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Supplementary material for A test of weak separability for
multi-way functional data, with application to brain

connectivity studies - Proofs
BY BRIAN LYNCH AND KEHUI CHEN

Proof of Lemma 1. Let fj (j = 1, 2, . . .) and gk (k = 1, 2, . . .) be a pair of bases
that satisfies weak separability. For (j, k) 6= (j′, k′), we have 〈Cfj ⊗ gk, fj′ ⊗ gk′〉 =
E
(
〈X − µ, fj ⊗ gk〉〈X − µ, fj′ ⊗ gk′〉

)
= 0. Since the covariance operator C is diagonalized

under the orthonormal basis fj ⊗ gk (j = 1, 2, . . . ; k = 1, 2, . . .), by Mercer’s theorem,

C(s, t;u, v) =
∞∑
j=1

∞∑
k=1

ηjkfj(s)gk(t)fj(u)gk(v),

where ηjk = 〈Cfj ⊗ gk, fj ⊗ gk〉 = var (〈X − µ, fj ⊗ gk〉), and the convergence is absolute 5

and uniform.
The marginal kernel can then be written as

CS(s, u) =

∫
T

∞∑
j=1

∞∑
k=1

ηjkfj(s)gk(t)fj(u)gk(t)dt

=
∞∑
j=1

( ∞∑
k=1

ηjk

)
fj(s)fj(u).

The exchange of the integral and sums is allowed by the Fubini–Tonelli theorem, by noticing 10

that ∫
T

∞∑
j=1

∞∑
k=1

|ηjkfj(s)gk(t)fj(u)gk(t)|dt

≤
∫
T


∞∑
j=1

∞∑
k=1

ηjkf
2
j (s)g2k(t)


1/2

∞∑
j=1

∞∑
k=1

ηjkf
2
j (u)g2k(t)


1/2

dt

=

∫
T
C(s, t; s, t)1/2C(u, t;u, t)1/2dt

≤
∫
T

sup
s,t
|C(s, t, s, t)|dt ≤ ∞, 15

where we use the Cauchy–Schwarz inequality.
Thus, we see that the fj are eigenfunctions of CS with eigenvalues λj =

∑∞
k=1 ηjk. An analo-

gous computation shows that the gk are eigenfunctions of CT with eigenvalues γk =
∑∞

j=1 ηjk.
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Proof of Lemma 2. With strong separability, we have C(s, t;u, v) = aC1(s, u)C2(t, v). From
the definition of CS , we have

CS(s, u) =

∫
T
C(s, t;u, t)dt = aC1(s, u)

∫
T
C2(t, t)dt = aC1(s, u).

An analogous argument shows CT (t, v) = aC2(t, v). Note that a =
∫
T
∫
S C(s, t; s, t)dsdt. If

we use the marginal eigenfunctions ψj and φk as the bases, it is easy to show that when (j, k) 6=20

(j′, k′), cov(χjk, χj′k′) =
∫
T ,S,T ,S C(s, t;u, v)ψj(s)φk(t)ψj′(u)φk′(v)dsdtdudv = 0. Thus,

we have weak separability.

Proof of Lemma 3. When V is of rank 1, V can be written V = WZT , where W and Z are
column vectors with entries (w1, w2, . . .) and (z1, z2, . . .), respectively. Thus, ηjk = wjzk, and
under weak separability, Equation (3) in the paper can be written25

C(s, t;u, v) =
∞∑
j=1

∞∑
k=1

wjzkψj(s)ψj(u)φk(t)φk(v)

=


∞∑
j=1

wjψj(s)ψj(u)


{ ∞∑

k=1

zkφk(t)φk(v)

}
.

The above can be normalized to fit the definition of strong separability in Lemma 2.
Under strong separability, from the proof of Lemma 2 we have

C(s, t;u, v) =
1∫

T
∫
S C(s, t; s, t)dsdt

CS(s, u)CT (t, v),

so ηjk = {1/
∫
T
∫
S C(s, t; s, t)dsdt}λjγk, and then V = {1/

∫
T
∫
S C(s, t; s, t)dsdt}ΛΓT .

Proof of Theorem 1. For H1 and H2 two real separable Hilbert spaces, we further define the30

partial trace with respect to H1 as the unique bounded linear operator tr1 : BTr(H1 ⊗H2)→
BTr(H2) satisfying tr1(C1⊗̃C2) = tr(C1)C2 for all C1 ∈ BTr(H1), C2 ∈ BTr(H2). The par-
tial trace with respect to H2 is defined symmetrically and denoted by tr2. With the notation of
partial trace, we can see that CT = tr1(C) and CS = tr2(C). The estimated marginal covari-
ance operators can also be written as ĈS = tr2(Cn) and ĈT = tr1(Cn). We use these equalities35

in proofs but not in computation. In practice, the estimated marginal covariances are calculated
without having to calculate Cn.

We use similar notation and conditions as used by Aston et al. (2017). However, to derive the
asymptotic distribution of their test statistic for strong separability, they focus on deriving the
asymptotic distribution of the difference between the sample covariance operator and its strong40

separable approximation. Then by projecting on the estimated marginal eigenfunctions, they
check the requirement for strong separability that ηjk = aλjγk. They do not need further results
on the estimation errors of the marginal eigenfunctions and random scores besides that they are
consistent. By contrast, our proofs involve the expansion of ψ̂j − ψj and φ̂k − φk, and four-way
tensor products with indices (j, k, j′, k′).45

From Condition 1 in Section 3·2 and the remark following it, Zn = n1/2(Cn − C) converges
to a Gaussian random element in BTr{L2(S × T )} with mean 0 and covariance structure ΣC =
E[{(X − µ)⊗ (X − µ)− C}⊗̃{(X − µ)⊗ (X − µ)− C}].
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For Tn as defined in Equation (4) in the paper,

Tn(j, k, j′, k′) = n1/2〈Cn(ψ̂j ⊗ φ̂k), ψ̂j′ ⊗ φ̂k′〉 = n1/2tr{(ψ̂j ⊗ ψ̂j′)⊗̃(φ̂k ⊗ φ̂k′)Cn}.

Using (5.1.8) in Hsing & Eubank (2015), we have

(ψ̂j − ψj) =Mj(ĈS − CS)ψj + op(ψ̂j − ψj),

whereMj =
∑

m6=j(λj − λm)−1ψm ⊗ ψm ∈ BTr(S) and λj is the jth eigenvalue ofCS . Anal-
ogously,

(φ̂k − φk) =M′k(ĈT − CT )φk + op(φ̂k − φk),

where M′k =
∑

m6=k(γk − γm)−1φm ⊗ φm ∈ BTr(T ) and γk is the kth eigenvalue of CT .
Here, Condition 2 is used to guarantee that Mj and M′k exist for j = 1, . . . , P and k = 50

1, . . . ,K.
Using ĈS − CS = tr2(Cn − C) and ĈT − CT = tr1(Cn − C), we can write Tn(j, k, j′, k′)

as

Tn(j, k, j′, k′) =n1/2tr
{

(ψj ⊗ ψj′)⊗̃(φk ⊗ φk′)C
}

(1)

+ n1/2tr
{

(ψj ⊗ ψj′)⊗̃(φk ⊗ φk′)(Cn − C)
}

55

+ n1/2tr
(
(ψj ⊗ ψj′)⊗̃[φk ⊗ {M′k′tr1(Cn − C)φk′}]C

)
+ n1/2tr

(
(ψj ⊗ ψj′)⊗̃[{M′ktr1(Cn − C)φk} ⊗ φk′ ]C

)
+ n1/2tr

(
[ψj ⊗ {Mj′tr2(Cn − C)ψj′}]⊗̃(φk ⊗ φk′)C

)
+ n1/2tr

(
[{Mjtr2(Cn − C)ψj} ⊗ ψj′ ]⊗̃(φk ⊗ φk′)C

)
+ op(1). 60

The first term in the above equation is zero under H0, since under H0 we have the represen-
tation C(s, t, u, v) =

∑∞
j=1

∑∞
k=1 ηjkψj(s)ψj(u)φk(t)φk(v), where ηjk = var(χjk). Also, by

Proposition C·1 in Aston et al. (2017), we have that tr{Atr1(T )} = tr{(Id1⊗̃A)T}, where Id1
is an identity operator on S, A ∈ B(T ), and T ∈ BTr(S × T ). An analogous identity holds for
tr2(T ). Using these facts, we give a simplified form of Tn(j, k, j′, k′) under H0 for 3 cases: 65

(Case i) j 6= j′ and k 6= k′:

Tn(j, k, j′, k′) = tr
[
{(ψj ⊗ ψj′)⊗̃(φk ⊗ φk′)}Zn

]
+ op(1).

(Case ii) j = j′ and k 6= k′:

Tn(j, k, j′, k′) =tr
[
{(ψj ⊗ ψj′)⊗̃(φk ⊗ φk′)}Zn

]
+tr

(
[Id1⊗̃{ηjk′(φk ⊗ φk′)M′k}]Zn

)
+tr

(
[Id1⊗̃{ηjk(φk′ ⊗ φk)M′k′}]Zn

)
+ op(1).

(Case iii) j 6= j′ and k = k′: 70

Tn(j, k, j′, k′) =tr
[
{(ψj ⊗ ψj′)⊗̃(φk ⊗ φk′)}Zn

]
+tr

(
[{ηjk(ψj′ ⊗ ψj)Mj′}⊗̃Id2]Zn

)
+tr

(
[{ηj′k(ψj ⊗ ψj′)Mj}⊗̃Id2]Zn

)
+ op(1).

In each of the above cases, two or more of the terms in Equation (1) end up being zero due
to the orthogonality of the eigenfunctions. The latter 2 cases can be simplified to get the result 75
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in the statement of the theorem by noting that ηjk′(φk ⊗ φk′)M′k = ηjk′(γk − γk′)−1φk ⊗ φk′
and ηjk(ψj′ ⊗ ψj)Mj′ = ηjk(λj′ − λj)−1ψj′ ⊗ ψj .

Proof of Corollary 1. From Theorem 1, we can see that all the terms of Tn(j, k, j′, k′) can
be written in the form tr{(A1⊗̃A2)Zn} for some A1 ∈ B(S) and A2 ∈ B(T ). Since Zn con-
verges to a Gaussian random element and tr{(A1⊗̃A2)Zn} is a continuous linear mapping, the80

Tn(j, k, j′, k′) are asymptotically jointly Gaussian for different sets of (j, k, j′, k′). Let Θ be the
covariance structure of the asymptotic joint distribution of the Tn(j, k, j′, k′), and define Z to
be a Gaussian random element with the limiting distribution of Zn. By the continuous mapping
theorem, Θ can be calculated from terms of the form

E[tr{(A1⊗̃A2)Z}tr{(B1⊗̃B2)Z}] = tr

{
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

}
, (2)

where ΣC is defined as in the proof of Theorem 1.85

Recall the Karhunen–Loève expansion of the process X(s, t) = µ(s, t) +∑∞
j=1

∑∞
k=1 χjkψj(s)φk(t). We define uij = ψi ⊗ ψj ∈ BHS(S), vij = φi ⊗ φj ∈ BHS(T ),

βi,i′,j,j′,k,k′,l,l′ = E(χii′χjj′χkk′χll′), and ηii′ = E(χ2
ii′). With weak separability, we have

tr

{
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

}
=

∑
i,i′,j,j′,k,k′,l,l′

βi,i′,j,j′,k,k′,l,l′tr(A1uij)tr(A2vi′j′)tr(B1ukl)tr(B2vk′l′)90

−
∑

i,i′,j,j′

ηii′ηjj′tr(A1uii)tr(B1ujj)tr(A2vi′i′)tr(B2vj′j′).

Each of the trace terms in the above equation can be evaluated using the identities tr(Id1uij) =
I(i = j), tr(Id2vi′j′) = I(i′ = j′), tr{(ψj1 ⊗ ψj′1

)uij} = I(i = j1)I(j = j′1), and tr{(φk1 ⊗
φk′1)vi′j′} = I(i′ = k1)I(j′ = k′1). From these identities and the possible forms of A1, A2, B1,
and B2 given in Theorem 1, it follows that the second sum is always 0. The first sum can be95

simplified by considering 9 cases, as follows:
(Case 1) A1 = a1ψj1 ⊗ ψj′1

, A2 = a2φk1 ⊗ φk′1 , B1 = b1ψj2 ⊗ ψj′2
, B2 = b2φk2 ⊗ φk′2 :

tr

{
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

}
= a1a2b1b2βj1,k1,j′1,k′1,j2,k2,j′2,k′2 .

(Case 2) A1 = Id1, A2 = a2φk1 ⊗ φk′1 , B1 = b1ψj2 ⊗ ψj′2
, B2 = b2φk2 ⊗ φk′2 :

tr

{
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

}
= a2b1b2

∞∑
i=1

βi,k1,i,k′1,j2,k2,j′2,k′2 .

(Case 3) A1 = a1ψj1 ⊗ ψj′1
, A2 = Id2, B1 = b1ψj2 ⊗ ψj′2

, B2 = b2φk2 ⊗ φk′2 :

tr

{
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

}
= a1b1b2

∞∑
i′=1

βj1,i′,j′1,i′,j2,k2,j′2,k′2 .

(Case 4) A1 = a1ψj1 ⊗ ψj′1
, A2 = a2φk1 ⊗ φk′1 , B1 = Id1, B2 = b2φk2 ⊗ φk′2 :

tr

{
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

}
= a1a2b2

∞∑
k=1

βj1,k1,j′1,k′1,k,k2,k,k′2 .
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(Case 5) A1 = a1ψj1 ⊗ ψj′1
, A2 = a2φk1 ⊗ φk′1 , B1 = b1ψj2 ⊗ ψj′2

, B2 = Id2:

tr

{
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

}
= a1a2b1

∞∑
k′=1

βj1,k1,j′1,k′1,j2,k′,j′2,k′ .

(Case 6) A1 = Id1, A2 = a2φk1 ⊗ φk′1 , B1 = Id1, B2 = b2φk2 ⊗ φk′2 :

tr

{
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

}
= a2b2

∞∑
i=1

∞∑
k=1

βi,k1,i,k′1,k,k2,k,k′2 .

(Case 7) A1 = Id1, A2 = a2φk1 ⊗ φk′1 , B1 = b1ψj2 ⊗ ψj′2
, B2 = Id2:

tr

{
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

}
= a2b1

∞∑
i=1

∞∑
k′=1

βi,k1,i,k′1,j2,k′,j′2,k′ .

(Case 8) A1 = a1ψj1 ⊗ ψj′1
, A2 = Id2, B1 = Id1, B2 = b2φk2 ⊗ φk′2 :

tr

{
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

}
= a1b2

∞∑
i′=1

∞∑
k=1

βj1,i′,j′1,i′,k,k2,k,k′2 .

(Case 9) A1 = a1ψj1 ⊗ ψj′1
, A2 = Id2, B1 = b1ψj2 ⊗ ψj′2

, B2 = Id2:

tr

{
(A1⊗̃A2)

⊗̃
(B1⊗̃B2)ΣC

}
= a1b1

∞∑
i′=1

∞∑
k′=1

βj1,i′,j′1,i′,j2,k′,j′2,k′ .

In the above, a1, a2, b1, and b2 are scalar constants. Using the above, all the terms in Θ can be
obtained from straightforward but tedious calculations.

To illustrate the calculation of Θ(j, k, j′, k′, l,m, l′,m′), the term in Θ corresponding to the
asymptotic covariance of Tn(j, k, j′, k′) and Tn(l,m, l′,m′), we consider as an example the case 100

where j 6= j′, k 6= k′, l 6= l′, and m 6= m′. Here,

Θ(j, k, j′, k′, l,m, l′,m′)

by Thm. 1 (i)
= E

(
tr
[
{(ψj ⊗ ψj′)⊗̃(φk ⊗ φk′)}Z

]
tr
[
{(ψl ⊗ ψl′)⊗̃(φm ⊗ φm′)}Z

])
by Eq. (2)

= tr

[
{(ψj ⊗ ψj′)⊗̃(φk ⊗ φk′)}

⊗̃
{(ψl ⊗ ψl′)⊗̃(φm ⊗ φm′)}ΣC

]
by Case 1

= βj,k,j′,k′,l,m,l′,m′ = E(χjkχj′k′χlmχl′m′), 105

where we have used A1 = ψj ⊗ ψj′ , A2 = φk ⊗ φk′ , B1 = ψl ⊗ ψl′ , and B2 = φm ⊗ φm′ .

Proof of Lemma 4. Let XN (s, t) = µ(s, t) +
∑N

j=1

∑N
k=1 χjkψj(s)φk(t), and let CN denote

the covariance structure of XN . Thus,

CN (s, t;u, v) =

N∑
j=1

N∑
j′=1

N∑
k=1

N∑
k′=1

cov(χjk, χj′k′)ψj(s)ψj′(u)φk(t)φk′(v).

It is easy to show thatCN converges toC in Hilbert–Schmidt norm. LetCS,N = tr2(CN ), which
converges to CS because tr2 is continuous and linear. We know that 〈CSψj , ψj′〉 = 0 for j 6= j′.
Therefore, for any ε > 0, we can find an N such that |〈CS,Nψj , ψj′〉| < ε.
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By definition,110

〈CS,Nψj , ψj′〉 =

∫
S

∫
S

{∫
T
CN (s, t;u, t)dt

}
ψj(s)ψj′(u)dsdu

=

∫
S

∫
S

∫
T

N∑
l=1

N∑
l′=1

N∑
k=1

N∑
k′=1

cov(χlk, χl′k′)ψl(s)ψl′(u)φk(t)φk′(t)ψj(s)ψj′(u)dtdsdu

=

N∑
k=1

cov(χjk, χj′k)

Therefore, limN
∑N

k=1 cov(χjk, χj′k) = 0, i.e.,
∑∞

k=1 cov(χjk, χj′k) = 0 for j 6= j′.
The same argument holds for the empirical version. Analogous calculations can be done for115

k 6= k′ to show that
∑∞

j=1 cov(χjk, χjk′) = 0 and
∑∞

j=1 Tn(j, k, j, k′) = 0.
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