Bootstrapping State-Space Models: Gaussian
Maximum Likelihood Estimation and the Kalman Filter
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The bootstrap is proposed as a method for assessing the precision of Gaussian maximum likelihood estimates of the parameters
of linear state-space models. Our results also apply to autoregressive moving average models, since they are a special case of
state-space models. It is shown that for a time-invariant, stable system, the bootstrap applied to the innovations yields asymp-
totically consistent standard errors. To investigate the performance of the bootstrap for finite sample lengths, simulation results
are presented for a two-state model with 50 and 100 observations; two cases are investigated, one with real characteristic roots
and one with complex characteristic roots. The bootstrap is then applied to two real data sets, one used in a test for efficient
capital markets and one used to develop an autoregressive integrated moving average model for quarterly earnings data. We
find the bootstrap to be of definite value over the conventional asymptotics.
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1. INTRODUCTION

State-space models and Kalman filtering have become
important and powerful tools for the statistician and the
econometrician. Together they provide the researcher with

“a modeling framework and a computationally efficient way
to compute parameter estimates over a wide range of sit-
uations. Problems involving stationary and nonstationary
stochastic processes (Goodrich and Caines 1979), system-
atically or stochastically varying parameters (Pagan 1980),
and unobserved or latent variables (as in signal extraction
problems) all have been fruitfully approached with these
tools (Burmeister, Wall, and Hamilton 1986). In addition,
smoothing problems and time series with missing obser-
vations have been studied with methodologies based on this
combination (Shumway and Stoffer 1982). Many authors
have exploited the state-space model and Kalman filter re-
cursions for estimation and prediction of autoregressive
moving average (ARMA) processes (Harvey and Phillips
1979; Gardner, Harvey, and Phillips 1980; Jones 1980;
Harvey and Pierse 1984) and of structural models (Harvey
and Todd 1983; Kitagawa and Gersch 1984; Harvey and
Durbin 1986). In each of these instances the state-space
formulation and the Kalman filter has yielded a modeling
and estimation methodology that is much less cumbersome
than the more traditional regression-based approach.

Problems of inference in state-space models estimated
using the Kalman filter are made tractable by the existence
of an asymptotic theory. Under appropriate conditions, both
the parameter estimates obtained by maximum likelihood
techniques and the state estimates from the Kalman filter
have been shown to be consistent and asymptotically nor-
mal (Ljung and Caines 1979; Spall and Wall 1984). Time
series data, however, is often of short to moderate length,
and the use of asymptotic methods is suspect. For ARMA
models, several researchers have found evidence that sam-
ples must be fairly large before asymptotic results are ap-
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plicable (Dent and Min 1978; Ansley and Newbold 1980)
and one should expect a similar situation in the case of state-
space models.

Our approach employs the nonparametric Monte Carlo
bootstrap suggested by Efron (1979) and focuses on the
Gaussian maximum likelihood estimator. We propose the
nonparametric bootstrap because we feel it is more useful
in practice; it does not rely on distributional assumptions
that cannot be adequately checked in small- to moderate-
size samples. The value of the nonparametric bootstrap has
been demonstrated in a regression framework by Freedman
(1981) and Freedman and Peters (1984a,b). Other work us-
ing the nonparametric bootstrap to study forecast errors is
reported in Findley (1985) and Stine (1985). Nevertheless,
if the family of distributions for the model can be specified,
we would suggest a parametric bootstrap. We use Gaussian
likelihood estimation because it is the method of choice found
in the literature and has desirable asymptotic properties.

In Section 2 we begin with a description of the state-
space model and an outline of the parameter estimation
problem for these models, then Section 3 gives the boot-
strap procedure for such models. Section 4 presents some
empirical studies that illustrate the utility of the bootstrap
in small- to moderate-size samples, underscoring its value
in empirical research, and Section 5 briefly describes some
computational aspects of the procedure. Of fundamental
concern is that the bootstrap is asymptotically correct, that
is, the bootstrap is at least as good as the conventional
asymptotic theory; the asymptotic justification of the pro-
cedure is given in the Appendix.

2. THE STATE-SPACE MODEL AND ESTIMATION
The state-space model is defined by the equations

s(t + 1) = Fs(f) + Gx(t) + w(p) (2.1)
and

y(® = Hs(9) + Dx(®) + v(?), 2.2)

where s(f) is a p X 1 vector of unobserved state variables,
y(® is a g X 1 vector of observed outputs or endogenous
variables, and x(#) is an r X 1 vector of observed inputs or
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exogenous variables. The constant matrices F, G, H, and
D represent the model coefficients of dimensions compat-
ible with the matrix operations required in (2.1) and (2.2).
The two terms w(?) and v(f) represent zero-mean random
processes that are each independent and identically distrib-
uted with

Elwow' ()} =Q,  E{v®V()} =R, (2.3)

where Q is a p X p nonnegative definite matrix and R is
a g X q nonnegative definite matrix. While R is usually
required to be positive definite, this is not imposed here so
that we may include some popular representations of ARMA
processes (Harvey and Pierse 1984; Jones 1980). It should
be noted, however, that restricting R to be positive definite
in no way precludes the use of (2.1)—(2.3) in representing
ARMA models (Anderson and Moore 1979, p. 236; Caines
1988, p. 115). The assumptions concerning the definiteness
of R are only a matter of personal choice in representing
ARMA processes via (2.1)-(2.3).

The model coefficients and the correlation structure are
assumed to be uniquely parameterized by a k X 1 vector
0; that is, F = F(0), G = G(0), H = H(0), D = D(9), Q
= Q(0), and R = R(0). The vector 0 is assumed to be an
element of some compact space, &, usually a subset of #*.
Furthermore, it is assumed that the parameterization is such
that the model is completely identified (Wall 1987; Pagan
1980).

Let s(t + 1 | £) denote the best linear predictor of s(¢ +
1) based on the data 9/ = {y(1), -*- y(®} and 4" = {x(1),

.., X(¢)}, obtained via the Kalman filter (Anderson and
Moore 1979, p. 44). Also obtained from the Kalman filter
are the innovations, the innovations covariance matrix, and
the Kalman gain matrix,

E{w@v'()} =0,

e() = y(t) — Hs(z |t — 1) — Dx(2), (2.4a)

3() =HP(|t— DH' + R, (2.4b)
and

K@) =P@|t— DH'Z(®D ™, (2.4¢)

respectively, where P(¢ | t — 1) is the covariance matrix of
s(f) — s(t | t — 1). The model innovations from the Kalman
filter give rise to the innovations form representation (An-
derson and Moore 1979, p. 231) of the observations:

s(z+ 1|0 =Fs(t|t— 1)+ Gx(2) + FK(t)e(?)
and

2.5)

y(f) = Hs(t | £ — 1) + Dx() + €(2). (2.6)

Parameter estimation will be accomplished via Gaussian
maximum likelihood (GML). The essential part of the log-
arithm of the Gaussian likelihood function is

L®O| g, a’)
T

= = {log[2(t, )| + (t, 0)Z7'(, O)e(t, O}, (2.7)
t=1

where 3 and € are generated from (2.4) and || denotes the

determinant. The influence of @ is made explicit here to

emphasize how the quantities defined in (2.4) depend on

the parameterization. Maximizing (2.7) with respect to
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0 yields the Gaussian maximum likelihood estimate 0 =
maxy L(O | @7, 7). Iterative procedures for maximizing
this function exist in many forms and are easily imple-
mented (Burmeister and Wall 1982).

3. THE MONTE CARLO BOOTSTRAP
FOR STATE—SPACE MODELS

The Monte Carlo bootstrap procedure for state-space
models is defined by a four-step algorithm. We assume that
the model estimation has been completed and that the Kal-
man filter has been run with ® =  so that the estimated
innovations, €(z, ), are available.

1. Construct the standardized innovations by setting
3.1

where 3%z, 0) is the inverse of the unique square-root
matrix of (¢, ). By using (3.1) we are guaranteed that
all model residuals have, at least, the same two first moments.

2. Sample, with replacement, T times from {e(z, 0); 1 <
¢t = T} to obtain {e*(¢, #); 1 = ¢ =< T}, a bootstrap sample
of standardized innovations.

3. Using the innovations form representation, (2.5) and
(2.6), construct a bootstrap data set {y*@); 1 =t = T} as
follows: Define the (p + q) X 1 vector &) = [s'(c + 1|
D | y'(®]'. Stacking (2.5) and (2. 6) results in a vector first-
order equation in &(?),

et, 0) = =72, O)e(t, 0),

&) = AE(r — 1) + Bx(r) + C(ne(, 9), 3.2)

where

1/2,
A= {fn g], B = [g] c) = [FKQ?,EZ(L g; 0)].

Thus, to construct a bootstrap data set, {y*(?); 1 =t =
T}, simply solve (3.2) using {e*(z, 0); 1 = ¢ < T} in place
of {e(t, 0); 1 =t = T}. The exogenous variables, {x(¢); 1
< ¢t < T}, and the initial conditions of the Kalman filter
remain fixed at their given values while the parameter vec-
tor @ is held fixed at 0. Y

4. Repeat steps (2) and (3) a large number, N, of times,
obtaining a set of replications, {6+, 1 < i = N}. Estimate
the distribution of ® from the distribution of the §*'.

4. EMPIRICAL STUDIES

While the results of the Appendix establish the funda-
mental fact that the bootstrap is asymptotically correct, it
does not recommend the bootstrap over the standard
asymptotic theory. To investigate the properties of the pro-
cedure for small- to moderate-samples, we have conducted
several simulation experiments. We find the bootstrap to
be superior to the standard asymptotics—better standard er-
rors for the parameter estimates can be obtained with the
bootstrap. In addition, the bootstrap provides valuable in-
formation for establishing interval estimates—something of
vital interest if the small-sample estimator yields skewed
distributions. In our investigation we consider the estima-
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tion of two state-space models using simulated data and
then proceed to two real data sets.

4.1 Simulation Experiments

Our simulation experiments concern a two-state model in
observable canonical form with one random disturbance in
the state equation, one random error in the output equation
and Gaussian noise. The coefficient matrices of (2.1)—(2.3)
take the form

- |0 f |0 _|o o
F_[1 fZ] G_[s]’ Q_{o .0025]’
H=[0 1], D=[0], R=[01].

All simulated data use a zero initial state [i.e., s(0) = (0,
0'] and an input series {x(#); 1 =< ¢ =< T} drawn from a
uniform distribution on the interval [—.5, .5].

To avoid imposing nonnegativity conditions on the pa-
rameters in Q and R, we write the stochastic specification
for the disturbances in terms of their unique (lower trian-
gular) Cholesky factors and estimate the square roots of the
respective variances. Thus we estimate g,, and ry; in the

Cholesky factors
0 91 92
Ub3 0 gn

R = R;R; = [ry1][ri],

Q=Q,Q;= ["“
g2
and

where ¢q;; = q,; = 0. The induced parameterization is @ =
[fi2s fr2s 8215 G225 Tual’-

Two different situations are covered using this model,
each distinguished from the other by the latent roots of the
characteristic equation associated with F. The first case has
complex roots specified by A, , = .7 = .6i (i = \/—1); the
corresponding elements of F are f;, = —.85 and f,, = 1.40.
The second case has real roots \; = .4 and A\, = .8, so that
fiz = —.32 and f,, = 1.20. In each case, {y(¢)} is nearly a
parameter redundant ARMA (2, 2) process; that is, (1 —
MB)YA — MBYyy(®) = (1 — MB)(1 — MB)u(t), where B is
the usual backward shift operator, and we should expect
instability of the estimates for small sample sizes (Box and
Jenkins 1976, pp. 248-250).

For each model we carry out two simulation experi-
ments, the first experiment using a short sample of length
T = 50 and the second experiment using a moderate sample
of length 7 = 100. In each experiment N = 1,000. Thus
there are four experiments that reveal the influence of both
sample length and dynamic behavior of the underlying model.

Each experiment employed the bootstrap procedure of
Section 3, modified to exclude random sampling of the
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e(t, 0) for 1 =t = 3. Thus e*(z, §) = e(t, §) for 1 = ¢ =<
3 with random sampling applied only over 4 = ¢ = T. This
modification was necessary to avoid start-up problems caused
by the transient behavior of the Kalman filter over the in-
terval 1 = ¢t = 3; in these examples, 3.(f) and K(¢) were an
order of magnitude larger for 1 = ¢ = 3 than they were for
t > 3. We recommend this modification, as needed, to avoid
obtaining unrepresentative bootstrap samples {y*(?)} due to
unusual values of 3(¢) and K(¢) being present in the gen-
eration of y*(f) via (3.2).

Small-Sample Case, T = 50, Complex Roots. Table 1
presents the results for the small-sample case, T = 50. The
first two columns in this and subsequent tables give the
parameter estimates and nominal standard errors that result
from GML estimation; the third and fourth columns present
the bootstrap sample means and standard deviations; the last
two columns display the means and standard deviations of
an approximation to the true sampling distribution. These
latter quantities were obtained by a parametric Monte Carlo
experiment in which GML estimation was carried out on
an additional 1,000 data sets, each generated by simulating
the model (2.1)—(2.3) with Gaussian noise, 0 fixed at its
true value, s(0) = 0, and {x(¢): 1 = ¢t = 50} fixed at the
values used in the original data generation. The result is an
attempt to approximate the true small-sample distribution
of @. We label the last two columns as “true” confident
that 1,000 replications is adequate for our purposes.

For the complex root case, we find the nominal asymp-
totic standard errors to seriously understate the actual vari-
ability of the estimator for the coefficients in F, Q, and R.
The nominal standard errors for f}, and f,, are approxi-
mately 60% of the true values, while the bootstrap esti-
mates are almost equivalent to the true values. The nominal
standard errors for the remaining parameters fare better in
terms of the g,, parameter, but fall significantly short of the
true values for g,, and r;;. In all parameters we find the
bootstrap yields more accurate assessments of estimator er-
ror.

Small-Sample Case, T = 50, Real Roots. A similar re-
sult holds for the real-root case:presented in Table 2. The
asymptotic standard errors produced by the GML estimator
perform poorly in all comparisons. The bootstrap appears
to overstate the true standard errors, however, we do not
consider this to be a significant tendency.

Figures 1 and 2 depict the sample histograms for the es-
timated parameters in F derived from the bootstrap and the
approximation to the true sampling distribution. In our small
sample, the true sampling distribution is far from normal,
as the asymptotic theory would predict. Figure 1 indicates

Table 1. Small Sample (T = 50) With Complex Roots

Gaussian ML Bootstrap True
Estimate Nominal SE Mean SD Mean Nominal SE
fi2 —.9008 .0388 —.8387 .0661 —.8381 .0642
fon 1.4148 .0355 1.3953 .0605 1.3896 .0606
[ 3434 .0475 .3072 .0485 .3075 .0577
Qo2 .0513 .0124 .0394 .0182 .0393 .0202
Iy .0879 .0125 .1003 .0149 .0999 .0160
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(b)

Figure 2. True Histograms for Elements of F With T = 50, Real

Roots: (a) element f,,; (b) element f,,.

50, Real

(b)
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Table 3. Medium Sample (T = 100) With Complex Roots

Gaussian ML Bootstrap True
Estimate Nominal SE Mean SD Mean Nominal SE
fi2 —.7927 .0367 —.7885 .0371 —.8434 .0388
fro 1.3642 .0370 1.3594 .0366 1.3927 .0397
[ .3699 .0437 .3697 .0406 .3045 .0389
Q22 .0484 .0089 .0440 .0116 .0464 .0099
ry 1119 .0106 .1103 .0119 .1000 .0100

.4 cannot be identified. By employing the bootstrap, we
obtain vital information concerning the problems with model
specification due to near parameter redundancy when sam-
ple sizes are small.

Medium-Sample Case, T = 100, Complex Roots. Table
3 summarizes the results for the complex-root case using a
medium-sized sample of 100 observations. With complex
roots and samples of moderate size, it appears that the GML
estimator does a better job in assessing the standard errors
of the estimates. There is no definite pattern indicating bias
in these statistics, with the GML and the bootstrap both
agreeing closely with the “true” variability of the estimator.
It is reasonable to conclude that with 100 observations and
complex roots we have a situation in which convergence to
the asymptotic result is close.

Medium-Sample Case T = 100, Real Roots. Table 4
summarizes the results for the real-root case under a mod-
erate-sized sample. Here we find continuing problems with
the GML nominal standard errors. Understatement of the
standard errors for both F parameters is indicated. This is
also true for the Q and R parameters, while for g,, the
GML standard errors appear satisfactory. The problems in
estimating the elements of F with two real roots persisted
in this case; while these problems were less severe with T
= 100 than with T = 50, it appeared that one would require
samples of at least 200 observations before all modes of
dynamic response make themselves felt in the data. From
the results of the Appendix we know that as 7 — o, both
sets of histograms would become unimodal (and normal)
about fj, = —.32 and f5, = 1.2.

4.2 Stochastic Regression

An interesting application of GML state-space model es-
timation is given by Newbold and Bos (1985, pp. 61-73).
Of the several alternative models they investigate, we focus
on that specified by their equations (4.7a) and (4.7b). This
model has one output variable, the (nominal) interest rate
recorded for three-month treasury bills denoted by i(¢). The

output equation in this model is specified as i(f) = a +
B®r(t) + v(r), where a is a constant intercept, r(¢) denotes
the observed quarterly inflation rate in the Consumer Price
Index, B(¢) is a stochastically varying regression coeffi-
cient, and v(¢) is an additive zero-mean iid process with
finite variance 2. The slope coefficient comprises the state
variable and is specified to follow a first-order autoregres-
sive process B(t + 1) — b = @[B() — b] + w(?). The state
noise, w(¢), is assumed to follow a zero-mean iid process
with finite variance o>. In our notation, we have F = ¢,
G=0-¢b, Q=03 H=H®=r@F),D=a,R=
o2, x() =1, and 0 = [o, b, a, o, 7,

We consider the first estimation exercise reported in Ta-
ble 4.3 of Newbold and Bos. This exercise covers the pe-
riod from the first quarter of 1953 through the second quar-
ter of 1965, T = 50 observations. The results of our
estimation are presented in Table 5. The differences be-
tween our GML estimates and those reported in Newbold
and Bos are basically attributable to the fact that we use a
different numerical optimization routine. We obtain agree-
ment to at least three decimal places in the parameter es-
timates, and our log-likelihood value is —81.9425, while
theirs is —81.95. The bootstrap results reported in Table 5
were obtained by application of the procedure of Section 3
with N = 1,000 and without modification for start-up prob-
lems since there was no chance of the procedure being con-
founded by initial transient behavior of the Kalman filter.

Review of the bootstrap standard errors indicates that the
asymptotic nominal standard errors are biased downward in
three of the five parameters. The nominal asymptotic stan-
dard errors for the constants a and b perform quite well
with respect to the bootstrap results, but the same cannot
be said for ¢, o, and o,. The nominal standard errors for
these three parameters are between 60% and 70% of their
bootstrap counterparts. The GML estimator performs quite
well with respect to the two intercept terms (« in the output
equation and b in the state equation) but underestimates
variability in the transition matrix parameter and the two
variance parameters.

Table 4. Medium Sample (T = 100) With Real Roots

Gaussian ML Bootstrap True
Estimate Nominal SE Mean SD Mean Nominal SE
fio -.3379 1212 —.2540 .1400 —-.2520 .1486
fon 1.1705 .1209 1.0923 .1458 1.1259 .1536
o1 .2929 .0516 .3139 .0505 3139 .0460
(o .0541 .0107 .0554 .0163 .0508 .0155
I .1032 .0099 .0993 .0122 .0981 .0112
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Table 5. Stochastic Regression Example (T = 50)
Gaussian ML Bootstrap Newbold and Bos

Estimate Nominal SE Mean SD Estimate Nominal SE
@ .8414 .1997 .5897 2775 .8414 2122
b .8584 2776 .8416 2737 .8584 .2591
a —-.7714 .6449 —.7652 6315 -.7715 .6033
ow .1269 .0924 .1562 1272 .1268* NA
ay 1.1306 1419 1.0121 .2421 1.1306° NA

aSquare root of o2 estimate reported in Newbold and Bos.
bSquare root of o2 estimate reported in Newbold and Bos.

Apart from the standard errors, the bootstrap highlights
other important aspects of the estimation problem. Table 5
shows the mean of the bootstrap estimates for ¢ to be mark-
edly different from the GML estimator; Figure 3 presents
the bootstrap histogram for the estimate of ¢. This figure
reveals some significant departures from the normality of
the parameter estimates that is maintained in the asymptotic
theory. Figure 3 shows the estimator of ¢ to have a skewed
distribution, with values concentrated around .8 but pos-
sessing a long tail to the left, which explains the discrep-
ancy between the bootstrap mean and the GML estimate.
The right-hand tail is greatly attenuated because ¢ cannot
go above unity without the onset of instability in the state
equation. This behavior is similar to that observed in stud-
ies of the estimates of parameters in ARMA models near
the boundaries of the stability or invertibility regions (Box
and Jenkins 1976, p. 224). This situation suggests the use
of standard errors for inference and hypothesis testing has
less meaning than the use of interval estimates obtained
through quantiles.

The bootstrap histograms for the estimates of b and «
depicted symmetric distributions suggestive of the normal
case maintained in the asymptotic theory. In Figure 4, the
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Figure 3. Bootstrap Histogram for ¢—Stochastic Regression
Example.

histogram pertaining to o, is concentrated about two dis-
tinct locations, one relating to a structure logically consis-
tent with the original model specification and the other to
a model structure quite different from that originally in-
tended. The concentration about o,, = .13, with a long tail
toward the right, is to be expected given our desire to fit a
model with stochastic coefficient B(¢). The concentration at
o0,, = 0 is consistent with deterministic state dynamics. When
o, = 0 and |¢| < 1, B(®) = b for large ¢ so that the ap-
proximately 225 cases where o,, = 0 suggest a large num-
ber of samples correspond to a fixed state, or a constant
coefficient configuration. The histogram for o, indicated a
slight asymmetry with a long tail toward the left.

4.3 ARIMA Modeling

Shumway (1988, pp. 186—190) used state-space meth-
odology to develop and analyze a structural model for the
quarterly data, z(#), on earnings per share for the U.S. com-
pany Johnson and Johnson, fourth quarter 1970 to first quarter
1980, T = 38 observations. We consider a special case of
Shumway’s model that was shown by Harvey (1981, p.
180) to be an ARIMA (0, 1, 1) X (0, 1, 1), model, that
is, ¥(©) = o + (1 — BBY1 — BBY(r), where y(1) = (1

-

240

1

T T T T

PR

18e

a L
1]
§ i 1
5_ 120 -
4 - E
- L 4
a0 |- -
40 |- ]
L % ]
[ ’ ]
ol %% %%
i | i A P | 1 "
-8.03 e.07 0.17 e.27 0.37 8.47 0.57

Figure 4. Bootstrap Histogram for o,—Stochastic Regression
Example.



1030

Journal of the American Statistical Association, December 1991

Table 6. ARIMA Modeling Example (T = 38)

Gaussian ML Bootstrap Unconditional LS
Estimate Nominal SE Mean SD Estimate Nominal SE
Bo .0312 .0115 .0240 .0106 .0271 .0108
B+ .9851 1321 .9869 .0943 .9285 .0931
Ba -.3136 1627 —.2850 2174 -.3293 1733
oy 5449 .0741 .4841 .1802 5741 NA

— B)(1 — B)z(#), var{v()} = o7, and B is the usual back-
ward shift operator. For this problem, we used the state-
space representation for ARIMA models described in
Anderson and Moore (1979, pp. 113-114); the induced
parameterization is 0 = [By, B1, Bs, T,

Table 6 compares the estimation results from GML, un-
conditional least squares (ULS), and the bootstrap. For small
samples, ULS is inferior to GML as is evident, for ex-
ample, by the difference between the ULS and the GML
estimates of B3,. Review of the standard errors reveals that,
except for the constant term B,, the asymptotic nominal
standard errors obtained via GML are considerably differ-
ent from the bootstrap standard errors.

Based on GML, the ¢ ratio for the estimate of B, is —1.93,
which is borderline significant, whereas the ¢ ratio for the
GML estimate of B, based on the bootstrap standard error
is —1.44, which is not even significant at the 15% level.
Further investigation revealed that the removal of this pa-
rameter did not seriously affect the results of the analysis,
although there was some indication (based on the autocor-
relation of the residuals) that this parameter would be needed
for a longer series length if all else remained fairly con-
stant. Moreover, the GML estimate of 3, is very close to
the noninvertibility region and, as discussed in Section 4.2,
estimation near the boundary of invertibility will be unsta-
ble. This situation suggests that inspection of the bootstrap
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Figure 5. Bootstrap Histogram for B,—ARIMA Modeling Example.

distribution will be more meaningful than inference based
on the standard error associated with the estimate of S3;.

Figure 5 presents the bootstrap histogram corresponding
to the estimate of B,, which, as expected, demonstrates the
departure from normality of the GML estimator due to the
boundary problem. It is interesting to note that the lower
and upper quartiles of this highly peaked distribution are
.983 and .997, respectively, and approximately 22% of the
estimates lead to a noninvertible model. The distributions
corresponding to the other model parameters showed fairly
symmetric distributions, and estimation and inference based
on the bootstrap standard errors is comparable with esti-
mation and inference based on the quantiles of these dis-
tributions.

5. COMPUTATIONAL CONSIDERATIONS

All our work was carried out on a Compaq Deskpro 386/
20 using the Gauss programming language (version 2.0).
The solution to the maximization of (2.7) was obtained via
the Broyden—Fletcher—Goldfarb—Shanno update algorithm
using a back step one-dimensional search (Dennis and
Schnabel 1983). All gradients were calculated numerically
using finite first differencing. On average, one iteration with
this algorithm took between 2.5 and 3.0 seconds when T
= 50 and approximately 5.0 seconds when 7T = 100 in the
simulated data experiments. The Newbold and Bos data re-
quired approximately 2.8 seconds per iteration. The John-
son and Johnson data required approximately 4.0 seconds
per iteration (ULS was performed using Minitab). In most
samples, convergence to a parameter estimate was obtained
in less than 15 iterations so that total time for one parameter
estimation was on the order of 45 seconds for samples of
length T = 50 and on the order of 75 seconds for T = 100.
Thus, to generate all bootstrap estimates when N = 1,000,
approximately 12.5 hours of computation were required when
T = 50, while approximately 21 hours were required when
T = 100. In the small-sample case this means that a com-
plete bootstrap study can be completed overnight. One merely
initializes the bootstrap program before leaving the office
for the evening and returns in the morning to a complete
set of estimates; in effect, this type of computational burden
is not costly.

APPENDIX: ASYMPTOTIC JUSTIFICATION
OF THE PROCEDURE

We show that under appropriate conditions (namely, the con-
ditions needed to obtain an asymptotic theory for the GML es-
timator), the bootstrap procedure applied to the innovations yields
asymptotically consistent standard errors. In particular, we show
that, if the number of bootstrap replications N is such that N —
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o while the sample length T — o, the asymptotic distributions of
the GML estimator and the bootstrap estimator are equivalent. For
simplicity and ease of notation we put N = T throughout the Ap-
pendix. Furthermore, we assume that F(0) has all its eigenvalues
within the unit circle and H(0)Q(0)H(0)' + R(0) is positive def-
inite for 0 € %—these assumptions assure the global asymptotic
stability of the filter (Watanabe 1985, proposition 1).

Since our results for the bootstrap depend on the existence of
an asymptotic theory for the GML estimator in the state-space
model, we briefly outline the results on the consistency and
asymptotic normality of the GML estimator. For details, refer to
Ljung and Caines (1979). Let 0, be the finite-dimensional un-
known, k X 1, true parameter vector that uniquely determines F
= F(8), G = G(8), H = H(8), D = D(8), Q = Q(8,) and R
= R(0,). Let 0, be the consistent, asymptotically normal estimate
of @, obtained by minimizing

T
V@) =T, {log[3(t, 0)] + €'(z, O)e(t, 0)}
=1

-T'L®| 9", 9)

[cf. (2.7)]. Note that V{’(0;) = 9V(0)/0ls—4, = 0, where su-
perscript (1) denotes differentiation. Let W{(0) = E[V1(0)] and
assume that W;(0) has a unique global minimum at ;. Then,
under appropriate conditions (Ljung and Caines 1979, theorem
1), as T — oo, ﬁT — 8; — 0 almost surely and

T'°B;'*(0; — 07) 2 N(O, D), (A.1)
where _ _ _
B; = [WP(0,)]'Ur(0,)[WP(®,)] (A.2)
and
Ur(07) = TE{\VP @) VP (O} (A.3)

in (A.2) the superscript (2) refers to the £ X k matrix of second-
order partials of W;(0) with respect to the £k X 1 vector 0.

If, in addition, W{0) — W(0) uniformly in @ as T — % and
W(0) has a global minimum at 0,, then under appropriate con-
ditions (Ljung and Caines 1979, corollary 2),

T2 — %
(07 — 89) = N(0, B), (A4
where
B = [W?(00)]'U(0)[W?(00)] '
and U(0,) = limy.,., Ur(0;).

We shall also make use of the following results given in Ljung
and Caines (1979, lemma 1). Under the conditions for which (A.1)
is true,

(A.5)

VH{0) — W(0) — 0 almost surely (A.62)
and

VRO - WP —0, 1=1,2,

almost surely, as T — o uniformly in 6 € &.

We now establish the asymptotic justification of the bootstrap
procedure discussed in Section 3. Henceforth we assume all the
conditions necessary to establish (A.1)—(A.6) for the GML esti-
mator 0, (as listed in Ljung and Caines 1979). Let {e*(1, 0), ...,
e*(T, 0)} be a bootstrap sample of standardized innovations, put
VHO) = T 'S, {log|Z(z, 0)| + e*'(z, 0)e*(z, 0)}, and let WHO)
= E*{VH0)}, where E* denotes expectation with respect to the
bootstrap distribution. We now establish the following lemma.

WKO) = VH0) for all ® € & and hence &, min-

(A.6b)

Lemma 1.
imizes WX0).
Proof. First, note that
T
Ex{e'(1, 0)e*(t, )} = T~ >¢'(j, 0)e(j, 0),

j=1
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from which it follows that
T
Vr(0) — Wi (8) = T' Y [e'(z, 0)e(z, 0)
=1

— E*{e*'(z, 0)e*(z, 0)}] = 0.

Let 63 minimize V#(0). Then 0 = [9V(0)/06,, ..., dV#(0)/
36,1 lo=s: = V#"(85). Expand V#"(8) at 8 to obtain
0 = VEO(0%) = V¥ (0,) + VEPmr)(0F — 81), (A7)

where V§#?(n;) denotes the k X k matrix of second-order partials
VP (n7)/80 such that n; is on the segment connecting the points
0% and 6, in % Then, whenever V#®(%;) is invertible we have
©0F — 0p) = [VEPmp)17'VEP(@;). Now, by Ljung and Caines
(1979, theorem 1), we have

TV B 1285 — b;) S NO, D
as T — o, where
Bf = [W®(0)]1 'O W01,
Us(0;) = TEX{[VFPOIVF O,)1'),

and W@(0) = E*{V§?(0)}.

To establish the bootstrap principle, we show that Bf — B; —
0 almost surely as T — = [cf. (A.2) and (A.8)]. Now, by Lemma
1, Wi®@;) = V@(0,), and hence using (A.6), Wi®#;) —
W2(0,) — 0 almost surely as 7' — . Therefore, it remains to
show that U#(,) and Ux0;) differ by a small amount, compo-
nent-wise, for sufficiently large T [cf. (A.3) and (A.9)]. We now
state and prove this final result.

(A.8)
(A.9)

Lemma 2. U(0;) — Uy(0;) — 0 almost surely as T — o.

Proof. We shall suppress the argument 0 as needed to provide
notational convenience and where its exclusion is obvious. Let
Uf(a, b) = TE*{(8V*/00,)(8V*/36,)}e=s, be the (a, b)th element
of the matrix U§(0;), for a, b, = 1, ..., k. To further ease the
notation, let C,, = d[log|%(#)|1/30, and Z% = a[e*'(r)e*()]/06,
so that TU¥(a, b) = EX{Z/_,Z1_, (C\, + ZE)(Cy + Z%)}|g=4,- Now
write

T
TU#(a, b) = 2, > {(Cia + E¥Z£)Cyy + E*Z3)

=1 s=1
— E*(ZHE*(Z5) + EXZEZ 5 o=br
so that
Uf(a, b) = TE*(aV*/ae,,)E*(aV*/ao,,)L,:é,

T T
+T7' Y Y {EXZEZE) — E*ZHE*Z5)} by (A.10)

=1 s=1

The first term in (A.10) is the (a, b)th element of
TIWFP@)1[W3P(0,)]’ and hence is zero by Lemma 1. To eval-
uate the second term in (A.10) note that

T
E*Z¥) =T Za, (A.11a)
j=1
T
EXZAZ8) =T >, ZuZp, (A.11b)
j=1
and
T
E*(ZEZ%) =T> ZuZp, SFEL, (A.11¢c)

i=

J

where Z,, = d[e’()e(£)]/d6,. Substituting (A.11) into (A.10) we
have

1
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T
Uk(a, b) = {[T“ > Z.az,b]

(A.12)

Next we evaluate
Ur(a, b) = TE{(8V/36.)(3V/38,)}|o=b,-
Arguing as in (A.10), we may show that

T T
Ua, b) =T7' D D {EZuZy) — EZJEZ) o=, (A.13)

=1 s=1
where we have used the fact that W$’(0;) = 0. Since U, (6;) —

U(0y) as T — o [cf. (A.5)], it is clear that Ur(a, b) is asymp-
totically equivalent to

T T
T Y Y AEZuZs) — EZDEZ) o=,

=1 s=1

But the true innovations, e(z, 0,) and e(s, 0,), are uncorrelated,
s # t, so that (A.13) is asymptotically equivalent to

T
T7' D {E@ZuZs) — EZDEZ)Ho-0,- (A.14)
=1
By the stability of the filter, as T — «, we have
T
T7' Y E{Z..(00)Z(00)} — pala, b) (A.15)
=1
and
T
T7' D E{Z(O)EZs(00)} = mo@pa(b),  (A.16)
where !

pa(a, b) = E{3[u' (0%~ "u()1/46, o[u'()Z " u(1)]/6,}o-e,»

and
po(@) = E{@[u' ()2 'u(®)]/00,}e=s,>

where {u(#)} denotes the steady-state innovation sequence and 3,
denotes the steady-state error covariance matrix, 3 = E{u()u’(?)}
(Anderson and Moore 1979, sec. 4.4).

In view of (A.12), it remains to show that T~ 'ST,
ZuO1)Zs(07) — pala, b) and T7'SL, Z,(0;) — py(a) almost
surely as 7 — o. By Watanabe (1984, theorem 1) we have
T3 e(t,0;) = T7'ZL, ez, 05) + 0,,(1), from which it fol-
lows by the differentiability and boundedness conditions on the
Z,.(0) (Ljung and Caines 1979, assumption 2.7) that T'SL,
ZuOr) = T7'SL; Zu(80) + 0a5(1), and T7'ZL; Z,(07)Z,(6r)
= T7'SL, Z.(00)Z,s(85) + 0, (1). But, by (A.6), we may write

T T
T™' > Z00) = T7' D EZO0)} + 04.(1)  (A.17)
=1 =1
and

T
T™' Y Z(80)Z(80)

=1

T
=T7' Y EZ00Zs00)} + 0as(1). (A.18)
=1

The lemma now follows from (A.17) and (A.18) by the stability
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of the innovation sequence—the same argument used to establish
(A.15) and (A.16).

[Received June 1984. Revised March 1991.]
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