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Abstract

Motivated by problems involving a traffic monitoring system in which trajectory
data are obtained from GPS-enabled mobile phones, we propose a novel approach to
functional regression modeling, where instead of the usual mean regression the entire
distribution of functional responses is modeled conditionally on predictors. An ap-
proach that sensibly balances flexibility and stability is obtained by assuming that the
response functions are drawn from a Gaussian process, the mean and covariance func-
tion of which depend on predictors. The dependence of the mean function and covari-
ance function of the response on the predictors is modeled additively. We demonstrate
the proposed methods by constructing predicted curves and corresponding prediction
regions for traffic velocity trajectories for a future time period, using current traffic ve-
locity fields as predictor functions. The proposed functional regression and conditional
distribution approach is of general interest for functional response settings, where in
addition to predicting the conditional mean response function one is also interested
in predicting the covariance surface of the random response functions, conditional on
predictor curves.
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1 Introduction

Increasingly, data requiring statistical analysis include processes that are continuously mon-

itored over a continuum, such as time or spatial locations. While traditional univariate or

multivariate analysis strategies can be useful to study such data, it is often more natural

and efficient to view continuously observed processes as sample units. One can then apply

specific techniques for data with functional components, such as functional data analysis

(FDA) approaches (Ramsay and Silverman, 2005). Motivated by the need for data analysis

for a newly developed traffic monitoring system, where a significant amount of trajectory

data based on either spatial or temporal sampling strategies is collected, we propose here a

novel way of applying FDA for the construction of conditional distributions when responses

and predictors are functions. Applications include visualization, prediction and inference for

traffic flows.

The motivating data are from the ‘Mobile Century’ experiment, where 165 UC Berkeley

graduate students were hired to drive on a segment of the freeway I880 in the East Bay

Area/Northern California, to demonstrate the feasibility of real-time highway traffic mon-

itoring using GPS enabled mobile phones (Herrera et al., 2010). The follow-up project

‘Mobile Millennium’ was developed by the California Center for Innovative Transporta-

tion (CCIT), the Nokia Research Center (NRC), and the University of California (UC)

at Berkeley. The data used in this paper are available for download, after registration, from

http://traffic.berkeley.edu. This pilot traffic monitoring system uses GPS enabled

mobile phones to gather traffic information, aiming at real time estimation of traffic velocity

on the monitored highway segments.

The individual trip data used in this paper focus on the highway segment between Decoto

Rd. to the south (Postmile 21) and Winton Ave. to the north (Postmile 27.5), in the

Northbound direction. For the ith trip, i = 1, . . . , n, the on-board mobile phone recorded

GPS-measured locations sij, recorded in postmiles, and speeds Vij, recorded in miles per

hour, at a grid of times tij, where tij refers to clock time, with j = 1, . . . , Ni.

Combining all records and relabeling the data, they can be written in the form

({tl, sl}, Vl)l=1,...,N ,

where N =
∑

iNi. One can apply a two-dimensional smoothing procedure for these com-
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Figure 1: Left: Velocity field estimated from vehicle trajectories for postmiles 21 to 27.5 (on

the vertical axis) between 10am and 6pm (horizontal axis). Color indicates velocity on a

scale from 0 to 80 mph. Right: An enlarged section of the velocity field for a 30 minutes

time interval to illustrate current road speeds X(s) and actual speeds Y (t) when starting

driving at time T at postmile 21. The latter is to be predicted from the former.

bined data to recover a smooth random velocity field V (t, s) along the highway as an ex-

ploratory step. The velocity field reflects the speed of the traffic flow as a function of time t

and postmile s; see the left panel in Figure 1.

By continuous time monitoring of highway traffic conditions, for any current time T the

local current speed X(s) on a section s ∈ [21, 27.5] along the highway can be recovered. It is

then of interest to predict the actual speeds encountered by a vehicle that departs at time T

from location s = 21 and moves through the highway segment. The speed Y (t) over a future

time period t ∈ [T, T+∆] for a given ∆ > 0 involves future, unobserved velocity fields relative

to current time T ; an illustration is given in the right panel of Figure 1, where T= 13:56:30.

In this paper, we propose methods to construct a region in function space such that Y (t) will

fall inside the region with high probability. We will base such functional prediction regions
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on the conditional distribution of response processes Y (t), given the functional predictors

X(s).

Functional regression for models with functional responses so far has been discussed by

various authors for mean regression relations, for which linear (Ramsay and Dalzell, 1991;

Faraway, 1997; Shen and Faraway, 2004; Chiou et al., 2004) and additive (Müller and Yao,

2008) or nonparametric (Müller and Yao, 2006) approaches have been proposed, while the

more general case of conditional distributions at given predictor levels has not yet been

studied, to the best of our knowledge. For the simpler case of scalar responses paired with

functional predictors, several approaches for quantile regression have been investigated (Car-

dot et al., 2005; Chen and Müller, 2011) and were shown to work well. The second of these

approaches is based on inverting conditional distributions in order to obtain quantile func-

tions for the scalar case, providing motivation to construct prediction regions via conditional

distributions. Once conditional quantiles have been constructed, conditional prediction re-

gions with coverage (1 − α) are simply obtained as inter-quantile intervals defined by the

α/2 and (1− α/2) quantiles.

Here we study a situation that to the best of our knowledge has remained unexplored:

How to model and obtain conditional distributions and a functional equivalent of conditional

prediction regions when responses are curves. As functional responses are increasingly en-

countered in studies across the sciences (Müller et al., 2008), it is natural to move beyond

mean regression analysis and to target the conditional distributions of the responses in de-

pendency on the predictor levels. Prediction regions may then be derived from conditional

distributions. The situation involving functional responses is substantially more complex

than the case of scalar responses, as the distribution of the functional responses is that of a

stochastic process, and therefore one needs to model conditional distributions for stochastic

processes in a way that is practically feasible. To make this task manageable, we make the

assumption that, potentially after suitable transformations, the response processes for given

predictors are Gaussian, with mean and covariance functions that depend on the predic-

tors. We propose additive approaches for these tasks, including a novel additive conditional

covariance model.

Traffic monitoring and forecasting is a challenging problem that has received much atten-

tion. Prior to the emergence of GPS enabled smart-phones, traffic monitoring data mainly

4



came from dedicated equipment, such as loop detectors, cameras, and radars. These data of-

ten do not include direct speed measurements, so that speed needs to be calculated indirectly

from other measurements. Many efforts went into developing models to estimate velocity

fields and traffic flow (Wang and Nihan, 2000; Wang and Papageorgiou, 2005; Mihaylova

et al., 2007), and also short time travel time prediction, see Nanthawichit et al. (2003), Rice

(2004), Chu et al. (2005) and Bickel and Li (2007), among many others.

Utilizing GPS enabled smart phones, which potentially generate high quality position

and speed data, provides new opportunities for highway traffic monitoring and forecasting

(Herrera and Bayen, 2010a). We refer to Work et al. (2008), Wang et al. (2008), Herrera and

Bayen (2010b) and Tao et al. (2012) for the estimation of velocity fields or traffic states from

observed GPS data. Much less is known about short time traffic prediction from GPS data,

and the existing approaches focus either on traffic condition prediction, such as congestion

prediction (Herring et al., 2010) or on average traffic time (or average speed) prediction

(Izadpanah et al., 2011; Mazare et al., 2012).

To our knowledge, the functional data perspective that we adopt in this paper is novel,

specifically, viewing GPS recorded vehicle speeds that are sampled along the highway as

discrete and noisy measurements, assumed to be generated by a smooth underlying random

process. In an initial step, the velocity field is estimated by two dimensional smoothing.

Current time velocity curves are then used as functional predictors to predict entire future

velocity curves, rather than average travel times. The predicted velocity curves impact

vehicles as they move along the highway. An important tool to recover the underlying

current time velocity curves is functional principal component analysis.

The article is organized as follows. In Section 2, we briefly review the functional prin-

cipal component analysis for predictor and response functions. In Section 3, we outline the

proposed methods for modeling the conditional distribution of the response functions, de-

scribe estimating techniques for the model components and construct prediction regions for

the response Y for Gaussian and non-Gaussian cases. Section 4 describes the application of

these techniques to the traffic data. Section 5 contains a small simulation to demonstrate

the coverage of the prediction regions under different settings. Additional discussion can be

found in Section 6.
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2 Review of Functional Principal Component Analysis

We begin with a brief outline of the population model for functional principal component

analysis and then describe the practical implementation version. Functional predictors X(s)

and responses Y (t) are assumed to be square integrable, with mean functions µX(s) =

EX(s) and µY (t) = EY (t) and covariance functions GXX(s1, s2) = cov(X(s1), X(s2)) and

GY Y (t1, t2) = cov(Y (t1), Y (t2)). Then one has orthogonal expansions

GXX(s1, s2) =
∑
k

λkφk(s1)φk(s2), GY Y (t1, t2) =
∑
j

γjψj(t1)ψj(t2)

with nonincreasing eigenvalues λk, γj and orthonormal eigenfunctions φk, ψj of the linear

Hilbert-Schmidt operators that are, respectively, defined by kernels GXX and GY Y .

This then leads to the well-known Karhunen-Loève expansions for processes X(s) and

Y (t),

Xi(s) = µX(s) +
∞∑
k=1

ξikφk(s), Yi(t) = µY (t) +
∞∑
j=1

ζijψj(t),

where φk(s), k ≥ 1 and ψj(t), j ≥ 1 form an orthonormal basis in the respective function

spaces and ξk and ζj are sequences of functional principal components. These are respectively

uncorrelated mean zero random variables with var(ξk) = λk and var(ζj) = γj. The quantities

µX(s), ξik, φk(s), and λk, as well as the µY (t), ζij, ψj(t) and γj can all be estimated from

the data and we describe the details for X(s) in the following; the procedure for Y (t) is the

same. We also remark that in some application areas, the practical implementation of the

Karhunen-Loève expansion is known as the method of empirical orthogonal functions.

In practice, underlying smooth predictor and response trajectories Xi(s) and Yi(t), i =

1, . . . , n, are usually recorded at a grid of points, where s and t can be different sampling

units. The observations of the underlying random functions taken at these time points might

be contaminated with additive measurement errors; this is the case in our traffic data exam-

ple, due to aberrations of speed measurements for individual cars from smooth trajectories,

which can be caused by small GPS location inaccuracies or small scale accelerations and

decelerations by individual drivers.

To model functional data that are discretely measured and contaminated with measure-

ment errors, denoting the observations of random trajectories Xi at times sij by Vij, the

measurement errors by εij and the number of observations made for the ith subject by Ni,

6



a reasonable representation of the observed data is

Vij = Xi(sij) + εij 1 ≤ i ≤ n, 1 ≤ j ≤ Ni, (1)

where the errors εij are assumed to be i.i.d. with Eεij = 0 and Eε2
ij = σ2. An analogous data

model is also assumed for the observations of response processes Yi. Response processes Yi

represent speed curves for individual cars and are available on a denser grid of observations

and recorded with less error in comparison to the predictor processes.

As mean, covariance and eigenfunctions are assumed to be smooth, under the assump-

tion that the time grid is reasonably dense for the pooled data, we may apply smoothing

methods such as local linear smoothing to scatterplots {(sij, Vij), i = 1, . . . , n, j = 1, . . . , Ni}

to obtain the estimated mean functions µ̂X(s), and a two-dimensional weighted least squares

smoother to scatterplots {(sij, sil), (Vij − µ̂X(sij))(Vil − µ̂X(sil))}, omitting the diagonal el-

ements, to obtain the estimated covariance surfaces ĜXX (for further details, we refer to

Yao et al., 2005). Smoothing bandwidths may be chosen by cross-validation or generalized

cross-validation, the latter being computationally faster.

Estimates of eigenfunctions φk and of eigenvalues λk are then obtained as solutions of

the eigen-equations, ∫
GXX(s1, s2)φk(s1)ds2 = λkφk(s1),

where covariance function estimates ĜXX are substituted for GXX and the eigenfunctions

are subject to constraints
∫
φk(s)

2ds = 1 and
∫
φk(s)φj(s)ds = 0, for k < j. The eigen-

equations are invariably solved by discretization on a grid (for which we use a 51× 51 grid)

and subsequent matrix spectral analysis. The functional principal components then are es-

timated based on the definition ξik =
∫

(Xi(s) − µX(s))φk(s)dt and numerical integration.

Alternatively, one can adopt a conditional expectation procedure that is described in Yao

et al. (2005); one proceeds analogously for the eigencomponents γj, ψj and the corresponding

functional principal components for response processes Yi(t). These procedures are imple-

mented in the PACE package, accessible at http://www.stat.ucdavis.edu/PACE/. The

matlab procedure FFPredRegions.m used in this paper will be part of PACE 2.17.

Once the first K functional principal components ξik, k = 1, . . . , K, for each predictor

function Xi(s), and the first P functional principal components ζij, eigenvalues γj, and

eigenfunctions ψj(t), j = 1, . . . , P, for the response functions Yi(t) have been obtained, this
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leads to estimates

X̂i(s) = µ̂X(s) +
K∑
k=1

ξ̂ikφ̂k(s)

Ŷi(t) = µ̂Y (t) +
P∑
j=1

ζ̂ijψ̂j(t) (2)

of predictor trajectories Xi(s), resp., response trajectories Yi(t).

We note that applying this functional principal component approach means that no pre-

smoothing step is needed to recover the trajectories of X(s) or Y (t). The numbers K resp.

P of included components for predictor resp. response expansions can be determined by

controlling the fraction of variance explained (FVE), obtained for example for responses

Y (t) by
∑P

j=1 γ̂j/
∑M

j=1 γ̂j, where M is chosen large, for modest sample sizes as for the traffic

data we choose M = 20. Alternative methods for choosing K and P such as AIC and BIC

type criteria have been discussed in Yao et al. (2005).

3 Modeling of Conditional Distributions for Response

Functions

The study of conditional distributions of functional responses Y (t) given predictors X(s)

poses specific difficulties, due to the complex nature of the response, which is a realiza-

tion of a stochastic process. Therefore, suitable structural assumptions are needed that are

manageable but do not compromise the desired flexibility. While we do not assume that

(X, Y ) are jointly Gaussian, a major simplification of the problem can be achieved by as-

suming that the conditional responses are Gaussian. This Gaussianity assumption, which

we adopt from now on, reduces the problem of modeling conditional distributions to two

components: The conditional mean function E(Y (t) | X) and the conditional covariance

surface cov(Y (t1), Y (t2) | X), as these jointly determine the distribution of the conditional

Gaussian processes.

Even with this simplification, the modeling task remains complex and requires judicious

choice of structural assumptions, due to the additional complexity that is due to the func-

tional nature of the predictors. In the simpler case where functional responses are paired
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with scalar predictors, nonparametric approaches have been proposed for conditional mean

and covariance modeling (Cardot, 2007; Chiou and Müller, 2009; Jiang and Wang, 2010),

but these methods do not extend to the case of high-dimensional or functional predictors.

Fully nonparametric approaches are not promising when predictors are functional, due to

the curse of dimensionality that results from very low values of the small ball probabilities

in the function space L2 (Hall et al., 2009; Müller and Yao, 2010). Therefore, we propose

here an additive modeling approach, which provides a good balance between the somewhat

conflicting needs for flexibility and stability.

3.1 Conditional Mean Modeling

To model the conditional mean function, we apply the functional additive model as described

in Müller and Yao (2008). The population version of this model is

E(Y (t) | X) = µY (t) +
∞∑
j=1

∞∑
k=1

fjk(ξk)ψj(t), (3)

where ξk are the functional principal components of X(s) and ψj(t) are eigenfunctions of

Y (t), as described above. For identifiability, one requires

Efjk(ξk) = 0, k = 1, 2, . . . , j = 1, 2, . . . ,

and in applications and implementations the sums in (3) are finitely truncated at suitable

truncation levels.

While complex iterative procedures are required to fit a regular additive model (Mammen

and Park, 2005), a straightforward estimation scheme is available to recover the component

functions fjk by a series of one-dimensional smoothing steps, under the assumption that

the predictor functional principal components ξk, k ≥ 1, are independent (Müller and Yao,

2008). Since the functional principal components are always uncorrelated, this assumption

is for example satisfied for the case where predictor processes are Gaussian. Then the basic

functional additive model assumptions imply, for a suitably truncated version of model (3),

E(Y (t) | X) = µY (t) +
P∑
j=1

K∑
k=1

E(ζj | ξk)ψj(t),
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i.e., fkj(ξk) = E(ζj | ξk), which leads to a simple implementation of the functional additive

model. We adopt local linear fitting in this paper; other smoothing techniques could also be

used.

Fitting a local linear regression to the estimated functional principal components of X

resp. Y , given by {(ξ̂ik, ζ̂ij), i = 1, . . . , n}, i.e., minimizing

n∑
i=1

K(
ξ̂ik − x
hjk

)
(
ζ̂ij − β0 − β1(x− ξ̂ik)

)2

with respect to β0 and β1, leads to f̂jk(x) = β̂0(x), where hjk is the bandwidth and K is a

kernel function. Then the fitted conditional mean function is

Ê(Y (t) | X) = µ̂Y (t) +
P∑
j=1

K∑
k=1

f̂jk(ξ̂k)ψ̂j(t), t ∈ T , (4)

where ξ̂k, k = 1, . . . , K are the first K estimated functional principal components of X.

3.2 Conditional Covariance Modeling

At the core of our approach is the modeling of conditional covariance functions for the

responses, i.e., of cov(Y (t1), Y (t2) | X), where we omit the argument s for the predictor

function X. For this modeling task, we make the simplifying assumption that the influence

of X on the conditional covariance function of Y consists in a rescaling of the conditional

variance components, and the uncorrelatedness of response principal components ζj, ζk for

j 6= k is preserved when conditioning on X, i.e.,cov(ζj, ζk | X) = 0, for j 6= k.

This leads to the conditional covariance function

cov(Y (t1), Y (t2) | X) =
∞∑
j=1

γj(X)ψj(t1)ψj(t2), (5)

where γj(X) = var(ζj|X) = E(ζ2
j |X) − (E(ζj|X))2. This model naturally connects to the

common principal components approach (Flury, 1988; Benko et al., 2009), where the eigen-

functions (eigenvectors) of the conditional processes YX(t) are assumed to be the same across

different values of predictor functions X. Again, here and in the following (5) refers to a

population model and the sums are truncated at a finite number of components for practical

implementations.
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Noting that a completely nonparametric model for γj(X) is not feasible, due to the

curse of dimensionality, as functional data are inherently infinite-dimensional, the functional

additive approach is found to be a sensible compromise between flexibility and stability and

is particularly useful for the proposed conditional covariance modeling. Observe that

E(γj(X)) = E(var(ζj | X)) = var(ζj)− var(E(ζj | X)) = γj − E(
∞∑
k=1

f 2
jk(ξk)),

where E(ζj | X) =
∑∞

k=1 fjk(ξk) is implied by the assumed additive model for the conditional

mean function, and fjk(ξk) = E(ζj | ξk) are the same smooth functions as in eq. (3).

Therefore, the additive modeling for γj(X) is

γj(X) = γj +
∞∑
k=1

{gjk(ξk)− f 2
jk(ξk)}, (6)

where gjk are smooth functions satisfying E(gjk(ξk)) = 0.

As predictor functional principal components ξk are independent, one finds that

gjk(ξk) = E(ζ2
j − γj | ξk).

By plugging γj(X) into eq. (5) we arrive at the following form of the conditional covari-

ance function,

cov(Y (t1), Y (t2) | X) = GY Y (t1, t2) +
∞∑
j=1

∞∑
k=1

{gjk(ξk)− f 2
jk(ξk)}ψj(t1)ψj(t2), (7)

where GY Y (t1, t2) is the continuous covariance function of Y (t) with eigenfunctions ψj(t), j ≥

1, and ξk, k ≥ 1 are the functional principal components of the predictor processes X(s).

Conditional response processes, at predictor level X, then are the Gaussian processes

that are characterized by the mean function E(Y (t) | X) given by eq. (3) and the covariance

function cov(Y (t1), Y (t2) | X) given by eq. (7). The characterizing components of these

processes thus depend on eigenfunctions and eigenvalues of response processes Y (t) and the

smooth regression functions fjk(·) and gjk(·) in eq. (6). The assumptions that are central

for the proposed modeling approach are explicitly listed and discussed in Section 5.

Regarding the estimation of gjk(·), we fit a local linear regression to the data {
(
ξ̂ik, ζ̂

2
ij −

γ̂j
)
, i = 1, . . . , n}, by minimizing

n∑
i=1

K(
ξ̂ik − x
hjk

)
(
ζ̂2
ij − γ̂j − β0 − β1(x− ξ̂ik)

)2
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with respect to β0 and β1, leading to ĝjk(x) = β̂0(x), where hjk is the bandwidth. Invoking

suitable truncation points, the fitted conditional covariance is

ĉov(Y (t1), Y (t2) | X) = ĜY Y (t1, t2) +
P∑
j=1

K∑
k=1

{ĝjk(ξ̂k)− f̂ 2
jk(ξ̂k)}ψ̂j(t1)ψ̂j(t2)

=
P∑
j=1

(γ̂j +
K∑
k=1

{ĝjk(ξ̂k)− f̂ 2
jk(ξ̂k)})ψ̂j(t1)ψ̂j(t2), (8)

where ĜY Y (t1, t2) is obtained from the functional principal component analysis step for pro-

cesses Y (t), and ξ̂k are the estimated functional principal components for predictor functions

X(s). We project these nonparametric surface estimates on the space of symmetric positive

definite covariance surfaces (see Hall et al., 2008).

Asymptotic results for the conditional mean and conditional covariance estimates require

studying the convergence properties of the estimated additive components f̂jk and ĝjk, which

are based on the estimated functional principal components ξ̂ik and ζ̂ij, k = 1, . . . , K, j =

1, . . . , P . Established convergence results for the estimated population components such as

mean function, eigenfunction and eigenvalue estimates can be found in Yao et al. (2005) and

Hall and Hosseini-Nasab (2006). Based on such results, Müller and Yao (2008) provided

upper bounds for |ξ̂ik−ξik| and |ζ̂ij− ζij| under suitable regularity conditions, and analogous

arguments as those presented in the proof of Theorem 1 in that paper can be used to show

the convergence of f̂jk and ĝjk to their target values in probability as n→∞.

3.3 Prediction Regions For Response Functions

We consider a representation of conditional response processes truncated at P functional

principal components by the expansion

ỸX(t) = µY |X(t) +
P∑
j=1

ζj(X)ψj(t). (9)

Due to the Gaussian assumptions for the conditional processes, ζj(X), j = 1, . . . , P, are con-

ditionally independent random components, with distributions N (0, γj(X)). A natural ellip-

soid type prediction region with 1−α coverage is then obtained for ζX = (ζ1(X), . . . , ζP (X))

in a straightforward manner,

ΩX,α = {(ζ1(X), . . . , ζP (X)) :
P∑
j=1

ζj(X)2

γj(X)
≤ C2

X,α}, (10)
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where in the case that (ζ1(X), . . . , ζP (X)) are jointly Gaussian, CX,α = Cα =
√
χ2
P,1−α.

After constructing a prediction region for functional principal components ζX , one needs

to project the region onto the time domain, in order to obtain equivalent prediction regions

for ỸX in the function space L2. Eq. (9) motivates the construction of conditional prediction

regions of the form {(L(t), U(t)), t ∈ T }. The upper bound function U(t) is found by solving

the maximization problems

max
ζX∈ΩX,α

{
µY |X(t) +

P∑
j=1

ζj(X)ψj(t)

}
, for all 0 < t < 1.

This is a quadratic constrained linear problem, which can be easily solved through the

Lagrange dual problem. Utilizing estimates for µY |X(t) from (4) and for var(ỸX(t)) from (8),

one obtains

Û(t) = µ̂Y |X(t) +

{
Cα2

P∑
j=1

γ̂j(X)ψ̂2
j (t)

}1/2

= µ̂Y |X(t) + Cα
{

v̂ar(ỸX(t))
}1/2

. (11)

Analogously, L̂(t) is seen to be

L̂(t) = µ̂Y |X(t)− Cα
{

v̂ar(ỸX(t))
}1/2

. (12)

These two bands then yield global prediction regions that are given by

P ({L̂(t) ≤ ỸX(t) ≤ Û(t)}, t ∈ T ) ≥ 1− α.

Here, (11) and (12) indicate that the sizes of prediction regions are determined by the

estimated conditional mean and conditional covariance, up to a scale constant. These esti-

mates can be shown to be consistent for the P -truncated version of the conditional processes,

and the uncertainties induced by the measurement errors do not need to be additionally con-

sidered. The nominal coverage is attained asymptotically, as sample size increases.

While under the Gaussian assumption for the conditional response processes, theory

indicates that Cα =
√
χ2
P,1−α, in applications, the Gaussian assumption often is difficult to

verify, in which case the joint distribution of the ζj(X), j = 1, . . . , P, is unknown, and we may

not know whether the conditional functional principal components are independent, though

they are still uncorrelated. Motivated by the Gaussian case, we still consider prediction

regions for the vector of P functional principal components which are of ellipsoidal shape

ΩX,α as defined in (10), aiming at P
(
ζX ∈ ΩX,α

)
= 1− α, for each X.
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A problem in this more general setting is the determination of an appropriate value for

the constant CX,α, which is hard to determine in the general case because it might vary

with predictors X, in contrast to the Gaussian case. To address this problem, for the case

where X might be assumed to be (intrinsically) very low dimensional, one could consider

a local approximation of CX,α by aggregating information from similar predictor levels X.

However, in general scenarios where the X are infinite-dimensional predictor functions, such

local constructions of CX,α often will not be appropriate, due to the curse of dimensionality.

Instead, we opt to aim at the correct average coverage for the prediction regions, i.e.,

seek to find a constant Cα and regions ΩX,α, so that

E{P (ζX ∈ ΩX,α | X)} = 1− α.

In practice, one can determine the constant Cα by aiming to keep the empirical leave-one-

out average coverage at the desired level. We adopt this strategy in the simulations and

the application to traffic analysis. After determining the ellipsoid for ζX , we use the same

projection method as described above for the Gaussian case to obtain (1 − α) prediction

regions (L(t), U(t)) for the conditional processes.

4 Application to Traffic Data Obtained via GPS-enabled

Mobile Phones

The Mobile Century data were collected on February 8, 2008 between 10:00am and 18:00pm

(PST) on Interstate 880 in the East Bay Area in Northern California as part of a joint UC

Berkeley - Nokia project, aimed at studying the use of GPS enabled mobile phones for traffic

monitoring. An extensive description of the experiment and data is available in Herrera et al.

(2010). As described in the introduction, the records can be written in the form

({tl, sl}, Vl)l=1,...,N , (13)

where N =
∑

iNi. One can use these combined data to recover a smooth random velocity

field V (t, s) along the highway by two-dimensional local linear smoothing (Fan and Gijbels,

1996; Yao et al., 2005) on the scatterplots ({tl, sl}, Vl)l=1,...,N . This leads to the velocity

field estimate in Figure 1, providing a concise visualization of the traffic speed conditions in
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the given time-space domain and demonstrating the usefulness of nonparametric smoothing

methods for traffic modeling.

For random times T within the time domain of interest, define processes X(s) = V (T, s)

to be the velocity of traffic flow at time T as a function of location on the relevant highway

segment s ∈ [21, 27.5], as prescribed by the random field V at time T . Using predictor

processes X(s), which are observable at time T , we wish to predict the anticipated speed for

a vehicle that enters the selected highway segment at this time T . The velocity curve Y (t)

of this vehicle as a function of time will depend on velocities V (t, s) for which t > T , i.e.,

which are in the future of time T , as the vehicle travels along the freeway on a time interval

that begins at T .

For a vehicle that enters the selected highway segment at time T , in addition to providing

an estimate for the response curve Y (t), t ∈ [T, T + ∆] for a ∆ > 0, the proposed model

also leads to a prediction region for Y (t) over the future time period t ∈ [T, T + ∆]. We

choose ∆ = 300 seconds for our application and assume that the sample of observed times

Ti at which test drivers enter the selected segment of highway have the same distribution

as T , Ti ∼ T . These considerations lead to pairs of predictor curves Xi(s) = V (Ti, s) and

associated response curves Yi(t), t ∈ [Ti, Ti + ∆], which are to be predicted.

A complication is that for an entry time T , we do not directly observe the entire function

X(s), s ∈ [21, 27.5], but only observe a subset of the data points in (13), {(tl, sl), Vl}, with

tl = T . In practice, this can be easily overcome by including all tl ∈ [T − h, T ], which lie

in a small window towards the past, relative to the random entry time T , where h is a very

small bandwidth. In this way, one can assemble a reasonable number of records to recover

X(s); we chose h = 10 seconds for this application. Assuming there are a total of L records

that satisfy tl ∈ [T − h, T ], we then re-index these records as (sj, Vj)j=1,...,L.

Due to deviations of the velocities of specific vehicles, including the test vehicles, from the

prevailing velocity field, the velocities Vj in practice are approximations of the actual velocity

field of the freeway at location sj at time T . For a sample of test cars with entry times Ti,

i = 1, . . . , n, data model (1) therefore applies to the data ({sij, Vij}, j = 1, . . . , Li)i=1,...,n,

and one can perform functional principal component analysis to obtain estimates for the

mean function µX , eigenfunctions φk, and functional principal components ξik. Then one

may recover the velocity trajectories Xi through the estimates X̂i that are defined in (2).

15



We standardize Xi(s0) = 0, so that speeds are valued relative to the speed recorded at the

location corresponding to postmile 21. The number of included components K was chosen

to be four, applying the criterion of fraction of variance explained (FVE) with threshold

85%. The estimated mean function and the first four eigenfunctions are illustrated in Figure

2. The mean function is seen to conform quite well with the velocity heat plot in Figure

1. Various eigenfunctions have peaks located before the velocity minimum, which points

towards increased variability in certain eigenfunction directions in advance of the mean

velocity minimum. This likely reflects various modes in which traffic slows down towards

the area with minimum velocity.
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Figure 2: The estimated mean function µ (top) and the first four eigenfunctions φk, k =

1, 2, 3, 4 (bottom), for predictor processes Xi.

For the ith individual test car “trip” that enters the highway segment at time Ti, the

response function Yi(t), t ∈ [0, 300] seconds, is defined as the relative speed curve over a

future time period with length 300 seconds, where relative speed is obtained by subtract-
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ing the initial speed when the individual trip enters the highway segment from the actual

subsequent vehicle speeds. Thus we reset Yi(0) = 0 for all i. Assembling the data from all

individual trips that were run along the highway segment [21, 27.5], with various entering

times Ti between 10am and 6pm, results in a sample size of n = 126.
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Figure 3: The estimated mean function (top) and the first four eigenfunctions ψj(s), j =

1, 2, 3, 4 (bottom), for response processes Yi.

Each trip i is represented by densely observed data ({tij, Vij}, j = 1, . . . , Ni)i=1,...,n, based

on which one can estimate mean function µY , eigenfunctions ψj, and functional principal

components ζij. The number of included components P is chosen to be 4, selected through

FVE with threshold 0.9. Estimates of the mean function µY and of the first four eigen-

functions ψl, l = 1, 2, 3, 4, are visualized in Figure 3, demonstrating that vehicle velocities

systematically decline towards the right end of the highway segment. The variability as

reflected in the eigenfunctions is high just before this slowing down happens.

Following the procedure in Section 3, we estimated the mean and conditional covariance
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function of Y , conditional on X; see (4) and (8). Furthermore, given current road condition

X at times T , we constructed the 90% prediction region for the future speed curve Y of a car

that enters the freeway at postmile 21 at time T . These regions were constructed by plugging

corresponding estimates into (11) and (12). The constant C was computed empirically by

controlling the empirical average coverage to be 90%.
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Figure 4: Noisy observations and recovered predictor functions X̂i (solid curves) for velocity

trajectories Xi, representing the speed (relative to postmile 21) of the traffic flow on the

highway segment [21, 27.5], for four randomly selected entering times Ti, where data are

combined from trips entering the freeway at times close to Ti.

For four randomly selected individual trips that enter the highway segment at different
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times Ti, we display the predictor functions Xi(s) and the relative speed on the highway

section [21, 27.5] at times Ti in Figure 4. It is noteworthy that velocity varies widely along

this stretch of freeway. Adopting the empirical value of C, the estimated functions of µY |X(t)

and var(YX(t)), we can evaluate (11) by plugging in the estimated functional principal com-

ponents of Xi(s) at the four selected times Ti.
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Figure 5: Relative speed functions Yi(t) (solid) for four randomly selected test vehicles that

enter the highway segment of interest at times Ti, over a future period of 5 minutes, along

with the predicted conditional mean curve (dashed) and the prediction regions (dash-dotted),

based on only the traffic flow Xi(s) at the entering times Ti. Note that in the construction of

predicted mean speed functions and the prediction bands we do not use the observed speed

curves.
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In Figure 5, we plot the relative speed curve Yi(t), t ∈ [0, 300], overlaid with the pre-

dicted conditional mean speed function and the 90% prediction region, conditional on the

corresponding predictor curve Xi. These regions reflect the conditional distribution of the

responses and provide a notion of the level of uncertainty that is associated with predictions

obtained from functional mean regression implementations. As the figure indicates, there

is a sizable degree of uncertainty, which increases as time progresses, but nevertheless, the

overall trends of slowing traffic towards the end of the segment are unmistakable and are

confirmed by the prediction bands.

For this particular traffic data prediction problem, only data for one day were available.

Large batches of additional data are expected to become available in future follow-up projects

and through many other studies worldwide. The proposed additive functional conditional

distribution model will be of interest for the analysis of the larger data sets that these studies

will generate, as well as for other traffic prediction problems.

5 Simulation

To illustrate our methods for prediction region construction, especially to assess the out

of sample coverage for non-Gaussian cases, pairs of predictor and response curves (Xi, Yi),

i = 1, . . . , 400, were generated, and of these, 300 pairs were used for training the model and

the remaining 100 pairs for testing. Based on the training sample, we obtain the functional

principal components for Xi and Yi as described in Section 2; then functions µ̂Y |X(t) and

v̂ar(YX(t)) are estimated as described in Section 3.1 and 3.2. For a given new predictor

function Xi, one then obtains Li(t) and Ui(t) by evaluating functions fjk(·) and gjk(·) at

the functional principal components ξik, k = 1, . . . , K of predictor processes Xi(s), where

we substitute estimates for these quantities. For this simulation, Cα is chosen by controlling

the empirical leave-one-out coverage for the training sample to be 1 − α. The coverages of

the testing sample are recorded for nominal levels α = {0.5, 0.75, 0.9}. We repeated the

simulation 100 times.

In each simulation run, predictor trajectories Xi(s) were generated to mimic the traffic

data. For each sj equally distributed on [21, 27.5], contaminated observations of Xi were

generated as Xi(sj) = µX(sj) +
∑K

k=1 ξikφk(sj) + εij, where we substituted for µX , φk the

20



estimated functions that were obtained for the traffic data, as described in the previous

section. Functional principal components ξik were generated from a Gaussian distribution

with mean zero and variances λk, which were chosen to equal the estimated eigenvalues

for the traffic data. The additive contaminating errors εij were generated from a standard

Gaussian distribution.

For a given predictor function Xi, the corresponding response Yi was generated as fol-

lows: For 101 equally distributed tl ∈ [0, 300] we constructed noise-corrupted observations of

response processes YX as Yi(tl) = µY |Xi(tl) +
∑P

j=1 ζj(Xi)ψj(tl) + εil, where ζj(Xi) are func-

tional principal components with mean zero and variance depending on a function γj(Xi),

and εil are i.i.d additive errors corresponding to standard Gaussians. To mimic the traffic

data, we used the estimated versions of µY |Xi , ψj and γj(Xi) obtained for the traffic data,

with detailed descriptions in the previous section. For the generation of the functional prin-

cipal components ζj(Xi) of response processes YX , we studied three scenarios:

(i) Gaussian case. The response components ζj(Xi) are generated as GaussiansN (0, γj(Xi)).

(ii) Gaussian mixture. The response components ζj(Xi) are generated as a mixture distri-

bution, BN (−2, γj(Xi)/5) + (1 − B)N (2, γj(Xi)/5), where B is a Bernoulli variable with

E(B) = 0.5 that is independent of all other random variables and does not depend on Xi.

(iii) Gamma distribution. The response components ζj(Xi) are generated as ζj(Xi) =√
γj(Xi)(Zij − 4)/2, where Zij is a Gamma(4, 1) variable.

The results for mean coverage and mean values of Cα based on 100 simulation runs for

each simulation scenario and levels α ∈ (0.5, 0.75, 0.9) are in Table 1. They clearly show that

the proposed method works well to keep the empirical level of the confidence bands close to

the nominal levels for both Gaussian and non-Gaussian cases in scenarios that resemble the

settings of the traffic data.
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Table 1: Simulation results for mean coverage, and average values of empirically chosen Cα,

based on 100 simulation runs, for levels 1−α = {0.5, 0.75, 0.9}, where the functional principal

components of the conditional process YX(t) are generated from Gaussian, Gaussian mixture,

and transformed Gamma distributions.

distribution 1− α = 0.5 1− α = 0.75 1− α = 0.9

Cα coverage Cα coverage Cα Coverage

Gaussian 1.276 0.517 1.832 0.763 2.562 0.906

Gaussian Mixture 1.356 0.502 1.796 0.762 2.419 0.900

Gamma 1.238 0.496 1.784 0.745 2.663 0.900

6 Assumptions and Discussion

In the following we list and discuss four key assumptions for the proposed approaches.

Assumption 1. Predictor processes X and response processes Y are square integrable, and

belong to the Hilbert space (X, Y ) ∈ L2 × L2.

This is a standard assumption in functional data analysis a and is not restrictive.

Assumption 2. The conditional response processes, conditioning on the predictor pro-

cesses, are Gaussian.

This assumption is needed to simplify the very complex task of modeling conditional dis-

tributions, especially for the case that we consider here, where predictors are also functional.

Gaussianity implies that the functional principal components for Y given X are independent,

and crucially, that conditional distributions of response processes only depend on conditional

mean functions and conditional covariance surfaces. Without this assumption, the character-

ization of the conditional distribution of a random process, given functional predictors, would

require extremely complex modeling for conditional higher moments and cross-moments of

response processes and thus unrealistically large sample sizes.

The proposed methods for the construction of prediction regions are motivated by the

Gaussian case, and we indicate how to extend these to the non-Gaussian case, by focusing on
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coverage in an average sense, in Section 3.3. As the simulations and Table 1 clearly indicate,

the extension of these ideas to non-Gaussian situations works overall reasonably well.

Assumption 3. Additive modeling approaches are used for the conditional mean function

and conditional covariance function.

These assumptions are needed to achieve a reasonable balance between model flexibility

and feasibility. Modeling conditional mean functions corresponds to the usual functional

regression problem with functional responses, where one targets conditional means. The

modeling of conditional means for the case of functional responses has been extensively

studied, the additive model being among the most general such approaches. Therefore it

makes sense to borrow this existing and very flexible approach and to extend it to the

conditional covariance modeling. Additive modeling is not only flexible but also structurally

stable and is well known to yield excellent results in many regression settings.

Functional linear regression can also be considered as an alternative for conditional mean

modeling. Modeling conditional smooth covariance functions is new as far as we know, and

to develop an additive model for this modeling task as described in Section 3.2 is quite

natural, given the success and flexibility of additive models for conditional mean regression.

A further assumption of common functional principal components is made implicitly in the

modeling of the conditional covariances. This assumption is necessary in order to keep the

complexity of the resulting models manageable and has been successfully employed before

(Benko et al., 2009).

Assumption 4. The functional principal component scores of the predictors X are inde-

pendent.

This assumption is needed for the straightforward practical implementation of the addi-

tive modeling for mean and covariance estimation, and is always satisfied in case the predictor

processes are Gaussian (but not necessarily jointly Gaussian with the response processes).

This assumption was shown to work well for functional additive modeling in previous work

(Müller and Yao, 2008, 2010). If this assumption is violated, one can adopt more elaborate

backfitting procedures (Mammen and Park, 2005) for the fitting of the two additive models

for conditional mean functions and conditional covariance surfaces.

The problem to describe and quantify conditional distributions for functional responses
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has not been considered before as far as we know, even for the case of scalar or vector

predictors. When the predictors are also functions, as in the traffic application, this adds

substantial complexity to this problem. Previous models for function to function regression

based on bivariate functional observations (X, Y ) ∈ L2×L2 exclusively focused on modeling

the mean regression function E(Y |X = x), while our interest here is the modeling of the

entire conditional distribution L(Y |X = x), then applying these models to the construction

of conditional prediction regions. The difficulty is that the distribution and especially the

conditional distribution of functional data is hard to quantify and is unwieldy for statistical

practice. This motivates to introduce simplifying structural assumptions as described above,

which serve to reduce the intractable general problem to a series of feasible estimation prob-

lem. These assumptions lead to a practical and still sufficiently flexible solution and are not

overly restrictive.

For the analysis of time-dynamic traffic monitoring data, functional methods convey the

advantages of being highly flexible, while they are also consistent and statistically well mo-

tivated. Especially valuable for traffic monitoring are functional regression models, where

response curves are related to predictors. Besides the commonly used but somewhat re-

strictive linear functional model, additive models and some other flexible models have been

developed in recent years. Especially the flexible yet stable functional additive model has

proved successful and we adopt it for the mean regression. A major extension that we

propose in this paper is the additive modeling of conditional covariance functions.

When evaluating predicted future speeds in response to current traffic flows, it is clearly

of interest not only to obtain point estimates of conditional speeds, but also simultaneous

prediction regions around these estimates, as these characterize the uncertainty in the condi-

tional mean response functions, irrespective of which function to function regression model is

applied. Thus, one is not only interested in predicting the response curve, given predictors,

but also in the level of confidence one could reasonably have regarding the accuracy of such

predictions. We quantify this uncertainty by constructing conditional prediction regions.

While in our application to GPS-enabled mobile phone traffic monitoring we only con-

sidered one stretch of highway extending over a few miles, for widespread applicability one

would need to extend this approach to larger networks of roads and dynamic prediction.

Such more complex applications can be handled by breaking the prediction down into pre-
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diction problems for a number of smaller road segments, for each of which the method can

be applied as described, thus implementing a “divide-and conquer” strategy.

We expect that the proposed functional data analysis approaches, especially functional

additive regression and the construction of conditional covariance models, will prove useful

for time-dynamic traffic modeling and monitoring as well as for the same-day prediction of

various traffic characteristics.

The traffic data used in this paper can be downloaded, after registration, from http:

//traffic.berkeley.edu. The Matlab code for the proposed method will be integrated into

PACE package version 2.17, free for download at http://www.stat.ucdavis.edu/PACE/.
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