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ABSTRACT

We propose Stringing, a class of methods where one views high dimensional observations

as functional data. Stringing takes advantage of the high dimension by representing such

data as discretized and noisy observations that originate from a hidden smooth stochastic

process. Assuming that the observations result from scrambling the original ordering of

the observations of the process, Stringing reorders the components of the high-dimensional

vectors, then transforming the high-dimensional vector observations into functional data.

Established techniques from Functional Data Analysis can be applied for further statistical

analysis once an underlying stochastic process and the corresponding random trajectory

for each subject have been identified. Stringing of high dimensional data is implemented

with distance-based metric Multidimensional Scaling, mapping high-dimensional data to

locations on a real interval, such that predictors that are close in a suitable sample metric

also are located close to each other on the interval. We provide some theoretical sup-

port, showing that under certain assumptions, an underlying stochastic process can be

constructed asymptotically, as the number of data p tends to infinity. Stringing is il-

lustrated for the analysis of tree ring data and for the prediction of survival time from

high-dimensional gene expression data and is shown to lead to new insights. In regression

applications involving high-dimensional predictors, Stringing compares favorably with ex-

isting methods.

KEY WORDS: Functional Cox Model, Functional Data Analysis, Multidimensional

Scaling, Regression with High-Dimensional Predictors, Tree Rings, Weak Convergence.
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1. INTRODUCTION

Modeling and prediction for very high-dimensional data is a challenging problem. For

the so-called large n small p problem, dimension reduction is essential. Existing regres-

sion methods involving high-dimensional predictors operate under strong assumptions

such as sparsity constraints, which often are justified by not much more than plausibil-

ity considerations and mathematical convenience. In this paper, we introduce Stringing

to complement the prevailing concept of sparsity of high-dimensional data, harnessing

methods from Functional Data Analysis by transforming very high dimensional data into

functional data. Rather than viewing it as a nuisance, this approach takes advantage

of the high dimensionality of the predictors. The components of the predictor vector

are treated as order-perturbed. After applying Stringing to order these components, the

high-dimensional data are mapped to realizations of a smooth stochastic process. Such

a generating process does not actually need to exist physically; it suffices to view it as a

merely theoretical construct in order to reap the benefits of Stringing.

Our actual assumptions are confined to correlation or neighborhood relationships

among predictors, as is further explained in the discussion in Section 5. As we show,

under such assumptions, a smooth stochastic process may be constructed from the data.

An alternative description is that the predictors possess an order in which their val-

ues correspond to smooth functions, but that we observe the predictors in a randomly

permuted order, where the permutation is unknown. Implementation of this general con-

cept requires judicious construction of imputed positions for the predictors on the real

line, derived from observed sample distances or other measures of proximity between the

individual components of the high-dimensional data vectors. Stringing then maps high-

dimensional predictor vectors to infinite-dimensional function space. Once this mapping

has been constructed, one can take advantage of functional data analysis (FDA) method-

ology to effectively analyze the resulting infinite-dimensional smooth random functions.
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Starting with a proximity measure for the components of the given high-dimensional

data vectors, we use Multidimensional Scaling (MDS) to implement Stringing. MDS

projects data into a low-dimensional target space, where the configuration in the target

space aims to reproduce the proximity relations in the original space, by minimizing a

cost function. In our implementation of Stringing we use Euclidean distance as well as

transformed Pearson correlation as proximity measures in the original high-dimensional

predictor space (Cox and Cox 2001). The configuration obtained by MDS projection

into one dimension provides an ordering of the predictors and assigns a location to each

predictor, aligning the predictors within a one-dimensional interval like pearls on a string.

Predictors with high proximity will tend to be positioned closely together after MDS

projection, enabling the construction of smooth trajectories in function space.

Once the data have been converted into a smooth stochastic process by Stringing,

functional principal components, a main tool in FDA (Rice and Silverman 1991; Ramsay

and Silverman 2005; Yao et al. 2005), can be used to summarize and further analyze the

high-dimensional data. Stringing is also of interest to provide a graphical representation

of high-dimensional data by transforming each high-dimensional data vector into a func-

tion. In a way, this extends the visualization of multivariate data by converting them to

functions that was pioneered in Andrew’s Plots (Andrews 1972; Embrechts and Herzberg

1991; Garcia-Osorio and Fyfe 2005) to the high-dimensional case.

We illustrate Stringing as a tool to create an ordering of observation years and subse-

quent functional data analysis for tree ring data, which play an important role in climate

research, and in the context of microarray gene expression data, for a situation where

gene expression levels are of interest as predictors for survival. Functional embedding, an

algorithm that is related to Stringing, has been demonstrated in an applied setting for

the classification of high-dimensional gene expression data in Wu and Müller (2010), and

other previous approaches to the problem of predicting survival from high-dimensional
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gene expression profiles include the work of Rosenwald et al. (2002); Nguyen and Rocke

(2002); Li and Li (2004); Bair and Tibshirani (2004); Bair et al. (2006). We address this

prediction problem by coupling Stringing with a novel functional Cox regression model.

The paper is organized as follows. In Section 2 we describe Stringing. Its practical

performance is studied in Section 3 through Monte Carlo simulations. The application of

Stringing to tree ring width data and the prediction of survival for lymphoma patients

from high-dimensional gene expression data by combining Stringing with a functional

Cox model is the topic of Section 4, followed by a discussion in Section 5. Theoretical

justifications and proofs can be found in the online Supplemental Material.

2. STRINGING VIA MULTIDIMENSIONAL SCALING

Multidimensional Scaling (MDS) maps p objects to points s1, . . . , sp, situated in a low-

dimensional space R
m, given distances (or proximities) Djk between any pair of objects

j and k, 1 ≤ j, k ≤ p. The configuration of the low-dimensional points is determined by

minimizing a cost function, which measures how well a particular configuration in the

low-dimensional space approximates the original distances. MDS can be categorized into

different types, depending on whether the distance data is matched qualitatively (non-

metric MDS), in which case only the order of the distances matters, or quantitatively

(metric MDS), where distances are matched in terms of numerical values; further accord-

ing to whether the distances in the target space are directly fitted (distance scaling), or

are approximated by preserving the inter-point inner products (classical scaling). For

further details, we refer to the discussion paper Ramsay (1982) and the textbook Cox and

Cox (2001). In preliminary studies, we found that metric distance scaling with the Stress

criterion as cost function, in the form of unidimensional scaling (UDS) with m = 1, aim-

ing to map predictors to locations in a one-dimensional interval, works best for Stringing;

accordingly, this version of MDS is used in our implementation.
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In Stringing, the ensemble of predictor values is thought of as being generated by

a hidden smooth stochastic process {Z(s), s ∈ [0, 1]}, where each element of a grid of

support points sj ∈ [0, 1] indexes one possible predictor, sj being the “position” of the

corresponding predictor and Z(sj) its value. Stringing infers the unknown predictor posi-

tions from the data; the distance between predictor positions is interpreted as a measure of

the relatedness of the predictors. A key feature is that predictor values recorded at nearby

predictor positions are close in terms of a suitably selected sample distance measure.

Once the predictor locations have been imputed, the predictor values are viewed as

values assumed by smooth functions at these locations. In this way, each high-dimensional

predictor vector is converted into a random function, so that methodology from FDA may

be applied. Our goal is thus to construct coordinates sj for each of p predictors on the

real line, resulting in an embedding of the high-dimensional data vectors into an infinite-

dimensional space of smooth functions.

The available high-dimensional data consist of n independent data vectors, each con-

taining measurements for p predictors, where typically p ≫ n. In the data matrix

X = (xij)1≤i≤n,1≤j≤p each element xij represents the measurements for the jth predic-

tor of the ith subject, and xj is the jth column of X. In prediction problems, one also

has associated responses Yi. In our application to gene expression data, this is survival

time, which may be censored. It is well known that one needs to implement dimension

reduction for such very high-dimensional prediction problems. In some applications, such

as tree ring data analysis, with data of somewhat lower dimension, the emphasis is on

identifying trajectories of an underlying smooth stochastic process, which in this case has

a physical interpretation through an association with historical climatic trends, while in

many other applications, there will be no physical interpretation for this process, and its

significance derives from the fact that each random function corresponds to one of the

high-dimensional vectors. Throughout, we refer to the high-dimensional observed vectors
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as vectors of predictors, irrespective of whether the data actually include scalar responses.

As sample distance measures between various predictors, we use empirical Euclidean

distances D̂jk = [ 1
n

∑

i(xij − xik)
2]1/2 as well as distances derived from proximities such

as empirical Pearson correlation, D̂jk = (2 − 2ρ̂jk)
2, where ρ̂jk = 1

n−1

∑

i(xij − x̄j)(xik −

x̄k)/{σ̂j σ̂k}, with x̄j = 1
n

∑

i xij , σ̂j = [ 1
n−1

∑

i(xij − x̄j)
2]1/2. Once a distance matrix D

has been determined, the predictors are stringed into the real line by minimizing the stress

function SD(s1, . . . , sp) =
∑

j<k(d(sj, sk) − Djk)
2, where sj ∈ R is the coordinate of the

projected location of the jth predictor in the one dimensional projection space, and the

metric d(·, ·) is Euclidean distance. To implement UDS, we observe d(sj, sk) = |sj− sk| =

(sj − sk)sign(sj − sk) and adopt a classical method (Kruskal 1964) to minimize the stress

function. It is well-known that in UDS there is a high chance that various minimization

algorithms terminate in local minima, which however is of less concern when only the

rank order of the proximities matters (Borg and Groenen 2005; Hubert and Arabie 1986;

Hubert et al. 1997; Pliner 1996), as is the case in our application of UDS. This is confirmed

by simulation results, where the UDS solutions (even where they might correspond to local

minima) prove to have excellent properties under various settings.

After applying UDS, the resulting one-dimensional configuration s, reflecting pairwise

predictor distances, provides support points for constructing a trajectory of predictor

levels for each subject and implies a natural order of the predictors. This order is char-

acterized by a permutation ψp such that ŝψp(1) < . . . < ŝψp(p), from which we define the

regularized position for the j-th predictor with rank order ψp(j) as s̃ψp(j) = j−1
p−1

= sjp.

Here, the domain of the stringed data is normalized to [0, 1]. We refer to the permutation

ψp, which defines Stringing for given data of dimension p, as the Stringing function.

We conclude this section by noting that there is some theoretical support for Stringing.

Specifically, invoking assumptions regarding the performance of UDS and the proximity

(correlation) structure of the predictors, one can show that Stringing recovers the under-
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lying ordering of the predictors (Theorem 1 in the online Supplemental Material) and that

the stringed predictor series converges weakly to an underlying smooth stochastic process

(Theorem 2 in the online Supplemental Material).

3. SIMULATION STUDIES

The performance of Stringing under various settings is demonstrated with three simulation

studies. The first two relatively small simulations are designed to explore the efficiency of

the UDS projection for ordering scrambled predictors for situations where measurements

are taken without or with additional measurement errors and for varying numbers of

predictors p. The third, more comprehensive simulation compares the performance of

Stringing with that of the lasso for various linear and generalized linear regression settings

with high-dimensional predictors.

To assess the proficiency of Stringing for reordering, in the first two simulations we

study whether an underlying true but unknown order of predictors can be recovered from

data where this order has been randomly permuted, and for a situation mimicking a real

tree ring data example, that will be described in the following section. Using a Karhunen-

Loève representation (Ash and Gardner 1975) for zero mean processes Z,

Z(s) =

∞
∑

j=1

ξjφj(s), s ∈ [0, 1], (1)

these simulations are based on potentially noisy measurements, generated according to

xij =
K
∑

k=1

ξikφk(tj) + σzij , zij i.i.d. ∼ N(0, 1), tj =
j − 1

p− 1
, j = 1, . . . , p, i = 1, . . . , n, (2)

for base functions φk, where all ξik are independent, ξik ∼ N(0, λk). The number of

included components K, noise error variance σ2 and eigenvalues λk are as specified below.

To simulate the situation with unknown underlying time order of the observations, we

randomly permute the recording times tj for each simulation run and then apply Stringing,

aiming to recover the true underlying order. The Stringing step is based on Euclidean
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or correlation-based sample distances between pairs of predictors and on UDS, mapping

the p predictors into a real interval by assigning a location within the interval to each

predictor. The order of the predictors in this UDS configuration is then compared to their

true order, as determined by the (original and hidden) tj , j = 1, . . . , p.

When comparing mean order errors, defined as suitable difference between the order

obtained by Stringing and the true order, averaged over p predictors, one observes that

the order obtained by Stringing might be the exact reverse of the true order, since first and

last elements are not identifiable. As Stringing is invariant under complete order reversal,

we select the order associated with the smaller value of
∑p

j=1 |oS
j − oj|, where oj is the

true rank of predictor j and oS
j is the rank of predictor j induced by the one-dimensional

UDS configuration. For a random permutation of the data, the expected order error is

ER = E{
∑p

j=1 |oR
j − oj|}, where oR

j denotes the order of the j-th element under random

permutation. A simple calculation shows that ER(p) = (p− 1)(p+ 1)/3, which serves as

normalization factor to obtain the relative order error

ROE =

p
∑

j=1

|oS
j − oj|/ER(p). (3)

In a first simulation study (Simulation 1), we investigated the effect of various signal-

to noise-ratios and studied the following choices in the Karhunen-Loève expansion (eq.

(1)): number of components K = 4; generating functional principal components ξ1, ξ2,

ξ3, ξ4 as independent normal random variables with mean zero and variances 4, 2, 1,

0.5, respectively; and four orthonormal basis functions φk from the Fourier base, φ1(t) =

−
√

1
5
cos(1

5
πt), φ2(t) =

√

1
5
sin(1

5
πt), φ3(t) = −

√

1
5
cos(2

5
πt), φ4(t) =

√

1
5
sin(2

5
πt); sample

size n = 50; and predictor dimension p = 50. The distance matrix was obtained as one

minus the pairwise correlation and 400 simulation runs were generated for various values

of the signal-to-noise ratio (SNR), defined as mean(|x|)/σ. The resulting relative order

errors (ROE) in Table 1 indicate that ROE, not surprisingly, increases with decreasing
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SNR, but Stringing still leads to substantial gains for situations with noisy data under

low SNR levels. A typical result of Stringing for one simulation with σ = 0 is shown in

Figure 1, indicating perfect order identification for this case.

A second simulation study (Simulation 2) was designed to evaluate the behavior of

Stringing when sample size n and predictor dimension p are changing. We simulate data

that closely resemble the tree ring data, described in the data analysis section (Section

4). Accordingly, we use the three estimated eigenfunctions as base functions φk, k =

1, 2, 3, and their associated eigenvalues λk, as determined in the application, to generate

simulated data. The error variance was chosen as σ2 = 0.0042, with associated signal-

to-noise ratio of SNR = 5.5, similar to that observed for the tree ring data. The UDS

step was based on L2 distance. Results for one sample run with sample size n = 50 and

predictor dimension p = 50 are shown in Figure 2. To assess how the behavior of Stringing

depends on sample size n and predictor dimension p, the results of 400 simulations for

different combinations of p and n, for σ = 0, are reported in Table 2. They indicate

that relative order errors ROE decrease as p and n increase, respectively, as predicted by

theory (see online Supplemental Material). Overall, Stringing is seen to identify the true

ordering under which the data were generated with very good precision.

To explore the performance of in general regression settings and to compare it with

Lasso as an established method for regression with high-dimensional predictors, a com-

prehensive third simulation study (Simulation 3) was conducted. We studied linear and

generalized regression settings, Y = Xβ + ǫ, where ǫ ∼ N(0, 1), and Y ∼ Bernoulli(µ),

where µ = exp(Xβ)/(1+exp(Xβ)), X ∼ Np(0,Σ), with the following predictor covariance

structures chosen for Σ = cov(Xi, Xj) = σ(i, j), i, j = 1, . . . , p: (i) σ(i, j) = 0.5
√

|i−j|,

with average correlation of 0.07, (ii) σ(i, j) = 0.9
√

|i−j|, with average correlation of 0.58,

(iii) σ(i, j) = min(i, j), and (iv) σ(i, j) = σ(j, i) = U(0, 1), chosen as i.i.d. uniform ran-

dom numbers, followed by projecting the resulting symmetric matrices onto the space of
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non-negative definite matrices via spectral decomposition, as in Hall et al. (2008).

For all simulations, the order of the predictors Xj, j = 1, . . . , p, was scrambled ran-

domly and X was multiplied by a constant to stabilize var(Xβ) = 6. Regression coeffi-

cients βj were generated as βj ∼ U(0, 1), j = 1, . . . , p, with those falling below the αth

quantile set to zero, for α = 0, 0.5, 0.8, 0.9, i.e., the fraction of nonzero coefficients was

controlled at 100%, 50%, 20% and 10%. For all settings,
∑p

j=1 βj was normalized to be

100, and the order of coefficients βj was scrambled along with Xj. To investigate the

effect of varying p/n ratios, combinations (i) p = 100, n = 30, (ii) p = 100, n = 60, and

(iii) p = 50, n = 60 were studied, using a test sample of size 50 for all cases.

Stringing was implemented with UDS to generate a relatively smooth order, followed

by applying functional linear regression or functional generalized linear modeling (FGLM),

reviewed in Müller (2005), to predict the response. All auxiliary parameters involved were

chosen by leave-one-out cross validation. Comparison methods included Lasso (Matlab

version posted on the Lasso homepage, with parameters chosen by leave-one-out cross

validation) and regular least squares linear fitting and likelihood-based GLM. Lasso and

Stringing performed much better than least squares and GLM, and only the comparison

between Stringing and Lasso is reported. Results on relative mean squared errors or

relative misclassification rates (based on 200 simulation runs) for all settings are reported

in Table 3. Boxplots of MSE over 200 simulation runs for Stringing and Lasso can be found

in Figure 3 for the continuous response case with covariance structure U(0, 1). Boxplots for

other settings show similar patterns and are shown in the online Supplemental Material.

For continuous responses Y , the table and the figure indicate the expected relative

deterioration in the performance of Stringing as the regression parameters β become

sparser. What is remarkable, however, is that for small n, large p, such as p = 100, n = 30,

Stringing dominates Lasso even in very sparse cases with low predictor correlation. When

p = 100, n = 60, and p = 50, n = 60, Stringing still outperforms Lasso in most cases

9



as long as predictors are not too sparse. For the binary response Y , Stringing performs

even better relative to Lasso, which it outperforms for nearly all scenarios. We note

that these results are obtained for situations where predictors and regression coefficients

are generated in standard Lasso simulation settings, with no prior smoothness, and in

addition the ordering of all data was scrambled. The results demonstrate that Stringing

is competitive for handling high-dimensional predictors. It works better than Lasso for less

sparse and large p situations, even when no physically interpretable smooth underlying

process exists. Capitalizing on relatively smooth covariance structures of stringed data,

it then proves beneficial to apply functional methodology.

4. DATA ILLUSTRATIONS

4.1 Stringing of Tree Ring Widths

Tree ring data were obtained for 45 blue oak trees located at Mary Ranch, Santa Clara,

California, from the International Tree-Ring Data Bank, IGBP PAGES/World Data Cen-

ter for Paleoclimatology, NOAA/NCDC Paleoclimatology Program (at Boulder, Col-

orado, USA, file name CA645, contributed by D.W. Stahle and R.D. Griffin, June 29,

2009). They consist of annual tree ring width measurements, obtained for each of the

years 1932-1976 for the trees in the sample. Since we are mainly interested in the vari-

ation of tree ring widths across years and not across trees, differences in overall growth

rates between trees were removed by dividing the tree ring widths by the total width

gained from year 1932 to year 1976, for each tree separately.

It is well known that tree ring widths are influenced by climatic factors, and more

specifically that limitations to tree growth are due to lack of precipitation, unfavorable soil

properties or low temperatures (LaMarche Jr 1978; Cook and Kairiukstis 1990; Oberhuber

and Kofler 2000; Bunn et al. 2005). A major factor limiting the growth of trees in warm

dry climates is low soil water content, while temperature differences matter less. This
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climatic setting applies at Mary Ranch in Santa Clara, and it is then likely that tree ring

widths are associated with annual precipitation levels. In addition to random variation,

weather cycles such as the multi-year El Niño–Southern Oscillation climate cycles in the

Pacific ocean give rise to annually varying precipitation patterns, acting in addition to

longer term trends, which may be related to climate change.

When applying Stringing to high-dimensional data, we are aiming to uncover an un-

derlying smooth stochastic process generating the data. Specifically, for the tree ring data,

we expect dependence of annual tree ring width on precipitation levels. The permuta-

tion defining the Stringing function tends to position years with similar growth and thus

precipitation levels close to each other, permitting insights into changes in precipitation

during the observation period. We base our analysis on the 45 × 45 distance matrix of

pairwise Euclidian distances of tree ring widths, calculated for each pair of years within

the time domain, and then apply Stringing. The tree ring series in the original order

by year and in the Stringing induced order are shown in Figure 4. The stringed series

clearly shows smoother trends of increasing tree growth, particularly towards the right

side, overlaid by noise, while the sharp peaks in the original series are removed.

To explore the association between precipitation and tree ring widths, we obtained

data on Monthly Average Temperature (in degrees F) and Monthly Total Precipitation

(in inches) for Santa Clara county for the years 1932-1976 from the Western Region Cli-

mate Center. Of interest is the connection of the Stringing function (which defines the

permutation of the years that uncovers the smooth underlying process) and rainy sea-

son precipitation (defined as precipitation from the previous December to April of the

current year). Overlaying precipitation and Stringing functions, as in Fig. 5, indeed in-

dicates parallel patterns, supporting the idea that the Stringing function here is directly

related to annual precipitation. The 0.99 quantile of the sample of simple Pearson cor-

relations, calculated between the precipitation function and 3000 random permutations
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of the Stringing function is found to be 0.33, much below the actual Pearson correlation

of the two curves in Fig. 5, which is 0.58, indicating that a significant association exists.

This is a scenario where the smooth underlying process that is recovered with Stringing

has a physical interpretation, relating growth to precipitation.

To represent tree ring width functions for individual trees, we apply functional prin-

cipal component analysis for the tree data series with stringed time, using standard

methods (Rice and Silverman 1991), implementing a version described in Yao et al.

(2005). We aim to estimate the components of the Karhunen-Loève representation

(1), i.e., the eigenfunctions φk of underlying processes Z and the principal components

ξik =
∫

Zi(t)φk(t) dt, i = 1, . . . , n, k = 1, 2, . . . . Eigenfunction estimates φ̂k can be

based on smooth covariance surface estimation and estimates ξ̂ik of functional principal

components on numerical integration or conditional expectation (Yao et al. 2005; Müller

2005). The first three estimated eigenfunctions are shown in Fig. 6 and the resulting fits

for 9 randomly selected trees in Fig. 7, demonstrating that Stringing induces sufficient

smoothness to produce reasonably good fits. These fits can alternatively be presented in

the original order. The functional principal components obtained by Stringing can then

be used to summarize growth patterns of individual trees and for further applications,

such as functional regression or clustering for tree ring width series.

4.2 Stringing and Functional Cox Regression for Predicting Survival from High-Dimensional

Gene Expression Arrays

In a study of the survival of patients with diffuse large-B-cell lymphoma (DLBCL), Rosen-

wald et al. (2002) aimed to predict survival from individual high-dimensional microarray

gene expression data. DLBCL is the most common type of lymphoma in adults with

a cure rate of only 35 to 40 percent. The survival response to treatment varies largely,

even for DLBCL patients with similar clinical features, and is thought to be influenced by
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genetic differences between subjects. This motivates the study of gene-expression profiles

as molecular predictors for survival. The data consist of n = 240 patients, for each of

whom p = 7399 gene expression levels were measured. These measurements form an ex-

pression matrix X = [xij ], i = 1, . . . , n, j = 1, . . . , p, where xij is the gene expression level

of the jth gene for the ith patient. The patients are randomly divided into training (160

subjects) and test (80 subjects) groups; only the training group data is used for model

fitting. For the i-th subject, the survival response may be right-censored and accordingly

is observed as (Yi, δi), i = 1, . . . , n, where Yi = min(Ti, Ci), with survival time Ti, censor-

ing time Ci and censoring indicator δi = 1{Ti≤Ci}, where as usual censoring times Ci and

survival times Ti are assumed to be independent, given the covariate values.

In addition to Rosenwald et al. (2002), the problem of predicting survival from high-

dimensional gene expression data has been addressed by various authors, including Bair

and Tibshirani (2004) and Bair et al. (2006), who propose supervised principal compo-

nent analysis, where principal component analysis is performed using only a subset of

those genes which have the strongest correlations with survival time. Reviews of these

approaches can be found in Bøvelstad et al. (2007) and Witten and Tibshirani (2010).

For preprocessing the data, we follow the same approach as the above-cited authors

and select the genes whose individual Cox scores obtained by fitting univariate Cox re-

gression models satisfy |zi| > ϑ for a threshold ϑ > 0, the choice of which is discussed

below. Stringing then uncovers an underlying latent smooth stochastic process Z. To

model the influence of Z on survival time, we propose a functional Cox regression model,

which differs from the well-known Cox model with time-varying covariates in the way

covariate information relates to the risk at a particular time. The proposed functional

Cox proportional hazards model for the conditional hazard rate h(t|Zi) is

h(t|Zi) = h0(t) exp

[
∫

(Zi(s) − µ(s))β(s) ds

]

, (4)

with baseline hazard function h0(t). In model (4), the entire covariate trajectory relates to
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the hazard function through the coefficient function β. Since the eigenfunctions φ1, φ2, . . .

of Z (1) form a basis, representing the coefficient function as β(s) =
∑∞

l=1 βlφl(s) and

approximating β(·) and Zi(·) by a finite number of L basis functions, (4) becomes h(t|Zi) =

h0(t) exp(
∑L

l=1 ξilβl), which has the form of a regular Cox regression model with predictors

ξil, the functional principal components of Z.

The coefficient vector β = (β1, . . . , βL)
′

is estimated by maximizing the log partial

likelihood

l(β) =

n
∑

i=1

δi

{

β
′

ξ̂i − log

(

∑

j∈Ri

exp(β
′

ξ̂j)

)}

, (5)

where Ri is the index set of patients at risk at time T−
i and ξ̂i is the vector of the first

L estimated functional principal components of Xi, obtained as described in Yao et al.

(2005). The estimated coefficient function β̂(s) =
∑L

l=1 β̂lφ̂l(s), s ∈ [0, 1] is then obtained

by simply plugging in estimates β̂l, φ̂l.

In our application, the threshold ϑ is determined by K-fold cross validation, CV (ϑ) =
∑K

k=1{l(β̂−k(ϑ)) − l−k(β̂−k(ϑ))}, which leads to ϑ = 3.5 and the selection of 80 genes

as input for Stringing and the functional Cox model. Figure 8 displays the coefficient

function in model (4) for one random split into training and test data. To obtain 95%

confidence intervals for the regression coefficients, we implemented 100 random splits; 21

predictor genes were then found to be significant at the 0.05 level. Evaluation of prediction

methods can be based on the deviance criterion

DEV = −2{ltest(β̂) − ltest(0)}, (6)

i.e., partial likelihood (5) computed for test sets, averaging over 50 random splits into

training and test sets, as advocated by Bøvelstad et al. (2007). Smaller deviances charac-

terize a preferred method. Comparing with three previously used methods for the DLBCL

data, principal component regression, ridge regression, and Lasso, quoting the deviances

for these methods from Bøvelstad et al. (2007), Stringing was found to have substantially
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smaller deviances (Table 4) and therefore is an attractive alternative.

5. DISCUSSION

Classical regression analysis often fails for high-dimensional predictors. Popular methods

to address this problem, such as Lasso, rely on assumptions of sparseness and low cor-

relatedness of predictors. Stringing is a complementary approach, which benefits from

increasing dimensionality and increasing predictor correlation, taking advantage of these

features by mapping the high-dimensional data into infinite-dimensional functional space.

Stringing thus makes high-dimensional data amenable to FDA methodology, e.g., reduc-

ing the infinite dimension of the functional data to a manageable number of functional

principal components or other basis coefficients and functional regression analysis.

Stringing provides a framework for creating locations and an order for initially un-

ordered components of high-dimensional data. An intriguing possibility for future work is

to consider mappings of high-dimensional data into m-dimensional spaces, where m > 1,

rather than m = 1, as considered here. There are similarities with manifold learning

(Tenenbaum et al. 2000; Bengio et al. 2006), as closest paths that connect nearby data

play an important role in both approaches. Crucial differences are that Stringing at-

tempts to string predictor components onto one of the paths and operates on distances

of predictor components, rather than on distances and mappings of predictor vectors for

different subjects.

Stringing is attractive for a variety of statistical analyses that pertain to high-

dimensional data, including the prediction of a continuous or categorical response, sur-

vival, or the graphical or statistical representation of such data. The ordering of the

predictors induced by the Stringing function is shown in simulations to work well, also

in the presence of additional measurement errors in the data, and may reveal features

of interest, as demonstrated for the tree ring data. In the survival regression situa-

tion, Stringing is competitive when compared with previous methods. As our extended
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simulations show, for non-sparse or correlated predictors with continuous or categorical

responses, Stringing performs better than Lasso, often by a wide margin. Stringing can be

justified on theoretical grounds under certain regularity assumptions, which are different

from and overall equally hard to verify as the currently prevailing sparseness assumptions

(see online Supplemental Material).

We note that the postulated underlying smooth stochastic process that generates the

data may have a physical interpretation as in the tree ring example, but in typical ap-

plications of Stringing to high-dimensional data such an interpretation neither exists nor

is it needed. This concept leads to a useful graphical representation of high-dimensional

data and provides a useful bridge from high-dimensional to functional data. More specifi-

cally, it is supported by two arguments: First, from the derivation of the Karhunen-Loève

expansion (1), all that is needed is a smooth covariance surface after stringing the pre-

dictors (where smoothness may be taken with a grain of salt). That a smooth covariance

can be attained hinges on the structure of the predictor proximities. Then, there exists

a stochastic process with smooth trajectories and this particular smooth covariance, ir-

respective of whether predictors are physically derived from a smooth stochastic process

with subsequent reshuffling of locations. Second, as the tree ring example shows, some

data actually may be viewed as reshuffled observations of smooth trends, which in this

case are climatic factors that vary randomly and non-smoothly from year to year, but

overall are smoothly related to growth. This second motivation for a smooth process

model is application-specific, while the first is generic and may be invoked for various

high-dimensional data, analogously to sparseness for Lasso type methods.

We conclude by noting that key features of Stringing differ from practically all other

available approaches, and especially from current multivariate modeling, where large-

sample properties are mainly justified by considering increasing numbers n of subjects,

while increasing predictor dimension p is a nuisance; in such settings, sparsity is essential.
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In contrast, the justification of Stringing hinges on p → ∞, and one takes advantage of

non-sparse correlation patterns among predictors. These features define the promise of

Stringing for high-dimensional data, for situations where predictors are globally correlated.
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SNR ∞ 13.4 6.81 4.42 3.36 2.68

ROE 0 0.027 0.087 0.151 0.213 0.293

Table 1: Simulation results for reordering scrambled data with Stringing (Simulation 1):

Relative order error (ROE), i.e., order error after stringing the scrambled data, relative to

the expected order error of a random permutation, as defined in equation (3), for varying

signal-to-noise ratios (SNR).

p = 50 p = 100 p = 200

n = 50 0.0028 0.0015 0.0011

n = 100 0.0017 0.0007 0.0006

n = 200 0.0012 0.0005 0.0003

Table 2: Simulation results for reordering scrambled data with Stringing (Simulation 2):

Relative order error (ROE), i.e., order error after stringing the scrambled data, relative

to the expected order error of a random permutation, for various combinations of sample

size n and predictor dimension p.
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Y Continuous Y Binary
H

H
H

H
H

H
H

H
HH

cov

β
100% 50% 20% 10% 100% 50% 20% 10%

p =

100

0.5
√

|i−j| 0.312 0.421 0.680 0.681 0.630 0.656 0.746 0.814

0.9
√

|i−j| 0.669 0.670 0.739 0.847 0.724 0.747 0.800 0.758

n =

30

min(i, j) 0.746 0.778 0.820 0.871 0.826 0.769 0.814 0.800

U(0, 1) 0.472 0.519 0.634 0.907 0.664 0.650 0.663 0.723

p =

100

0.5
√

|i−j| 0.444 0.566 1.222 1.801 0.620 0.661 0.717 0.779

0.9
√

|i−j| 0.749 0.761 0.801 1.719 0.833 0.848 0.904 0.893

n =

60

min(i, j) 0.794 0.823 0.839 0.843 0.904 0.917 0.943 0.973

U(0, 1) 0.603 0.653 0.759 1.219 0.707 0.734 0.770 0.779

p =

50

0.5
√

|i−j| 0.593 0.725 1.510 1.573 0.656 0.752 0.779 1.031

0.9
√

|i−j| 0.785 0.807 0.840 0.886 0.843 0.860 0.910 0.885

n =

60

min(i, j) 0.830 0.821 0.832 0.850 0.862 0.900 0.902 0.907

U(0, 1) 0.667 0.763 1.047 1.001 0.721 0.752 0.768 1.117

Table 3: Simulation results for comparisons between Stringing and Lasso (Simulation 3):

Relative Mean Squared Errors (for continuous responses Y ) and Relative Misclassification

Rates (for binary responses Y ) for Stringing relative to Lasso, for various covariance

structures, sample sizes n, numbers of predictors p and sparseness levels (indicated as

percentage of non-zero regression coefficients for each column of the table). Numbers less

than one indicate scenarios where Stringing performs better.
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P
P

P
P

P
P

P
P

P
P

P
P

P
PP

quartile

methods
PCR Ridge Lasso Stringing

1st quartile 1 -6 -1.5 -11.5

median -3 -8.5 -4.5 -18

3nd quartile -6.5 -11 -7 -21

Table 4: Comparison of quartiles of deviances (DEV, eq. 5) for survival prediction for four

methods across test sets, including Stringing and three previously used methods (from

the left, principal component regression (PCR); ridge regression (Ridge); Lasso), which

are taken from Bøvelstad et al. (2007). Smaller deviance is better.
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Figure 1: Data from Simulation 1. Top left: Responses in observed order (correspond-

ing to a random permutation of the underlying true order). Top right: Responses in

true order. Bottom left: Stringed order, obtained data-adaptively through the estimated

Stringing function, plotted against true order. Bottom right: Responses from the upper

left panel, reordered according to the estimated Stringing function.
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Figure 2: Data from Simulation 2 with noise contamination. Top left: Observed responses

with randomly permuted order. Top right: Responses in true order. Bottom left: Stringed

order against true order. Bottom right: Responses ordered according to the Stringing

function.
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Figure 3: Boxplots of MSEs obtained from 200 simulation runs (Simulation 3), comparing

Stringing and Lasso, for samples of n high-dimensional predictor p-vectors with continuous

responses and predictor covariance structure U(0, 1). Columns indicate level of sparsity

(percentage of non-zero β): (a) 100%, (b) 50%, (c) 20%, (d) 10%. Rows indicate p/n

ratio, (A) p = 100, n = 30, (B) p = 100, n = 60, (C) p = 50, n = 60. Within each panel,

the left boxplot corresponds to Stringing (label 1), the right one to Lasso (label 2).
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Figure 4: Top: Observed series of tree ring width data. Bottom: Ordered tree ring series

obtained by Stringing.
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Figure 5: Comparison of the Stringing function (solid) for the tree ring width data with

yearly rainy season precipitation (dashed).
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Figure 6: Left: Fraction of variance explained for tree ring widths in dependence on

number of included components. The first three components explain more than 95% of

the variation in the data. Right: The first three estimated eigenfunctions.
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Figure 7: Fitted tree ring width trajectories for nine randomly selected stringed tree ring

series, overlaid with stringed measurements.
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Figure 8: Coefficient function for the stringed functional Cox regression model, as obtained

for one random split of the DLBCL gene expression data.
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