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ABSTRACT

We introduce a new methodological framework for repeatedly observed and thus depen-

dent functional data, aiming at situations where curves are recorded repeatedly for each

subject in a sample. Our methodology covers the case where the recordings of the curves

are scheduled on a regular and dense grid and also situations more typical for longitudinal

studies, where the timing of recordings is often sparse and random. The proposed mod-

els lead to an interpretable and straightforward decomposition of the inherent variation

in repeatedly observed functional data and are implemented through a straightforward

two-step Functional Principal Component Analysis. We provide consistency results and

asymptotic convergence rates for the estimated model components. We compare the

proposed model with an alternative approach via a two-dimensional Karhunen-Loève ex-

pansion and illustrate it through the analysis of longitudinal mortality data from period

lifetables that are repeatedly observed for a sample of countries over many years, and also

through simulation studies.
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1. INTRODUCTION

Rapid advances in computational and analytical techniques have made it possible to con-

tinuously monitor and record many time-dynamic processes. As a result, functional data

analysis (FDA) methodology aiming to study the resulting random functions encounters

increasing interest. The statistical techniques of this field are still by and large focused

on the case of independently sampled functions. A general introduction of the available

methods for the i.i.d. case can be found in Ramsay and Silverman (2005).

An important extension of the i.i.d. case that we study here concerns situations where

curves are repeatedly observed for each subject at each of a series of measurement times

or along a series of locations. We illustrate our methods with the analysis of samples of

mortality profiles, which have been collected over many years for various countries and

where one wishes to characterize the country-specific mortality curves and their secular

evolution over calendar time. Data of this type are common in longitudinal studies where

functional measurements are made at each visit, for example daily behavior profiles in

animal studies, obtained for many days per subject.

The importance of models for dependent functional data has been recognized previ-

ously (Morris et al. 2003; Morris and Carroll 2006; Crainiceanu et al. 2009; Di et al. 2009),

where the emphasis has been on functional data with a general hierarchical structure. In

these multilevel functional models and functional mixed effects models, the multiple func-

tions observed for each subject are modeled additively for the different levels, similar to

a multilevel ANOVA design. Greven et al. (2010) introduced models for longitudinally

observed functional data that are more similar to the data structure we are considering

here; these authors incorporated the time spacing of the measurements into the coefficients

through a linear structure, relying on additive assumptions.

In contrast, we target repeatedly observed functions along a longitudinal time axis

for situations where these functions are smoothly changing with the longitudinal times at

1



which the repeated functions are recorded, leading to a fully nonparametric model. The

covariance and mean functions of the repeated functions are assumed to evolve smoothly

in longitudinal time. The resulting flexible longitudinal functional model leads to sensible

results under minimal assumptions, covers sparse random designs for the longitudinal

times where the functions are observed, and also facilitates the study of the asymptotic

behavior of methods for hierarchical or repeated functional data.

The proposed double FPCA method emerges as a natural extension of the well-

established functional principal component analysis (FPCA) and has several key advan-

tages. First, it relies on mild assumptions and is generally applicable for repeatedly

observed functions when the sampling of these functions follows either dense regular or

sparse and irregular random designs, where the latter are common in real-life longitudinal

studies. Second, it is a straightforward extension of the tried and proven FPCA approach

that has emerged as a reliable workhorse for FDA in the i.i.d. situation (Castro et al.

1986; Rice and Silverman 1991; Di et al. 2009). Third, it provides a decomposition of

the total variation observed into the variation within the repeatedly observed functions

as one component; and the variation between these random functions as a second com-

ponent. Fourth, it is easy to implement and leads to interpretable results. Fifth, since

the proposed double FPCA is derived from the nearly always applicable Karhunen-Loève

expansion (Ash and Gardner 1975) of squared integrable random processes, which has

been well studied in the i.i.d. case, it is amenable to asymptotic analysis under both

longitudinal and dense designs and one obtains reasonably fast rates of convergence.

Referring to the times where the repeated functional measurements are taken from

now on as longitudinal time, we consider observations {Xi(tijl|sij), 1 ≤ i ≤ n, 1 ≤ j ≤

mi, 1 ≤ l ≤ Lij}, where i is a subject index. Functions Xi(·|sij) are repeatedly recorded

for subject i at a series of longitudinal times sij (which might also correspond to spatial

distances or other continuously scaled variables, depending on the application), j is the
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repeated observation index for the repeated functional data of the i-th subject, and tijl

are the time coordinates where the measurements of the j-th repeated function Xi(·|sij)

for the i-th subject are taken. The idea underlying the double FPCA approach is to

model the repeated functions through an initial FPCA at a grid of suitable longitudinal

times, across all subjects. The resulting principal components then become functions of

longitudinal time, and these functions are subjected to a second FPCA.

These ideas motivate a two-step Karhunen-Loève expansion, leading to the following

model for the repeated functions, evaluated at argument t ∈ T and recorded at longitu-

dinal time s ∈ S for intervals S, T :

Xi(t|s) = µ(t|s) +
∞∑
k=1

ξk(s)φk(t|s) = µ(t|s) +
∞∑
k=1

∞∑
p=1

ζikpψkp(s)φk(t|s). (1)

Here φk(·|s) is the k-th eigenfunction of the repeated functions at longitudinal time s,

belonging to the first series of FPCAs for the repeated functions, carried out at fixed

longitudinal times s, ζikp are zero mean random variables and ψkp is the p-th eigenfunction

of the functional principal component function ξk(s), where the latter is obtained in the

first FPCA series. Eigenfunctions ψkp belong to the second FPCA step of the proposed

double FPCA approach.

In model (1), the variation inherent in the repeated functions Xi(t|s) is decomposed

into a series of two-dimensional principal surface components ϕk(t|s), as per

Xi(t|s) = µ(t|s) +
∞∑

k,p=1

ζikpϕkp(t|s), ϕkp(t|s) = ψkp(s)φk(t|s). (2)

The random scores ζikp can be employed for additional modeling tasks such as regression

and classification. While decomposition (2) might look similar to the Karhunen-Loève

expansion for a random field with two-dimensional argument u = (t, s), we consider here

a scenario where t and s have inherently different meanings in terms of study design

and scientific meaning, and where the component functions ϕkp(t|s) = ψkp(s)φk(t|s),
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the principal surfaces of this model, have a direct interpretation. Even if one ignores

the roles played by t and s, the proposed method is numerically faster and also has a

faster rate of convergence compared to fitting a Karhunen-Loève expansion with two-

dimensional argument u = (t, s), especially for the case where the data are not regular

and dense. In this case, a four-dimensional smoothing step for the covariance function

G(t1, s1, t2, s2) is needed to implement the two-dimensional Karhunen-Loève expansion,

while the proposed method only involves a three-dimensional smoothing step G(t1, t2|s).

For further discussion see Section 7 and the online Supplement B.

A challenge for the theoretical study of this model and associated estimators is that for

the second step FPCA in the double FPCA method, direct observations of the underlying

random process are not available. Instead, one needs to target a working process that

depends on estimates from the the first step FPCA. Addressing this challenge, we establish

consistency results and show that when the repeated random functions are assumed to be

densely observed along their argument t, the estimated model components obtained from

double FPCA enjoy a one-dimensional convergence rate.

The paper is organized as follows. In Section 2, we provide further details for the pro-

posed model for repeated functional data, followed by implementation details in Section

3. Theoretical properties and rates of convergence are studied in Section 4. Section 5

contains a simulation study, and Section 6 an illustration of the proposed approach to

repeatedly observed human mortality data, followed by a discussion in Section 7. As-

sumptions are in the Appendix and detailed proofs as well as additional simulations in

the online Supplement.

2. MODELING OF REPEATEDLY RECORDED FUNCTIONS

Denote the time coordinate for the repeatedly observed functions by t ∈ T and the lon-

gitudinal time domain over which multiple functions per subject are observed repeatedly

by s ∈ S. For fixed s, X(·|s) is the repeated function observed at time s. For the i-th
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subject one then has the Karhunen-Loève representation of Xi(·|s),

Xi(t|s) = µ(t|s) +
∞∑
k=1

ξik(s)φk(t|s), i = 1, . . . , n, (3)

where upon fixing s, the φk(·|s) are the eigenfunctions of the covariance operator with

kernel G(t1, t2|s) = cov(X(t1|s), X(t2|s)) and ξik(s) the corresponding functional princi-

pal components (FPCs), which have zero mean and are uncorrelated for fixed s, with

var(ξk(s)) = λk(s). When viewing φk(t|s) as a two-dimensional surface in s and t, we

assume that it is smooth in both t and s.

By a second application of the Karhunen-Loève representation, the FPCs as functions

in s are further represented as

ξik(s) =
∞∑
p=1

ζikpψkp(s), (4)

with eigenfunctions ψkp and zero mean “second level” FPCs ζikp. Here the ψkp are the

eigenfunctions of the covariance operator with kernel Rk(s1, s2) = cov(ξk(s1), ξk(s2)), thus

defining the double FPCA model. Combining these representations leads to

Xi(t|s) = µ(t|s) +
∞∑
k=1

ξik(s)φk(t|s)

= µ(t|s) +
∞∑
k=1

∞∑
p=1

ζikpψkp(s)φk(t|s)

= µ(t|s) +
∞∑
k=1

∞∑
p=1

ζikpϕkp(t|s), (5)

where ϕkp(t|s) = ψkp(s)φk(t|s).

Thus, the variance structure of individual random surfaces Xi is decomposed into a se-

ries of smooth two-dimensional surfaces, the principal surfaces, with random components

ζikp. These surfaces consist of the products of eigenfunctions of the repeatedly observed

functions, conditional on longitudinal time s, and of the eigenfunctions of the longitudinal

dynamics in s. This corresponds to a decomposition of total variation into products of

variation conditional on longitudinal time s and of variation along longitudinal time s.
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3. ESTIMATING PROCEDURES

The proposed two-step FPCA approach proceeds as follows: (i) Obtain estimators for

µ(t|s) and G(t1, t2|s). (ii) Obtain φk(t|sij) from the estimates of G(t1, t2|sij), for all sij. We

note that the order k = 1, . . . , K of φk(t|s) may be determined according to the order of the

corresponding eigenvalues for a fixed pre-selected time s0, but then in the case of crossing

eigenvalue functions, the order for other s is determined by the smooth continuation of

the functions φk(t|s) as s varies, so that φk(t|s) remains smooth in s, even if the order of

eigenvalues changes for different s. (iii) For each subject i and k = 1, . . . , K, obtain the

estimates of functional scores ξik(sij) =
∫

(Xi(t|sij) − µ(t|sij))φk(t|sij)dt, j = 1, . . . ,mi.

(iv) For each k = 1, . . . , K, perform a second FPCA, applied to the working processes

{ξ̂ik(sij), i = 1, . . . , n, j = 1, . . . ,mi}, which are obtained in the previous step.

Estimating procedures for the mean surface µ(t|s) and the covariance operator

G(t1, t2|s) for specific design situations are as follows.

Scenario A (Dense Regular Design). The design grids for both t and s are regular

and dense, i.e., the observations are {Xi(tl, sj), 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ l ≤ L}, where

i is the subject index, multiple functions Xi(·|sj) are repeatedly recorded for subject i at

a series of dense and regular time points or locations sj, and tl are the time coordinates

where the measurements of the function Xi(·|sj) are taken. For this case, we use empirical

estimators, i.e., cross-sectional sample mean and sample covariance on a grid of tl and sj,

and interpolate linearly between grid points,

µ̂(tl|sj) =
1

n

n∑
i=1

Xi(tl|sj), (6)

Ĝ(tl, tk|sj) =
1

n

n∑
i=1

Xi(tl|sj)Xi(tk|sj)− µ̂(tl|sj)µ̂(tk|sj), (7)

where 1 ≤ l, k ≤ L and 1 ≤ j ≤ m. Theorem 1 in Section 4 establishes uniform strong

consistency for these estimates when maxl(tl − tl−1) = O(n−1) and maxj(sj − sj−1) =

O(n−1) with convergence rate (log n/n)1/2.
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Scenario B (Dense Random Design) and Scenario C (Sparse Random De-

sign in s). Here multiple dense functions Xi(·|sij) are repeatedly recorded for subject i

at a series of time points or locations sij, j = 1, . . . ,mi. If mi increases as n increases, we

refer to this as Scenario B, and in the “longitudinal case”, where the mi are bounded, as

Scenario C. In random designs, we pool all data together to take advantage of the infor-

mation contained in the entire sample and adopt a local-linear smoothing approach (Yao

et al. 2005) to estimate µ(t|s) and G(t1, t2|s). We refer to these as smoothing estimators.

LetK(·) be a symmetric probability density function on [0, 1] andKh(t) = (1/h)K(t/h),

where h is a bandwidth. The local-linear estimators of the mean function and covariance

function are given by µ̃(t|s) = â0, where

(â0, â1, â2) = arg min
1

n

n∑
i=1

mi∑
j=1

Lij∑
l=1

{[Xi(tijl|sij)− a0 − a1(sij − s)− a2(tijl − t)]2

×Khs(sij − s)Kht(tijl − t)}, (8)

respectively, by G̃(t1, t2|s) = â0 − µ̃(t1|s)µ̃(t2|s), where

(â0, â1, â2, â3) = arg min
1

n

n∑
i=1

mi∑
j=1

∑
l 6=k

{[Xi(tijl|sij)Xi(tijk|sij)− a0 − a1(sij − s) (9)

−a2(tijl − t1)− a3(tijk − t2)]2 ×Kbs(sij − s)Kbt(tijl − t1)Kbt(tijk − t2)}.

These estimates are consistent (see Theorem 2 below). For Scenario B, the smoothing

estimates µ̃ and G̃ have the same convergence rate (log n/n)1/2 as the empirical estimates

µ̂ and Ĝ, under appropriate regularity conditions (Theorem 2 (a)).

We note that in practice, empirical estimators can also be used for dense data with

random design by pre-smoothing for individual curves. As designs get denser, the overall

convergence rate (log n/n)1/2 will remain the same. We further remark that according

to our experience, the proposed method works well for doubly sparse settings (using

smoothing estimators). If the data are sparsely sampled in the t direction, ξ̂ik(s) will

converge to E(ξik(s)|Data), which in the sparse case differs from ξik(s) and therefore our
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theory does not apply. In Section 4, consistency results are provided for the case that

dense curves X(t|s) are observed at randomly sampled longitudinal times s.

Note that when the measurements of underlying functions are contaminated with

errors, regardless of the design, the method also works in practice. For the theoretical

analysis, we do not consider additional errors in the dense data case for mathematical

simplicity. For dense data, pre-smoothing of individual curves can always be used to

reduce the error to a level so that it will not affect the overall convergence rate. For data

with error, off-diagonal smoothing of the covariance surface is used to separate out the

error variance, which is the reason that in eq. (9) the diagonal terms are excluded; for

further details on this issue, we refer to Yao et al. (2005). After obtaining the estimates of

µ(t|s) and G(t1, t2|s), the estimates φ̂k(·|s) for φk(·|s) in Eq. (3) are derived numerically

from Ĝ(t1, t2|s) or G̃(t1, t2|s). The code for the proposed procedures is available in the

PACE package at http://anson.ucdavis.edu/∼mueller/data/pace.html.

Additional estimation details that were specifically adopted to address the issue of

possibly crossing eigenvalues are as follows. We initially obtain φk(·|s) for s = s0, a left

endpoint of the domain, where the order k is determined by the corresponding order

of the eigenvalues λk(s0). Then for s1 with 0 ≤ s1 − s0 ≤ ε, where ε > 0 is a small

number, we determine the indices k and the sign of the eigenfunctions φ̂k(·|s1), such

that the L2 distance to the already obtained neighboring function φ̂k(·|s0) is minimized.

This is to ensure the smoothness of the eigenfunction evolution φk(·|s) in s. As the

eigenfunctions φk(·|s1) are orthonormal, smooth continuation of eigenfunctions uniquely

determines φk(·|s1); the procedure is analogous for the subsequent grid points.

Subsequently, the values of φ̂k(·|s) are discarded for those s where δjk(s) =
∆jk(s)

se(∆jk(s))
is

smaller than a threshold ϑ for any j, k, with estimated gaps ∆jk(s) = |λ̂j(s)−λ̂k(s)|, j 6= k,

as the estimated eigenfunctions φ̂k(·|s) are not reliable for small gaps between the eigen-

values. A practical approach is to obtain the standard error se(∆jk(s)) by bootstrapping;
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a threshold ϑ corresponding to the 10th percentile of δ(s), denoted as ϑ̃, worked quite

well in our analysis. With this approach, the measure of the set of discarded values of s

can be kept quite small and the discarded values can be easily interpolated by smoothing

the available φ̂k(·|sj) across s.

While processes {ξk(s)}, k ≥ 1, are the targets for the second step FPCA, the quanti-

ties available are empirical working targets {ξ̂ik(sij), i = 1, . . . , n, j = 1, . . . ,mi}, where

mi may be small, and to which we apply a second FPCA. We first compute the estimates

R̂k(s1, s2) of Rk(s1, s2) = cov(ξk(s1), ξk(s2)) by local linear smoothing. Then the estimates

ψ̂kp(s) of the eigenfunctions ψkp(s) in (4) are obtained numerically from R̂k(s1, s2) and

estimates for ζkp are obtained by numerical integration for dense designs in s, or by best

linear predictors through conditional expectation (PACE) for the case of a sparse designs

in s. It follows from results in Müller (2005) that PACE can also be used for dense design

cases.

After selecting appropriate numbers of included components K and Pk, one obtains

the estimated overall representation,

X̂i(t|s) = µ̂(t|s) +
K∑
k=1

Pk∑
p=1

ζ̂ikpψ̂kp(s)φ̂k(t|s)

= µ̂(t|s) +
K∑
k=1

Pk∑
p=1

ζ̂ikpϕ̂kp(t|s), (10)

where ϕ̂kp(t|s) = ψ̂kp(s)φ̂k(t|s). The included number of components K can be selected

by fraction of variance explained (FVE). We use the criterion that mins
∑K
k=1 λ̂k(s)∑M
k=1 λ̂k(s)

> 0.9,

where M is large. The numbers of included components Pk for the FPCA of random

functions {ξik(s)} may also be determined by FVE, applied for each k.

4. THEORETICAL PROPERTIES

To study the asymptotics of the proposed two-step estimating procedure, recall that

µ̂(t|s) (Eq. 6), Ĝ(t1, t2|s) (7) are empirical estimators and µ̃(t|s) (8), G̃(t1, t2|s) (9) are
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smoothing estimators of the mean surface µ(t|s) and the covariance operator G(t1, t2|s) =

cov(Xi(t1|s), Xi(t2|s)) and that φ̂k(t|s), k ≥ 1, are estimates of the eigenfunctions φk(t|s)

(3). We provide consistency results for these estimates in the following Theorems 1 and 2.

Let hT , hS denote the smoothing bandwidths for the local linear smoothing estimation of

µ(t|s), and bT , bS the smoothing bandwidths for G(t1, t2|s), b̃k the smoothing bandwidths

for Rk(s1, s2) = cov(ξk(s1), ξk(s2)); we always assume hT = O(hS), bT = O(bS), and

hS = O(bS), bS = O(b̃k).

Theorem 1. (Scenario A, Dense Regular Design) Under assumptions (L.1) and (L.2) in

the Appendix, and if maxl(tl − tl−1) = O(n−1), maxj(sj − sj−1) = O(n−1), the empirical

estimators µ̂(t, s) (6) and Ĝ(t1, t2|s) (7) satisfy

sup
t∈T ,s∈S

|µ̂(t, s)− µ(t, s)| = O((log n/n)1/2) a.s, (11)

sup
t1,t2∈T ,s∈S

|Ĝ(t1, t2|s)−G(t1, t2|s)| = O((log n/n)1/2) a.s. (12)

Corresponding results for the smoothing estimates µ̃ and G̃ that are obtained by local

linear smoothing are as follows.

Theorem 2. (Scenario B and C) Under assumptions (A.1) - (A.6) in the Appendix

and if hT = O(bT ), and bT = O((log n/n)1/4), the smoothing estimators µ̃(t|s) (8) and

G̃(t1, t2|s) (9) have the following properties.

(a) (Scenario B, Dense Random Design) If mini,j Lij ≥ Ln, L
−1
n = O(n−1), minimi ≥

Mn, M
−1
n = O(n−1), then

sup
t∈T ,s∈S

|µ̃(t|s)− µ(t|s)| = O((log n/n)1/2) a.s,

sup
t1,t2∈T ,s∈S

|G̃(t1, t2|s)−G(t1, t2|s)| = O((log n/n)1/2) a.s.
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(b) (Scenario C, Sparse Random Design in s) If mini,j Lij ≥ Ln, L
−1
n = O(n−1), maximi ≤

M for a fixed M , then

sup
t∈T ,s∈S

|µ̃(t|s)− µ(t|s)| = O(h2
S + [log n/(nhS)]1/2) a.s, (13)

sup
t1,t2∈T ,s∈S

|G̃(t1, t2|s)−G(t1, t2|s)| = O(b2
S + [log n/(nbS)]1/2) a.s. (14)

The next results show that the empirical working targets {ξ̂ik(sij)} converge uniformly

to the target processes {ξik(s), s ∈ S} (3) under the assumption that the repeated func-

tions are densely sampled (in direction t), and with the rate of convergence depending on

the longitudinal sampling design (dense or sparse in direction s). This convergence implies

consistent estimation of the model components in the second FPCA step in (4) (see also

Yao and Lee 2006). Estimates R̂k(s1, s2), k ≥ 1, of Rk(s1, s2) = cov(ξk(s1), ξk(s2)), ob-

tained from the empirical working targets {ξ̂ik(s)} by local linear smoothing, as described

in Section 3, are seen to be consistent by combining the results in (15) and (19) below

with arguments in Yao et al. (2005); Hall et al. (2006); Li and Hsing (2010).

Theorem 3. (Scenario A Dense Regular Design and B Dense Random Design ) If em-

pirical estimators µ̂(t, s) and Ĝ(t1, t2|s) are used for Scenario A and the assumptions in

Theorem 1 are satisfied, or smoothing estimators µ̃ and G̃ are used for Scenario B and

the assumptions in Theorem 2 part (a) are satisfied, then under additional assumption

(L.3), for fixed k and p,

1

n

n∑
i=1

sup
1≤j≤mi

|ξ̂ik(sij)− ξik(sij)| = O((log n/n)1/2) a.s., (15)

sup
s1,s2∈S

|R̂k(s1, s2)−Rk(s1, s2)| = O((log n/n)1/2) a.s., (16)

sup
s∈S
|ψ̂kp(s)− ψkp(s)| = O((log n/n)1/2) a.s., (17)

||ψ̂kp(s)− ψkp(s)||L2 = O((log n/n)1/2) a.s. (18)
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Similar convergence holds for the sparse design in s, but due to the necessary smooth-

ing step, the rates of convergence are slower.

Theorem 4. (Scenario C, Sparse Random Design in s) If smoothing estimators µ̃(t, s)

and G̃(t1, t2, |s) are used, and the assumptions in Theorem 2 are satisfied, then under the

additional assumptions (L.3) and (B.1)-(B.3), we have for fixed k and p

1

n

n∑
i=1

sup
1≤j≤mi

|ξ̂ik(sij)− ξik(sij)| = O(b2
S + [log n/(nbS)]1/2) a.s., (19)

sup
s1,s2∈S

|R̂k(s1, s2)−Rk(s1, s2)| = O(b̃2
k + [log n/(nb̃2

k)]
1/2) a.s., (20)

sup
s∈S
|ψ̂kp(s)− ψkp(s)| = O(b̃2

k + [log n/(nb̃k)]
1/2) a.s., (21)

||ψ̂kp(s)− ψkp(s)||L2 = O(b̃2
k + [log n/(nb̃k)]

1/2) a.s. (22)

Finally, the overall representation X̂i(t|s) in (10), with all component estimates

plugged in, is shown to converge to Xi(t|s) in Corollaries 1 (dense designs) and 2 (sparse

designs).

Corollary 1. (Scenario A and B) Under the assumptions of Theorem 3,

(a) for fixed k and p,

|ζ̂ikp − ζikp|
P−→ 0,

(b) for all s ∈ S and t ∈ T ,

|X̂i(t|s)−Xi(t|s)|
P−→ 0, as n→∞, K(n), P (n)→∞,

where X̂i(t|s) is given in (10).

Corollary 2. (Scenario C) Under the assumptions of Theorem 4,

(a) for fixed k and p,

|ζ̂ikp − ζ̃ikp|
P−→ 0,
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(b) for all s ∈ S and t ∈ T ,

|X̂i(t|s)− X̃i(t|s)|
P−→ 0, as n→∞, K(n), P (n)→∞,

where ζ̃ikp = E(ζikp|ξ̄ik), with ξ̄ik defined as (ξik(si1), . . . , ξik(si,mi)), and X̃i(t, s) is defined

by substituting ζikp with ζ̃ikp in (5).

We note that the assumption (B.3) of non-crossing eigenvalue functions (see first

paragraph of section 3) is used for theorem 4 and the corollaries. This assumption can be

relaxed, as discussed in the remark in the Appendix. The proofs of the theoretical results

are in the online Supplement A.

5. SIMULATION RESULTS

We conducted two simulation studies, one to investigate the scenario where eigenvalues

cross along s, with results reported in the online Supplement D, and another one to

evaluate the performance of the proposed double FPCA method for varying sample sizes

n in a scenario that resembles a real data application, with results reported below.

For this simulation, we generate data that closely resemble the country mortality data,

described in Section 6, by using the estimated mean function µ̂(t|s) from the data appli-

cation as mean function and the first four estimated two-dimensional functions as base

functions ϕkp(t, s), k, p = 1, 2, in (5). The random scores ζkp, k, p = 1, 2, are generated

as independent normal random variables with variances {9, 4, 4, 1} for {ζ11, ζ12, ζ21, ζ22},

respectively. The error variance was chosen as σ = 0.001, for a signal-to-noise ratio close

to the observed value for the morality data.

Estimated and true principal surfaces ϕkp, obtained for one sample run with n = 100

are shown in Figure 1. Applying the FVE method as described in Section 3 with threshold

0.95 led to K = 2 and P1 = P2 = 2 as selected number of components. These data-based

choices match the true number of components. Figure 1 demonstrates nearly perfect

recovery of the true basis functions ϕkp(t|s), k, p = 1, 2.
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To quantify the quality of the estimates of µ(t|s), we use the relative squared error

RSE =
||µ(t|s)− µ̂(t|s)||2

||µ(t|s)||2
, (23)

where ||µ(t|s)||2 =
∫ ∫

µ(t|s)2dsdt, analogously for X̂i(t|s) and ϕ̂kp(t|s). The average

relative squared errors over 100 simulation runs, reported in Table 1, are found to be

quite small for µ, Xi and ϕkp for n = 25, and to decline with increasing sample size n.

6. APPLICATION TO MORTALITY DATA

The analysis of trends in human mortality is important to assess the future demographic

prospects of societies, quantify differences between countries with regard to this overall

public health measure, and to appraise biological limits of longevity (Oeppen and Vaupel

2002; Vaupel et al. 1998). Various approaches have been designed for the modeling of

mortality data as derived from period lifetables (Lee and Carter 1992; Currie et al. 2004),

including functional approaches (Hyndman and Ullah 2005; Chiou and Müller 2009) that

use the assumption of i.i.d. functional data. To study mortality across countries and

calendar time, we applied the proposed double FPCA method to period life tables for 32

countries (listed in the online Supplement C), with a lifetable and corresponding rates

of mortality available for each of the calendar years from 1960 to 2006. The data were

obtained from the Human Mortality Database (www.mortality.org; Wilmoth et al. 2007).

Whereas cohort life tables reflect the life histories of specific groups of individuals,

usually of birth cohorts, period life tables represent the mortality conditions at a specific

moment in time (Yang et al. 2008) and are available up to current years. We assume that

the observed period death rates for a given calendar year correspond to realizations of

an underlying random process with age as argument, quantifying mortality as a function

of age of subjects and laying the foundation for the study of country-specific changes of

these functional relationships, as calendar time progresses from past to present.
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Following the notation introduced in Section 2, Xi(t|s) denotes the mortality rate for

the ith country for subjects at age t for calendar year s, where 60 ≤ t ≤ 100, focusing on

the death rates of older individuals, and on a recent block of 47 years, 1960 ≤ s ≤ 2006.

Applying the proposed methodology to the entire data set, we obtained the random scores

corresponding to principal surface components ζikp in (5) for n = 32 countries. Visualizing

the first two random scores ζi11 and ζi12, contributing 57.2% and 35.4% to the total

variance respectively, clearly indicates that there are two clusters of countries (Figure 2);

five countries, namely Belarus, Bulgaria, Russia, Ukraine and Lithuania, form one cluster

and the remaining countries the second cluster. The Eastern European countries that are

grouped together in the small cluster display an increase in mortality rates starting at

around 1980, across all ages, which is most pronounced at older ages, see Figure 3. All

other countries share a declining trend of mortality rates with increasing calendar years.

For further analysis, we focus on the majority group of 27 countries. Fitted eigenfunc-

tions φ̂k(t|s) and estimated FPCs ξ̂ik(s) in (10) resulting from the first FPCA step are

displayed in Figure 4, while the fitted mean function µ̂(t|s) and the most important three

principal surfaces ϕ̂kp(t|s), for (k, p) = (1, 1), (1, 2), (2, 1) in (10) resulting from the sec-

ond FPCA step are visualized in Figure 5. The numbers of included components K = 2,

P1 = 2, P2 = 3 were chosen by the FVE criterion with threshold 0.9; see Section 3.

The first step FPCA, as visualized in Figure 4, reveals several interesting features. As

a family of one-dimensional eigenfunctions, the φk(t|s) provide the “modes of variation”

of the repeated functions sampled at time s. Specifically, the family of first eigenfunctions

φ1(t|s) indicates the direction of largest variation in function space of the mortality func-

tions Xi(t|s) around their mean. These eigenfunctions and also the second eigenfunctions

φ2(t|s) are seen to be quite homogeneous across s, implying that the “modes of variation”

do not change much for varying calendar years. The corresponding FPC scores as func-

tions of calendar year ξi1(s) display less homogeneity, indicating an increase in variance
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from around s = 1980 on, followed by a subsequent decline. As the ξi1(s) are multiplied

with the φ1(t|s), this points to a temporarily increased divergence along the main direc-

tion of variation during this calendar period, likely a consequence of societal changes in

Europe. The family of second eigenfunctions φ2(t|s) characterizes variation of mortal-

ity along a contrast between old (with a peak around 85 years) and oldest-old (post-90)

mortalities (negative values). As the functions ξi2(s) diverge in more recent years, this

implies that the differences in the contrast between earlier and later mortalities across

countries are rising, indicating increasing variability of the old versus oldest-old mortality

differential. Further information on the eigenanalysis of the functions ξi1(s) and ξi2(s),

including their eigenfunctions ψkp, is in online Supplement E.

The fitted mean surface in the upper left panel of Figure 5 reflects the well-known

overall declining trend in mortality rates. Further scrutiny shows that for ages between 80

and 90, the age at which a given mortality rate level is reached increases by approximately

one year per decade. The three principal surfaces depicted in Figure 5 provide a graphical

overall decomposition of the variation of mortality curves across countries.

The first principal surface ϕ11(t|s), corresponding to the first principal component

in both age coordinate s and calendar year coordinate t, explains most of the variation

between countries. A sharp change is seen to occur at around age 85, after which individual

country’s mortality rates deviate from the mean surface with a declining or increasing rate.

In the calendar year direction, a prominent “U- shape” feature is present at the oldest

ages. To investigate this feature, we plot the fitted surfaces for the two countries with

the largest and the smallest value of the multiplicative random factor ζ̂11 (see (5)), which

turn out to be Canada and the Czech Republic (Figure 6). One finds that the mortalities

for these two countries exhibit a “U notch” and reversed “U-notch” for the oldest age

mortality rates, viewed against calendar time. This indicates that oldest-old mortality

rates across countries temporarily diverged in the 1980-1990s.
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The second principal surface ϕ̂12(t|s) is flat at lower age groups 60-70 and for older

groups shows an increasingly prominent slope, providing a contrast between present and

past calendar years. This component thus differentiates between countries according to

the speed of decline of oldest old mortality. This speed of decline is an indicator of health

of the oldest cohorts, as well as an important predictor for the size of elderly cohorts and

the societal resources that will be needed to care for the oldest-old cohorts.

The third principal surface ϕ̂21(t|s) complements the second principal surface: It has

least curvature at past calendar years and increasing concave curvature towards more

recent calendar years. This represents an increasing contrast between oldest-old mortality

and mortality around ages 80-85, differentiating effects of mortality reduction before 85

and after 90. This may indicate that increasing mortality reduction at older ages before

age 85 incurs a cost by being accompanied with decreased mortality reduction after age

90. One interpretation is that this reflects a selection effect: If mortality at ages prior to

85 is lowered, then larger numbers of frail individuals survive beyond this age range, and

as a consequence, the decline of mortality of the oldest-old group is relatively smaller.

7. DISCUSSION

As an alternative to the proposed two-step FPCA, we also implemented and fitted the

two-dimensional Karhunen-Loève expansion

X(t, s) = µ(t, s) +
∞∑
k=1

ηkρk(t, s), (24)

where ρk(t, s), k ≥ 1, are the eigenfunctions of the associated autocovariance operator AG

with kernel G(t1, s1, t2, s2) = cov(X(t1, s1), X(t2, s2)), i.e., G(t1, s1, t2, s2) has an orthog-

onal expansion G(t1, s1, t2, s2) =
∑

k ωkρk(t1, s1)ρk(t2, s2) with nonincreasing eigenvalues

ωk and eigenfunctions ρk(t, s), where ηk =
∫
T ,S(X(t, s)− µ(t, s))ρk(t, s)dtds are the func-

tional principal components (FPCs).
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In practise, this representation requires estimates of G(t1, s1, t2, s2) on a fine grid. For

data such as the mortality data that are regular and relatively dense, the empirical or

cross-sectional sample covariance is a feasible estimate for the four-dimensional covariance

G(t1, s1, t2, s2) = cov(X(t1, s1), X(t2, s2)). Alternatively, one can estimate the covariance

G(t1, s1, t2, s2) by four-dimensional local linear smoothing. We found that in the dense

regular case, these two approaches give nearly identical results. Not surprisingly, the

four-dimensional smoothing method is much slower; more details on this can be found

in the online Supplement B. We emphasize that we consider here a scenario where t and

s have inherently different meanings and scales. Accordingly, the eigenfunctions φk and

principal components ξk(s) in the direction of repeated time, as obtained from the first

step of the proposed two-step FPCA approach, are of interest in themselves, as seen in

the simulation and data analysis. We note that these quantities are not available when

using the two-dimensional Karhunen-Loève representation.

Even if we ignore the asymmetry of the roles played by t and s, we find that the pro-

posed two-step FPCA method computationally is much faster than the two-dimensional

Karhunen-Loève representation as in (24). Especially when the data are not regular and

dense in either t or s, a four-dimensional smoothing step for the covariance G(t1, s1, t2, s2)

is mandatory to implement the Karhunen-Loève approach. The proposed two-step FPCA

procedure at most requires three-dimensional smoothing and thus achieves faster rates

of convergence under the same smoothness assumptions. In an illustration provided in

the online Supplement B, the proposed method worked well for sparse designs, while the

Karhunen-Loève approach was not only very time consuming but also became unstable

under sparsity.

The double FPCA approach for the analysis of repeated functions takes into account

the asymmetry of the longitudinal and the functional time components and is a natural

extension of the standard FPCA technique of functional data analysis. It can be imple-
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mented for both dense designs as well as sparse longitudinal designs for the times where

the repeated functional measurements are taken. For both cases, the proposed method-

ology enjoys good asymptotic properties. In applications to cross-country comparisons

of older age mortality, the proposed double FPCA method leads to interesting insights

into mortality and longevity across countries. The proposed method thus shows promise

for the analysis of longitudinal studies, in which one observes a curve at each observation

time.

Appendix: Assumptions and Notations

Let mn = 1
n

∑n
i=1mi, Ln = mini,j{Lij} and hT , hS denote the smoothing bandwidths to

estimate µ(s, t), and bT , bS the smoothing bandwidths for G(t1, t2|s) when smoothing is

used. For the second FPCA step, let b̃k denote the smoothing bandwidth for Rk(s1, s2),

where Rk(s1, s2) = cov(ξk(s1), ξk(s2)), k ≥ 1.

In the following, 0 < B < C <∞ are generic constants that can take different values

at different places. The following mild moment conditions will be used:

(L.1.a) For all i, and all s, t, E|Xi(t|s)|` ≤ `!
2
C`−2B2, ` = 2, 3, . . . .

(L.1.b) For all i, and all s, t1, t2, E|Xi(t1|s)Xi(t2|s)|` ≤ `!
2
C`−2B2, ` = 2, 3, . . . .

Here, (L.1.a) and (L.1.b) are needed for (??) below, which will be used in the proof

of Theorem 1.

(L.2) Processes Xi(t|s) are smooth in t and s and satisfy |Xi(t|s) − Xi(t
′|s′)| ≤ C(|t −

t′|+ |s− s′|).

(L.3) E(supt∈T ,s∈S |Xi(t|s)|) < ∞, supt∈T ,s∈S |µ(t|s)| < ∞, supt1,t2,s |G(t1, t2|s)| < ∞,

supt∈T ,s∈S |φk(t|s)| <∞ for each k ≥ 1.

The following Conditions (A.1) - (A.6) are needed for the first FPCA step for functions

Xi(·|s), and (B.1) - (B.3) for the second FPCA step for functions {ξ̂ik(s)}.

(A.1) tijl and sij are random observation points distributed with density fT , respectively,
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fS. We require B ≤ fT (t) ≤ C for all t ∈ T , and B ≤ fS(s) ≤ C for all s ∈ S. Further,

fT and fS are differentiable with bounded derivatives.

(A.2) The kernel function K is a symmetric probability density function on [-1, 1] with

bounded variation [-1, 1]. Write ν2 =
∫

[−1,1]
t2K(t)dt.

(A.3) All second-order partial derivatives of µ(t|s) exist and are uniformly bounded.

(A.4) All second-order partial derivatives of G(t1, t2|s) exist and are uniformly bounded

on T 2 × S.

(A.5) E(|εijl|γµ) < ∞, E(supt∈T ,s∈S |Xi(t|s)|γµ) < ∞ for some γµ > 2; hs, ht → 0 and

[(h2
s + hs/mn)(h2

t + ht/L)]−1(log n/nr)1−2/γµ →∞, as n→∞, for some r ∈ (0, 1] .

(A.6) E(|εijl|2γG) < ∞, E(supt∈T ,s∈S |Xi(t|s)|2γG) < ∞ for some γG > 2; bs, bt → 0 and

[(b4
t + b3

t/L+ b2
t/L

2)(b2
s + bs/mn)]−1(log n/nr)1−2/γG →∞ as n→∞, for some r ∈ (0, 1].

Conditions similar to the above have been required in Hall et al. (2006) and Li and

Hsing (2010). Here we assume that these properties hold uniformly over s. This is nec-

essary so that the empirical working targets ξ̂ik(sij) are uniformly close to the theoretical

working processes ξik(s), a fact that will be used in the second step FPCA.

(B.1) For any fixed k, all second-order partial derivatives of Rk(s1, s2) exist and are

bounded on S2.

(B.2) For any fixed k, E(sups∈S |ξik(s)|γR) < ∞ for some γR > 2; b̃k → 0 and

(b̃4
k + b̃3

k/mn + b̃2
k/(m

2
n))−1(log n/n)1−2/γR →∞ as n→∞.

Recall that λk(s) is the kth largest eigenvalue of the covariance operator G(·, ·|s) at a

fixed s = s0, but is defined by continuous continuation of the functions φk(t|s) for other

s, as described at the beginning of section 3. Defining

δk(s) = min
1≤j≤k

(λj(s)− λj+1(s)), δk = inf
s∈S
{δk(s)}, λk = inf

s∈S
{λk(s)}, (25)

we make the assumption

(B.3) For all k, δk > 0 and λk > 0.

This means that the eigenvalue functions λj(s), 1 ≤ j ≤ ∞, do not cross and there is
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always a gap between λj(s) and λk(s) for any j 6= k.

Remark. The assumption (B.3) of non-crossing eigenvalue functions in s can be re-

laxed, as follows. If the eigenvalue functions cross N times, at times sc1, . . . , s
c
N , we define

the set Dε = ∪Ni=1{s ∈ (sci−ε, sci +ε)} for an arbitrarily small ε > 0. Then on the set S∩Dc
ε

all theoretical results still hold. One can derive results for the case where ε = εn → 0, so

that the measure of the exception set Dε converges to zero, but for this scenario the rates

of convergence are slower than those reported in the theorems.
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RE n = 25 n = 50 n = 100

µ 0.0126 (0.0113 ) 0.0057 (0.0047) 0.0031 (0.0028 )

X 0.0056 (0.0054) 0.0053 (0.0046) 0.0043 (0.0045)

ϕ11 0.0988 (0.1506) 0.0387 (0.0302) 0.0231 (0.0185)

ϕ12 0.1403 (0.1894 ) 0.0673 (0.0588) 0.0431 (0.0443)

ϕ21 0.1039 (0.1075) 0.0689 (0.0608) 0.0407 (0.0359)

ϕ22 0.1353 (0.1433) 0.0901 (0.0812 ) 0.0555 (0.0547)

Table 1: Simulation results for data generated to mimic the mortality data of Section

6, described in Section 5, reporting relative error (RE) as defined in (23) (with standard

deviations in parentheses), for various components of model (5) for k, p = 1, 2 and varying

sample sizes n.
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Figure 1: True (left) and estimated (right) principal surfaces ϕkp for k = 1, 2 and p = 1, 2,

as obtained in one simulation run.
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Figure 2: Plotting random scores ζi12 against ζi11 to summarize the mortality trajectories

for n = 32 countries. The five countries in the upper right (marked by solid circles,

corresponding to the Eastern European countries of Belarus, Bulgaria, Lithuania, Russia

and Ukraine) exhibit quite different features of mortality evolution from the bulk of the

countries (crosses).
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Figure 3: The raw mortalities for four countries that were identified to have increasing

mortality rates after 1980, in contrast to the bulk of other countries.
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Figure 4: The estimated eigenfunctions and FPC scores from the first step FPCA, φ̂1(t|s),

φ̂2(t|s), ξ̂i1(s) and ξ̂i2(s) in (10) for the mortality data.
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Figure 5: The estimated mean and first three principal surfaces ϕ̂11, ϕ̂12, ϕ̂21 in (10),

explaining 57.2%, 35.4% and 5% of the variation, respectively, for the mortality data.
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Figure 6: Fitted mortality rates for Canada with the most positive random scores ζi11

(left) and Czech Republic with the most negative scores ζi11 (right) in model (5). The

trend over calendar years at older ages shows a “U notch” for Canada (left) and an inverse

“U notch” for the Czech Republic (right). This effect is a consequence of the “U shape”

feature found in the first principal surface ϕ11 in Figure 5 and demonstrates a contrast in

old-age mortality between these two countries.
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