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Supplement A: Auxiliary Results and Proofs

We first state two auxiliary results that are useful for the theoretical arguments. One of

these is a Bernstein-type concentration inequality (Del Barrio et al. 2007; Geer 2006): Let

X1, . . . , Xn be independent real-valued random variables with expectation zero. Suppose

that for all i,

E|Xi|` ≤
`!

2
C`−2B2, ` = 2, 3, . . .

Then for any a > 0,

P (
n∑

i=1

Xi ≥ a) ≤ exp[− a2

2(aC + nB2)
]. (26)

A second auxiliary result relates uniform convergence of eigenfunctions to the uniform

convergence of corresponding covariance functions.

Lemma 1. Under assumption L.3, if supt1,t2∈T ,s∈S |Ĝ(t1, t2|s)−G(t1, t2|s)| = O(an), a.s.,

then

sup
t∈T ,s∈S

|φ̂k(t|s)− φk(t|s)| = O(an), a.s.

Let mn = 1
n

∑n
i=1mi, Ln = mini,j{Lij} and hT , hS denote the smoothing bandwidths

to estimate µ(s, t), and bT , bS the smoothing bandwidths for G(t1, t2|s) when smoothing

is used. For the second FPCA step, let b̃k denote the smoothing bandwidth for Rk(s1, s2),

where Rk(s1, s2) = cov(ξk(s1), ξk(s2)), k ≥ 1.

In the following proofs, we do not consider measurement errors for dense designs, as

then pre-smoothing can be used to construct continuously observed functions with greatly

reduced errors.

Proof of Theorem 1. Define G = (tl, sj) for 1 ≤ l ≤ L and 1 ≤ j ≤ m. Under the

assumptions maxl(tl − tl−1) = O(n−1) and maxj(sj − sj−1) = O(n−1), we only need to

consider the case L = n and m = n.



Since T × S is compact, and Xi(t|s) is Lipschitz continuous by (L.2), and the values

between grid points are obtained by linear interpolation, we have

sup
t∈T ,s∈S

|µ̂(t|s)− µ(t|s)| = sup
(t,s)∈G

|µ̂(t|s)− µ(t|s)|+O(
1

n
).

Now considering a fixed (t, s) ∈ G, using condition (L.1.a), by (26), for any a > 0,

P

(
1

n

n∑
i=1

(Xi(t|s)− µ(t|s)) ≥
( log n

n

)1/2
a

)
≤ exp

(
− n log na2

2((n log n)1/2aC + nB2)

)
= n−B

∗
,

where B∗ = a2/[2(( logn
n

)1/2aC +B2)]. Thus,

P ( sup
(t,s)∈G

|µ̂(t|s)− µ(t|s)| ≥
( log n

n

)1/2
a) ≤ 2n2 × n−B∗

= 2n2−B∗
. (27)

We can find large enough a such that B∗ > 2 for large n. Then,

sup
t∈T ,s∈S

|µ̂(t|s)− µ(t|s)| = O((log n/n)1/2), a.s.

Defining Zi(t1, t2|s) = Xi(t1|s)Xi(t2|s) on T 2 × S, and using condition (L.1.b), a similar

argument gives the result for Ĝ(t1, t2|s), which completes the proof.

Proof of Theorem 2. Write

δn1 = {[1 + (hTLn)−1 + (hSmn)−1 + (hSmnhTLn)−1] log n/n}1/2,

δn2 = {[1+(bTLn)−1 +(bTLn)−2 +(bSmn)−1 +(bSmnbTLn)−1 +(bSmnb
2
TL

2
n)−1] log n/n}1/2.

We note that the local linear smoothing estimators defined in (8) and (9) are slightly

different from the one used in Li and Hsing (2010), and modify mn accordingly. The

strong law of large numbers for weighted samples is needed to obtain the same results as

those in Lemma 1 in Li and Hsing (2010) (details for this step are provided in a working

paper of Zhang and Wang (2012)). Minor modifications of the proofs of Theorem 3.1 and

Theorem 3.3, with correspondingly modified conditions (A.1) - (A.6), yield

sup
t∈T ,s∈S

|µ̂(t|s)− µ(t|s)| = O(h2T + h2S + hShT + δn1) a.s.

sup
t1,t2,s

|Ĝ(t1, t2|s)−G(t1, t2|s)| = O(h2T + h2S + hShT + δn1 + b2T + b2S + bT bS + δn2) a.s.

Theorem 2 (a) and (b) now follow by using the respective conditions.
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Proof of Lemma 1. Define ||G(·, ·|s)|| = {
∫ ∫

G(t1, t2|s)2dt1dt2}1/2, the Hilbert-Schmidt

norm of G(·, ·|s) for any s, and ||ψ(·|s)|| = {
∫
ψ(t|s)2dt}1/2. Then one has

sup
s∈S
||Ĝ(·, ·|s)−G(·, ·|s)|| = O(an) a.s. (28)

For each s and for a fixed k, Lemma 4.3 in Bosq (2000) implies that

|λ̂k(s)−λk(s)| ≤ ||Ĝ(·, ·|s)−G(·, ·|s)||, ||φ̂k(·|s)−φk(·|s)|| ≤ 2
√

2δ−1k ||Ĝ(·, ·|s)−G(·, ·|s)||,
(29)

where δk is defined in (25). Combining (28) and (29) yields

sup
s∈S
|λ̂k(s)− λk(s)| = O(an) a.s., sup

s∈S
||φ̂k(·|s)− φk(·|s)|| = O(an) a.s.

Note that for any 1 ≤ k ≤ K0, λk(s)φk(t|s) =
∫
G(t′, t|s)φk(t′|s)dt′, and therefore

sup
s∈S,t∈T

|λk(s)φ̂k(t|s)− λk(s)φk(t|s)|

≤ sup
s,t
|λ̂k(s)φ̂k(t|s)− λk(s)φk(t|s)|+ sup

s,t
|λ̂k(s)φ̂k(t|s)− λk(s)φ̂k(t|s)|,

where the second term is O(an) a.s. and the first term is bounded by

sup
s,t
|
∫

(Ĝ(t′, t|s)−G(t′, t|s))φ̂k(t′|s)dt′|+ sup
s,t
|
∫
G(t′, t|s)(φ̂k(t′|s)− φk(t′|s))dt′|

= O( sup
t1,t2,s

|Ĝ(t1, t2|s)−G(t1, t2|s)| sup
s,t
|φ̂k(s|t)|+ sup

t1,t2|s
|G(t1, t2|s)| sup

s
||φ̂k(·|s)− φk(·|s)||)

= O(an) a.s., (30)

using (L.3). Further noting that λk = infs |λk(s)| is a positive constant, Lemma 1 follows.

Proof of Theorem 3. Define

θin =
(

sup
t,s
|Xi(t|s)|+ sup

t,s
|µ(t|s)|+ sup

t,s
|φk(t|s)|+ 1

)
(log n/n)1/2.

As L−1n = O(n−1), we can neglect the error in the numerical integration, so may consider

ξ̂ik(sij) =
∫ (

Xi(t|sij)− µ̂(t|sij)
)
φ̂k(t|sij)dt. Noting the target is

ξik(sij) =

∫ (
Xi(t|sij)− µ(t|sij)

)
φk(t|sij)dt,
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one finds, for any k, using (11), (12) and Lemma 1,

sup
1≤j≤mi

|ξ̂ik(sij)− ξik(sij)| ≤ sup
1≤j≤mi

|
∫

(Xi(t|sij)− µ(t|sij))(φ(t|sij)− φ̂(t|sij))dt|

+ sup
1≤j≤mi

|
∫

(µ(t|sij)− µ̂(t|sij))φ(t|sij)dt|

+ sup
1≤j≤mi

|
∫

(µ̂(t|sij)− µ(t|sij))(φ(t|sij)− φ̂(t|sij))dt| = O(θin) a.s., (31)

where O(·) is uniform over i. Then (L.3) and the strong law of large numbers imply (15).

For each k, if the target working processes ξik(s) are used, one can easily derive that

sup
s1,s2∈S

|R̂k(s1, s2)−Rk(s1, s2)| = O((log n/n)1/2) a.s.

as in Yao et al. (2005), Hall et al. (2006), and Li and Hsing (2010). Scrutinizing the

estimating procedure for R(s1, s2), we find that if the empirical working data are used,

then

sup
s1,s2∈S

|R̂(s1, s2)−R(s1, s2)| = O((log n/n)1/2 + θn) a.s.,

where θn = 1
n

∑n
1 θin; see also Yao and Lee (2006). By (15), θn = O(log n/n)1/2) a.s..

This means that the rate of convergence for R̂k(s1, s2) and {ψ̂kp(s), p = 1, . . . , P0} remains

the same as for the true targets.

Proof of Theorem 4. For the case of a design that is sparse in s, if we were to observe

Xi(tijl|sij), the proof of part (a) would be the same as that of Theorem 3. However, the

additional measurement errors for the sparse case cannot be alleviated by individual curve

smoothing. Starting with noisy observations Uijl = Xi(tijl, sij) + εijl, we decompose

ξ̂ik(sij) = ξ̃ik(sij) +Rik(sij) + ε̃ijk,

ξ̃ik(sij) =

Lij∑
l=2

{Xij(tijl|sij)− µ̂(tijl|sij)}φ̂k(tijl|sij)(tijl − tij,l−1),

Rik(sij) =

Lij∑
l=2

εijl{φ̂k(tijl|sij)− φk(tijl|sij)}(tijl − tij,l−1),

ε̃ijk =

Lij∑
l=2

εijlφk(tijl|sij)(tijl − tij,l−1). (32)

As L−1n = O(n−1), one may neglect the numerical integration error in ξ̃ik(sij) and consider

ξ̃ik(sij) =
∫ (

Xi(t|sij) − µ̂(t|sij)
)
φ̂k(t|sij)dt. For the targets ξik(sij) =

∫ (
Xi(t|sij) −
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µ(t|sij)
)
φk(t|sij)dt, for any k ≥ 1, using (13), (14) and Lemma 1,

max
1≤j≤mi

|ξ̃ik(sij)− ξik(sij)|

= O(
(

sup
t,s
|Xi(t|s)|+ sup

t,s
|µ(t|s)|+ sup

t|s
|φk(t|s)|+ 1

)
(b2s + log n/nbs)

1/2)) a.s., (33)

where O(·) is uniform over i. Then 1
n

∑n
i=1 max1≤j≤mi

|ξ̃ik(sij) − ξik(sij)| = O(b2s +

log n/nbs)
1/2) a.s., using (L.3). For the remainders Rik(sij), by (14) and Lemma 1,

max
1≤j≤mi

|Rik(sij)| = O((b2s + log n/nbs)
1/2[

mi∑
j=1

1

Lij

Lij∑
l=1

|εijl|]) a.s., (34)

Noting that max1≤i≤nmi ≤ M for finite M , and as all |εijl| are i.i.d variables with finite

mean, we have 1
n

∑n
i=1 max1≤j≤mi

|Rik(sij)| = O((b2s + log n/nbs)
1/2), a.s.

For ε̃ijk, we know that E(ε̃ijk) = 0 and E|ε̃ijk| ≤ var(ε̃ijk)1/2 = O(L
−1/2
n ). Since

mi ≤ M for finite M , we have E sup1≤j≤mi
|ε̃ijk| = O(L

−1/2
n ) = O((log n/n)1/2), where

O(·) is uniform over i for fixed k. Then by the strong law of large numbers,

1

n

n∑
i=1

sup
1≤j≤mj

|ε̃ijk| = O((log n/n)1/2) a.s. (35)

Combining (33), (34) and (35), (19) follows. For each k, if the true target processes ξik(s)

were used, then by the Corollary 3.5 in Li and Hsing (2010),

sup
s1,s2∈S

|R̂k(s1, s2)−Rk(s1, s2)| = O(b̃2k + [log n/(nb̃2k)]1/2) a.s.

Results (20) (21) and (22) then follow by the same arguments as used for Theorem 3.

Proofs of Corollary 1 and Corollary 2. Considering the case of a dense design in s,

for each fixed k and p, the proof for Theorem 3 implies that sups∈S |ξ̂ik(s)− ξik(s)| P−→ 0,

and also sups∈S |ψ̂kp(s)− ψkp(s)| P−→ 0. Part (a) directly follows.

For part (b), by the Karhunen-Loève expansion, for fixed s and t,

XK
i (t|s) = µ(t, s) +

K∑
k=1

ξik(s)φk(t|s) P−→ Xi(t|s) as K →∞,

and also for any fixed k and s,

ξPik(s) =
P∑

p=1

ζikpψkp(s)
P−→ ξik(s) as Pk →∞.
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Define the truncated version XK,P
i (t|s) = µ(t|s) +

∑K
k=1

∑P
p=1 ζikpφkp(s)ψk(t|s). For any

integer m ≥ 1, and δ > 0, one can find K(m) and P (m), such that

P (|XK,P
i (t|s)−Xi(t|s)| > δ/2) ≤ 1

2m
.

Note that X̂i(t|s) as in (10) is obtained by plugging in the estimates of φk(t|s), ψkp(s)

and ζikp in XK,P
i (t|s). Using the consistency results for φ̂k(t|s), ψ̂kp(s) and ζ̂ikp, one can

find large enough n(m) such that

P (|X̂i(t|s)−XK,P
i (t|s)| > δ/2) <

1

2m
.

So for any m ≥ 1 and δ > 0, there are large n(m), K(n(m)), and P (n(m)) such that

P (X̂i(t|s)−Xi(t|s)| > δ) < 1
m

, which implies X̂i(t|s) P−→ Xi(t|s).
For the case of a sparse design in s, note that

ζ̃ikp = γkpψ̄
T
ikpR̄

−1
ik ξ̄ik, (36)

where ψ̃ikp = (ψkp(si1), . . . , ψkp(si,mi
)), R̄ik is a mi by mi matrix with (j, l)-th element

Rk(sij, sil), ξ̄ik is defined as (ξik(si1), . . . , ξik(si,mi
)), and γkp is the pth largest eigenvalue

of the covariance Rk(s1, s2); see also Theorem 3 in Yao et al. (2005). Estimates ζ̂ikp are

obtained from (36), by substituting estimates of γkp, ψ̄ikp, R̄ik and ξ̄ik, leading to

ζ̂ikp = γ̂kp
ˆ̄ψT
ikp

ˆ̄R−1ik
ˆ̄ξik.

The uniform convergence of ψkp(s), Rk(s1, s2) and ξ̂ik(sij) then implies ζ̂ikp
P→ ζ̃ikp. Part

(b) then follows by similar arguments as used in the cases of a dense design in s.
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Supplement B: Comparisons With the Karhunen-Loève Expansion

As an alternative approach to the proposed two-step FPCA, we also implemented and

fitted the two-dimensional Karhunen-Loève expansion as in Eq. (24). This implemen-

tation is illustrated with the mortality data that have been introduced and discussed in

Section 6.

These data are regular and quite dense, which means that one can use the sample

covariance as an estimate of the four-dimensional covariance function G(t1, t2, s1, s2) =

cov(X(t1, s1), X(t2, s2)), where the covariance function is a necessary ingredient for the

Karhunen-Loève implementation. Since the data contain measurement errors, the eigen-

functions ρk(t, s) resulting from this approach are then smoothed, with the resulting

estimates shown in Figure 7. Alternatively, one may estimate the covariance function

G(t1, t2, s1, s2) by four-dimensional local linear smoothing. The eigenfunction estimates

resulting from this smoothing approach are in Figure 8. We find that in the dense reg-

ular case, these two estimating methods for the covariance function G(t1, t2, s1, s2) lead

to almost identical estimates of the eigenfunctions ρk(t, s). Not surprisingly, the four-

dimensional smoothing method is computationally much slower.

Note that the first two eigenfunction estimates ρ1(t, s) and ρ2(t, s) are quite similar to

the corresponding first two surfaces of the proposed model, ϕ11(t|s) and ϕ12(t|s), which

are shown in Figure 5. We note that we consider here a scenario where t and s have

inherently different meanings in that s is a longitudinal time and t a functional time,

and therefore the components φk and ξk(s) obtained from the first step in our proposed

two-step FPCA approach are of interest in themselves (see Figure 4). These components

are however not available when one uses the Karhunen-Loève approach.
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Even if one were to ignore the roles played by t and s, the proposed method runs much

faster compared to the Karhunen-Loève expansion with a two-dimensional argument as in

equation (24), especially when the data are not regular and dense. This is due to the fact

that then a four-dimensional smoothing step for the covariance G(s1, t1, s2, t2) is needed

to implement the Karhunen-Loève expansion.

For further illustration, we sparsified the mortality data, retaining only one third of the

measurements available per trajectory, where the measurements retained are randomly se-

lected. Then we applied the proposed method, which involves a three-dimensional smooth-

ing step for G(t1, t2|s), as well as the Karhunen-Loève expansion with a four-dimensional

smoothing step for G(t1, t2, s1, s2). We found that the proposed method yields estimates

of the model components that are very close to those obtained when observing the entire

data set without missings (Figure 9). In contrast, the more complex Karhunen-Loève

approach (24) proved to be extremely time consuming (it is 25 times slower than the

proposed method) and the estimates resulting from the case of sparse data were rather

poor (Figure 10).
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Figure 7: The estimated mean function and first three eigenfunctions ρ̂k(t, s) for the

Karhunen-Loève decomposition (24) for the mortality data, using sample covariances for

estimation.
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Figure 8: The estimated mean function and first three eigenfunctions ρ̂k(t, s) for

the Karhunen-Loève decomposition (24) for the mortality data, using four-dimensional

smoothing for estimation.
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Figure 9: The estimated mean and first three principal surfaces ϕ̂11, ϕ̂12, ϕ̂21 for the

proposed approach (10) for the sparsified mortality data (with one third of the available

measurements randomly deleted).
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Figure 10: The estimated mean and first three eigenfunctions ρ̂k(t, s) for the Karhunen-

Loève decomposition (24) for the sparsified mortality data (one third of the available

data), using four-dimensional smoothing for the covariance surface.
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Supplement C: List of Countries Included in Mortality Data Analysis

The 32 countries are: Australia, Austria, Belarus, Belgium, Bulgaria, Canada, Czech

Republic, Denmark, Estonia, Finland, France, Hungary, Iceland, Ireland, Italy, Japan,

Latvia, Lithuania, Luxembourg, Netherlands, New Zealand, Norway, Poland, Portugal,

Russia, Slovakia, Spain, Sweden, Switzerland, United Kingdom, Ukraine, USA.

Supplement D: Additional Simulations

An additional simulation study was conducted specifically to assess the performance

of the proposed method for a situation where eigenvalues cross at several locations s, with

specifications as proposed by an anonymous reviewer. We generate data as in model (3)

Xi(t|s) = µ(t|s) +
2∑

k=1

ξik(s)φk(t|s), i = 1, . . . , n, s ∈ [0, 1], t ∈ [0, 1],

where φ1(t|s) =
√

2 sin{2π(t− s)}, φ2(t|s) =
√

2 cos{2π(t− s)} and sample size n = 400.

The random functions ξi1(s) and ξi2(s) are generated as zero mean Gaussian processes

with covariance structures R1(s1, s2) = 4 cos(4πs1) cos(4πs2) + 2 sin(4πs1) sin(4πs2) and

R2(s1, s2) = 6 sin(2πs1) sin(2πs2) + 2 cos(2πs1) cos(2πs2). The grid for t consists of 100

equi-spaced points on [0,1], and the grid for s of 50 equi-spaced points on [0,1].

One of the challenges of this simulated data is that the two eigenvalue functions λ1(s) =

var(ξi1(s)) and λ2(s) = var(ξi2(s)) cross four times. Following the method described

in Section 3, we first estimate the functions µ(t, s) and G(t1, t2|s) by their empirical

estimators. For s0 = 0, we determine φ1(·|s) to be the eigenfunction associated with the

larger eigenvalue and φ2(·|s) to be the eigenfunction associated with the smaller eigenvalue.

The average value of ϑ, chosen by the method described in Section 3, for 100 simulation

runs was 3.01. The gaps from omitting some values of s as described in the method were

small and easily filled by smoothing the available values φ̂k(·|sj) across s.

Figure 11 demonstrates nearly perfect recovery of the true basis functions φk(t|s) and

the eigenvalues λk(s), for k = 1, 2 obtained in the first step FPCA. Figure 12 demonstrates

fairly good performance of the second FPCA, applied to the working processes ξ̂ik(s),

where ψkp(s) are the eigenfunctions of ξik(s) .

To quantify the quality of the estimates of φ(t|s), we use the relative squared error

RSE =
||φ(t|s)− φ̂(t|s)||2
||φ(t|s)||2 , (37)
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where ||φ(t|s)||2 =
∫ ∫

φ(t|s)2dsdt, analogously for ψ̂kp(s). The boxplots of the relative

squared errors over 100 simulation runs as reported in Figure 13 are seen to be reasonably

small for all φk(t|s) and ψkp(s), except that there about 10 outliers, which occurred

because the crossing of the eigenvalue functions was not correctly identified. We note

that the number of outliers shrinks quickly with increasing sample size.
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Figure 11: True and estimated φk(t|s) and eigenvalue functions λk(s) for k = 1 (left) and

k = 2 (right) from one simulation run, as described in Supplement D.
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Figure 12: The estimated random functions ξik(s) for k = 1, 2, i = 1, . . . , 50, and true and

estimated eigenfunctions ψkp(s) from one simulation run, as described in Supplement D.
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Figure 13: The relative squared errors for the eigenfunctions φk(t|s), k = 1, 2, and ψkp(s),

k = 1, 2, p = 1, 2, obtained from 100 simulation runs, as described in Supplement D.
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Supplement E: Eigenanalysis of the random functions ξ1(s) and ξ2(s) for

the mortality data

The functions ξ1(s) and ξ2(s) are obtained in the first stage of the proposed double

FPCA method, as in the basic model in (1). For the mortality data application, these

functions are plotted in Figure 4 and their characteristic features have been discussed in

Section 6. Here we provide additional details on the second stage of the double FPCA

method in the context of the mortality data analysis. The second stage consists of the

eigenanalysis of the functions ξ1(s) and ξ2(s) that are shown in the right panels of Figure

4 and yields the eigenfunctions ψ1p and ψ2p of the covariance operators of these random

processes, where p = 1, 2, as described in Section 6.

The eigenfunctions ψkp are key components of the principal surfaces ϕk(t|s) =

ψkp(s)φk(t|s) and the corresponding FPC scores ζikp =
∫
ξik(s)ψkp(s) ds serve as ran-

dom scores to represent the repeatedly observed functions Xi(t|s), see eq. (5). We plot

the eigenfunctions ψ11, ψ12, explaining 83.2 % and 13.4%, respectively, of the variation

of random functions ξ1(s), in the upper panel of Figure 14, and eigenfunctions ψ21, ψ22

explaining 73.2 % and 17.1%, respectively, of the variation of random functions ξ2(s) in

the lower panel.

We find that the first eigenfunction ψ11 for processes ξ1(s) nicely reflects the main

variance increase around 1980-1990, in accordance with the shapes in the top right panel

of Figure 4. Observe here that the sign of the eigenfunctions is arbitrary. The second

eigenfunction ψ12 indicates an additional increase in the variation of processes across

countries with increasing calendar year. As processes ξ1(s) are tied to the basic age-

increase in mortality, as seen in the top left panel of Figure 4, this implies an ongoing

differentiation into higher- and lower-mortality countries.

Processes ξ2(s) are associated with the contrast between old and oldest-old mortality,

as can be seen in the lower left panel of Figure 4. The first eigenfunction ψ21 reflects the

increase in the variation across countries with increasing calendar date, including a recent

slight acceleration of this increase, in accordance with the function shapes depicted in the

lower right panel of Figure 4. The second eigenfunction ψ21 reflects a contrast between

pre- and post-1980, indicating that there is a tendency for a reversal between the pre-1980

and the post-1980 old to oldest-old mortality differential. Indeed, taking a closer look at

the right lower panel of Figure 4 shows that some countries exhibit a reversal in the shapes

of ξ2(s).

To summarize, this analysis demonstrates the usefulness of the results of the second

stage FPCA that is provided by the proposed method.
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Figure 14: The estimated eigenfunctions ψkp(s), k = 1, 2, p = 1, 2, for ξ1(s) (upper panels)

and ξ2(s) (lower panels), obtained from the mortality data, as described in Supplement

E.
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