P is a m× n× n tensor with Pi·· = GBi··G

T . In our
setting, the membership vector is assumed to be common to all layers, while the connectivity 100

parameter Bi·· could be different across layers, reflecting different aspects of node interactions.
Here Bigjgk denotes the gj th row and gkth column of the connectivity matrix for the ith layer,
which equals Pijk.

For example, consider a three-layer network, where each layer is generated from a three-block
stochastic block model, with connectivity matrices 105

B1·· =

0 · 6 0 · 4 0 · 4
0 · 4 0 · 2 0 · 2
0 · 4 0 · 2 0 · 2

 , B2·· =

0 · 2 0 · 4 0 · 2
0 · 4 0 · 6 0 · 4
0 · 2 0 · 4 0 · 2

 , B3·· =

0 · 2 0 · 2 0 · 4
0 · 2 0 · 2 0 · 4
0 · 4 0 · 4 0 · 6

 . (1)

In this three-layer network, the ith community is more active in layer i, as reflected in the
community-wise connectivity matrix Bi··. From the ith layer, we can only separate the ith com-
munity from the rest. If we average the three layers to form a single-layer network, the commu-
nity structure cannot be detected at all, since the average (B1·· +B2·· +B3··)/3 is a matrix with
the same value in all entries. By contrast, using the multi-layer network method developed in this 110

paper, we are able to obtain consistent community recovery based on the tensor observation Y
generated from this type of stochastic block model.

3. A LEAST SQUARES APPROACH AND ITS STATISTICAL PROPERTIES

A popular and accurate estimation method for stochastic block models is the maximum like-
lihood estimator, for which the consistency of membership estimation in single-layer networks 115

has been studied by many authors, under the condition that a global maximum can be achieved
(Bickel & Chen, 2009; Zhao et al., 2012; Choi et al., 2012; Amini et al., 2013; Abbe et al.,
2016). Here we focus on its variant, the least squares estimator (Gao et al., 2015; Borgs et al.,
2015; Chen & Lei, 2018). In practice, we have found that the least squares estimator performs at
least as well as the maximum likelihood estimator. Our proposed theoretical analysis based on 120

the least squares estimator will reveal unique features of multi-layer data.
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For multi-layer network data, given an observation Y ∈ Rm×n×n and the number of commu-
nities K, the least squares estimator is

(ĝ, B̂) = arg min
h,B̃

m∑
i=1

ωi

∑
1≤j 6=l≤n

(Yijl − B̃ihjhl
)2, (2)

where ω = (ω1, . . . , ωm) are user-defined weights for each layer. The minimization is over all125

possible h ∈ {1, . . . ,K}n and all possible B̃ ∈ Rm×K×K . At first sight, there are a large num-
ber of parameters to estimate, but some derivation reveals that the optimal B̃ is uniquely deter-
mined given a membership vector. This is analogous to the profile likelihood perspective used in
Stephens (2000); Bickel & Chen (2009).

In the following, we present consistency results for the optimal solution to problem (2). For a130

fixed community vector h, the optimization problem (2) over B̃ is a simple least squares fit, and
the optimal B̃ is obtained by averaging the corresponding entries of Y according to the mem-
bership given by h. After profiling out B̃ in (2), the optimization problem essentially involves
finding a partition h such that the within-group residual sum of squares is minimized when the
entries of each layer of Y are partitioned into K(K + 1)/2 blocks according to h. Thus, the135

well-known total variance decomposition implies that the profiled optimization problem over h
is equivalent to maximizing the between-group sum of squares,

f(h;Y ) =
K∑
k=1

(
nk(h)

2

)∥∥∥∥Y ∗ (ω ◦Hk ◦Hk)

nk(h){nk(h)− 1}

∥∥∥∥2
+

∑
1≤j<k≤K

nj(h)nk(h)

∥∥∥∥Y ∗ (ω ◦Hj ◦Hk)

nj(h)nk(h)

∥∥∥∥2 , (3)

where H is the membership matrix corresponding to the membership vector h, i.e., the ith row140

of H is 1 at the location hi and zero otherwise. We let Hk be the kth column of H and nk(h) =
‖Hk‖1.

In the rest of the paper, we use ωi = 1 (i = 1, . . . ,m). The theory can be easily extended to
the more general case of unequal ωi’s. To accurately describe the community recovery error in
terms of the network sparsity and community separation, we adopt the following settings, which145

we state as assumptions:

Assumption 1. Network sparsity: B = ρnB
0, where ρn controls the overall network sparsity

and the entries of B0 are of constant order with maximum entry equal to 1.

Assumption 2. Community separation: δ2 = min1≤j 6=j′≤K ‖B0
·j· −B0

·j′·‖2 > 0.

Assumption 3. Assume m ≤ cn for some constant c.150

Assumption 1 is common in the literature of network community detection. Assumption 2 is
a minimum requirement for K-community structure. Assumption 3 is made merely for presen-
tational simplicity in the main theorem. The analysis covers the case of larger m as well; see
Remark 1 at the end of this section for further details.

Our theoretical analysis of the least squares estimator in (2) consists of three main steps, which155

we outline next as Lemma 1 through Lemma 3. The key technical component is a new spectral
concentration bound for tensor data, which may be of independent interest. We state the tensor
concentration theorem at the end of this section. All proofs are given in the online supplementary
material.
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LEMMA 1. Under Assumption 2, f(h;P ) is uniquely maximized by h = g, up to a label per- 160

mutation.

This lemma ensures parameter identification as the population optimum.

LEMMA 2. Under Assumptions 1 and 3, with probability tending to one as n→∞, we have,
for some universal constant c1,

sup
h∈{1,...,K}n

|f(h;Y )− f(h;P )| ≤ c1κn,

where κn = K(log n){(nρn) ∨ log n}1/2
[
nρnm

1/2 +K(log n){(nρn) ∨ log n}1/2
]
.

This lemma gives a uniform upper bound for the sampling errors. This is a main technical con-
tribution of this paper. The proof of Lemma 2 relies on Theorem 2 stated at the end of this section, 165

which extends recent spectral bounds for single-layer network data (Lei & Rinaldo, 2015; Chin
et al., 2015; Le et al., 2017). The proof technique is a tensor adaptation of the combinatorial
approach developed in Feige & Ofek (2005) and Lei & Rinaldo (2015).

Next we need to analyze the population optimality gap for incorrect membership vectors.
Let g be the true membership and h be any membership vector. For k = 1, . . . ,K define Ck =
{1 ≤ j ≤ n : gj = k} and for any other membership vector h define Ĉk = {1 ≤ j ≤ n : hj =
k}. Define eh(k, l) as the number of nodes labeled as k in h and l in g:

eh(k, l) = |Cl ∩ Ĉk| .

For k = 1, ...,K and membership vector h, let eh(k) be the second largest value in {eh(k, l) :
1 ≤ l ≤ K}. Define

ηh = max
k

eh(k)/nmin ,

where nmin is the smallest community size in g.
Intuitively, the largest value in {eh(k, l) : 1 ≤ l ≤ K} corresponds to the correctly clustered 170

nodes, so (K − 1)eh(k) can be viewed as an upper bound on the number of incorrectly clustered
nodes in Ĉk. When ηh is small, each of the true communitiesCl must assign a majority proportion
of its nodes to some Ĉk(l), and the mapping from l to k(l) must be one-to-one since otherwise
ηh will be large. Therefore, our basic strategy of proving consistency of membership estimation
is to show that ηh = oP (1) if h is an optimal solution to (3). 175

LEMMA 3. Under Assumption 2, there exists a universal constant c2 such that

f(g;P )− f(h;P ) ≥ c2ηhn2minρ
2
nδ

2K−1.

Combining the above three lemmas, we have the following main result:

THEOREM 1 (MAIN THEOREM). Let h be a solution to the least squares problem. Then, un-
der Assumptions 1, 2, and 3, there exists a universal constant C > 0 such that the following
statements hold with probability tending to one:

In the sparse case, where nρn < log n, 180

ηh ≤ CK
(

n

nmin

)2 (m
δ2

){K(log n)3/2

nρnm1/2

}{
1 +

K(log n)3/2

nρnm1/2

}
.
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In the moderately dense case, where nρn ≥ log n,

ηh ≤ CK
(

n

nmin

)2 (m
δ2

){ K log n

(nρnm)1/2

}{
1 +

K log n

(nρnm)1/2

}
.

A prototypical case in the study of stochastic block models is the balanced community case,
whereK = O(1) and nmin � n. Moreover, it is natural to assume that δ2 � m. This is the case if185

a constant fraction of layers in the multi-layer stochastic block model exhibits the same scale of
between-community connectivity difference, or more precisely, if there is a constant fraction of
i’s in {1, ...,m} such that maxj,j′ ‖B0

ij· −B0
ij′·‖ ≥ c for some positive constant c. In particular,

if the layers of B0 are generated independently from a non-degenerate distribution, we have
δ2 � m with high probability when m is large.190

The state-of-the-art one-layer stochastic block model result requires ρnn→∞ for consistent
community recovery. Under the standard assumptions made above, in the sparse case where
nρn < log n, we only require nρnm1/2/(log n)3/2 →∞ to guarantee a vanishing proportion of
mis-clustered nodes. Roughly speaking, the m-layer least squares estimator combines the signal
from all layers and enhances the signal strength by a factor of m1/2.195

Finally we introduce the key technical component in our proof: the tensor concentration re-
sult. Let A be an n× n×m tensor, with each layer A··l being an inhomogeneous Erdős–Rényi
random graph with expectation P . The maximum entry of P is of order ρn. For presentational
simplicity we assume that m = n. The more general case can be treated by padding the tensor
with zeros when m < n. The case of m > n is discussed in Remark 1 below.200

THEOREM 2. For any (x, y, z) ∈ Sn × Sn × Sn, letW = A− P . We have |〈W,x ◦ y ◦ z〉| ≤
c(log n){(nρn) ∨ log n}1/2 for some universal constant c with all but vanishing probability as
n→∞.

Remark 1. When m > n the tensor spectral concentration bound in Theorem 2 becomes
(logm){(mρn) ∨ logm}1/2. When m > n but m = O(n2), using the same analysis as in the205

proof of Theorem 1, the least squares estimator can achieve consistent community estimation
when nρn grows faster than (log n)3/2/m1/2, which is still an m1/2 improvement over the den-
sity requirement for single-layer networks. A larger m beyond the order of n2 can further reduce
the required sparsity level ρn, but the rate of signal boost is no longer m1/2. This regime is of
less practical interest, because ρn � n−2 is a minimum requirement for each layer to have at210

least one edge.

4. NUMERICAL EXPERIMENTS

4·1. Algorithm
The theoretical results developed above pertain to a global optimum of problem (2). In prac-

tice, how to achieve or approximate the global optimum remains a challenging and interesting215

algorithmic question. A full search overKn possible labelings takes exponential computing time.
Greedy search methods such as the label switching algorithm (Bickel & Chen, 2009) and the tabu
search (Zhao et al., 2012) have been used in network clustering. The algorithm that we used in
our numerical experiments can be viewed as a label-switching method with batch updates, and
can also be viewed as an adaptation of Lloyd’s algorithm for k-means clustering to network data.220

The algorithm proceeds as follows:
(i) Initialize by k-means on n slices of the data, where the jth data point is a column slice Y··j ,

viewed as a vector of length mn.
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(ii) Assume that the current iteration starts with a membership vector gold. Find a new com-
munity vector gnew where

gnewj = arg mink∈{1,...,K}

m∑
i=1

ωi

∑
l 6=j

{Yijl −Bold
ikgold

l
}2.

(iii) Compute Bnew:

Bnew
ikk′ =

∑
j 6=l Yijl1{gnew

j =k}1{gnew
l

=k′}∑
j 6=l 1{gnew

j =k}1{gnew
l

=k′}
.

(iv) Compute the least squares loss function with respect to gnew and Bnew, and update with
gold ← gnew and Bold ← Bnew if the loss function reduces. 225

(v) Repeat steps ii-iv until the objective function cannot be further reduced.
Lloyd’s algorithm is arguably the most popular approach for k-means clustering, due to its

simplicity and fast convergence. It is not guaranteed to converge to a local minimum though, if
the local minimum is defined as a partition of the data where moving any single point to a dif-
ferent cluster increases the objective function. Arthur & Vassilvitskii (2007) showed that Lloyd’s 230

algorithm combined with a good starting point instead of a purely random start can provide an
accurate approximate solution with small optimality gap. Here we initialize our algorithm by k-
means on slices of data, known as marginal clustering, which has been proved to be a very good
initial point in the co-clustering literature (Anagnostopoulos et al., 2008). In our numerical stud-
ies, we repeat the algorithm three times and retain the choice with the smallest objective value, 235

and use weights ωi ≡ 1. The algorithm performs very satisfactorily in our simulations shown in
Section 4·2.

4·2. Simulations
In this section, we illustrate the performance of our proposed method using simulations where

we generate multi-layer networks Y ∈ Rm×n×n given membership vector g and community 240

connectivity tensor B. We compare our multi-layer clustering method to a single-layer method
based on the same least squares criterion as in (2), either applied to only the first layer of Y , or
to the average over all layers of Y . In addition, we compare our method with spectral clustering
applied to the average of the layers. In each simulation trial, given a membership matrix G and a
B with each layer symmetric, the upper triangular entries of Yi·· are independently generated as 245

Bernoulli random variables with probabilities given by Pi·· = GBi··G
T . The nodes are divided

into clusters such that the number of nodes in each of the firstK − 1 communities is bn/Kc, and
the Kth community contains the remaining nodes. When we instead used unequal community
sizes, our method performed similarly.

In Simulation I, the entries of B are randomly generated in each trial. To do this, we first 250

generateB0 ∈ Rm×K×K , where the upper triangular and diagonal entries of each layerB0,i·· are
generated independently from Uniform(0, 0 · 5), and the lower triangular entries are set equal to
their corresponding upper triangular entries. We then set B = rB0, where r ≤ 1 is a preselected
positive parameter that controls sparsity. If a layer ofB0 hasKth singular value less than a preset
cutoff value, that layer is regenerated to ensure that we have well-formed K-block structures. 255

We consider n ∈ {50, 100, 200} as the number of nodes,m = 2j (j = 1, . . . , 6) as the number
of layers, K ∈ {2, 3, 4} as the number of communities, and r ∈ {0 · 05, 0 · 1, 0 · 25, 0 · 5, 1} as
the level of sparsity. For each combination of values (n,m, r,K), we run 100 simulation trials.
The proportion of nodes correctly clustered by a given method is averaged over all trials. In
Figures 1 and 2 we plot the success rates against different values of r, and we only show the 260
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results for m = 2 and m = 8, respectively, as the success rates for relatively dense networks are
close to 1. The performance form = 4 is in between these and we omit it to save space. In Figure
3 we show the success rate of our method against different values ofm ∈ {2, 4, 8, 16, 32, 64}, for
relatively sparse networks with r ∈ {0 · 05, 0 · 1, 0 · 25}. Here, we see that sufficiently large m
and n can allow for nearly 100% correct assignment, even for small r. This supports the results of265

Theorem 1 and the discussion following it. The performance of our multi-layer method is clearly
superior to that of the single-layer methods. All of the methods show improved performance
as r increases, n increases, or K decreases. The performance of our multi-layer method also
improves as m increases, while the performance of the single-layer methods remains relatively
static with m. We note that under the layer-wise positivity assumption, the spectral method on270

the average of the layers has been proven to have superior performance in Taylor et al. (2016);
Paul & Chen (2017); Bhattacharyya & Chatterjee (2018). However, in our simulations, the Bi··
are generated randomly without any imposed positivity, so there can be signal cancellation due
to averaging. Moreover, in our simulations, the spectral method on the average of the layers does
not work as well as the least squares method on the average of the layers. The reason for this275

is that our B matrices are randomly generated and the kth singular value of the averaged layers
could be very small. Spectral methods do not work well in these scenarios.

In Simulation II,B0 is assigned a constant value over all trials by usingm = K = 3 and defin-
ing each layer of B0 as in (1). In this case, the average over all layers of B = rB0 is a constant
matrix. Each individual layer can only identify 2 unique clusters, although there are 3 clusters280

when all layers are considered. Figure 4 shows simulation results in this scenario for the three
least squares methods considered above, calculating the proportion of nodes correctly identified
over 100 simulation trials. As before, our multi-layer method performs the best, increasing to-
ward 100% correct clustering as r and n increase. As expected, the averaging method performs
poorly irrespective of r and n. Using only the first layer results in a performance that improves285

slightly with r and n, but as expected never approaches 100% accuracy.

4·3. Application to gene network study
In this section, we apply our method to a gene network dataset. The data have been described

and used by Liu et al. (2018), and include gene co-expression data in the medial prefrontal cortex
from studies of rhesus monkeys at different stages of development. For the prenatal period, they290

consider a 6-layer network corresponding to 6 age categories, labeled E40 to E120 to indicate
the number of embryonic days of age. For the postnatal period, they consider a 5-layer network
corresponding to 5 layers within the medial prefrontal cortex, labeled L2 to L6. Studies of the
medial prefrontal cortex have been used to understand developmental brain disorders, and Liu
et al. (2018) make special note of sets of genes that are significantly enriched for neural projection295

guidance, which has been shown to be related to autism spectrum disorder. These genes are
marked in red in their Figures 5 and S10. We focus on the set of neural projection guidance-
enriched genes, which results in n = 154 nodes for the prenatal network, and n = 117 nodes for
the postnatal network. The networks were constructed by soft thresholding the sample correlation
computed from 423 samples from several groups, and we refer to Liu et al. (2018) for details of300

the calculation.
Our clustering results are visualized for the prenatal and postnatal data in Figures 5 and 6,

respectively, in which each layer’s connectivity matrix is ordered according to the results of the
multi-layer clustering. Here K = 4 clusters are used based on visual inspection of the commu-
nities of red genes in Figures 5 and S10 of Liu et al. (2018). In both the prenatal and postnatal305

networks, the individual layers show the 4 clusters grouped in different ways, giving partial views
of the overall clustering and revealing the advantage of our method in finding a cohesive portrait
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Fig. 1. Simulation I: Proportion of nodes correctly assigned
for m = 2 layers and r ∈ {0 · 05, 0 · 1, 0 · 25, 0 · 5, 1}.
The blue solid line is for the multi-layer method, the red
dashed line is for the single-layer least squares method ap-
plied to the average of the layers, the green dotted line is
for the single-layer least squares method applied to the first
layer, and the orange dotted and dashed line is for the spec-

tral method on the average of the layers.

of the communities. In Figure 5, the connectivity matrix for the first layer E40 seems to differen-
tiate 2 groups of genes, including the first cluster and the combined next 3 clusters. The second
layer E50 shows 3 groups, including the first cluster, the second 2 clusters, and the fourth cluster. 310

In the third layer E70, clusters 1 and 3 appear distinct, while clusters 2 and 4 look like they could
be grouped. In E80, E90, and E120, the last 2 clusters seem to be grouped, the first cluster seems
to be either distinct or grouped with the last 2, and the second cluster is distinct. The postnatal
network analysis, shown in Figure 6, reveals similar phenomena. Each of the layers gives partial
or weak information about the overall clustering, and combining them gives a stronger signal 315

that captures the structure of the gene clustering over all layers.

5. DISCUSSION

The greedy algorithm works very well in numerical experiments, but the rigorous theoretical
analysis of the approximate solutions is still an open question, even in single-layer network data
analysis. The authors believe this would be an interesting and challenging topic for future study. 320

As pointed out in the introduction, there are also various other estimators for multi-layer network
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Fig. 2. Simulation I: Proportion of nodes correctly assigned
for m = 8 layers and r ∈ {0 · 05, 0 · 1, 0 · 25, 0 · 5, 1}.
The blue solid line is for the multi-layer method, the red
dashed line is for the single-layer least squares method ap-
plied to the average of the layers, the green dotted line is
for the single-layer least squares method applied to the first
layer, and the orange dotted and dashed line is for the spec-

tral method on the average of the layers.

data proposed in the literature, especially tensor spectral methods. The theoretical analysis of
these methods, and subsequent comparisons, are also of interest.

Our model can also be considered through the perspective of modeling non-binary inter-
actions, extending the traditional single-layer network that records binary interactions among325

nodes. There are other types of pairwise interactions considered in the literature, such as the
categorical interaction in Lelarge et al. (2015) and the continuous-valued interaction in Xu et al.
(2017). It would be interesting to investigate and understand these models in a unified framework.
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Fig. 3. Simulation I: Proportion of nodes correctly assigned
by the multi-layer method, for m ∈ {2, 4, 8, 16, 32, 64}
and r ∈ {0 · 05, 0 · 1, 0 · 25}. The blue solid line, red
dashed line, and green dotted line correspond to n = 50,

100, and 200, respectively.

Fig. 4. Simulation II: Proportion of nodes correctly
assigned for r ∈ {0 · 05, 0 · 1, 0 · 25, 0 · 5, 1}. The blue
solid line is for the multi-layer method, the red dashed
line is for the single-layer method applied to the average of
the layers, and the green dotted line is for the single-layer

method applied to the first layer.
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Fig. 5. The connectivity matrices for each layer of the pre-
natal data, with genes ordered by the clusters. Tick marks

denote the boundaries between the clusters.

Fig. 6. The connectivity matrices for each layer of the post-
natal data, with genes ordered by the clusters. Tick marks

denote the boundaries between the clusters.
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LELARGE, M., MASSOULIÉ, L. & XU, J. (2015). Reconstruction in the labelled stochastic block model. IEEE 375

Transactions on Network Science and Engineering 2, 152–163.
LIU, F., CHOI, D., XIE, L. & ROEDER, K. (2018). Global spectral clustering in dynamic networks. Proceedings of

the National Academy of Sciences , 201718449.
MATIAS, C. & MIELE, V. (2017). Statistical clustering of temporal networks through a dynamic stochastic block

model. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79, 1119–1141. 380

PAUL, S. & CHEN, Y. (2016). Consistent community detection in multi-relational data through restricted multi-layer
stochastic blockmodel. Electronic Journal of Statistics 10, 3807–3870.

PAUL, S. & CHEN, Y. (2017). Consistency of community detection in multi-layer networks using spectral and matrix
factorization methods. arXiv preprint arXiv:1704.07353 .

PENSKY, M. & ZHANG, T. (2019). Spectral clustering in the dynamic stochastic block model. Electronic Journal of 385

Statistics 13, 678–709.
STEPHENS, M. (2000). Dealing with label switching in mixture models. Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 62, 795–809.
TANG, W., LU, Z. & DHILLON, I. S. (2009). Clustering with multiple graphs. In International Conference on Data

Mining (ICDM). IEEE. 390

TAYLOR, D., SHAI, S., STANLEY, N. & MUCHA, P. J. (2016). Enhanced detectability of community structure in
multilayer networks through layer aggregation. Physical review letters 116, 228301.

XU, K. S. & HERO, A. O. (2014). Dynamic stochastic blockmodels for time-evolving social networks. IEEE Journal
of Selected Topics in Signal Processing 8, 552–562.

XU, M., JOG, V. & LOH, P.-L. (2017). Optimal rates for community estimation in the weighted stochastic block 395

model. arXiv preprint arXiv:1706.01175 .
ZHANG, J. & CAO, J. (2017). Finding common modules in a time-varying network with application to the drosophila

melanogaster gene regulation network. Journal of the American Statistical Association 112, 994–1008.
ZHAO, Y., LEVINA, E. & ZHU, J. (2012). Consistency of community detection in networks under degree-corrected

stochastic block models. The Annals of Statistics 40, 2266–2292. 400



Multi-layer networks 1

Supplementary Material for “Consistent community
detection in multi-layer network data”

In this supplementary material we prove technical results in the article “Consistent community detec-
tion in multi-layer network data” by Lei, Chen, and Lynch. All references, as well as theorem and equation
numbering, refer to the original paper.405

PROOF OF LEMMAS AND MAIN THEOREM

Proof of Lemma 1. The discussion preceding (3) implies that maximizing f(h;P ) over h is equivalent
to minimizing the profiled version of (2) over all possible h with Y replaced by P . By construction of P ,
the objective function in (2) equals zero when h = g. When h, g correspond to different partitions, there
exist 1 ≤ j < l ≤ n such that hj = hl but gj 6= gl. Then there exist 1 ≤ i ≤ m and 1 ≤ k ≤ n such that410

Pijk 6= Pilk, so that Pijk − B̃ihjhk
and Pilk − B̃ihlhk

cannot both be zero. So the objective function (2)
must be strictly positive. Therefore if h achieves the minimum of (2), then hj = hl implies gj = gl. Given
that h contains at most K groups, we conclude that h = g up to label permutation. �

Proof of Lemma 2. A little rearranging gives

2f(h;Y ) =

K∑
k=1

‖Y ∗ (ω ◦Hk ◦Hk)‖2

nk(h){nk(h)− 1}
+
∑
k 6=l

‖Y ∗ (ω ◦Hk ◦Hl)‖2

nk(h)nl(h)
.415

We only focus on ωi = 1 (i = 1, . . . ,m). For the diagonal blocks, if nk(h) ≤ 1 for some k, then Y ∗
(ω ◦Hk ◦Hk) = 0 = P ∗ (ω ◦Hk ◦Hk) so we can focus on the case nk(h) ≥ 2. Then by the Cauchy-
Schwartz inequality,

‖Y ∗ (ω ◦Hk ◦Hk)‖2

nk(h){nk(h)− 1}
− ‖P ∗ (ω ◦Hk ◦Hk)‖2

nk(h){nk(h)− 1}

=
〈2P ∗ (ω ◦Hk ◦Hk) + (Y − P ) ∗ (ω ◦Hk ◦Hk), (Y − P ) ∗ (ω ◦Hk ◦Hk)〉

nk(h){nk(h)− 1}
420

.
n2
k(h)m1/2pmaxnk(h)log n{(npmax) ∨ log n}1/2 + n2

k(h)(log n)2{(npmax) ∨ log n}
n2
k(h)

=nk(h)m1/2pmaxlog n{(npmax) ∨ log n}1/2 + (log n)2{(npmax) ∨ log n},

where the third line uses ‖P ∗ (ω ◦Hk ◦Hk)‖ . n2
k(h)m1/2pmax and ‖(Y − P ) ∗ (ω ◦Hk ◦Hk)‖ .

nk(h)log n{(npmax) ∨ log n}1/2 with high probability by Theorem 2. To see the latter inequality, recall
that w = (1, ..., 1)T ,425

‖(Y − P ) ∗ (ω ◦Hk ◦Hk)‖ = max
x∈Rm:‖x‖=1

〈(Y − P ) ∗ (ω ◦Hk ◦Hk), x〉

= max
x∈Rm:‖x‖=1

〈Y − P, x ◦Hk ◦Hk〉

=nk max
x∈Rm:‖x‖=1

〈Y − P, x ◦ Hk√
nk
◦ Hk√

nk
〉

≤nk max
x∈Rm:‖x‖=1;y,z∈Rn,‖y‖=‖z‖=1

〈Y − P, x ◦ y ◦ z〉 ,

and the rest follows from Theorem 2.430
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For the off-diagonal blocks, similarly,

‖Y ∗ (ω ◦Hk ◦Hl)‖2

nk(h)nl(h)
− ‖P ∗ (ω ◦Hk ◦Hl)‖2

nk(h)nl(h)

=
〈2P ∗ (ω ◦Hk ◦Hl) + (Y − P ) ∗ (ω ◦Hk ◦Hl), (A− P ) ∗ (ω ◦Hk ◦Hl)〉

nk(h)nl(h)

.{nk(h)nl(h)}1/2pmaxlog n{m(npmax ∨ log n)}1/2 + (log n)2(npmax ∨ log n).

Summing over k, l we have 435

|f(h;A)− f(h;P )| .pmaxlog n{m(npmax ∨ log n)}1/2
∑

k,l=1,...,K

(nknl)
1/2 +K2(log n)2(npmax ∨ log n)

=pmaxlog n{m(npmax ∨ log n)}1/2
(

K∑
k=1

n
1/2
k

)2

+K2(log n)2(npmax ∨ log n)

≤Knpmaxlog n{m(npmax ∨ log n)}1/2 +K2(log n)2(npmax ∨ log n) ≡ κn.

�

Proof of Lemma 3. Let h 6= g be another membership vector. Let Ck = {1 ≤ i ≤ n : gi = k} be the 440

set of nodes in the kth true cluster, and Ĉk = {1 ≤ i ≤ n : hi = k} be the set of nodes in the kth h-cluster.
Then by definition eh(k, l) = |Ĉk ∩ Cl|. When h 6= g, there exists (k, l, l′) such that l 6= l′, eh(k, l) > 0,
and eh(k, l′) > 0. Without loss of generality, assume k = 1, l = 1, l′ = 2, and eh(1, 1) ≥ eh(1, 2).

By assumption there exists k such that ‖B·1k −B·2k‖2 ≥ δ. Given this k, there exists an l such that
eh(l, k) ≥ nk/K. 445

Let m1 be the number of distinct node pairs in (Ĉ1 × Ĉl) ∩ (C1 × Ck). Let m2 be the number of
unique node pairs in (Ĉ1 × Ĉl) ∩ (C2 × Ck). We have m1 & eh(1, 1)nk/K and m2 & eh(1, 2)nk/K.

Then the within-cluster variance under h is at least {m1m2/(m1 +m2)}(ρnδ)2 and we have the fol-
lowing optimality gap:

f(g, P )− f(h, P ) ≥ m1m2

m1 +m2
(ρnδ)

2 &(ρnδ)
2eh(1, 2)nk/K. 450

The claim follows from eh(1, 2) ≥ ηhnmin and nk ≥ nmin. �

Proof of Theorem 1. Combining Lemma 3 and Lemma 2, we have, with high probability,

ηh ≤
K{f(g;P )− f(h;P )}

c2n2
minδ

2
≤ 2Kc1κn
c2n2

minρ
2
nδ

2
. (S.1)

In the sparse case, under the assumption nρn ≤ log n, we have κn =
K(log n)3/2

{
nρnm

1/2 +K(log n)3/2
}

. Plugging κn in (S.1) we have 455

ηh ≤
2cK2n(log n)3/2ρnm

1/2

n2
minρ

2
nδ

2

{
1 +

K(log n)3/2

nρnm1/2

}
= cK

n2m

n2
minδ

2

{
K(log n)3/2

nρnm1/2

}{
1 +

K(log n)3/2

nρnm1/2

}
.

Similarly, the claim in the moderately dense case follows by plugging in κn =
Klog n(nρn)1/2

{
nρnm

1/2 +Klog n(nρn)1/2
}

in (S.1). �

TENSOR CONCENTRATION BOUND

Proof of Theorem 2. Fix δ ∈ (0, 1); for example, we can take δ = 1/2. Let T be the intersection of the 460

n-dimensional unit ball and points whose coordinates are grid points of length δ/n1/2. For each u ∈ Rn
such that ‖u‖ ≤ 1− δ, the cube of side length δ/n1/2 centered at u is contained in T . It then follows that
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(1− δ)Sn ⊆ convhull(T ). As a consequence, for (x, y, z) ∈ Sn × Sn × Sn,

|〈W,x ◦ y ◦ z〉| =(1− δ)−3 |〈W, (1− δ)x ◦ (1− δ)y ◦ (1− δ)z〉|
≤(1− δ)−3 sup

(x,y,z)∈T×T×T
|〈W,x ◦ y ◦ z〉| .465

Therefore, we only need to deal with the vectors in T × T × T .
Let d = (nρ) ∨ log n (we use ρ for ρn).
For each (x, y, z) ∈ T × T × T , consider index sets Lx,y,z =

{
(i, j, l) : |xiyjzl| ≤ d1/2/n

}
. These

are what we call the light triplets of (i, j, l).
For (x, y, z) ∈ T × T × T , let uijl = xiyjzl1(|xiyjzl| ≤ d1/2/n) + xjyizl1(|xjyizl| ≤ d1/2/n).470

Again using Bernstein’s inequality and the fact that
∑
i<j,l u

2
ijl ≤ 2 we have

pr

∣∣∣∣∣∣
∑

(i,j,l)∈Lx,y,z

wijluijl

∣∣∣∣∣∣ ≥ cd1/2

 ≤2 exp

− 1
2c

2d

ρ
∑
i<j,l u

2
ijl +

(
2d1/2

3n

)
cd1/2

 ≤ 2 exp

{
− c2n

4 + (4/3)c

}
.

According to Proposition S1, we have |T | × |T | × |T | ≤ en3 log(9/δ). Thus one can pick a constant c large
enough so that union bound yields

pr

 sup
(x,y,z)∈T 3

∣∣∣∣∣∣
∑

(i,j,l)∈Lx,y,z

wijluijl

∣∣∣∣∣∣ ≥ cd1/2

 ≤ 2n−1.

Next we control the triplets in Lcx,y,z . By symmetry, it suffices to control the triplets with positive
coordinates, L̄1 = {(i, j, l) : xi > 0, yj > 0, zl > 0}. The other cases can be controlled using the same
technique, and only differ in the constant factor of the bound. The required result is provided in Lemma 4475

and the proof is complete. �

LEMMA 4 (HEAVY TRIPLET BOUND). For any given c > 0, there exists a constant C depending only
on c such that

sup
x,y,z∈T 3

∣∣∣∣∣∣
∑

(i,j,l)∈L̄1

xiyjzlwijl

∣∣∣∣∣∣ ≤ Cd1/2log n,

with probability at least 1− 2n−c.

Proof of Lemma 4. We start with some notation:
Let I1 = {i : δ/n1/2 ≤ xi ≤ 2δ/n1/2}, Is = {i : 2s−1δ/n1/2 < xi ≤ 2sδ/n1/2} for s =

2, ..., dlog2(n1/2/δ)e. Define Jt, Lu similarly.480

Let e(I, J, L) be the number of distinct edges between I and J on layers indexed in L.
Let µ(I, J, L) = E{e(I, J, L)}, µ̄(I, J, L) = |I||J ||L|d/n.
Let λstu = e(Is, Jt, Lu)/µ̄stu.
Let αs = |Is|22s/n, βt = |Jt|22t/n, γu = |Lu|22u/n, σstu = λstud

1/2n1/22−(s+t+u).
Then485

∑
(i,j,l)∈L̄1

xiyjzlaijl ≤2
∑

(s,t,u):2s+t+u≥d1/2n1/2

e(Is, Jt, Lu)
2sδ

n1/2

2tδ

n1/2

2uδ

n1/2

=2δ3d1/2
∑

(s,t,u):2s+t+u≥d1/2n1/2

σstuαsβtγu.

Now we split the triplets (s, t, u) under consideration into eighteen categories. Let C = {(s, t, u) :
2s+t+u ≥ d1/2n1/2, |Is|, |Lu| ≤ |Jt|}, and define the following:
C1 = {(s, t, u) ∈ C : σstu ≤ 1}.490
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C2 = {(s, t, u) ∈ C\C1 : λstu ≤ ec2}.
C3 = {(s, t, u) ∈ C\(C1 ∪ C2) : 2s+u ≥ d1/2n1/22t}.
C4 = {(s, t, u) ∈ C\(C1 ∪ C2 ∪ C3) : log λstu > (1/4){2t log 2 + log(1/βt)}}.
C5 = {(s, t, u) ∈ C\(C1 ∪ C2 ∪ C3 ∪ C4) : 2t log 2 ≥ log(1/βt)}.
C6 = {(s, t, u) ∈ C\(C1 ∪ C2 ∪ C3 ∪ C4 ∪ C5)}. 495

The other twelve categories can be defined using a similar partition of

C′ = {(s, t, u) : 2s+t+u ≥ d1/2n1/2, |Jt|, |Lu| ≤ |Is|},
C′′ = {(s, t, u) : 2s+t+u ≥ d1/2n1/2, |Is|, |Jt| ≤ |Lu|},

by rotating the roles of (I, s, α), (J, t, β), (L, u, γ). These sets are not disjoint. Our argument is still valid
as the overlap only makes the sum larger. 500

We now analyze separately each of the first six cases. Towards that end, we will repeatedly make use
of the following simple facts:

∑
s

αs ≤
∑
i

|2xi/δ|2 ≤ 4δ−2,
∑
t

βt ≤ 4δ−2,
∑
u

γu ≤ 4δ−2.

Triplets in C1: In this case we get the bound∑
(s,t,u)

αsβtγuσstu1{(s, t, u) ∈ C1} ≤
∑

(s,t,u)

αsβtγu1{(s, t) ∈ C1}

≤
∑

(s,t,u)

αsβtγu = 4‖x‖22δ−24‖y‖22δ−24‖z‖22δ−2 ≤ 64δ−6. 505

Triplets in C2: In this case

σstu = λstud
1/2n1/22−(s+t+u) ≤ λstu ≤ ec2.

Therefore, ∑
(s,t)

αsβtσstu1{(s, t) ∈ C2} ≤
∑

(s,t,u)

αsβtγuec21{(s, t) ∈ C2}

≤ec2
∑

(s,t,u)

αsβtγu ≤ ec264δ−6.

Triplets in C3: In this case 2s−t+u ≥ d1/2n1/2. Also by the bounded degree lemma (Lemma 6), we 510

have
e(Is, Jt, Lu) ≤ c1|Is||Lu|d, and hence λstu ≤ c1n/|Jt|. Thus,∑

(s,t,u)

αsβtγuσstu1{(s, t, u) ∈ C3} =
∑
s,u

αsγu
∑
t

βtσstu1{(s, t, u) ∈ C3}

=
∑
s,u

αsγu
∑
t

|Jt|
22t

n
λstud

1/2n1/22−(s+t+u)1{(s, t, u) ∈ C3}

≤
∑
s,u

αsγu
∑
t

|Jt|
22t

n

c1n

|Jt|
d1/2n1/22−(s+t+u)1{(s, t, u) ∈ C3} 515

≤c1
∑
s,u

αsγu
∑
t

d1/2n1/2

2s−t+u
1{(s, t, u) ∈ C3} ≤ 2c1

∑
s,u

αsγu ≤ 32c1δ
−4,

where the first inequality uses λstu ≤ c1n/|Jt|, the second inequality follows from the definition of C3,
and the third inequality follows from the fact that the nonzero summands over t are all bounded by 1 and
form a geometric sequence.
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In order to bound the triplets in C4, C5, and C6, we will rely on the second case described in the bounded
discrepancy lemma (Lemma 5), which we can rewrite in an equivalent form as

λstu|Is||Jt||Lu|
d

n
log λstu ≤ c3|Jt| log

22t

|Jt|
.

Rearranging, this is in turn equivalent to520

σstuαsγu log λstu ≤ c3
2s−t+u

d1/2n1/2

(
2t log 2 + log β−1

t

)
. (S.2)

Triplets in C4: The inequality log λstu > (1/4){2t log 2 + log(1/βt)} and (S.2) imply that αsγuσstu ≤
4c32s−t+u/(d1/2n1/2). Then∑

(s,t,u)

αsβtγuσstu1{(s, t, u) ∈ C4} =
∑
t

βt
∑
s,u

αsγuσstu1{(s, t) ∈ C4}

≤4c3
∑
t

βt
∑
s,u

2s−t+u/(d1/2n1/2)1{(s, t, u) ∈ C4} ≤ 8c3log n
∑
t

βt ≤ 32c3δ
−2log n,

where the first inequality uses the property of C4 which implies that αsγuσstu ≤ 4c32s−t+u/(d1/2n1/2),525

and the second inequality follows from the fact that for each u the nonzero summand over s is a geometric
sequence bounded by 1 because (s, t, u) /∈ C3, and the number of distinct u values is bounded by log n
when n is large enough.

Triplets in C5: In this case we have 2t log 2 ≥ log β−1
t . Also because (s, t, u) /∈ C4, we have log λstu ≤

4−1(2t log 2 + log β−1
t ) ≤ t log 2. Thus λstu ≤ 2t. On the other hand, because (s, t, u) /∈ C1, 1 ≤ σstu =530

λstud
1/2n1/22−(s+t+u) ≤ d1/2n1/22−s−u. Thus 2s+u ≤ d1/2n1/2.

Because (s, t, u) /∈ C2, we have log λstu ≥ 1. Combining with 2t log 2 ≥ log β−1
t , (S.2) implies that

σstuαsγu ≤ c3
2s−t+u

d1/2n1/2
4t log 2,

∑
(s,t,u)

αsβtγuσstu1{(s, t, u) ∈ C5} =
∑
t

βt
∑
s,u

αsγuσstu1{(s, t, u) ∈ C5}

≤
∑
t

βt
∑
s,u

c3
2s−t+u

d1/2n1/2
4t(log 2)1{(s, t, u) ∈ C5}

≤ 4c3 log 2
∑
t

βtt2
−t
∑
s,u

2s+u

d1/2n1/2
1{(s, t, u) ∈ C5}535

≤ 4c3 log 2(log n)
∑
t

βt ≤ 16c3δ
−2log n ,

where the third inequality holds for the same reason as the double sum over (s, u) in the case of C4.
Triplets in C6: We have 2t log 2 < log β−1

t . Because (s, t, u) /∈ C4, we have log λstu ≤
(1/2) log β−1

t ≤ log β−1
t where the last inequality comes from the fact that log λstu ≥ 1 because

(s, t, u) /∈ C2. Thus,540 ∑
(s,t,u)

αsβtγuσstu1{(s, t, u) ∈ C6} =
∑
s,u

αsγu
∑
t

βtλstud
1/2n1/22−(s+t+u)1{(s, t, u) ∈ C6}

≤
∑
s,u

αsγu
∑
t

d1/2n1/22−(s+t+u)1{(s, t, u) ∈ C6}

≤ 2
∑
s,u

αsγu ≤ 32δ−4.

�
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LEMMA 5. There exist universal constants c2, c3 such that with probability at least 1− 4n−1 for all 545

triplets (I, J, L) at least one of the following holds:

e(I, J, L)

µ̄(I, J, L)
≤ ec2,

e(I, J, L) log
e(I, J, L)

µ̄(I, J, L)
≤ c3 max(|I|, |J |, |L|) log

n

max(|I|, |J |, |L|)
.

Proof. Let dij· =
∑n
l=1Aijl, di·l =

∑n
j=1Aijl. We confine the argument to the event

maxi,j,l max(di·l, dij·) ≤ c1d, which has probability at least 1− n−1 for large enough constant 550

c1, by Bernstein’s inequality and union bound.
Consider the case |J | = max(|I|, |J |, |L|). The other cases are similar.
If |J | ≥ n/e, then by the bounded degree lemma (Lemma 6) we have e(I, J, L) ≤ |I||L|c1d and hence

e(I, J, L)/µ̄(I, J, L) ≤ |I||L|c1d/(|I||J ||L|d/n) ≤ c1e.
Now assume |J | < n/e. Let k ≥ 8 be a number to be specified later. By a deviation bound for sums of 555

Bernoulli random variables we have

pr{e(I, J, L) ≥ kµ̄(I, J, L)} ≤ exp

{
−1

2
(k log k)µ̄

}
.

For a given number c3 > 0, define t(I, J, L) as the unique value of t such that t log t =
{c3|J |/µ̄(I, J, L)} log(n/|J |). Let k(I, J, L) = max{8, t(I, J, L)}.

Then, 560

pr {e(I, J, L) ≥ k(I, J, L)µ̄(I, J, L)} ≤ exp

{
−1

2
µ̄(I, J, L)k(I, J, L) log k(I, J, L)

}
≤ exp

(
−1

2
c3|J | log

n

|J |

)
.

Therefore, the probability that there exists (I,J,L) such that |I|, |L| ≤ |J | ≤ n/e, e(I, J, L) ≥
k(I, J, L)µ̄(I, J, L) is less than or equal to∑

(I,J,L):|I|,|L|≤|J|≤n/e

exp

(
−1

2
c3|J | log

n

|J |

)
565

≤
∑

(h,g,m):1≤h,m≤g≤n/e

∑
(I,J,L):|I|=h,|J|=g,|L|=m

exp

(
−1

2
c3g log

n

g

)

=
∑

(h,g,m):1≤h,m≤g≤n/e

(
n

h

)(
n

g

)(
n

m

)
exp

(
−1

2
c3g log

n

g

)

≤
∑

(h,g,m):1≤h,m≤g≤n/e

(ne
h

)h(ne
g

)g (ne
m

)m
exp

(
−1

2
c3g log

n

g

)

=
∑

(h,g,m):1≤h,m≤g≤n/e

exp

(
−1

2
c3g log

n

g
+ h log

n

h
+ h+ g log

n

g
+ g +m log

n

m
+m

)

≤
∑

(h,g,m):1≤h,m≤g≤n/e

exp

(
−1

2
c3g log

n

g
+ 3g log

n

g
+ 3g

)
570

≤
∑

(h,g,m):1≤h,m≤g≤n/e

exp

(
−1

2
(c3 − 12)g log

n

g

)
≤

∑
(h,g,m):1≤h,m≤g≤n/e

n−
1
2 (c3−12) ≤ n− 1

2 (c3−18),

where the inequalities repeatedly use the assumption that h,m ≤ g ≤ n/e and the fact that t log(n/t) is
increasing on [1, n/e].
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As a result, with probability at least 1− n−(1/2)(c3−18), we have e(I, J, L) ≤ k(I, J, L)µ̄(I, J, L) for
all |I|, |L| ≤ |J | ≤ n/e. As a final step, we further divide the set of triplets (I, J, L) satisfying |I|, |L| ≤575

|J | ≤ n/e into two groups by the value of k(I, J, L). For the triplets for which k(I, J, L) = 8, we get

e(I, J, L) ≤ k(I, J, L)µ̄(I, J, L) = 8µ̄(I, J, L).

For all the other triplets k(I, J, L) = t(I, J, L) > 8, and we have e(I, J, L)/µ̄(I, J, L) ≤ t(I, J, L). Thus

e(I, J, L)

µ̄(I, J, L)
log

e(I, J, L)

µ̄(I, J, L)
≤ t(I, J, L) log t(I, J, L) =

c3|J |
µ̄(I, J, L)

log
n

|J |
,

which implies that

e(I, J, L) log
e(I, J, L)

µ̄(I, J, L)
≤ c3|J | log

n

|J |
.

The desired claim follows by letting c2 = max(c1, 8), and c3 = 20. �

PROPOSITION S1. |T | < en log(9/δ).

Proof. For each point in T , consider the `∞ ball of side length δ/n1/3 centering at that point. These
balls are disjoint, have volume δnn−n/3 and diameter δn1/6, and are hence inside the ball of radius580

1 + δn1/6. Therefore |T | equals the number of all such `∞ balls, which is no more than, by argument of
volume and Stirling’s formula,

(1 + δn1/6)nπn/2

(1 + n/2)!(δnn−n/3)
≤ (1 + δ)nn6/nπn/2

(2π)1/2(1 + n/2)3/2+n/2e−1−n/2δnn−n/3

<(1 + δ−1)n(2πe)n/2 < en log(9/δ).

�585

LEMMA 6 (BOUNDED DEGREE). Under the assumption of Theorem 2, there exists a universal con-
stant c1 > 0 such that with probability at least 1− n−1

sup
i,l

∑
j

Aijl ≤ c1d .

Proof. The proof follows from a standard application of Bernstein’s inequality and union bound, which
is identical to the corresponding lemma in Lei & Rinaldo (2015). �
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