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Brain connectivity studies

“Over the past 20 years, neuroimaging has become a
predominant technique in systems neuroscience. One
might envisage that over the next 20 years the
neuroimaging of distributed processing and
connectivity will play a major role in disclosing the
brains functional architecture and operational
principles.” – Friston 2011, Brain connectivity



Brain connectivity studies

• Human connectome project (HCP): publicaly available data sets,
processing pipelines and code.

• Structure connectivity, functional connectivity, effective
connectivity.

Results
Global and Nodal Properties of Coactivation and Connectivity
Networks. The coactivation network was topologically complex in
several ways. The nodal degree distribution was fat-tailed with
high-degree hub nodes located in: thalamus; putamen; insula;
prefrontal, premotor, and precentral cortex; inferior parietal
cortex; and ventral occipital cortex (Fig. 1A andC). Physically, this
topology was embedded parsimoniously, in terms of the connec-
tion distance between coactivated nodes (Fig. 1D). Most con-
nections or edges were short distance (median length of 57 mm;
significantly shorter than random networks; P < 10−3, permuta-
tion test). Relatively few edges were long distance, and these were
often interhemispheric projections between bilaterally homotopic
regions [14% of longest connections (defined as top 10 percentile)
were homotopic; significantly more than random; P < 10−3, per-
mutation test]. Although the network cost was overall low, as
measured by the distance of connections, the network topology
still managed to balance integration and segregation between all
brain regions: the clustering of the network thresholded at sparse
levels was much higher than random, while retaining a similar
path length, i.e., it was small world (21) (Fig. S1).
In all these respects, the organization of the coactivation

network was convergent with properties of a comparable func-
tional connectivity network generated from resting-state fMRI
data. As known from prior studies (22, 23), and reproduced here,
resting-state fMRI networks are small world, with fat-tailed
degree distributions and parsimonious distance distributions (Fig.
1 C and D, and Fig. S1).

The correspondence between coactivation and connectivity
networks was confirmed more quantitatively. The measure of
functional coactivation (Jaccard index) was positively correlated
with the functional connectivity measure (Z-normalized Pearson’s
correlation): strongly connected regions in the resting-state data
tended to be strongly coactivated in the meta-analysis (r = 0.49;
Fig. 1B). Both networks had fat-tailed degree distributions. The
nodal degrees were significantly correlated between the two
networks (Spearman’s ρ = 0.27 for degree; ρ = 0.3 for weighted
degree). These results indicate that nodes that were high-degree
hubs in one network tended also to be hubs in the other, al-
though the correspondence was not perfect. There were also
differences in the length of connections, with the coactivation
network having more long-range edges (Fig. 1D), particularly
when considering the most strongly coactivated pairs of nodes
(Fig. S2).

Modularity of Coactivation and Connectivity Networks.By a classical
Newman decomposition (24), the coactivation network was
found to be modular (Q = 0.47). It comprised four large mod-
ules, labeled anatomically: occipital, central (including sensori-
motor areas), frontoparietal, and default mode (including
medial frontal cortex, precuneus and posterior cingulate cortex,
lateral parietal and temporal cortex, amygdala, and hippocam-
pus) (25). The connectivity network derived from resting-state
data were also modular (Q = 0.49), with four modules that
approximated anatomically to the modules of the coactivation
network (Fig. 1A and Fig. S3). The correspondence between
coactivation and connectivity network modular decompositions

Fig. 1. The functional coactivation network based on meta-analysis of task-related fMRI studies has similar modularity and other properties to a functional
connectivity network based on resting-state fMRI data. (A) Coactivation and connectivity networks plotted in anatomical space. The edges are defined by the
minimum spanning tree for illustrative purposes. The size of the nodes is proportional to their weighted degree (strength), and their color corresponds to
module membership. (B) Relationship between the coactivation metric (Jaccard index) and the connectivity metric (resting-state fMRI time series correlations)
for every pair of regions. (C) Degree and (D) distance distributions of the coactivation network and a resting-state fMRI connectivity network.
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DCM for EEG/MEG/LFP

Biophysical models in DCMs for EEG/MEG/LFP data are typically
considerably more complex than in DCMs for fMRI. This is because the
exquisite richness in temporal information contained by electrophys-
iologicallymeasured neuronal activity can only be captured bymodels
that represent neurobiologically quite detailed mechanisms.

The DCM paper introducing DCM for EEG/MEG data (David et al.
2006) relied on a so-called “neural mass” model, whose explanatory
power for induced and evoked responses had been evaluated
previously (David and Friston 2003, David et al. 2005). This model
assumes that the dynamics of an ensemble of neurons (e.g., a cortical
column) can be well approximated by its first-order moment, i.e., the
neural mass. Typically, the system's states x are the expected (over
the ensemble) postsynaptic membrane depolarization and current.
Each region is assumed to be composed of three interacting
subpopulations (pyramidal cells, spiny-stellate excitatory and inhib-
itory interneurons) whose (fixed) intrinsic connectivity was derived
from an invariantmeso-scale cortical structure (Jansen and Rit, 1995).
The evolution function of each subpopulation relies on two operators:
a temporal convolution of the average presynaptic firing rate yielding
the average postsynaptic membrane potential and an instantaneous
sigmoidal mapping from membrane depolarization to firing rate.4

Critically, three qualitatively different extrinsic (excitatory) connec-

tions types are considered (cf. Felleman and Van Essen 1991): (i)
bottom-up or forward connections that originate in agranular layers
and terminate in layer 4, (ii) top-down or backward connections that
connect agranular layers and (iii) lateral connections that originate in
agranular layers and target all layers (see Fig. 2). Lastly, the
observation function g models the propagation of electromagnetic
fields through head tissues (see e.g., Mosher et al. 1999). This “volume
conduction” phenomenon is well known to result in a spatial mixing
of the respective contributions of cortically segregated sources in the
measured scalp EEG/MEG data.5 This forward model enables DCM to
model differences in condition-specific evoked responses and explain
them in terms of context-dependent modulation of connectivity (see,
e.g., Kiebel et al. 2007a,b).

Following the initial paper by David et al. (2006), a number of
extensions to this “neural mass” DCM were proposed relating to both
spatial and temporal aspects of MEG/EEG data. Concerning the spatial
domain, one problem is that the position and extent of cortical sources
are difficult to specify precisely a priori. Kiebel et al. (2006) proposed
to estimate the positions and orientations φ of “equivalent current
dipoles” (point representations of cortical sources) in addition to the
evolution parameters θ. Fastenrath et al. (2008) introduce soft
symmetry constraints which are useful to model bilateral homotopic
sources. Daunizeau et al. 2009a included two sets of observation
parameters φ: the unknown spatial profile of spatially extended
cortical sources and the relative contribution of neural subpopulations

4 Marreiros et al. (2008b) interpret this sigmoid mapping as the consequence of the
stochastic dispersion of membrane depolarization (and action potential thresholds)
within the neural ensemble.

Fig. 2. DCM for EEG/MEG data. Right: neuronal features at the micro-scale that affect the level of the neural ensemble, i.e., at the meso-scale (centre): (i) sigmoidal transformation,
describing how mean postsynaptic membrane potential is linked to mean presynaptic firing rate, and (ii) temporal convolution (kernel shown) of mean presynaptic firing rate
yielding mean postsynaptic membrane depolarization. Centre: the meso-scale properties that affect the macro-scale (left), i.e., within-region invariant connectivity structure
between pyramidal cells (PC), excitatory interneurons (EI) and inhibitory interneurons (II) subpopulations across cortical layers. Left: the macro-scale effective connectivity
structure.

5 This volume conduction is neglected for LFP data obtained by intracerebral
electrodes.
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Figure: Crossley 2013, Friston 2011

• Functional connectivity is some type of statistical dependence
among measured time series.



Functional connectivity measure

• Various methods have been proposed to characterize the
functional connectivity measured with different modalities
(EEG/MEG, fMRI etc).

• Correlation, partial correaltion, mutual information, coherence,
phase locking values, among others.

• Functional data approach for correlation (He et al. 2016).
• Wang et al. 2014 (Frontiers in neuroscience): 42 methods,

no-single measure is optimal for all types of data.
• Bastos et al. 2016 (Frontiers in systems Neuroscience): more on

neuronal oscillartory.



Brain segregation and integration

• Long history of functional segregation and the localization of
function.

• Accurate parcellation provides
• efficient comparisons across subjects and studies.
• a foundation for illuminating the functional and structural

organization of the brain
• a means to reduce data complexity while improving statistical

sensitivity and power for many neuroimaging studies.

• A single function may involve many specialized areas and their
functional integration among them.

• Areas differ from their neighbors in microstructural architecture,
functional specialization, connectivity with other areas.

• (Glasser 2016, Nature) used multi-source and multi-methods to
detect 180 areas.



Community detection & brain parcellation
• G = (V,E), represented by an adjacency matrix A = (aij)m×m

• Node: depends on resolution
• Edge: depends on the measure and threshold
• Most modularity based approaches: more inter-community links,

less intra-community links
• Stochastic block model: the connectivity patten is similar within

communities.

Results
Global and Nodal Properties of Coactivation and Connectivity
Networks. The coactivation network was topologically complex in
several ways. The nodal degree distribution was fat-tailed with
high-degree hub nodes located in: thalamus; putamen; insula;
prefrontal, premotor, and precentral cortex; inferior parietal
cortex; and ventral occipital cortex (Fig. 1A andC). Physically, this
topology was embedded parsimoniously, in terms of the connec-
tion distance between coactivated nodes (Fig. 1D). Most con-
nections or edges were short distance (median length of 57 mm;
significantly shorter than random networks; P < 10−3, permuta-
tion test). Relatively few edges were long distance, and these were
often interhemispheric projections between bilaterally homotopic
regions [14% of longest connections (defined as top 10 percentile)
were homotopic; significantly more than random; P < 10−3, per-
mutation test]. Although the network cost was overall low, as
measured by the distance of connections, the network topology
still managed to balance integration and segregation between all
brain regions: the clustering of the network thresholded at sparse
levels was much higher than random, while retaining a similar
path length, i.e., it was small world (21) (Fig. S1).
In all these respects, the organization of the coactivation

network was convergent with properties of a comparable func-
tional connectivity network generated from resting-state fMRI
data. As known from prior studies (22, 23), and reproduced here,
resting-state fMRI networks are small world, with fat-tailed
degree distributions and parsimonious distance distributions (Fig.
1 C and D, and Fig. S1).

The correspondence between coactivation and connectivity
networks was confirmed more quantitatively. The measure of
functional coactivation (Jaccard index) was positively correlated
with the functional connectivity measure (Z-normalized Pearson’s
correlation): strongly connected regions in the resting-state data
tended to be strongly coactivated in the meta-analysis (r = 0.49;
Fig. 1B). Both networks had fat-tailed degree distributions. The
nodal degrees were significantly correlated between the two
networks (Spearman’s ρ = 0.27 for degree; ρ = 0.3 for weighted
degree). These results indicate that nodes that were high-degree
hubs in one network tended also to be hubs in the other, al-
though the correspondence was not perfect. There were also
differences in the length of connections, with the coactivation
network having more long-range edges (Fig. 1D), particularly
when considering the most strongly coactivated pairs of nodes
(Fig. S2).

Modularity of Coactivation and Connectivity Networks.By a classical
Newman decomposition (24), the coactivation network was
found to be modular (Q = 0.47). It comprised four large mod-
ules, labeled anatomically: occipital, central (including sensori-
motor areas), frontoparietal, and default mode (including
medial frontal cortex, precuneus and posterior cingulate cortex,
lateral parietal and temporal cortex, amygdala, and hippocam-
pus) (25). The connectivity network derived from resting-state
data were also modular (Q = 0.49), with four modules that
approximated anatomically to the modules of the coactivation
network (Fig. 1A and Fig. S3). The correspondence between
coactivation and connectivity network modular decompositions

Fig. 1. The functional coactivation network based on meta-analysis of task-related fMRI studies has similar modularity and other properties to a functional
connectivity network based on resting-state fMRI data. (A) Coactivation and connectivity networks plotted in anatomical space. The edges are defined by the
minimum spanning tree for illustrative purposes. The size of the nodes is proportional to their weighted degree (strength), and their color corresponds to
module membership. (B) Relationship between the coactivation metric (Jaccard index) and the connectivity metric (resting-state fMRI time series correlations)
for every pair of regions. (C) Degree and (D) distance distributions of the coactivation network and a resting-state fMRI connectivity network.
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can naturally reflect the intrinsic properties of the
network with modularity structure and exhibit local
mixing behaviors. Based on large deviation theory,15

this algorithm sheds light on the fundamental
significance of the network communities and the
intrinsic relationships between the modularity and
the characteristics of the network. See Supplementary
Information for more details.

Results

Canonical template
The six-community structure constructed for the
whole brain from 37 healthy subjects is shown in
Figure 1a. Each dot represents a significant link
between the two brain regions, with their names
listed in Table 1. For clarity, only one dot is plotted for
any two linked regions and it is easy to see the
existence of the six communities in the whole brain.
We have observed this same structure in an even
larger population of around 400 people (data from
Cambridge USA and Beijing publicly available in
Biswal et al.,25 results not shown). Figure 1b is the
actual correlation matrix for a randomly selected
individual, showing again the clear community
structure. The six communities correspond to six
resting-state networks (RSN), which can be identified
in terms of broad functions and can be classified as a
default mode network (RSN1), an attention network
(RSN2), a visual recognition network (RSN3),
an auditory network (RSN4), sensory-motor areas
(RSN5) and a subcortical network (RSN6). Figure 1c
shows the medial and lateral views of the cortical
surface mapping of the six-community structure.

FEMDD and RMDD patients

For both the 15 FEMDD patients and 24 RMDD
patients, functional maps were constructed and
compared with those for the healthy subject group.
Comparing the FEMDD network with the canonical
template from healthy subjects, there are 97 common
links that appear in both networks, 14 links that
appear in healthy subjects but are absent in the
FEMDD network and 15 links that appear in the
FEMDD network but cannot be found in the canonical
template. For the RMDD and healthy subject net-
works, there are 93 common links, 14 links that only
appear in the RMDD network and 18 links that appear
in the healthy subjects only. In order to rank the
significance of the change for each link, a score is
defined as follows for each particular link:

S ¼ Lh

Nh
"

Lp

Np

where s is the score for a particular link, Lp is the
number of this link present in the individual net-
works of depressives, Np is the total number of
patients, Lh is the number of this link present in the
individual networks of normal controls and Nh is the
total number of healthy controls. Scores for different
links in the two hemispheres between the FEMDD
network and the canonical template are shown in
Figure 2a and those between the RMDD network and
canonical template in Figure 2b. The summations of
the scores for links within each RSN in both FEMDD
and RMDD networks are shown in Figure 2c. To better
visualize the changes, Figures 3a and b show the
altered connections for the two patient groups but
without differentiating between brain hemispheres.

Figure 1 (a) Community structure of the normal template. (b) The correlation coefficient matrix of the Blood Oxygenation
Level Dependent (BOLD) signals from 90 regions of interest (ROIs) of one randomly selected subject. (c) (Left) Medial view of
the surface of the brain. (Right) The lateral view of the surface of the brain. Different colors represent different communities.

Depression uncouples brain hate circuit
H Tao et al

104

Molecular Psychiatry



Special features in brain connectivity problem

• The nodes are naturally embedded in a three-dimensional brain
space

• Connectivity between adjacent nodes is sometimes
over-represented due to technical reasons.

• Account for the spurious connectivity in adjacent nodes by
removing the effect of spatial location so as to recover
functionally distinct brain regions (“communities”).

• Especially relavant when doing subdivision parcellation (small
areas).

• Feature adjusted stochastic block model (FASBM)



The stochastic block model

• Data: adjacency matrix A ∈ {0,1}n×n, where Aij indicates the
presence/absence of an edge between node i and node j.

• Aii = 0, Aij = Aji, ∀ i, j.
• Each node i belongs to a community with label ri ∈ {1, ...,K}.
• Given R = (r1, ...,rn) and B,

Aij ∼ Bernoulli(Bri,rj), independently.

• B ∈ [0,1]K×K , symmetric, is the community-wise connectivity.
• Nodes in the same community have similar connectivity patterns.



Feature adjusted stochastic block model

The network Y is generated by

Yij =


exponential family with mean µij if i < j
0 if i = j
Yji if i > j

FASBM is formulated as

E(Yij) = µij = g−1(θrirj + f (β Tzij)), with ‖β‖= 1.



Feature adjusted stochastic block model

E(Yij) = µij = g−1(θrirj + f (β Tzij)), with ‖β‖= 1.

• SBM is a special case of FASBM

• Model relational data with single parameter exponential family;
allow for a scaling parameter.

• Nonparametric estimation of the node feature effect.

• Can take multiple node features.



Model Fitting

• Maximum likelihood estimation in terms of (g,θ ,β , f ) : but no
close form solution.

• Alternates between two stages of maximization:
1. First with respect to the parameters in the block model

component, g and θ ,
2. and then with respect to the parameters in the single-index model

component, f and β .

• We adapt the labeling switch algorithms (Bickel& Chen 2009)
for the SBM to stage 1 and the estimation procedures for fitting
single-index models (Carrol et al 1997) to stage 2.

• Paper and matlab package available upon request.



Simulation setting

• Generate network with m nodes and K community.

• Yij ∼ Bernoulli(g−1(θ rirj + f (dij))).

• θ = logit
(

0.5 0.2
0.2 0.2

)
and θ = logit

 0.5 0.2 0.2
0.2 0.3 0.2
0.2 0.2 0.1

.

• Compute dij as distance between node i and node j

• Let f = asin(−8dij), with a taking different values, 0,1.4 or 1.8



Simulation result for K = 2

m = 100 m = 200 m = 400

FASBML SBML SPEC FASBML SBML SPEC FASBML SBML SPEC

a = 0
Misp 0.012 0.012 0.041 0.0004 0.0004 0.006 0 0 0.0003

NMI 0.924 0.924 0.783 0.997 0.997 0.955 1 1 0.998

a = 1.4
Misp 0.157 0.443 0.128 0.012 0.469 0.079 0.0001 0.481 0.045

NMI 0.592 0.038 0.470 0.962 0.005 0.625 0.999 0.002 0.75

a = 1.8
Misp 0.174 0.461 0.182 0.036 0.469 0.132 0.005 0.482 0.105

NMI 0.524 0.007 0.349 0.908 0.004 0.464 0.989 0.002 0.549



Simulation result for K = 3

m = 100 m = 200 m = 400

FASBML SBML SPEC FASBML SBML SPEC FASBML SBML SPEC

a = 0
Misp 0.262 0.265 0.298 0.073 0.075 0.185 0.011 0.011 0.074

NMI 0.546 0.544 0.404 0.825 0.824 0.545 0.954 0.953 0.753

a = 1.4
Misp 0.380 0.535 0.407 0.167 0.524 0.352 0.038 0.534 0.335

NMI 0.332 0.099 0.272 0.682 0.117 0.331 0.910 0.117 0.351

a = 1.8
Misp 0.421 0.566 0.450 0.197 0.573 0.434 0.020 0.592 0.436

NMI 0.260 0.053 0.209 0.625 0.050 0.244 0.919 0.038 0.270



Fitted nonparametric functions

(a) f (x) = 2exp(−8x)−2
(b) f (x) = 10x4−42x3 +50x2−20x

(c) f (x) = 1.4sin(−8x)



Data application

• Data collected at the University of Pittsburgh Medical Center
• Rs-fMRI data were preprocessed using AFNI and FSL,

normalized to MNI152 template.
• We conduct our analyses on m = 448 gray matter voxels in the

basal ganglia mask.
• The basal ganglia subserve a wide range of functions, including

motor, cognitive, motivational, and emotional processes.
• We tried to parcellatesubdivisions in basal ganglia solely based

on the functional connectivity matrix.





E(Yij) = θgigj + f (zij).



Community 1 (yellow) corresponds to caudate body, Community 3 (green) is
putamen, Community 5 (cyan) is pallidum and Community 2 (red), 4 (blue)

could be caudate head, but also spread out to places outside of caudate.



Functional connectivity and cognitive study

• How the complex functional connectivity patterns are related to
the capacity for information processing.

• How does functional connectivity (network organization)
develop with age, and interact with covaraites such as behavioral
measures, cognitive function and mental distorter status?

• Topological measures: small worldness (global clustering
coefficient); High-degree hub nodes; Community
structure/modules; Connectivity threshold functions (Petersen
et.al 2016), other measures?

• Group analysis of brain functional connectivity can borrow ideas
and tools from functional data analysis.



Adaptation of localized FPCA (ongoing work)

• The nodes in brain network has natural spatial embedding and
features spatial smoothness.

• Extract modes of variation in brain networks that are localized to
regions of interest.

• Localized functional principal component analysis (Chen & Lei
2015).



Preliminary results on rs-fMRI connecitivty
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Figure 3: Eigenfunction 2 from sparse product PCA, using Pearson correlation
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Figure 4: Eigenfunction 3 from sparse product PCA, using Pearson correlation
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THANK YOU!
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Network cross-validation for selecting K

• Adapt the NCV method developed in Chen & Lei (2016).

• Block-wise node-pair splitting

• Very flexible, can be used for stochastic block model,
degree-corrected block model and extendable to FASBM.

• R code and Matlab code are avaiable.


