
Quantile Analysis When Covariates Are Functions

Kehui Chen and Hans-Georg Müller

Department of Statistics
University of California, Davis

August 5, 2010

Kehui Chen (UC Davis) Quantile Analysis Aug. 5, 2010 1 / 13



Motivation and Introduction

Growth Charts

Growth charts are tables containing a list of quantiles, widely
used to screen growth status. Example: height growth of
children.

Traditional growth charts are marginal quantiles computed at
each age.

Conditional growth charts based on longitudinal growth
measurements. (Cole 1994, Royston 1995, Thompson and
Fatti 1997, Wei and He 2006.)

Longitudinal measurements often have variable time spacing
and their timing may be subject-specific.

Functional data analysis perspective: viewing the entire
growth history as a functional but latent covariate.
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Motivation and Introduction

Two Approaches For Conditional Quantiles Estimation

Definition: gα(X ) is the conditional α-th quantile of Y if

P(Y ≤ gα(x) | X = x) = α.

Approaches:
1 Estimating Equation: minimize E [lα(Y − gα(X ))], for

lα(u) = |u|+ (2α− 1)u (Koenker and Bassett 1978).
Extension of quantile linear regression to functional covariates
by expanding X using B-splines (Cardot et al. 2005).

2 Using Conditional CDF, gα(X ) = inf{y : F (y | X ) ≥ α}.
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Modeling, Implementation and Simulation Results

Extending To Functional Covariates

We aim at estimating conditional distribution function first
and then compute conditional quantiles.

The covariates we consider are random trajectories X , for
which one records an associated response Y , a
one-dimensional random variable.

Observe: F (y | X ) = P(Y ≤ y | X ) = E (I (Y ≤ y) | X ), so
that F (y | X ) can be viewed as the regression of the indicator
I (Y ≤ y) on the functional predictor X .
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Modeling, Implementation and Simulation Results

Functional Generalized Linear Regression Model

Observe: for a fixed y , the indicator I (Y ≤ y), given the
covariate function X , has a binomial distribution with mean
parameter F (y | X ).

Functional model for conditional CDF:

F (y | X ) = E (I (Y ≤ y) | X ) = g−1{β0(y)+

∫
X c(t)β(y , t)dt},

where X c(t) = X (t)− µ(t), and g is a monotone link
function, for example, the logit link, with
g−1(z) = exp(z)/(1 + exp(z)).
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Modeling, Implementation and Simulation Results

Using Functional Principal Components as Predictors

X is L2 random process, with continuous covariance function.
EX (t) = µ(t) and Cov(X (s),X (t)) =

∑
k λkφk(s)φk(t). φk

are orthogonal eigenfunctions.

X (t) = µ(t) +
∑∞

k=1 ξkφk(t) (Karhunen-Loève).

ξ1, ξ2, . . . are FPC scores (uncorrelated, zero means and
variances=λk).

Expanding β(y , t) in the eigenbasis,
β(y , t) =

∑∞
k=1 βk(y)φk(t),

the model becomes F (y | X ) = g−1
(
β0(y) +

∑∞
k=1 βk(y)ξk

)
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Modeling, Implementation and Simulation Results

Estimating The Model Components

Truncated version of the model: we can show that I (Y ≤ y),
conditional on ξ1, . . . , ξp, has Bernoulli distribution with
parameter π = g−1p,y (µ(t) +

∑p
k=1 ξkβk(y)).

The discrepancy between gp,y and g vanishes asymptotically.

This motivates the consideration of an increasing series of
truncated binomial models, with fixed link function g .

Recover the latent functions from longitudinal observations
(potentially irregular, sparse and noisy), and estimate the
principal components. Implemented in PACE package.
http://anson.ucdavis.edu/∼mueller/data/pace.html. (see Yao
et al. 2005 or Müller and Stadtmüller 2005)
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Modeling, Implementation and Simulation Results

Simulation Scenarios

X : sparsely (S) or densely (D) observed. Sparse: number of
observations is 4 to 14 with equal probability, and locations
where to take measurements are uniformly distributed on
[0,10]. Dense: 30 equally spaced observations.

Y conditional on X has Gaussian Mixture distribution.

Compare (1) the proposed conditional functional quantiles,
(2) functional quantile linear regression as proposed in Cardot
et al. (2005), and (3) unconditional empirical quantiles.
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Modeling, Implementation and Simulation Results

Simulation Results

α = 0.05 α = 0.10 α = 0.25 α = 0.50
S D S D S D S D

Proposed 14.06 10.75 11.29 9.01 10.29 8.47 6.71 4.72
Cardot 45.36 19.07 42.44 15.38 38.66 10.37 31.10 1.67

Unconditional 142.2 143.8 95.13 94.13 60.25 60.59 51.03 51.63

Table: Average MSE over 200 simulation runs. The upper quantiles were
found to behave similarly and are not reported.
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Data Application

Data Description

Berkeley Growth Data, 54 female growth curves, from age 0
to 18.

X: growth path from 0 to 12; construct the conditional CDF
for Y : height at age 18 (adult height).

Fit the logistic regression for a grid of y, obtain coefficient
function β(y , t).

For a new subject i , given growth history Xi , construct the
smooth conditional CDF for the adult height. Construct
conditional quantiles for α ∈ (0, 1)

Kehui Chen (UC Davis) Quantile Analysis Aug. 5, 2010 10 / 13



Data Application

Illustrative Example
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Figure: Estimated conditional CDFs for two girls. Their heights at age 12 are 142.1 cm (girl A) and 141 cm
(girl B), respectively. Girl B has a large probability of about 0.9 to have adult height below the 10th quantile 157
cm, while this probability is predicted to be below 0.3 for girl A. The actual observed adult height is 164 cm for girl
A and 154.5 cm for girl B.
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Asymptotic Results

Asymptotic Property

Theorem (Uniform Consistency)

Under regularity conditions, for a suitably chosen sequence
p(n)→∞, as n→∞, on intervals I ,

sup
y∈I
|F̂ (y | X )− F (y | X )| P−→ 0

where F̂ (y | X ) = g−1(
∑p(n)

k=0 β̂k(y)ξk). Therefore, for any

0 < α < 1, the estimator Q̂(α) = inf{y : F̂ (y | X ) ≥ α} of the
αth conditional quantile of Y given X is a consistent estimator of
Q(α) = inf{y : F (y | X ) ≥ α}.
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Asymptotic Results

Thank You

Thank you for your attention!
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