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Motivation

• FPCA is a nice tool for dimension reduction

• Also a major tool to explore the source of variability in a sample
of random curves: Canadian weather data.

• LFPCA is to look for orthogonal basis functions that have
localized support regions.

• Meanwhile we still hope a few components can explain a large
proportion of the variance.



The Mortality Rate Data
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Challenges

• Adding some penalties to the eigen components.

max
v∈Rp

vTSv−P1(v)−P2(v), s.t. ‖v‖2 = 1,

• Two main challenges remain unsolved
• Non-convex problem→ Fantope Projection
• Can not guarantee orthogonality of the eigenfunctions

(a) sequential covariance deflation (White 1958, Mackey 2008)
(b) k-subspace methods (Vu et al 2013, Lei and Vu 2015):
difference between sparsity and localization
→ Deflated Fantope formulation.



Covariance Estimator

• Consider X(t) ∈ L2(t) for t ∈T ⊂R with covariance operator
Γ(s, t). The starting point of our method is a sup-norm consistent
estimator of Γ(s, t), up to a constant shift on the diagonal.

• For dense and regularly observed functional data, the sample
covariance S will be a good start point. (

√
logp/n with a

constant shift σ2 on the diagonal)

• For other designs of functional, obtain a sup-norm consistent
estimator using for example two-dimensional smoothing.



Convex relaxation

• The non-convex problem

max
v∈Rp

vTSv−P1(v)−P2(v), s.t. ‖v‖2 = 1,

• Let H = vvT and P1 is the set of one-dimensional projection
matrix.

max
v∈Rp

vTSv, s.t. ‖v‖2 = 1⇔ max
H∈P1
〈S,H〉,

• Because 〈S,H〉 is linear in H, it is equivalent to

maxH〈S,H〉, s.t. H ∈ Convhull(P1) .



Fantope

Theorem (Fillmore & Williams 71)

Convhull(all d-dim projection matrices)

={H : H = HT ,0� Z � Ip, Trace(H) = d}

:=Fp,d (the Fantope)

max
v∈Rp

vTSv, s.t. ‖v‖2 = 1⇔ max
H∈Fp,1

〈S,H〉,



LFPCA for the first component

• Consider sparse penalty: P(H) = ‖H‖1,1 = ∑i,j |Hij|.

• Consider smooth penalty: P(H) = 〈∆T∆,H〉= 〈D,H〉 [Rice &
Silverman 91], where ∆ ∈ R(p−2)×p is a second-differencing
operator:

∆ =

 −1 2 −1 0 · · ·
0 −1 2 −1 · · ·

· · ·

 .

•
Ĥ = arg max

H∈Fp,1
〈S,H〉−ρ1〈D,H〉−ρ2‖H‖1,1

and v̂ is the first eigenvector of Ĥ



LFPCA through Deflated Fantope Localization

For any p×p projection matrix Π, define the deflated Fantope as

DΠ
:= {H : 0� H � I, trace(H) = 1, and 〈H,Π〉= 0},

then the sequential estimator is as follows

Hj = argmax〈S−ρ1D,H〉−ρ2‖H‖1,1, s.t. H ∈D
Π̂j−1

,

v̂j = the first eigenvector of Hj,

Π̂j = Π̂j−1 + v̂jv̂T
j .



ADMM Algorithm

•
max

H
〈S−ρ1D,H〉−ρ2‖H‖1,1, s.t. H ∈DΠ

• An efficient algorithm based on ADMM [Boyd et al 11] is used

• separate the l1 penalty and deflated Fantope constraint:

min
H,Z

ID
Π
(H)−〈S−ρ1D,H〉+ρ2‖H‖1,1 ,

s.t. H−Z = 0 ,

• The augmented Lagrangian (with scaled dual variable W) is
given by

L(H,Z,W)= ID
Π
(H)−〈S−ρ1D,H〉+ρ2‖H‖1,1+

τ

2
‖H−Z+W‖2



ADMM iteration

Given current values Hold, Zold, Wold, the variables are updated by
iteratively optimizing the Lagrangian over H and Z.

Hnew = PD
Π
(Zold−Wold− (S−ρ1D)/τ) , deflated Fantope projection

Znew = Sρ2/τ(H
new +Wold) , entry-wise soft thresholding

Wnew = Wold +(Hnew−Znew) , dual update

Then (Hold,Zold,Wold)← (Hnew,Znew,Wnew) and repeat until
convergence is observed.



Deflated Fantope Projection

(i) Soft-thresholding operator: for any a > 0,

Sa(x) = sign(x)max(|x|−a,0) .

(ii) Deflated-Fantope-projection operator: For any p×p symmetric
matrix A and projection matrix Π,

PD
Π
(A) := arg min

B∈D
Π

‖A−B‖2
F



Lemma (Chen & Lei 15)

Let Π = VVT , where V is a p×d matrix with orthonormal columns.
Let U be a p× (p−d) matrix that forms an orthogonal complement
basis of V . Then

PD
Π
(A) = U

[
p−d

∑
i=1

γ
+
i (θ)ηiη

T
i

]
UT ,

where (γi,ηi)
p−d
i=1 are eigenvalue-eigenvector pairs of UTAU:

UTAU = ∑
p−d
i=1 γiηiη

T
i , and γ

+
i (θ) = min(max(γi−θ ,0),1), with θ

chosen such that ∑
p−d
i=1 γ

+
i (θ) = 1.



Choosing the Localization Penalty

• Suppose ρ1 has been chosen, ρ2 can be chosen using
cross-validation.

• Divide the sample into V folds. For 1≤ l≤ V , let S(l) be the
sample covariance on fold l, and Ĥ(−l) be the output from data in
folds other than l.

• ρ2,j = argmaxρ ∑
V
l=1〈S(l), Ĥ

(−l)
j (ρ1,ρ))〉.



Simulation: cross-validation method
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Simulation: Localized eigenfunctions
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An Alternative Tuning of Localization Penalty

• Even when the true eigenvector is not sparse, we may still want
sparsity for better interpretability.

• Given α ∈ (0,1), we can use the sparse penalty parameter such
that the regularized eigenvector loses at most α proportion of
explained variance compared to the non-regularized estimator.

ρ2,j = max

{
ρ :

v̂T
j (ρ1,ρ)Sv̂j(ρ1,ρ)

v̂T
j (ρ1,0)Sv̂j(ρ1,0)

≥ 1−α

}
.

• We still need to choose α , which is more interpretable than ρ2.



The Mortality Rate Data
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Mortality Data: different values of a
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Figure : The estimated φj(t), j = 1,2,3 for the mortality data with different
values of a.



Summary of theoretical and numerical properties

• The proposed LFPCA converges to the original FPCA when the
tuning parameters are chosen appropriately (Thm 4.1 & 4.2)

• The proposed LFPCA significantly improve the estimation
accuracy when the eigenfunctions are truly supported on some
subdomains.

• In the scenario that the original eigenfunctions are not localized,
the proposed LFPCA also serves as a nice tool in finding
orthogonal basis functions that balance between interpretability
and the capability of explaining variability of the data.



Future & Ongoing Work

• Generalization to image data

• Use a differencing operator that ensures row-smoothness and
column-smoothness

• Faster algorithms



Thank You!

Questions?


