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SUMMARY

This paper concerns the modeling of multi-way functional data where double or multiple in-
dices are involved. We introduce a concept of weak separability. The weakly separable structure
supports the use of factorization methods that decompose the signal into its spatial and tem- 10

poral components. The analysis reveals interesting connections to the usual strongly separable
covariance structure, and provides insights into tensor methods for multi-way functional data.
We propose a formal test for the weak separability hypothesis, where the asymptotic null dis-
tribution of the test statistic is a chi-square type mixture. The method is applied to study brain
functional connectivity derived from source localized magnetoencephalography signals during 15

motor tasks.

Some key words: asymptotics; functional principal component; hypothesis testing; marginal kernel; separable covari-
ance; spatio-temporal data; tensor product.

1. INTRODUCTION

Traditional functional data analysis usually concerns data recorded over a continuum, such as 20

growth curves. Dense and regularly-observed functional data can be recorded in a matrix with
dimension n× T , where n is the number of subjects and T is the number of grid points observed
for each subject. Multi-way functional data refers to an extension where multiple indices are in-
volved and data can be recorded in a tensor with dimension at least three. Examples include brain
imaging data where for each subject i = 1, . . . , n, we have observations Xi(s, t), with a spatial 25

index s ∈ Rd and a time index t ∈ R1. Other examples include repeatedly or longitudinally ob-
served functional data, such as data obtained from tracking apps where subjects’ 24-hour profiles
of activities are recorded every day. This type of data can be represented by Xi(s, t), where s
denotes the day and t denotes the time within a day.

As multi-way functional data become more common with modern techniques, the model- 30

ing of this type of data attracts increasing interest. Assume the individual observations Xi(s, t)
are independent and identically distributed realizations of a random process X ∈ L2(S × T ),
s ∈ S ⊆ Rd1 , t ∈ T ⊆ Rd2 , with mean µ and continuous covariance operator C. When we can
do so without confusion, we use the same symbol for the covariance operator and its kernel
function. A well-established tool in functional data analysis is functional principal component 35

analysis. When applied to the multi-way process X , functional principal component analy-
sis is based on the Karhunen–Loève representation X(s, t) = µ(s, t) +

∑∞
l=1 Zlhl(s, t), where

Zl (l = 1, 2, . . .) are the (random) uncorrelated coefficients, and hl(s, t) (l = 1, 2, . . .) are the
eigenfunctions of the covariance operator C.

C© 2017 Biometrika Trust
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To alleviate the difficulties associated with modeling the (2d1 + 2d2)-dimensional full co-40

variance function C(s, t, u, v) and characterizing the (d1 + d2)-dimensional eigenfunctions, one
usually seeks dimension reduction through factorization of the signal into its spatial and temporal
components. Chen et al. (2017) proposed product functional principal component analysis,

X(s, t) = µ(s, t) +
∞∑
k=1

∞∑
j=1

χjkψj(s)φk(t), (1)

where ψj(s) (j = 1, 2, . . .) and φk(t) (k = 1, 2, . . .) are the eigenfunctions of the marginal co-
variance operators in L2(S) and L2(T ), with corresponding marginal kernels45

CS(s, u) =

∫
T
C(s, t;u, t)dt, CT (t, v) =

∫
S
C(s, t; s, v)ds. (2)

Here CS(s, u) =
∑∞

j=1 λjψj(s)ψj(u) and CT (t, v) =
∑∞

k=1 γkφk(t)φk(v), where λ1 ≥ λ2 ≥
· · · and γ1 ≥ γ2 ≥ · · · are the eigenvalues. The χjk =

∫
T
∫
S{X(s, t)− µ(s, t)}ψj(s)φk(t)dsdt

are the marginal projection scores. To be precise, we should first consider expanding X(s, t) in
terms of completed versions of the bases of marginal eigenfunctions, but since it can be shown
that the scores χjk associated with the extra functions needed to complete the bases are 0, the50

expansion of X(s, t) in Equation (1) holds.
The above product functional principal component analysis representation is the same

as the Karhunen–Loève representation if one makes the separable covariance assumption
C(s, t;u, v) = aC1(s, u)C2(t, v), which we call strong separability in contrast to the weak sep-
arability that will be proposed in this paper. However, if strong separability is not assumed, the55

marginal eigenfunctions no longer carry optimal efficiency guarantees (Aston et al., 2012), and
can only be proven to have near-optimality under appropriate assumptions (Chen et al., 2017).
Moreover, unlike the Zl in multi-way functional principal component analysis, the scores χjk

are not guaranteed to be mutually uncorrelated.
Factorization of the signal into its spatial (s) and temporal (t) components, justified using60

a vague notion of spatial-temporal separability, is a common strategy used in many methods
in image analysis and multi-way functional data analysis (Zhang & Zhou, 2005; Lu et al., 2006;
Huang et al., 2009; Chen & Müller, 2012; Hung et al., 2012; Allen et al., 2014; Chen et al., 2015,
2017). Despite their empirical success, the rigorous characterization of this separable feature is
still mainly restricted to the scope of strong separability, i.e., when the covariance C(s, t;u, v) is65

separable. There is a large amount of literature on strong separability in related fields (Lu & Zim-
merman, 2005; Fuentes, 2006; Srivastava et al., 2009; Hoff et al., 2011; Horváth & Kokoszka,
2012). Tests for strong separability in functional data settings have been proposed recently (As-
ton et al., 2017; Constantinou et al., 2017).

In this paper, we propose a new concept of weak separability for the process X , which can be70

rigorously tested. We show that under weak separability the eigenfunctions of the full covariance
C(s, t;u, v) can be written as tensor products of the marginal eigenfunctions, i.e., ψj ⊗ φk. This
means the Karhunen–Loève representation is the same as the product representation in Equa-
tion (1), just as if we had strong separability, and to perform functional principal component
analysis we only need to calculate the marginal covariances CS(s, u) and CT (t, v) instead of the75

full covariance C(s, t;u, v). The analysis reveals that if C(s, t;u, v) is separable, then the pro-
cess X is weakly separable, but the converse is not necessarily true. Indeed, weak separability is
a much weaker assumption than separable covariance.

We develop a test for weak separability based on the empirical correlations between the es-
timated scores χ̂i,jk and χ̂i,j′k′ {i = 1, . . . , n; (j, k) 6= (j′, k′)}. Although the χ̂i,jk are n1/2-80
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consistent estimators of the χi,jk, the test statistics based on the χ̂i,jk have different null dis-
tributions from their counterparts using the χi,jk due to non-negligible estimation errors. The
proofs involve expansions of the differences between the estimated marginal eigenfunctions and
their true values, i.e., ψ̂j − ψj and φ̂k − φk, as well as multi-way tensor products with indices
(j, k, j′, k′). A series of careful derivations are carried out to characterize the asymptotic null 85

distribution of the test statistic, which is found to be a χ2 type mixture. No Gaussian assumption
on X is imposed. We apply the testing procedure to brain imaging data, where frequency and
time-based functional connectivity is constructed from source localized magnetoencephalogra-
phy signals. The test result supports the use of product functional principal component analysis
methods and reveals interesting features about brain connectivity over time and frequency. 90

2. WEAK SEPARABILITY: CONCEPTS AND PROPERTIES

For S ⊆ Rd1 and T ⊆ Rd2 , we consider the space of square integrable surfaces L2(S × T )
with the standard inner product 〈f, g〉 =

∫
T
∫
S f(s, t)g(s, t)dsdt and the corresponding norm

‖ · ‖. The data can be viewed as realizations of a random element X ∈ L2(S × T ), which we
assume has well defined mean function µ and covariance operator C. We assume the covariance 95

is continuous, and S and T are compact. Unless otherwise noted, these assumptions are used in
all the lemmas and theorems.

For orthonormal bases fj (j = 1, 2, . . .) in L2(S) and gk (k = 1, 2, . . .) in L2(T ), the product
functions fj(s)gk(t) (j = 1, 2, . . . ; k = 1, 2, . . .) form an orthonormal basis of L2(S × T ). We
can then have

X(s, t) = µ(s, t) +
∞∑
j=1

∞∑
k=1

χ̃jkfj(s)gk(t),

where χ̃jk =
∫
T
∫
S{X(s, t)− µ(s, t)}fj(s)gk(t)dsdt.

DEFINITION 1 (WEAK SEPARABILITY). X(s, t) is weakly separable if there exist orthonor-
mal bases fj (j = 1, 2, . . .) and gk (k = 1, 2, . . .) such that cov(χ̃jk, χ̃j′k′) = 0 for j 6= j′ or 100

k 6= k′, i.e., the scores χ̃jk (j = 1, 2, . . . ; k = 1, 2, . . .) are uncorrelated with each other.

In the following, we list several important properties of weak separability, which make this
concept attractive in many applications. Detailed proofs are given in the supplementary material.

LEMMA 1. IfX is weakly separable, the pair of bases fj (j = 1, 2, . . .) and gk (k = 1, 2, . . .)
that satisfies weak separability is unique up to a sign, and fj(s) ≡ ψj(s) and gk(t) ≡ φk(t), 105

where ψj(s) and φk(t) are the eigenfunctions of the marginal kernels CS(s, u) and CT (t, v) as
defined in Equation (2). Moreover,

C(s, t;u, v) =
∞∑
j=1

∞∑
k=1

ηjkψj(s)φk(t)ψj(u)φk(v), (3)

where ηjk = var(〈X − µ, ψj ⊗ φk〉), and the convergence is absolute and uniform.

Lemma 1 shows that natural basis functions for the factorized spatial and temporal effects
are eigenfunctions of the marginal kernels. Under weak separability, the eigenfunctions of the 110

covariance C(s, t;u, v) can be written as tensor products of the marginal eigenfunctions, i.e.,
ψj ⊗ φk, which could result in a substantial dimension reduction in applications. Lemma 1 also
allows us to test the weak separability assumption (see Section 3).



4 BRIAN LYNCH AND KEHUI CHEN

LEMMA 2. Strong separability, defined as C(s, t;u, v) = aC1(s, u)C2(t, v) with identifiabil-
ity constraints

∫
S C1(s, s)ds = 1 and

∫
T C2(t, t)dt = 1, implies weak separability ofX . And up115

to a constant scaling, C1 and C2 are the same as the marginal kernels.

Lemma 2 shows that strong separability is a special case of weak separability, and the fol-
lowing Lemma 3 further illustrates that weak separability is much more flexible than strong
separability.

LEMMA 3. Define the array V = (ηjk, j = 1, 2, . . . ; k = 1, 2, . . .). Strong separability is120

weak separability with the additional assumption that rank(V ) = 1. Moreover, under strong
separability V = aΛΓT , where Λ = (λ1, λ2, . . .)

T and Γ = (γ1, γ2, . . .)
T are the eigenvalues of

the marginal kernels, and a = 1/
∫
T
∫
S C(s, t; s, t)dsdt is a normalization constant.

When the covariance C is not strongly separable but the process X is weakly sepa-
rable, we can show that the covariance function is a sum of L separable components,125

C(s, t;u, v) =
∑L

l=1 a
lC l
S(s, u)C l

T (t, v), where L ≥ rank(V ) > 1 is the nonnegative rank, de-
fined as rank+(V ) = min{` : V = V1 + · · ·+ V`; Vi ≥ 0, rank(Vi) = 1, for all i}, where
Vi ≥ 0 means that Vi is entry-wise nonnegative. In applications where one relies on the separable
structure of the covariance for ease of computation and interpretation, for example in applica-
tions involving the inverse of the covariance, it is not clear whether and how one can modify the130

concept to work under the weak separability assumption (L additive separable terms). We defer
this to future research.

3. TEST OF WEAK SEPARABILITY

3·1. Background
Assume we have a sample of independent and identically distributed smooth pro-135

cesses Xi(s, t) ∼ X(s, t), and the marginal projection scores χi,jk =
∫
T
∫
S{Xi(s, t)−

µ(s, t)}ψj(s)φk(t)dsdt, where ψj(s) and φk(t) are the eigenfunctions of the marginal covari-
ances. By the definition of weak separability and Lemma 1, testing weak separability is the same
as testing the covariance structure of the marginal projection scores, i.e., H0 : cov(χjk, χj′k′) =
0 for j 6= j′ or k 6= k′.140

The problem of testing covariance structure is a classic problem in multivariate analysis. Sup-
pose we have independent and identically distributed copies of a p-variate random variable, with
mean µ and covariance matrix Σ, and we want to test the null hypothesis that Σ is diagonal. Un-
der the traditional multivariate setting where p is fixed and does not increase with n, likelihood
ratio methods can be used to test the diagonality of Σ (Anderson, 1984). The high-dimensional145

problem has been studied in the context that p/n→ γ ∈ (0,∞) or even for pmuch larger than n
(Ledoit & Wolf, 2002; Liu et al., 2008; Cai et al., 2011; Lan et al., 2015). If we were to observe
the sample values χi,jk, a sensible test statistic could be based on the off-diagonal terms of the
empirical covariance, i.e., n−1/2

∑n
i=1 χi,jkχi,j′k′ . However, unlike in the traditional covariance

testing problem, we do not directly observe the sample values χi,jk. Instead they are estimated150

from the sample curves Xi(s, t) (i = 1, . . . , n) as

χ̂i,jk =

∫
T

∫
S
{Xi(s, t)− X̄(s, t)}ψ̂j(s)φ̂k(t)dsdt,

where X̄(s, t) = (1/n)
∑n

i=1Xi(s, t), and ψ̂j and φ̂k are eigenfunctions of the estimated
marginal covariances ĈS(s, u) = (1/n)

∑n
i=1

∫
T {Xi(s, t)− X̄(s, t)}{Xi(u, t)− X̄(u, t)}dt

and ĈT (t, v) = (1/n)
∑n

i=1

∫
S{Xi(s, t)− X̄(s, t)}{Xi(s, v)− X̄(s, v)}ds. In practice, if the
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data for each subject are observed on arbitrarily dense and equally spaced grid points, and 155

recorded in matrices Xi (i = 1, . . . , n), the above estimators can be simplified as ĈS =

(1/n)
∑n

i=1(Xi − X̄)(Xi − X̄)T , and ĈT = (1/n)
∑n

i=1(Xi − X̄)T (Xi − X̄). The data can-
not immediately be written as matrices if the argument s has dimension greater than 1, but as
long as the observations are dense in S one can vectorize them along a certain ordering of s,
compute the marginal covariances, and reorganize back accordingly. 160

Although we can prove that the χ̂i,jk are n1/2-consistent estimators of the χi,jk, test statistics
based on n−1/2

∑n
i=1 χ̂i,jkχ̂i,j′k′ have different null distributions from their counterparts using

the χi,jk, and in the following we derive the asymptotic distribution of the former.

3·2. The test statistic and its properties
Let H be a real separable Hilbert space, with inner product 〈·, ·〉. Following standard defini- 165

tions, we denote the space of bounded linear operators on H as B(H), the space of Hilbert–
Schmidt operators on H as BHS(H), and the space of trace-class operators on H as BTr(H).
For any trace-class operator T ∈ BTr(H), we define its trace by tr(T ) =

∑
i=1,2,...〈Tei, ei〉,

where ei (i = 1, 2, . . .) is an orthonormal basis of H , and it is easy to see that this definition is
independent of the choice of basis. 170

ForH1 andH2 two real separable Hilbert spaces, we use⊗ as the standard tensor product, i.e.,
for x1 ∈ H1 and x2 ∈ H2, (x1 ⊗ x2) is the operator from H2 to H1 defined by (x1 ⊗ x2)y =
〈x2, y〉x1 for any y ∈ H2. With a bit of abuse of notation, we let H = H1 ⊗H2 denote the
tensor product Hilbert space, which contains all finite sums of x1 ⊗ x2, with inner product
〈x1 ⊗ x2, y1 ⊗ y2〉 = 〈x1, y1〉〈x2, y2〉, for x1, y1 ∈ H1 and x2, y2 ∈ H2. For C1 ∈ B(H1) and 175

C2 ∈ B(H2), we let C1⊗̃C2 denote the unique bounded linear operator on H1 ⊗H2 satisfying
C1⊗̃C2(x1 ⊗ x2) = C1x1 ⊗ C2x2 for all x1 ∈ H1, x2 ∈ H2.

We define

Tn(j, k, j′, k′) = n−1/2
n∑

i=1

χ̂i,jkχ̂i,j′k′ {(j, k) 6= (j′, k′)}, (4)

and Zn = n1/2(Cn − C), where the sample covariance operator is defined as Cn =
(1/n)

∑n
i=1(Xi − X̄)⊗ (Xi − X̄). 180

The following two conditions are needed for the main theorem below and the corollary fol-
lowing it:

Condition 1. For some orthonormal basis ej (j = 1, 2, . . .) of L2(S × T ),∑
j=1,2,...{E(〈X, ej〉4)}1/4 <∞.

Condition 2. For some integers P and K, we have δP = minj=1,...,P (λj − λj+1) > 0 and 185

δK = mink=1,...,K(γk − γk+1) > 0.

Remark 1. According to Proposition 5 of Mas (2006), Condition 1 implies that Zn converges
to a Gaussian random element in BTr{L2(S × T )}.

THEOREM 1. Assume Conditions 1 and 2 hold, and that X is weakly separable. For j, j′ =
1, . . . , P and k, k′ = 1, . . . ,K as defined in Condition 2, we have 190

(i) for j 6= j′ and k 6= k′,

Tn(j, k, j′, k′) = tr
[
{(ψj ⊗ ψj′)⊗̃(φk ⊗ φk′)}Zn

]
+ op(1),
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(ii) for j = j′ and k 6= k′,

Tn(j, k, j, k′) =tr
[
{(ψj ⊗ ψj)⊗̃(φk ⊗ φk′)}Zn

]
+tr

(
[Id1⊗̃{ηjk′(γk − γk′)−1φk ⊗ φk′}]Zn

)
+tr

(
[Id1⊗̃{ηjk(γk′ − γk)−1φk′ ⊗ φk}]Zn

)
+ op(1),

(iii) for j 6= j′ and k = k′,195

Tn(j, k, j′, k) =tr
[
{(ψj ⊗ ψj′)⊗̃(φk ⊗ φk)}Zn

]
+tr

(
[{ηjk(λj′ − λj)−1ψj′ ⊗ ψj}⊗̃Id2]Zn

)
+tr

(
[{ηj′k(λj − λj′)−1ψj ⊗ ψj′}⊗̃Id2]Zn

)
+ op(1),

where Id1 and Id2 are identity operators on L2(S) and L2(T ), respectively.

Remark 2. Since n1/2tr
{

(ψj ⊗ ψj′)⊗̃(φk ⊗ φk′)C
}

is zero under the null hy-200

pothesis, the first term in each case of the above theorem is the same as
n1/2tr

{
(ψj ⊗ ψj′)⊗̃(φk ⊗ φk′)Cn

}
= n−1/2

∑n
i=1 χi,jkχi,j′k′ , i.e., the counterpart of Tn

as if we had the true marginal projection scores. The second and third terms, if they exist, are
non-negligible estimation errors.

COROLLARY 1. Assume Conditions 1 and 2 hold, and that X is weakly separable. For dif-205

ferent sets of (j, k, j′, k′), j, j′ = 1, . . . , P ; k, k′ = 1, . . . ,K, satisfying (j, k) 6= (j′, k′), the
Tn(j, k, j′, k′)’s are asymptotically jointly Gaussian with mean zero and covariance structure
Θ. The formula for Θ is given in the proof.

3·3. Tests based on χ2 type mixtures
LEMMA 4. For j 6= j′,

∑∞
k=1 E(χjkχj′k) = 0, and for k 6= k′,

∑∞
j=1 E(χjkχjk′) = 0. This210

also holds in the empirical version such that for j 6= j′,
∑∞

k=1 Tn(j, k, j′, k) = 0, and for k 6= k′,∑∞
j=1 Tn(j, k, j, k′) = 0.

The above lemma does not assume weak separability. Recall the fact that principal component
scores in traditional functional principal component analysis are uncorrelated. This lemma is a
generalized result for the marginal projection scores.215

Due to this linear relationship between the different terms of Tn, the asymptotic covariance Θ
will be degenerate, and thus the statistic we consider is the sum of squares of the terms of Tn
without normalizing by the covariance. In practice, for suitably chosen Pn and Kn, we use the
statistic defined as

Sn =
∑

j,j′=1,...,Pn; k,k′=1,...,Kn; (j,k)<(j′,k′)

{Tn(j, k, j′, k′)}2,

where (j, k) < (j′, k′) means (j − 1) ∗Kn + k < (j′ − 1) ∗Kn + k′.220

Take Tn to be a long vector of length m = PnKn(PnKn − 1)/2 created by stacking all of
the Tn(j, k, j′, k′) {j, j′ = 1, . . . , Pn; k, k′ = 1, . . . ,Kn; (j, k) < (j′, k′)}. Then by Corollary
1, Tn ∼ Nm(0,Θ) under H0, where we now take Θ to be a covariance matrix. Define the spec-
tral decomposition of Θ as Θ = UQUT , where Q is diagonal with diagonal entries σ1, . . . , σm,
which are the eigenvalues of Θ ordered from largest to smallest, and U = [u1 . . . um], where225

the ui are orthonormal column vectors. By Lemma 4, some of the σi are 0. Since Sn = ‖Tn‖2 =
‖UTTn‖2 and UTTn ∼ Nm(0, Q), we can write Sn =

∑m
i=1 σiAi where the Ai are independent

and identically distributed χ2
1, i.e., the null distribution of Sn is a weighted sum of χ2 distribu-

tions, which we call a χ2 type mixture.
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The Welch–Satterthwaite approximation for a χ2 type mixture (Zhang, 2013) approximates 230

Sn ∼ βχ2
d and determines β and d from matching the first 2 cumulants (the mean and the vari-

ance). This results in β = tr(Θ2)/tr(Θ) and d = {tr(Θ)}2/tr(Θ2). By using a plug-in esti-
mator of Θ, we can approximate the P-value for our test as an upper tail probability of βχ2

d.
When the first (Pn,Kn) terms do not satisfy weak separability, we have Sn→∞ in probability
by noticing that for at least one set of (j, k, j′, k′), the first term in Equation (1) in the proof of 235

Theorem 1 is on the order of n1/2.
The consistent selection of (Pn,Kn) for hypothesis testing is a challenging problem. The

optimal choice of (Pn,Kn) needs to be defined according to the problem at hand and subsequent
analysis of interest. Here we focus on the subspace where the subsequent product functional
principal component analysis is going to be carried out. A criterion we will use to evaluate a 240

given choice of (Pn,Kn) is the fraction of variance explained by the first Pn andKn components,
defined as

FVE(Pn,Kn) =
1
n

∑n
i=1

∑Pn
j=1

∑Kn
k=1 χ̂

2
i,jk

1
n

∑n
i=1

∑∞
j=1

∑∞
k=1 χ̂

2
i,jk

.

This definition can be justified by noting its relation to the normalized mean squared L2 loss of
the truncated process X̃(s, t) = µ(s, t) +

∑Pn
j=1

∑Kn
k=1 χjkψj(s)φk(t). In particular,

E(‖X − X̃‖2)
E(‖X − µ‖2)

= 1−
∑Pn

j=1

∑Kn
k=1 ηjk∑∞

j=1

∑∞
k=1 ηjk

.

The latter term is approximated by our definition of fraction of variance explained. The above 245

equality only relies on the orthogonality of the eigenfunctions, not the weak separability assump-
tions. Thus, it still makes sense to consider this definition of fraction of variance explained even
when H0 is not true.

We also define the marginal fractions of variance explained as FVES(Pn) =∑Pn
j=1 λ̂j/

∑∞
j=1 λ̂j and FVET (Kn) =

∑Kn
k=1 γ̂k/

∑∞
k=1 γ̂k, where the λ̂j are the eigen- 250

values of ĈS and the γ̂k are the eigenvalues of ĈT . In practice the infinite sums in the
denominators of FVE(Pn,Kn), FVES(Pn), and FVET (Kn) will have to be replaced with the
largest number of terms that can reasonably be considered nonzero.

Noting that
∑∞

j=1 E(χ2
jk) = γk,

∑∞
k=1 E(χ2

jk) = λj and
∑∞

j=1

∑∞
k=1 E(χ2

jk) =
∑∞

j=1 λj =∑∞
k=1 γk, we have

FVE(Pn,Kn) & FVES(Pn) + FVET (Kn)− 1,

subject to estimation error (to see, for example, that
∑∞

k=1 E(χ2
jk) = λj , take j = j′ in the proof

of Lemma 4, with no need to assume weak separability). Therefore, we propose the following 255

fraction of variance explained procedure: First choose Pn andKn such that the marginal fractions
of variance explained are at least 90%. If this choice results in FVE(Pn,Kn) ≥ 90%, use these
values of Pn andKn. If not, use the values of Pn andKn that have marginal fractions of variance
explained at least 95%, in which case FVE(Pn,Kn) is expected to be above 90%.

3·4. Bootstrap approximation 260

As an alternative to asymptotic approximation, we can also consider a bootstrap approach to
approximate the distribution of the test statistic. Theorem 1 provides theoretical support for the
use of the following empirical bootstrap procedure (Van Der Vaart & Wellner, 1996). Our simula-
tions show that the asymptotic approximation based on the χ2 type mixture has very satisfactory
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performance. We still present the bootstrap approximation here since it is generally applicable to265

similar tests where the asymptotic null distributions do not have closed form.
At each step, draw a random sample from the data X1, . . . , Xn with replacement. Denote this

sample as X∗1 , . . . , X
∗
n. Let

χ̂∗i,jk =

∫
T

∫
S
{X∗i (s, t)− X̄∗(s, t)}ψ̂∗j (s)φ̂∗k(t)dsdt,

where X̄∗ is the sample mean of the X∗i , and the ψ̂∗j and φ̂∗k are the eigenfunctions of the es-
timated marginal covariances of the X∗i . The signs of the ψ̂∗j and φ̂∗k are chosen to minimize270

‖ψ̂∗j − ψ̂j‖ and ‖φ̂∗k − φ̂k‖, respectively. Let

T ∗n(j, k, j′, k′) = n−1/2
n∑

i=1

χ̂∗i,jkχ̂
∗
i,j′k′ .

The empirical bootstrap test statistic is calculated as

S∗n =
∑

j,j′=1,...,Pn; k,k′=1,...,Kn; (j,k)<(j′,k′)

{T ∗n(j, k, j′, k′)− Tn(j, k, j′, k′)}2.

This procedure is repeated B times, and the P-value is approximated as the proportion of boot-
strap test statistics S∗n that are larger than the test statistic Sn.

Theorem 3·9·13 in Van Der Vaart & Wellner (1996) can be used to prove the validity of the275

bootstrap procedure, i.e., the conditional random laws (given data) of S∗n are asymptotically con-
sistent almost surely for estimating the laws of Sn, under the null hypothesis. By Theorem 1,
we have that under the null hypothesis, Tn can be written as Φ′P {n1/2(Pn − P )}+ o(1) and
T ∗n − Tn can be written as Φ′P {n1/2(P∗n − Pn)}+ o(1), where Φ′P is a linear continuous map-
ping that depends on the three different cases in Theorem 1. Thus, Theorem 3·9·13 applies.280

Other than the above non-studentized empirical bootstrap based on Sn, we have also consid-
ered a bootstrap procedure based on a marginally studentized test statistic, in which we divide
each term in Sn by its corresponding estimated variance θ̂(j, k, j′, k′) (which is the plug-in es-
timate of θ(j, k, j′, k′), the diagonal entry of Θ corresponding to the asymptotic variance of
Tn(j, k, j′, k′)). However, we have found this procedure is much more time consuming, and285

requires substantially higher sample size to achieve high power, in comparison to the non-
studentized empirical bootstrap method. This is not unexpected, since the form of θ(j, k, j′, k′) is
very complicated and plug-in estimation adds extra variability. Therefore, we do not recommend
the marginally studentized empirical bootstrap method.

4. NUMERICAL STUDY290

In this section, we conduct numerical experiments to check the size and power of the proposed
test for weak separability. Following the notation in Section 3, we are basically testing if the
cov(χjk, χj′k′) are all zero for (j, k) 6= (j′, k′). We consider two different choices for the joint
distribution of the χjk. The first is the multivariate normal and the second is the multivariate
t distribution. The diagonal values of Σ, the covariance matrix of the χjk, are determined by295

the matrix V = {var(χjk), j, k = 1, . . . , 8}. We consider two different choices for V , which we
denote as V1 and V2 (specified later). Under H0 (when all of the off-diagonal values of Σ are 0),
V1 corresponds to a strongly separable covariance structure, while V2 corresponds to a weakly
separable structure that is not strongly separable. To study power, for a given choice of V1 or
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V2, we take cov(χi,12, χi,21) to be the largest positive value such that Σ is positive definite, and 300

we also consider half of this value. Alternatively, we let 3 off-diagonal terms, cov(χi,12, χi,21),
cov(χi,11, χi,22), and cov(χi,13, χi,31), take their largest positive values such that Σ is positive
definite.

Empirical rejection rates at the .05 significance level from 200 simulations runs for n =
50, 100, 500 are shown in Tables 1 through 4. The fraction of variance explained method de- 305

scribed in Section 3·3 ends up with Pn = 3 and Kn = 2 in most trials, and we show results with
(Pn,Kn) chosen by this procedure, as well as directly setting (Pn,Kn) = (2, 2), (3, 3), or (4, 4)
for all trials. We see that both the χ2 type mixture approximation and the empirical bootstrap
procedure are able to control the type I error under all scenarios and achieve very good power as
n or the signal increase, although the empirical bootstrap is slightly less powerful for small n. 310

Even when the chosen nonzero off-diagonal covariance terms are set to their maximum values,
the other off-diagonal covariance terms of Σ are zero, and so the signal is moderate. The test
procedures are slightly less powerful in the multivariate t case for small n, as the asymptotics
likely come into play more quickly for the normal data. The rejection rates are in general stable
across different choices of (Pn,Kn); although (Pn,Kn) = (2, 2) seems to have higher power in 315

some cases, the power stabilizes to a reasonable value for larger (Pn,Kn).

Table 1. Rejection rates for the χ2 type mixture weak separability test procedure, using V1 and
choosing (Pn,Kn) with the fraction of variance explained procedure or as (2, 2), (3, 3), or (4, 4)

Scenario Normal Multivariate t
n = 50 FVE (2,2) (3,3) (4,4) FVE (2,2) (3,3) (4,4)
H0 0·055 0·020 0·020 0·040 0·025 0·020 0·005 0·045
cov(χ12, χ21) = 0 · 065 0·715 0·785 0·740 0·755 0·440 0·445 0·395 0·370
cov(χ12, χ21) = 0 · 13 1·000 1·000 1·000 1·000 0·935 0·965 0·940 0·940
3 nonzero terms 1·000 1·000 1·000 1·000 0·960 0·990 0·990 0·965
n = 100
H0 0·035 0·075 0·045 0·050 0·025 0·040 0·020 0·010
cov(χ12, χ21) = 0 · 065 0·985 0·985 0·985 0·985 0·800 0·810 0·785 0·710
cov(χ12, χ21) = 0 · 13 1·000 1·000 1·000 1·000 1·000 0·990 0·990 0·990
3 nonzero terms 1·000 1·000 1·000 1·000 1·000 0·990 1·000 1·000
n = 500
H0 0·060 0·060 0·040 0·055 0·020 0·045 0·020 0·045
cov(χ12, χ21) = 0 · 065 1·000 1·000 1·000 1·000 0·995 0·995 1·000 0·990
cov(χ12, χ21) = 0 · 13 1·000 1·000 1·000 1·000 1·000 1·000 1·000 1·000
3 nonzero terms 1·000 1·000 1·000 1·000 1·000 1·000 1·000 1·000

FVE, fraction of variance explained procedure.

Details of the simulation settings are as follows: We generate independent samples of data
Xi(s, t) =

∑8
j=1

∑8
k=1 χi,jkψj(s)φk(t) (i = 1, . . . , n), where the scores χi,jk are mean 0 ran-

dom variables that we generate directly. We let s and t take values from 0 to 1 on an evenly
spaced grid of 20 points. For the ψj we use the functions ψj(s) = −21/2 cos{π(n+ 1)s} for j 320

odd and ψj(s) = 21/2 sin(πns) for j even. We define the φk by taking the first 3 B-spline func-
tions produced by Matlab’s spcol function using order 4 with knots at 0, 0·5, and 1, combining
these with the first 5 ψj as defined above, and orthonormalizing using Gram–Schmidt.

Let χi be the vector of χi,jk for j, k = 1, . . . , 8. We simulate each χi independently from
either N(0,Σ) or the multivariate t distribution. In the latter case, we first simulate a vector x of 325
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Table 2. Rejection rates for the χ2 type mixture weak separability test procedure, using V2 and
choosing (Pn,Kn) with the fraction of variance explained procedure or as (2, 2), (3, 3), or (4, 4)

Scenario Normal Multivariate t
n = 50 FVE (2,2) (3,3) (4,4) FVE (2,2) (3,3) (4,4)
H0 0·030 0·025 0·030 0·025 0·015 0·030 0·015 0·005
cov(χ12, χ21) = 0 · 055 0·515 0·845 0·440 0·465 0·305 0·555 0·225 0·205
cov(χ12, χ21) = 0 · 11 0·995 0·995 0·995 0·990 0·850 0·955 0·825 0·770
3 nonzero terms 1·000 1·000 1·000 1·000 0·965 0·985 0·950 0·970
n = 100
H0 0·045 0·055 0·035 0·040 0·010 0·050 0·040 0·020
cov(χ12, χ21) = 0 · 055 0·920 0·990 0·930 0·920 0·625 0·900 0·605 0·500
cov(χ12, χ21) = 0 · 11 1·000 1·000 1·000 1·000 0·990 1·000 0·965 0·955
3 nonzero terms 1·000 1·000 1·000 1·000 0·995 1·000 1·000 0·980
n = 500
H0 0·045 0·065 0·025 0·040 0·025 0·065 0·050 0·035
cov(χ12, χ21) = 0 · 055 1·000 1·000 1·000 1·000 0·970 1·000 0·995 0·995
cov(χ12, χ21) = 0 · 11 1·000 1·000 1·000 1·000 1·000 1·000 0·990 0·995
3 nonzero terms 1·000 1·000 1·000 1·000 1·000 1·000 1·000 1·000

FVE, fraction of variance explained procedure.

Table 3. Rejection rates for the non-studentized empirical bootstrap weak separability test pro-
cedure, using V1 and choosing (Pn,Kn) with the fraction of variance explained procedure or as
(2, 2), (3, 3), or (4, 4)

Scenario Normal Multivariate t
n = 50 FVE (2,2) (3,3) (4,4) FVE (2,2) (3,3) (4,4)
H0 0·035 0·025 0·035 0·025 0·010 0·010 0·005 0·005
cov(χ12, χ21) = 0 · 065 0·670 0·680 0·650 0·640 0·350 0·375 0·330 0·300
cov(χ12, χ21) = 0 · 13 1·000 1·000 1·000 1·000 0·890 0·900 0·885 0·880
3 nonzero terms 1·000 1·000 1·000 1·000 0·920 0·920 0·920 0·915
n = 100
H0 0·070 0·060 0·060 0·060 0·015 0·010 0·015 0·015
cov(χ12, χ21) = 0 · 065 0·990 0·995 0·985 0·985 0·735 0·785 0·700 0·680
cov(χ12, χ21) = 0 · 13 1·000 1·000 1·000 1·000 0·970 0·970 0·965 0·960
3 nonzero terms 1·000 1·000 1·000 1·000 1·000 1·000 1·000 1·000
n = 500
H0 0·065 0·050 0·060 0·060 0·055 0·050 0·055 0·055
cov(χ12, χ21) = 0 · 065 1·000 1·000 1·000 1·000 0·995 0·995 0·995 0·995
cov(χ12, χ21) = 0 · 13 1·000 1·000 1·000 1·000 1·000 1·000 1·000 1·000
3 nonzero terms 1·000 1·000 1·000 1·000 1·000 1·000 1·000 1·000

FVE, fraction of variance explained procedure.

length 64 from N(0,Σ). One standard definition of a multivariate t vector is x/(u/v)1/2, where
u is a chi-square random variable with v degrees of freedom that is independent of x. However,
we use x/{u/(v − 2)}1/2 as our multivariate t vector so that its covariance matrix is Σ. We
take v = 6 in our simulations. For each of 200 trials, we simulate data Xi(s, t) (i = 1, . . . , n) in
the manner described above, estimate the marginal projection scores, calculate the test statistic,330
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Table 4. Rejection rates for the non-studentized empirical bootstrap weak separability test pro-
cedure, using V2 and choosing (Pn,Kn) with the fraction of variance explained procedure or as
(2, 2), (3, 3), or (4, 4)

Scenario Normal Multivariate t
n = 50 FVE (2,2) (3,3) (4,4) FVE (2,2) (3,3) (4,4)
H0 0·065 0·045 0·050 0·045 0·015 0·020 0·010 0·010
cov(χ12, χ21) = 0 · 055 0·420 0·785 0·390 0·380 0·220 0·395 0·160 0·150
cov(χ12, χ21) = 0 · 11 0·970 1·000 0·965 0·965 0·730 0·865 0·690 0·675
3 nonzero terms 1·000 1·000 1·000 1·000 0·895 0·925 0·885 0·885
n = 100
H0 0·025 0·010 0·020 0·020 0·035 0·035 0·030 0·020
cov(χ12, χ21) = 0 · 055 0·950 1·000 0·955 0·955 0·585 0·855 0·575 0·515
cov(χ12, χ21) = 0 · 11 1·000 1·000 1·000 1·000 0·980 0·995 0·980 0·975
3 nonzero terms 1·000 1·000 1·000 1·000 0·985 0·990 0·985 0·985
n = 500
H0 0·030 0·065 0·030 0·030 0·010 0·035 0·005 0
cov(χ12, χ21) = 0 · 055 1·000 1·000 1·000 1·000 1·000 1·000 1·000 1·000
cov(χ12, χ21) = 0 · 11 1·000 1·000 1·000 1·000 1·000 1·000 1·000 1·000
3 nonzero terms 1·000 1·000 1·000 1·000 1·000 1·000 1·000 1·000

FVE, fraction of variance explained procedure.

and obtain P-values from the test procedures as described in Section 3, using B = 1000 for the
bootstrap procedure.

We choose V1 and V2 to both give λj = exp{1 · 2(9− j)}/
{∑8

j′=1 exp(1 · 2j′)
}

(j =

1, . . . , 8) and γk = exp{1 · 6(9− k)}/
{∑8

k′=1 exp(1 · 6k′)
}

(k = 1, . . . , 8) as the eigenval-
ues of the marginal covariances CS and CT . V1 is defined as the rank 1 matrix computed from 335

the outer product of the vectors of λj and γk, while V2 is a rank 2 matrix with first 2 rows
multiples of each other and rows 3 through 8 multiples of each other.

5. APPLICATION TO BRAIN CONNECTIVITY STUDIES

Brain imaging analysis is an area where functional data increasingly arise. An important
goal in brain imaging studies is to analyze functional connectivity between different regions 340

of the brain. We focus on magnetoencephalography (MEG), which measures neuronal activity
by recording magnetic fields generated within the brain. We use MEG data collected by the Hu-
man Connectome Project, a study that has compiled a large amount of high quality multi-modal
neural data, much of which is freely accessible at https://db.humanconnectome.org (Van Essen
et al., 2013; WU-Minn HCP, 2017). We will focus on the motor task data, particularly the trials 345

where subjects moved their right hand. The signal for each trial is recorded from -1·2 to 1·2
seconds in intervals of about 2 ms, where time 0 corresponds to the start of the motion. In the
preprocessed sensor-level data (see WU-Minn HCP (2017) for preprocessing details), there are
61 subjects with motor data, and the subjects have an average of 75·38 trials. Our connectivity
analysis will focus on two regions of interest: the left primary motor cortex and the right inferior 350

parietal lobule. These regions of interest are spatially separated, likely activated during the task,
and potentially functionally connected.
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As the MEG sensors are distant from the brain, directly using their signals to represent regions
of interest can lead to spurious connectivity measurements. This is due to the volume conduc-
tion/field spread problem, in which each sensor picks up the activity of several sources, as well as355

the common input problem, in which a common source provides input to a pair of signals that do
not directly interact (Larson-Prior et al., 2013; Bastos & Schoffelen, 2015). For these reasons, we
will use source reconstruction to estimate the signals arising from the cortical surface. Source re-
construction is common in MEG analysis, but it is an inverse problem on which constraints must
be placed to obtain a unique solution (Pizzella et al., 2014). The source reconstruction method360

we use is minimum norm estimation as implemented in the Matlab package FieldTrip (Lin et al.,
2004; Oostenveld et al., 2010).

MEG signals are inherently oscillatory, and synchronization at certain frequency ranges of the
activity in different regions has been shown to be related to tasks performed by the brain (Pizzella
et al., 2014). To study how frequency-based coupling between regions of interest changes over365

the course of a task, we calculate the time-frequency representations of their signals based on
Morlet wavelets, using FieldTrip’s ft freqanalysis function. The time-frequency representation
of a signal is its representation at time t and frequency s as a complex number A(s, t)eiB(s,t),
where A(s, t) is the amplitude and B(s, t) is the phase.

Given time-frequency representations A1,k(s, t)eiB1,k(s,t) and A2,k(s, t)eiB2,k(s,t) for two sig-370

nals recorded in trial k, k = 1, . . . , nT , we use the phase locking value (Lachaux et al., 1999) to
measure their connectivity, calculated as

PLV(s, t) = (1/nT)|
nT∑
k=1

ei{B1,k(s,t)−B2,k(s,t)}|.

The phase locking value takes values from 0 to 1, with 1 indicating complete phase synchrony
over trials and 0 indicating no phase synchrony. The phase locking value, like many connectivity
measures, is based on an analogue of the cross-correlation function called the coherence, but the375

phase locking value disregards the amplitudes and considers only the magnitude of the average
of the phase differences as unit vectors in the complex plane. The phase locking value has gained
popularity due to the belief that phase differences reveal more about functional connectivity than
changes in amplitude (Lachaux et al., 1999; Aydore et al., 2013; Bastos & Schoffelen, 2015).

Because we calculate the time-frequency representation using wider time windows for lower380

frequencies, we are limited in how low of frequencies we can consider, and our preliminary
results for power show a lack of activity above 50 Hz. Thus, we calculate the time-frequency
representation from 8 to 50 Hz, corresponding to the alpha to gamma low frequency bands. In
each trial, the motion usually lasts no longer than about 0·75 seconds. The signal at a time period
shortly before time 0 is of interest, as it can represent brain activity when subjects have received385

the movement cue but have not yet reacted to it. However, the trials are not disjoint, so the signal
at times further before 0 overlaps with the signal from the previous trial. Thus, in our analysis we
will consider times for each trial on the range of -0·25 to 0·75 seconds. Calculating phase locking
value between the two source-reconstructed signals corresponding to our regions of interest, the
data we analyze is PLVi(s, t), where i = 1, . . . , 61; 8 ≤ s ≤ 50; and −0 · 25 ≤ t ≤ 0 · 75.390

Figure 1 shows the average of the phase locking value matrices over all subjects, as well
as slightly smoothed phase locking value matrices for 3 randomly selected subjects. The level
of activity seems to vary between subjects. The average phase locking value displays higher
synchrony near the beginning of the movement (time 0) in the alpha and beta bands, and the
individual subjects’ plots also show higher values near time 0. However, the average has small395



Weak separability 13

values overall, which indicates high variability between subjects, and points to the need to study
covariance structure and modes of variation.
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Fig. 1. Plots of the average source-level phase locking
value (left), and the source-level phase locking value for
3 subjects. The latter plots use the same color scale, which

is different than that used for the average.

For the phase locking value data described above, using the fraction of variance explained
procedure described in Section 3·3, we choose the number of components to be Pn = 7 and
Kn = 7. We apply the weak separability test using both the χ2 type mixture approximation (P- 400

value = 0·5293) and the empirical bootstrap (P-value = 0·9260). The weak separability test does
not reject the null hypothesis of weak separability, which supports the use of functional principal
component analysis based on products of marginal eigenfunctions. We also apply the strong
separability test of Aston et al. (2017) via their R package covsep (Tavakoli, 2016). The resulting
P-values are 1 · 198× 10−4 for their chi-square approximation and 0·08 for their non-studentized 405

empirical bootstrap method.
Product functional principal component analysis represents the data PLVi(s, t) with products

ψj(s)φk(t) of the marginal eigenfunctions, where ψj(s) represents the frequency component
and φk(t) represents the time component. The 3 estimated eigenfunction products that account
for the most variance are ψ̂1(s)φ̂1(t), ψ̂2(s)φ̂1(t), and ψ̂3(s)φ̂1(t). The variance explained by 410

ψ̂1(s)φ̂1(t) is by far the largest. The estimated marginal eigenvalues λ̂j and γ̂k are plotted in
Figure 2. We see the first eigenvalue dominates the others, and there is also a slight drop between
the second two λ̂j and the rest, reflecting the fact that ψ̂2(s)φ̂1(t) and ψ̂3(s)φ̂1(t) are the products
that explain the second and third highest amounts of variance, respectively.
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Fig. 2. Plots of the first 20 estimated marginal eigenvalues
λ̂j (left, for frequency) and γ̂k (right, for time).

The product functions ψ̂1(s)φ̂1(t), ψ̂2(s)φ̂1(t), and ψ̂3(s)φ̂1(t) are plotted in Figure 3. These 415

products capture modes of variation mainly around -0·2 to 0·2 s, from when the subject receives
the cue to move to when they just start moving. This variation can be seen more clearly in the first
temporal eigenfunction φ̂1(t) (shown on the bottom right of Figure 4, which plots the individual
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marginal eigenfunctions), which peaks slightly after 0 s. ψ̂1(s)φ̂1(t) shows that, within this time
range, subjects generally vary in synchrony from the alpha band to the beginning of the gamma420

low band, peaking within the beta band around 20–30 Hz. ψ̂2(s)φ̂1(t) shows a contrast between
the beta low band and gamma low band. That is, subjects with higher χ21 values have lower
synchrony in the beta low band and higher synchrony in the gamma low band. ψ̂3(s)φ̂1(t) shows
a contrast between the alpha band and the beta high band.
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Fig. 3. Plots of the products of the estimated eigenfunctions
that explain the most variance.
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φ̂k(t) whose products explain the most variance.

6. DISCUSSION425

Much of the benefit of using product functional principal component analysis under weak sep-
arability is related to ease of interpretation and computation; by representing the eigenfunctions
as tensor products of the marginal eigenfunctions, one consumes far fewer degrees of freedom
and only needs to compute the marginal covariances instead of the full covariance. When the
weak separable assumption does not hold, the product functional principal component analysis430

scores are correlated, and one expects to have to use more terms in product functional principal
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component analysis than in conventional functional principal component analysis to explain the
same amount of variance. Product functional principal component analysis can still be used un-
der the alternative as a dimension reduction approach, but one needs to be aware of the above
issues. We believe that the notion of weak separability will inspire new methodological devel- 435

opments for multi-way functional data analysis, such as multi-way regularization on marginal
components (Chen & Lei, 2015).

Although our data example has s and t in R, both the theory and the accompanying code for
our test work for scenarios where d1 > 1 or d2 > 1. For example, when modeling brain imaging
data Xi(s, t) observed on a dense grid of voxels or dipoles over the cortical surface, in which 440

s ∈ R2 or s ∈ R3, one can first vectorize along s by ordering the dipoles from 1 to M , compute
the marginal covariances, perform the hypothesis test of weak separability, and reorganize back
to the space S for interpretation and visualization. However, in scenarios where data are only
very sparsely observed on the domain, where individual-subject smoothing is not appropriate,
the problem is much more challenging and beyond the scope of this paper. We will possibly 445

pursue it in future work.

ACKNOWLEDGEMENT

This work is partially supported by NSF1612458.
Data were provided in part by the Human Connectome Project, WU-Minn Consortium (Prin-

cipal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 450

NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by
the McDonnell Center for Systems Neuroscience at Washington University.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes proofs of the lemmas, theo-
rem, and corollary (.pdf file), and a .zip compressed file archive with Matlab functions (.m files) 455

used to implement the test procedures, a readme file, and example code (.m file) demonstrating
the test procedures using an example data array X (.mat file).
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CHEN, K., DELICADO, P. & MÜLLER, H.-G. (2017). Modelling function-valued stochastic processes, with ap-

plications to fertility dynamics. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79,
177–196.

CHEN, K. & LEI, J. (2015). Localized functional principal component analysis. Journal of the American Statistical 475

Association 110, 1266–1275.



16 BRIAN LYNCH AND KEHUI CHEN
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