Dynamic Linear Models With Switching
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The problem of modeling change in a vector time series is studied using a dynamic linear model with measurement matrices
that switch according to a time-varying independent random process. We derive filtered estimators for the usual state vectors
and also for the state occupancy probabilities of the underlying nonstationary measurement process. A maximum likelihood
estimation procedure is given that uses a pseudo-expectation-maximization algorithm in the initial stages and nonlinear opti-
mization. We relate the models to those considered previously in the literature and give an application involving the tracking

of multiple targets.
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1. INTRODUCTION

One way of modeling change in an evolving time series
is by assuming that the dynamics of some underlying model
changes discontinuously at certain undetermined points in
time. In this article we will be concerned primarily with
modeling change in the dynamic linear model, a general
form that includes autoregressive integrated moving aver-
age (ARIMA) and classical regression models as special
cases.

In a stable dynamic linear model, one assumes that some
underlying ¢ X 1 observation vectors y, are connected to
unobserved p X 1 signal vectors of interest X, through the
observation equation

1)

for the time points £ = 1, ..., n, where A, are ¢ X p mea-
surement matrices that convert the unobserved signal mea-
surements into the data vectors y,. The vectors v, are in-
dependent zero-mean white-noise vectors with common g
X g covariance matrix R. The measurement or design ma-
trices A, are usually regarded as specified and may be used
to model situations involving structured multiple signals or
where there are missing observations (see, for example,
Shumway 1988, sec. 3.3). The description of the model is
completed by noting that the signal process X, was gener-
ated from a starting point X, with mean p and covariance
matrix 3 using the state equations

Y. =AX +V,

)

where @ is a p X p transition matrix that models the evo-
lution of the signal vector X, through time and w, is a p X
1 white-noise process, assumed to be independent of v,,
with covariance matrix Q. The parameters of the model are
the initial mean and covariance u and 3 plus the state tran-
sition matrix ® and covariance Q along with the measure-

X, = q)xt—l + w,
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ment covariance matrix R. The problems of estimating the
parameters by maximum likelihood and the signal vector x,
by Kalman filtering and smoothing techniques have been
exhaustively treated in the literature [see Shumway (1988)
for a review of some of them]. For purposes of maximum
likelihood estimation it is convenient to assume that the ini-
tial vector x, along with the errors v, and w, have multi-
variate. normal distributions. It should be recognized that
the model defined in (1) and (2) usually is applied with a
considerably reduced parameter space. For example, struc-
tural models are often applied that represent the observed
series as the sum of unobserved trend and seasonal com-
ponents (see, for example, Kitagawa and Gersch 1984,
Harvey and Todd 1983). The two examples considered here
also involve specializing (1) and (2) by reducing thee num-
ber of nonzero parameters considered.

Generalizations of the preceding model to include the
possibility of changes occurring over time have been ap-
proached by allowing changes in the error covariances (see
Harrison and Stevens 1976 or Gordon and Smith 1988, 1990)
or by assigning mixture distributions to the observation er-
rors v, (see Pena and Guttman 1988). Approximations to
filtering were derived in all of the articles just cited. An
application to monitoring renal transplants was described in
Smith and West (1983) and in Gordon and Smith (1990).
Changes can also be modeled in the classical regression
case by allowing switches in the design matrices, as in
Quandt (1972). Applications of the switching approach to
modeling changes in econometric time series have been re-
viewed by Tsurimi (1988). Switching via a stationary Mar-
kov chain with independent observations has been devel-
oped by Lindgren (1978) and Goldfeld and Quandt (1973).
Markov switching for dependent data has been applied by
Hamilton (1989) to detect changes between positive and
negative growth periods in the economy. Applications to
speech recognition have been considered by Juang and Ra-
biner (1985); hidden Markov models are summarized by
Rabiner and Juang (1986). An application of the idea of
switching to the tracking of multiple targets has been con-
sidered in Bar-Shalom and Tse (1975) and in Bar-Shalom
(1978) who obtained approximations to Kalman filtering
in terms of weighted averages of the innovations. They
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call their approximations “probabilistic data association
filters.”

2. DYNAMIC LINEAR MODELS WITH SWITCHING

Our approach is motivated primarily by the problem of
tracking a large number of moving targets using a vector
y: of sensors. In this problem one does not know at any
given time point which target any given sensor has de-
tected. Hence it is the structure of the measurement matrix
A, in (1) that is changing and not the dynamics of the un-
derlying signal X, or the noises v, or w,. To illustrate, as-
sume a 3 X 1 vector of satellite measurements y, = (y,,,
Yu» Y1) is observing some combination of tracks or signals
X, = (x,, X,, x,,). For the measurement matrix

1 00
A=|1 0 0
100

in the defining model (1), it is clear that all sensors are
observing target x,, whereas for the measurement matrix

010
A=|1 0 0],
0 0 1
the first sensor y, observes the second target x,,, the second
sensor y,, observes target x,, and the third sensor y, ob-
serves the third target x,,. All possible detection configu-
rations will define a set of possible values for A,, say M,,
M,, ..., M,, as a collection of plausible measurement ma-
trices for p = 3 sensors tracking one, two, or three targets.
As a second example of the switching model to be con-
sidered here, consider the case where the dynamics of the
linear model changes suddenly over the history of a given
single realization. For example, Lam (1990) has given the
following generalization of Hamilton’s (1989) model for
detecting positive and negative growth periods in the econ-

omy. Assume the representation
w=z+tn,

3)

where z, is an autoregressive series and », is a random walk
with a drift that switches between two values «, and o, +
a;g. That iS,

n=n,_,+a + oS,

with S, = 0 or 1 depending on whether we are in state 1
or state 2. Suppose, for purposes of illustration, that

z,= iz + oz, T W,
2

is a second-order autoregressive series with var(w,) = o..

Lam (1990) wrote Equation (3) in differenced form
VY: =2z, 21 + (2%} + alst (4)

that we may take as the observation equation (1) with state
vector

X, = (Zts Zi—15 Qoyps alt),

and M, = (1, —1,1,0)and M, = (1, —1, 1, 1) determining
the two possible economic conditions. The state equation
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(2) is of the form

Z 6 ¢ 0 0]z, W,
Z|_|1 0 0 0]z 0
w | [0 0 1 Offa,|T]lo] ©
ay, 0O 0 0 1}{]|a 0

which models the constant drift in terms of two constant
processes, oy, and «y,. In this case a rising economy might
be characterized by drift oy, + «,, and a falling economy
by ay,.

To incorporate a reasonable switching structure for the
measurement matrix into the dynamic linear model (1) and
(2) that is compatible with both the practical situations de-
scribed above, we assume that the m possible configura-
tions are states in a nonstationary independent process de-
fined by the time-varying probabilities

m(t) = Pr{A, = M}, ©)

forj=1,...,mandt =1, 2, ..., n, independent of past
measurement matrices A,, ..., A,_, and of past data y,, y,,
..., Y1 Important information about the current state of
the measurement process is given by the filtered probabil-
ities for being in state j, defined as the conditional proba-
bilities

@)

which also vary as a function of time. We will use the no-
tation Y, = {y,, ¥5, ..., ¥4 (s = 1, 2, ..., n) to denote the
space spanned by the observations y,, y,, ..., ¥,. The fil-
tered probabilities (7) give time-varying estimates of the
probability of being in state j given the past and present Y,.
The most important estimators for purposes of tracking the
process are the filtered estimators for the state vectors x,,
say

m(t|6) = Pr{A, = M;| Y},

x; = E(x,|Y), ®
and the filter covariances defined by
P; = cov(x,| Y) ©

since these are the best current estimators of position.

It is clear that if the parameters of the dynamic linear
model are known, we would like to be able to compute
quickly both an estimator for the smoothed trajectory and
its variance given by Equations (8) and (9) and an estimator
for the probabilities of each of the current measurement
configurations given by Equation (7). In many cases we
will not know the parameters of the dynamic linear model,
given by the initial means and by the transition and co-
variance matrices mentioned in the discussion following (1)
and (2). In these cases a procedure for estimating such pa-
rameters by maximum likelihood will be of interest. A
Bayesian direction can also be taken that assigns prior dis-
tributions to the unknown parameters (see Gordon and Smith
1988, 1990, or Pefia and Guttman 1988). Our approach here
will be in terms of classical maximum likelihood estimation
using an approximation to the Expectation-Maximization
(EM) algorithm (Dempster, Laird, and Rubin 1977) in
combination with a standard nonlinear optimization
procedure. '
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To summarize we derive exact equations for the filtered
probabilities and state vectors in Section 3. The estimators
given for the state vectors do not involve mixtures of the
normal distribution as in Gordon and Smith (1988, 1990)
or Peiia and Guttman (1987) so that no approximations are
needed to avoid the geometric increase in computations. In
Section 3 we derive a procedure for estimating the param-
eters using a pseudo-EM algorithm to get close to the final
values before changing to a classical nonlinear optimization
algorithm.

3. FILTERING

In this section, we establish the recursions for the filters
associated with the state process x, and the switching pro-
cess A,. The filters in this section are an essential part of
the maximum likelihood estimation procedure which will
be derived in Section 4.

First, consider the derivation of filters for the measure-
ment matrices A,. Let f(¢ | + — 1) denote the conditional
density of y,, given A, = M; and the past; we know im-
mediately that, under the multivariate normal assumptions,
the conditional density f{(¢ | # — 1) is that of a normal with
mean M;x;”' and covariance matrix

S, =MP M| +R, (10)

where

x; ' = EX,|Y,-) 1)

is the one-step filtered estimator for x,. Then the updating
equation to get Pr{A, = M; | Y} is given by

m(t) ft|t — 1)
Z;LI ) filt |t — 1)

where we assume that the distribution 7i(#) (j = 1, ..
has been specified prior to observing y,, ..., ¥y,

A potential weakness of the model is the need to specify
the time-varying prior probabilities 7,(¢). If the investigator
has no reason to prefer one state over another at time ¢, he
or she might choose uniform probabilities m(t) = m™".
Smoothness can be introduced by letting

m(t| 1) = (12)

., m)

m() = D mm(t— 1]1— 1), (13)
j=1
where the nonnegative weights are chosen so that 2; 7; =
1. If the process A, were Markov with transition probabil-
ities mr;, then (13) would be the update for the filter prob-
ability, as has been shown in Lindgren (1978) or Kitagawa
(1987) (see, also, Rabiner and Juang 1986). The difficulty
in extending the approach here to the Markov-dependent
case is the dependence in y, which makes it necessary to
enumerate over the possible histories to derive Equation (12).
Equation (13) has m,(¢) as a function of the past observa-
tions Y,_, and hence is inconsistent with model assumption
(10). Nevertheless, this seems to be a reasonable compro-
mise that allows the data to modify the probabilities ().
The filtered estimators x:~' and x! = E(x, | ¥,) are given
by
x; ' = dxiT], (14)
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Pl =®P1® + Q, (15)
f— gt S -1
xi=x"'+ > me| ) Ky, — Mx),  (16)
j=1
and
Pi= > mt| od — K,M)P,™, a7
Jj=1
where
K, =P 'M;3;" (18)

with 2,; defined as in Equation (10). This exhibits the up-
dated filters x; and filtered covariances as weighted com-
binations of the m scaled innovations and covariances,
respectively, corresponding to each of the possible mea-
surement matrices. The equations are somewhat similar to
the approximations introduced by Bar-Shalom and Tse (1975)
as “probabilistic data association filters” [see, also, the ap-
proximations of Gordon and Smith (1988) and Pefia and
Guttman (1988)].

To verify (16), let I(A, = M) be the indicator function
of the set A, = M; and note that

x; = E(x,| Y) = E[E(x, | Y,, A) | Y]]

= E{E Ex |Y, A =M)IA =M)| Y:}
j=1
- E{E X'+ K(y, — Mx7 D] LA, = M)) | Y}}

j=1
= m | nlx + Ky(y, — Mxh,
j=1

where K, is given by (18). Equation (17) is derived in a
similar fashion.

To review, we have shown how to extend the classical
Kalman filtering recursions to the case where the measure-
ment matrices are switching (or not) in accordance with a
nonstationary independent measurement process. In this
model we have derived estimators for the probability of being
in state j at time ¢ given the past and present Y, in Equation
(12). The modified results for the filtered state estimators
(16) show that the filtered estimators involve weighted
combinations of the gain-adjusted innovations. The filtered
covariances P; again involve weighted combinations of the
conventional estimators.

4. MAXIMUM LIKELIHOOD ESTIMATION

To develop a procedure for maximum likelihood esti-
mation, note first of all that the innovations form of the
log-likelihood function is proportional to

InL'(8) = >, ln<2 (o) fi(t |t — 1)), (19)

=1 j=1
where fi(t |  — 1) are the multivariate normal densities de-
fined earlier with means ij§_1 and covariance matrices
given in (10). We may consider maximizing (19) directly
as a function of the parameters ® = (n, ®, Q, R), or we
may consider applying the EM algorithm to the complete-
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data log-likelihood. In general, the EM algorithm con-
verges nicely in the initial stages and more slowly in the
final stages, where it is advantageous to switch to a stan-
dard nonlinear optimization procedure.

To apply the EM algorithm, note in the Appendix that
the log-likelihood of the complete data, Xg, X;, ..., X,, 4},
A,, ..., A, and y,, ..., y,, can be written as in Shumway
and Stoffer (1982) or Shumway (1988) with an additional
term corresponding to the unknown probabilities (). This
leads to the same regression equations for the transition ma-
trix @ and the error covariance Q expressed in terms of the
same smoothers x; = E(x, | ¥,) and smoother covariances
P; and P;,_,. We note only the modification (A.16) for the
last smoothed covariance. The equation for updating R given
in (A.8) involves smoothed probabilities ;(z | n) that have
not been computed. The backwards recursions for the
smoothed probabilities involve integrating over mixtures of
normal distributions and are excessively complicated. Monte
Carlo integration techniques such as the Gibbs sampler
(Carlin, Polson, and Stoffer 1990) may be useful, but here
we apply Equation (A.8) in the EM algorithm assuming
that the smoothed probabilities can be approximated by the
filtered probabilities (¢ | £). The resulting “pseudo-EM”
algorithm works quite well as is evident from the example
considered in the following section.

Since the pseudo-EM algorithm is quite slow in later it-
erations and does not necessarily increase the incomplete-
data log-likelihood or converge to maximizing values for
the parameters, a variable-metric (Fletcher—Powell-Davi-
don) nonlinear optimization procedure (see Nash and Walker-
Smith 1987) was applied to finish the maximization of
Equation (19) in the latter stages.

5. AN EXAMPLE

To illustrate the procedures of the preceding sections, we
return to the problem of tracking multiple targets, as intro-
duced in Section 1. The example given here uses a set of
contrived data that simulates the behavior of three sensors
observing various configurations of one to three targets over
n = 100 time points. The difficulty is that it is not possible
to identify which configuration of targets is being observed
at any given time point. This introduces a whole collection
of plausible measurement matrices, M,, M,, ..., M,, at each
time point to serve as possible models for the true mea-
surement matrix A,. Two of these matrices, corresponding
to observing only one track on all three sensors or observ-
ing one track on each of the three sensors, were given in
Section 1. The complete collection of measurement matri-
ces investigated at each point as plausible explanations for
the data forms the set of possible states for the hidden Mar-
kov chain in this example. A listing of the m = 10 config-
urations assumed to be possible at each time point is shown
in Table 1. Notice that the two measurement matrices shown
in Section 1 can be identified as M; and M, in Table 1.

The underlying tracks were generated according to a model
with a transition matrix of the form ® = diag(1.005, .990,
1.000) which corresponds to three tracks, a random walk,
and two tracks that increase and decrease slightly over time.
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Table 1. Definition of Sensor Target Associations Used
to Determine m = 10 Possible Measurement Matrices
in Example

Measurements and
observed tracks

Measurement
matrix Yu Yi2 3 5]
M, Xt1 Xt1 X1
M, X1 X1 Xi2
M, X1 Xi2 Xt1
M, Xi2 X1 Xt1
M, Xt1 X3 Xe2
M X1 Xi2 Xi3
M, X2 X1 Xi3
Me Xr2 X3 X1
M, X3 X2 X1
Mo Xi3 X1 Xi2

The matrices Q and R were taken to be diag(.0025, .0025,
.0025) and diag(.0625, .0625, .0625), respectively, and the
initial mean was u = (5, 5, 5)’ with n = 100 points. The
measurement matrices were switched three times during the
first 100 points, leading to the observed data shown in Fig-
ure 1. Since all tracks started at the same mean, the ob-
served data corresponds roughly to three one-dimensional
targets originating from a common launch point. To sim-

First Observed Series

10
3 5-W«MM
o
>
o T T T T
0 20 40 60 80 100
time in points
Second Observed Series
10
ER
(o}
>
o T T T T
0 20 40 60 80 100
time in points
Third Observed Series
10
3 51
[o}
>
0 T T T T
0 20 40 60 80 100

time in points

Figure 1. Original Measurements for Tracking Example.
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plify further we have not exhibited the nonlinear dynamics
of the measurement matrices, which would certainly be
present in any realistic application. It is fairly clear from
the observed tracks where the transition points lie and which
series (staying level, decreasing, increasing) that we are ob-
serving. We have chosen a fairly straightforward set of re-
alizations to test the method.

There is the question in any application as to whether
time varying probabilities or the parameters in the dynamic
linear model are more important or whether the two are
equally important. Often the dynamics of the tracks are as-
sumed known so that those parameters are known. In that
case adjustment of the initial probabilities might be very
useful for effectively pruning highly improbable measure-
ment matrices. In other cases the dynamics of the signal or
track are unknown, and the initial probabilities simply may
not matter that much. In this case parameter estimation might
proceed for some fixed reasonable a priori set of probabil-
ities, such as m(f) = m~'. The filtered probabilities (12)
can serve as the important indicator of whether or not we
are in state j at time ¢. In the present example there are 10
initial probabilities. Because of the large number of states
that are common in examples involving tracking, we chose
to hold all of these probabilities fixed at reasonable starting
values and identify the tracks by varying the parameters in
the state-space model. The m = 10 initial probabilities were
all taken as .1, corresponding to assuming that each con-
figuration is equally likely.

A summary of parameter estimates using 50 iterations of
the EM algorithm and several varible-metric (Fletcher—
Powell-Davidon) iterations is shown in Table 2. It is clear
that the log-likelihood (19) increases at each step and that
the transition matrix parameters converge rather quickly,
say after 5 iterations. Estimating variances requires some-
what more time, and these may be assumed known to in-
crease processing speed. One iteration requires running the
filters and smoothers for both the probabilities and the sig-

767

nal tracks, as detailed in Section 2. Time requirements were
6 min., 3 min. and 1 min. respectively for 8086-, 80286-,
and 80386-based microcomputers. It is clear that tremen-
dous reductions in computing time are available through
parallel processing, which can be done in Equations (12),
(16), and (17) using parallel paths for each possible mea-
surement matrix. Hence the multiple path filters would re-
quire no more time than a single Kalman filter and smoother.

Figure 2 shows 4 of the 10 filtered probabilities, com-
puted using the forward recursions (12) and (14)—(18). These
are states exhibiting nonzero probabilities over a significant
portion of the range. It is clear that after an initial period
of indecisiveness (¢ < 20), the filter indicates M,, for 20
=1t =29, Mg for 30 =t =49, M, for 50 = ¢t = 69, and
M, again for 70 = ¢ = 100.

Figure 3 shows the signal tracks, estimated using Equa-
tions (14)—(18), and we note that they compare well to the
input series mixed to determine the observed realizations
in Figure 1. In fact, we did not plot the original tracks be-
cause they would have overlayed the estimated tracks al-
most exactly.

6. DISCUSSION

We have developed an approach to modeling change in
a vector time series that uses a model for switching that is
different than considered by Gordon and Smith (1988, 1990)
or by Pefia and Guttman (1988). In general restricting the
switching to the measurement matrices simplifies the Kal-
man filtering recursions considerably since the equations
are exact and it is not necessary to approximate mixture of
normals as in the Gordon and Smith approach.

The model is still general enough to include most struc-
tural models useful in modeling and monitoring changes of
regime in vector time series. Even changes of the kind con-
sidered by Gordon and Smith can be accommodated as long
as one is willing to assume that they occur as abrupt changes
in the configuration of elements observed in the state vec-

Table 2. lterations for Parameters in Tracking Example

Iteration
no. b b2z b3 qn Q22 Qs3 I 22 33 InL'
Pseudo-EM
0 1.000 1.000 1.000 .1000 .1000 .1000 .1000 .1000 .1000 -316.67
5 1.006 .990 .999 .0272 .0283 .0332 .0658 .0653 .0744 —-252.50
10 1.006 .990 .999 .0118 .0129 .0160 .0516 .0533 .0643 —232.53
15 1.006 .991 .999 .0070 .0081 .0102 .0509 .0522 .0664 —226.84
20 1.006 .991 .999 .0047 .0059 .0073 .0512 .0519 .0682 —-223.93
50 1.006 .991 .999 .0016 .0026 .0025 .0534 .0516 .0724 -219.79
Nonlinear optimization (Variable Metric)
51 1.006 .991 .999 .0013 .0025 .0023 .0533 .0516 .0732 -219.70
52 1.006 .991 .999 .0010 .0029 .0019 .0533 .0516 .0723 —-219.51
53 1.006 991 .999 .0011 .0022 .0015 .0533 .0515 .0723 —-219.41
54 1.006 .991 .999 .0011 .0021 .0015 .0533 .0515 .0722 —219.38
55 1.006 .991 .999 .0011 .0020 .0015 .0533 .0514 .0722 —-219.38
56 1.006 .991 .999 .0011 .0023 .0012 .0536 .0466 0711 —-219.36
57 1.006 .991 .999 .0011 .0024 .0011 .0536 .0461 .0709 -219.33
58 1.006 .991 .999 .0011 .0024 .0012 .0533 .0460 .0704 -219.32
* 1.005 .990 1.000 .0025 .0025 .0025 .0625 .0625 .0625

*denotes true parameter values.
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Figure 2. Filtered Probabilities for Most Probable Measurement Matrices.

tor. Modeling of abrupt changes in the observation error,
however, is precluded under our formulation, making our
switching structure of relatively little use in robust detection
of outliers as considered by Pend and Guttman.

We mention also that our approach allows for simulta-
neous estimation of parameters in the dynamic linear model
by maximum likelihood. This means that the sequential
model selection approach and parameter estimation can be
accomplished simultaneously.

It should be noted in closing that more general models
can be considered that introduce dependence in the mea-
surement matrices as they evolve over time. For example,
the measurement matrices may form a stationary Markov
chain with constant initial and transition probabilities. The
cost of increasing the level of generality to the dependent
case seems to be high in computational effort since the pos-
sible dependent paths must be laboriously traced back through
the chain, as in Hamilton (1989) who analyzed a simple
two-state Markov structure. In addition one will have to
assume reasonable values for the transition probabilities or
treat them as additional parameters. Thus it seems that the
simple extensions to dependent switching transitions that

Final Filtered Series
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Figure 3. Filtered Estimators for Tracks.

obtained for independent data (see Lindgren 1978) do not
carry over easily to the dependent data case given here.

APPENDIX: PSEUDO-EM ALGORITHM

We give details for the pseudo-EM algorithm used in the first
stages of the procedure for maximizing the incomplete-data log-
likelihood (16). If we imagine the unobserved and observed com-
ponents of the model (1) and (2) generated in the order x,, X;,
A1, Y1, X2, Az, Y2, ..., the complete-data log-likelihood can be
written as

1 1 1 n
InL(0) = — 51n|2| =3 (o — W)'Z7 (%o — )~ > In|Q|

1 n
- 5 2 x, — (I)x,_l)'Q_l(x, - q)xt—l)
=1

n m n
+> Z IA, = M) In m () — Eln|R|
=1 j=

n m

2 IA, = Mj)(Yt - Atxt)lR—-l(Yt —AX).

1
234
(A.1)
The EM algorithm requires that we maximize the conditional ex-
pectation
0(8, 8) = E,[In L(8) | Y,] (A.2)
with respect to 0 at each step, where 0 is the parameter value at
the previous iteration.
Now, taking conditional expectations in (A.1), noting that

a(t| n) = EUA, = M)) | Y], (A.3)
leads to
#(1) = mt| n), (A.4)
i = xg, (A.5)
&=BA", (A.6)
0 =n"Y(C — B®' — ®B' + PAD"), (A.7)



Shumway and Stoffer: Dynamic Switching

and
R=n"! it | My, — M)y, — Mx})'+ M;PIM;].
<

=1 j
(A.8)

The covariance matrix 2 is held fixed at some reasonable value.
The matrices A, B, and C are defined as

A= (Pl +xxly), (A.9)
=1
B = (Pl + XX}, (A.10)
=1
and
C=D @I +x/x"). (A.11)
=1

These matrices involve the usual Kalman smoothers x; = E(x, |
Y,) and their covariances
P:l = E{(xt - x:l)(xz - X;'), | Yn}
and
:‘,1—1 = E{tX, - X:‘_l)(X,_l - x?)l I Yn}-
The smoothers are derived under the assumption that the A, are

stochastic in a manner analogous to that used for deriving the
filters in Section 3. We obtain fort = n,n — 1, ...,

XL =X+ o - XY, (A.12)
where
J,=PZioPH7 (A.13)
The smoother covariances satisfy
T =PI+ J (P = PO (A.14)
fort=n,n-1,...,1and
Pl =PI+ J (Pl — PP, (A.15)
fort =n,n—1, ..., 2 subject to
maot = O mn | md - Ky,M)PPLTL, (A.16)

J=1
where K, is defined in (15).

As discussed in the text, the difficulties encountered in com-
puting (¢ | n) led us to replace it with 7z | 1) in (A.8). The
advantages of using the EM algorithm are (a) its stability under
the switching structure, and (b) the simple regression computa-
tions involved at each step as exhibited in (A.6)—(A.8).

[Received February 1990. Revised January 1991 .]
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Letters to the Editor

CORRECTIONS

R. H. Shumway and D. S. Stoffer, “Dynamic Linear Models With Switching,”
86, No. 415 (September 1991), 763-769.

Scott Vander Wiel of AT&T Bell Laboratories has pointed out the fol-
lowing oversight in our development of the filtering equations established
in Section 3, p. 765. The conditional densities f;(¢|z — 1) = f{y,| Y1, 4,
=M} (j=1,..., m)were needed to establish the recursions for the filter
associated with the state process. The conditional mean vectors and co-
variance matrices are correct as stated; however, the densities are mixtures
of normals.

Let A(/) denote the set {4, = M}, ..., A1 = M,_,}, where [ refers to
a particular (1 — 1)-tuple, (ji, ..,Jji-1), 1/, .... m"'. Then, from standard
Kalman filter results with fixed design matrices, the density /{y,| Y-, 4,
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=M,, A(l)} is multivariate normal with mean vector M,x{”'(/) and co-
variance matrix M;P{' (/)M + R, where the argument / denotes filtering
with respect to the particular set of design matrices specified by 4(/). Of
course, x:~!(/) and P!"'(/) can be obtained from the standard Kalman filter
recursions. It is clear that the density f;(¢|¢ — 1) is a mixture of the normal
densities with mixing probabilities #(/|t — 1) = Pr{A(/)| Y-y}, I=1,...,
m'™!; that is,

pale =1 =2 ol|t = Df{yl Yior, A = M;, A(D},
!

j=1...,m.

These densities involve computation of x{~'(/) and P{~'(/), and calcu-
lation of these quantities involves iterating over an exponentially increasing
number of possible histories. Because our objective was able to compute
quickly both an estimator for the smoothed trajectory and its variance, we
wanted to avoid lengthy calculations where it was necessary to filter and
smooth over all possible histories. The normal densities with mean vectors
M;x!™" and covariance matrices M,P{"' M + R, as given in Section 3, can
be considered approximations to the densities fj(¢|¢ — 1); these approxi-
mations allow for the quick updating scheme specified in the article. More-
over, these single normal densities minimize the Kullback-Leibler distance
for the normal mixtures described earlier. (Similar approximations were
used in Gordon and Smith 1990 and Pefia and Guttman 1988, to mention
a few.) As seen from the example in Section 5, the performance and tract-
ability of the scheme is impressive.
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