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Motivation

FPCA is a nice tool for dimension reduction

Also a major tool to explore the source of variability in a sample

of random curves: Canadian weather data.

LFPCA is to look for orthogonal basis functions that have

localized support regions.

Meanwhile we still hope a few components can explain a large

proportion of the variance.



The Mortality Rate Data
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Challenges

e Adding some penalties to the eigen components.

max v Sy — 2, (v) — P (v), st ||l =1,

VERP

e Two main challenges remain unsolved

e Non-convex problem — Fantope Projection

e Can not guarantee orthogonality of the eigenfunctions
(a) sequential covariance deflation (White 1958, Mackey 2008)
(b) k-subspace methods (Vu et al 2013, Lei and Vu 2015):
difference between sparsity and localization
— Deflated Fantope formulation.



Covariance Estimator

e Consider X (1) € Ly(z) for t € .7 C # with covariance operator
I'(s,). The starting point of our method is a sup-norm consistent

estimator of I'(s,¢), up to a constant shift on the diagonal.

e For dense and regularly observed functional data, the sample
covariance S will be a good start point. (\/logT/n with a
constant shift 6 on the diagonal)

e For other designs of functional, obtain a sup-norm consistent

estimator using for example two-dimensional smoothing.



Convex relaxation

e The non-convex problem

maxv’ Sy — P (v) — P (v), st |v]2 =1,

VERP

e Let H=wv' and P; is the set of one-dimensional projection
matrix.

maxv’ Sy, s.t. ||[v|][2 =1 < max(S,H),
VER? HeP
e Because (S,H) is linear in H, it is equivalent to

maxy (S,H), s.t. H € Convhull(Py).



Fantope

Theorem (Fillmore & Williams 71)

Convhull(all d-dim projection matrices)
={H:H=H",0=<Z=<1, Trace(H) =d}
:=%,4 (the Fantope)

T
Sv, s.t. =l& S,H
maxv'Sv, s V]2 Hnelgf):l< H),



LFPCA for the first component

e Consider sparse penalty: &(H) = ||H||11 = X;; |H;].
e Consider smooth penalty: &(H) = (ATA,H) = (D, H) [Rice &
Silverman 91], where A € R?=2)*? js a second-differencing

operator:

A

H = arg max (S,H) — p1(D,H) — p2||H||1 1

HGyp‘l

and ¥ is the first eigenvector of A



LFPCA through Deflated Fantope Localization

For any p x p projection matrix I1, define the deflated Fantope as
YIn={H:0=H =1, trace(H) = 1, and (H,II) =0},
then the sequential estimator is as follows

flj = argmaX(S—plD,H> —szH”Ll, s.t. H e @ﬁj—“

vj = the first eigenvector of Hj,

A

—17. 5T
Il =151 +¥9; .



ADMM Algorithm

mgx(S—plD,H> —p2|lH||1 1, st. HE Iy

An efficient algorithm based on ADMM [Boyd et al 11] is used

separate the /; penalty and deflated Fantope constraint:
inlly (H)—(S—p1D,H H
min 7,(H) —(S—p1D,H) +pa||H||11,
st. H—Z=0,

The augmented Lagrangian (with scaled dual variable W) is

given by

T
L(H,Z,W) =1g,(H) = (S—p1D,H) +p2||H[11+ 5 [|H =Z+ W]}z



ADMM iteration

Given current values H%?, 7°/4 W/ the variables are updated by

iteratively optimizing the Lagrangian over H and Z.

H'" = Pq (z° — w4 _(§—pD)/7), deflated Fantope projection
2" = Sy, o (H™ + W) | entry-wise soft thresholding
wrew = weld 1 (g"” — 7Y | dual update

Then (HM zoW Weld) < (H"ew 7" W"") and repeat until

convergence is observed.



Deflated Fantope Projection

(1) Soft-thresholding operator: for any a > 0,
Fa(x) = sign(x) max(|x| —a,0).

(i1) Deflated-Fantope-projection operator: For any p X p symmetric

matrix A and projection matrix I1,

I

P (A) = arg min ||A — B
2y (4) 1= arg i 4~ B}



Lemma (Chen & Lei 15)

Let IT = VV', where V is a p x d matrix with orthonormal columns.
Let U be a p x (p —d) matrix that forms an orthogonal complement
basis of V. Then

Z v (0)nimn/

where (;, 771)1 71d are eigenvalue-eigenvector pairs of UTAU:
UTAU = Y2 ymimF ,andyl (6) = min(max(y; — 6,0),1), with 6
chosen such that Zp v (0)=1.



Choosing the Localization Penalty

e Suppose p; has been chosen, p, can be chosen using
cross-validation.

e Divide the sample into V folds. For 1 <[/ <V, let SO be the
sample covariance on fold /, and A be the output from data in
folds other than /.

* pyj=argmax, ¥, <S(l),Hj(_l) (P1,P)))-



Simulation: cross-validation method
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Simulation: Localized eigenfunctions




An Alternative Tuning of Localization Penalty

e Even when the true eigenvector is not sparse, we may still want
sparsity for better interpretability.

e Given a € (0,1), we can use the sparse penalty parameter such
that the regularized eigenvector loses at most o proportion of

explained variance compared to the non-regularized estimator.

>

~

>1-a
7 (p1,0)8%;(p1,0)

>

{ ¥ (p1,p)S%(p1,p) }
pz_j:max p: .

e We still need to choose ¢, which is more interpretable than p,.



The Mortality Rate Data
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Mortality Data: different values of a

ALk
TARA

Figure : The estimated ¢;(¢), j = 1,2, 3 for the mortality data with different
values of a.



Summary of theoretical and numerical properties

e The proposed LFPCA converges to the original FPCA when the
tuning parameters are chosen appropriately (Thm 4.1 & 4.2)

e The proposed LFPCA significantly improve the estimation
accuracy when the eigenfunctions are truly supported on some

subdomains.

¢ In the scenario that the original eigenfunctions are not localized,
the proposed LFPCA also serves as a nice tool in finding
orthogonal basis functions that balance between interpretability

and the capability of explaining variability of the data.



Future & Ongoing Work

e Generalization to image data

e Use a differencing operator that ensures row-smoothness and

column-smoothness

e Faster algorithms



Thank You!

Questions?



