A Monte Carlo Approach to Nonnormal and
Nonlinear State-Space Modeling
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A solution to multivariate state-space modeling, forecasting, and smoothing is discussed. We allow for the possibilities of nonnormal
errors and nonlinear functionals in the state equation, the observational equation, or both. An adaptive Monte Carlo integration
technique known as the Gibbs sampler is proposed as a mechanism for implementing a conceptually and computationally simple
solution in such a framework. The methodology is a general strategy for obtaining marginal posterior densities of coefficients in the
model or of any of the unknown elements of the state space. Missing data problems (including the k-step ahead prediction problem)
also are easily incorporated into this framework. We illustrate the broad applicability of our approach with two examples: a problem
involving nonnormal error distributions in a linear model setting and a one-step ahead prediction problem in a situation where both
the state and observational equations are nonlinear and involve unknown parameters.
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The state-space model has become a powerful tool for
modeling and forecasting dynamic systems. Such models, in
conjunction with the Kalman filter, have been used in a wide
range of applications in many disciplines including biology,
economics, and engineering and consequently have become
of increasing interest to statisticians. It is well known, however,
that the Kalman filter is optimal only in the case where the
dynamic system is Gaussian. If the system is not Gaussian,
the Kalman filter yields the best linear predictor (Brockwell
and Davis 1987, sec. 12.1), but the difference between the
optimal forecast and the best linear predictor can be quite
substantial. Moreover, it also is well known that the Kalman
filter under Gaussian assumptions is nonrobust (Meinhold
and Singpurwalla 1989). Many authors have suggested mod-
eling dynamic systems with state-space models in conjunction
with various alternatives to the Kalman filter. For example,
Kitagawa (1987) proposed recursive formulas based on
piecewise linear approximations to the density functions for
prediction, filtering, and state estimation of nonstationary time
series via non-Gaussian state-space models. Meinhold and
Singpurwalla (1989) suggested a robustification of the state—
space model using approximate methods involving poly- dis-
tributions and a recursive mechanism for implementing a
multivariate ¢ distribution based on the Kalman filter recur-
sions. Other approaches and approximation techniques in a
Bayesian framework were presented by Alspach and Sorenson
(1972), Harrison and Stevens (1976), Smith and West
(1983), West, Harrison, and Migon (1985), West (1986),
and, most recently, Gordon and Smith (1990).

Consider the standard state-space model

x,=Fx,_;+u, and

v, = Hx, + v, t=1,... (1)
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where X, is the p X 1 state vector, y, is the g X 1 observation
vector, F, is a p X p matrix of constants, and H,isa g X p
matrix of constants. Lety = (y;, . . ., ¥,) denote the observed
data,x = (x;, ..., X,) the (unknown) elements of the state,
and X, the initial state, where we assume xy ~ N,(uo, Zo).
Typically #, and v, are independent and identically distrib-
uted, with u, ~ N,(0, 2) and v, ~ N,(0, T), where N, denotes
the p-dimensional normal distribution. Also, the matrices
F,, H,, Z, and T generally are assumed to be known. These
assumptions enable simple updating of estimates via the
usual Kalman filter but in practice are frequently found to
be too restrictive for realistic data analysis.

The first purpose of this article then is to develop meth-
odology for modeling the nonnormality of the u,, the v,, or
both. A second departure from the model specification (1)
is to allow for unknown variances in the state or observational
equation, as well as for unknown parameters in the transition
matrices F, and H,. As a third generalization we allow for
nonlinear model structures; that is,

X, = f(x,-y) + u, and

V= h(x) + v, t=1,.. (2)
where f,(+) and A,(-) are given, but perhaps also depend on
some unknown parameters. The experimenter may wish to
entertain a variety of error distributions. Our goal throughout
the article is an analysis for general state-space models that
does not resort to convenient assumptions at the expense of
model adequacy.

Section 1 discusses the model specification, and provides
a methodology for modeling nonnormality in the form of
normal scale mixtures (Andrews and Mallows 1974). The
methodology is developed with the implementation of the
Gibbs sampler in mind. The latter is an adaptive Markovian
updating scheme useful for obtaining marginal posterior dis-
tributions in cases where exact numerical results are un-
available and traditional numerical integration techniques
are difficult or infeasible. Section 2 considers the problem
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of determining estimates of the marginal densities of the
model parameters, as well as p(x,+; |y, Vus1) (filtering) and
D(Xn+1|y) (one-step ahead prediction). In Section 3 we
consider two examples of state—space models that allow for
nonnormal error structure and nonstationarity in the state
and observation spaces. We summarize our findings in Sec-
tion 4.

1. MODEL SPECIFICATIONS AND THE |
GIBBS SAMPLER

1.1 Model Specification

In general the likelihood specification for our model, sup-
pressing the conditioning on (uo, Zo, F;, H,), is given by
s Xl Z, T)

DP(V1s e vy Vus Xos X15 o o

= g1(Xol mo, Zo) [T &1(xe1 %1, 2) [1 &0l %, T)  (3)

t=1 t=1

for some densities g,(+) and g,(-). Specifically, we model
g and g; by letting

gi(xlxi, 2) = f POl X1y Mo 2)p1(N) dhy

&(Vlx, T) = LP(J":IX:, w;, T)py(w,) duwy,

t=1,... 4)

where, conditional on the nuisance parameters A and w,
-xt]-xt—la Ata E ~ N(ﬁ(xt—l)a >‘tz)a
Vel X, w, T~ N(h(x), 1), (5)

Of course if 4,(x,) = H,x, and f(x,_;) = F,x,_;, we have
the linear model (1). Note that by varying p; (),) and p,(w,),
the distributions g, and g, are scale mixtures of multivariate
normals for each ¢, thus enabling a wide variety of nonnormal
error densities to emerge in (3). For example, in the uni-
variate case (where we denote 2 and T by ¢ and 7) the
distributions x,|x,—,, ¢ and y,| x;, 7 can be double exponen-
tial, logistic, exponential power, stable, or ¢ densities (An-
drews and Mallows 1974; Carlin and Polson 1991; Kanter
1975; West 1987). In the multivariate case a rich class of
densities emerges including the r-dimensional hyperbolic
distribution (Barndorff-Neilsen and Halgreen 1977). Note
that we are assuming p(\, w) = [1%, p;(\,)p2(w,), so that
the densities x,|x,-;, = and y,|x,, T possibly are different
scale mixtures of normals. Another easily incorporated ex-
tension is to allow for different densities as ¢ varies, ¢ = 1,
.., H.

The key to the approach is the introduction of the (gen-
erally high dimensional ) nuisance parameters \ and w and
the structure (5), which lends its€lf naturally to the Gibbs
sampler, our computational tool.

1.2

’n$

t=1,...,n.

Implementation of the Gibbs Sampler

A Monte Carlo integration method that proceeds by a
Markovian updating scheme, the Gibbs sampler is essentially
a modification of the Metropolis algorithm (Metropolis et
al. 1953), developed formally by Geman and Geman (1984)
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in the context of image restoration. In the statistical frame-
work, Tanner and Wong (1987) used essentially this algo-
rithm in their substitution sampling approach. Recently,
Gelfand and Smith (1990) developed the Gibbs sampler for
fairly general parametric settings; see that paper for a dis-
cussion of the method and its properties. To summarize the
method briefly, suppose we have a collection of k (possibly
vector-valued ) random variables U, . . ., U, with complete
conditional distributions, denoted generically by f(U,| U,, r
#5),5=1,...,k, available for sampling. Here, available
means that samples may be generated by some method, given
values of the appropriate conditioning random variables.
Under mild conditions (Besag 1974), these complete con-
ditional distributions uniquely determine the full joint dis-
tribution, f(Uj, ..., Uy), and hence all marginal distribu-
tions f(Us), s = 1, ..., k. The Gibbs sampler generates
samples from the joint distribution as follows: Given an ar-
bitrary starting set of values U, ), . . . , Uk(o), We draw U,
fromf( U] I Uz(o), ey Uk(O)), then U2(l) fromf( Uzl Ul(l),
Usys - - - » Uk(O)), and so on up to Uiy from f(Uy| Uiy,
..., Uk—1(1y) to complete one iteration of the scheme. After
[ such iterations we obtain (U, ..., Uk). Geman and
Geman (1984) showed that under mild conditions this k-
tuple converges in distribution to a random observation from
Uy, ..., U)asl— oo. For this reason, in the sequel we
suppress the (/) subscript, assuming that / is sufficiently large
for the generated sample to be thought of as a realization
from the joint distribution. Now replicating the entire process
in parallel G times provides iid k-tuples (U®, ..., U®), g
=1,..., G from the joint distribution. These observations
then can be used for estimating any of the marginal densities.
In particular if f(U,| U,, r # s) is available in closed form,
then
1 6
WUy == T AUIUD, r#5). (6)
G,.o

Due to the relatively recent appearance of Gibbs sampling
methodology in the statistical literature, several important
theoretical and practical issues in its general implementation
remain under investigation. These issues include the diag-
nosis of convergence, modification of the sampling order
(including random visitation orders), efficient estimation and
generation from nonstandardized complete conditional
densities, and the comparison of results obtained from sam-
pling schemes that are sequential (where we employ only
one stream of Gibbs iterates, perhaps keeping every mth one
to better simulate a stream of independent samples) as op-
posed to parallel (as described previously). The articles by
Gelfand et al. (1990) and Zeger and Karim (1991) offered
useful guidance concerning many of these issues.

In the context of our state-space models, to implement
the Gibbs sampler we require samples from the following
complete conditional distributions:

. x,Ixj¢,,)\,w,2,T,y,t=O,...,n

o wlwiw A, S, Ty, X, %~ o T,y X t=1,. ..

* At|>‘j9*t9 w, 29 T’ Yy, X, Xo ~ )\,IE, Xty Xe—15
t=1,...,n

e IIN w0, T,y,X, X~ 2|\, Y, X, X

e TN, w, 2, ¥, X, X% ~ Tw,y, X

, h
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We now consider the first two of these distributions. The
third follows in a similar manner to the second; the last two,
under conjugate priors, follow from standard normal and
Wishart distribution theory due to the conditioning on A
and w.

First, in the linear case, we prove a lemma that determines
the set of conditionals, x| Xjx, A\, w, 2, T, y,t=1,...,n.
The nonlinear case (2) will be illustrated in Example 1.2.

Lemma. Under model (1) and using the multivariate
normal scale mixture error assumption (5), the complete
conditional distribution x;|Xj«, N\, w, 2, T, y is N,(B,b,,
B,), where

poio 2 HITH, FL2TF
A W At
pT = X P27y 17, 4 X2 )
)\, W, >‘t+l
the 7 superscript denoting the transpose operation.

Proof. By Bayes’s theorem, the required exponent is a
sum of three terms; that is, modulo a normalizing constant,

—2log p(x;|Xjse, N, @, 2, T, y) is
)\it(x, — Fxo)T2 7Y (x, — Fox,_y)
N wl = Hox) T4 (, = Hyx,)
+ x_,l:l et = Franx) T2 Xy — Fror ),

which on manipulation gives the desired result.

Note that adjustments will need to be made to formula
(7) for the cases t = 0 and ¢ = » due to slight modifications
and deletions in the likelihood for these “endpoint” cases.
We illustrate these modifications in Example 1.1.

Now consider the determination of w,|w; %, A, 2, T, y, X
~ w/|T, y;, x;,t =1, ..., n. By Bayes’s theorem, w,| T, y,,
X; o¢ p(¥| s, w;, T)pa(w,). But by (4), the normalization
constant is known and is given by g,(3,|x;, T). Hence the
complete conditional for w, is of known functional form.
Generation of the required samples may be done directly if
this form is a standard density; otherwise, a carefully selected
rejection method may be used.

Example 1.1: Univariate Linear Model. For illustra-
tion, consider model (1) with p = ¢ = 1 and 2, = ¢}, =
=¢% T =172 H,= Hand F, = F. Using the previous lemma
and taking care with the endpoint cases we have x,|X; 4, A,
w, 0,7,y ~ N(B,b,, B,), where

1 F?
Bl=—+—— =
! o o\’ 1=0
L(L BN 2y
o2 \N Nt 72w, ’ ’
1 H?
= —— t=n,
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and
b,=§%+§;‘—l, 1=0
=£2(T,+::i)+% t=1,...,n—1
Fwhdrt

The complete conditionals for ¢ and 72 are obtained as
follows. Assuming the independent a priori specifications o2
~ IG(ag, by) and 72 ~ IG(c,, dp), where IG denotes the
inverse (reciprocal ) gamma distribution, then

2
o |x’ Y, X, Xo

n 12 -1
IG(ao [b—o 52 Fxt—l)z/)\t} )

o, y, x

IG(C'0+_ {d0+ z (yt

-1
Hx,)z/w,} ) . (8
t=1
For the w complete conditionals, suppose we wish to model
y|x, 7 as a product of double exponentials. The necessary a
priori specification for w, is then w, ~ exp (2), the exponential
distribution having mean 2. Because y,|x;, w,, T ~ N(Hx;,,
w,72), the complete conditional for w, is then
)] ;0 (9)

2
W7, ¥, X ¢ w; 1/zexp[—- 1 (w, + (——-H+x')
2 W, T

thatis, w,|7,y, x ~ GIG[4, 1, (y, — H,x,)/ %], where GIG
denotes the generalized inverse Gaussian distribution
(Devroye 1986, p. 478). To sample from this density, we
note that it is the reciprocal of an inverse Gaussian (|7 /(y,
— H,x,)|, 1), a density from which we may sample easily.

A similar approach to the one just described could be used
to model nonnormality in the state equation via the A com-
plete conditionals. Finally, if F or H are thought of as un-
known parameters (as often is the case in practice), then
their complete conditional distributions also will be required
to implement the Gibbs sampler (see Example 3.1).

Example 1.2: Nonlinear Model. 'We now determine the
distributions x;| X%, A, w, 2, T, y for model (2), the non-
linearity presenting no further complications in the remain-
ing complete conditional distributions. We consider sepa-
rately the three cases where nonlinearity occurs in the state
equation, the observation equation, or both.

First, suppose that /,(x,) = H,x, but that the state equation
is nonlinear. Then x| X4, N, w, 2, T,y oc w(x,)N,(By.by,

B,,), where
>t =g
B_l - t t
1z At W, >
TS —1 Trp—1
bITt=ft(xt—1) ) +,VtT Ht, (10)
A w;



496

and wi(x) = exp{—(1/2 ) [Xr1 — S(X)1"Z 7 [x00y
— fi(x,)]}. But clearly 0 < w,(x;) < 1 for all x,, and so the
distribution from which we want to sample is dominated by
the N(By,b,,, Bi;) density. Hence we may use rejection sam-
pling (Devroye 1986, sec. I1.3) to obtain a random obser-
vation from the required complete conditional. That is, we
sample an observation x, from a N(B,,b,;, B,,) density and
subsequently accept it with probability w, (x,). .

Of course this algorithm may be rather inefficient if the
wy(x;) are close to 0; in such cases more sophisticated en-
velope functions may be needed. Such envelope functions
often are normal or ¢ densities chosen to be as similar as
possible to the desired complete conditional, thus enabling
more efficient rejection sampling (see Carlin and Polson 1991
for an example). The experimenter needs to take care that
such an envelope function does in fact blanket the complete
conditional distribution for all x,. Gilks and Wild (1992)
overcame this problem for log-concave densities using a
piecewise exponential envelope. Along similar lines is the
technique presented in Wakefield, Gelfand, and Smith
(1991), which improved on the traditional ratio-of-uniforms
method of rejection sampling. Still, the substantial compu-
tational overhead involved makes all of these approaches
less attractive unless the naive method described in the pre-
vious paragraph is prohibitively slow.

Second, suppose that f;(x;-,) = F,x,_; but that now the
observational equation is nonlinear. The x;|x;j 4, N, w, 2, T,
Y o€ Wy(x;)N,(Ba;byy, By,), where

2! FL27'F,,
By =—+—r 7,
>\t >\t+l
r_ X FT270  xILZ27'F
b2t - + s
At >\t+l

and wy(x;) = exp{—(1/2w)[y: — h(x)]™C "' [y, — h(x,)] b
and again rejection may be employed. Finally, when
both components are nonlinear X,|Xjx, A\, w, Z, T, y
o wi(xX) W (X ) Ny(fi(x=1), NZ). Thus we sample a
N,(fi(x,-1), \,Z) random variable and accept it with prob-
ability w, (x,)wa(x,).

2. ESTIMATED MARGINAL POSTERIOR DENSITIES

With all the complete conditionals available for sampling,
it now remains to show how to estimate the marginal pos-
terior densities of the quantities of interest using the generated
Gibbs samples. If we denote this collection by {(x{®, A&,
W@, t=1,...,n), x5, 2@, 1® g=1,..., G}, then
we may use (6) obtain

A 18
BxIY) = 5 3 pOulx, X8, N0, M8,
g=1

wgg)y z(g), T(g)a yt)' (11)

Note that this of course assumes that the x, complete con-
ditional distribution is available in closed form. If this is not
the case (as in Example 1.2 above), an alternative would be
to simply compute a kernel density using the { x{&)} samples
themselves. Another approach would be to obtain the G
standardizing constants necessary in equation (11) by uni-
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variate numerical integration, perhaps a simple trapezoidal
rule. While a bit more work, this latter approach generally
produces a better density estimate, as it does not discard the
functional form used to obtain the { x{#} iterates. This ap-
proach is illustrated in Example 3.2.

We note that equation (11) could be used to obtain a
marginal posterior density estimate for x,, provided y,.,
was available, offering a solution to the so-called filtering
problem. If y,,, is not yet available, the problem becomes
one of one-step ahead prediction and can be solved by a
slight modification of the Gibbs algorithm. In fact the k-step
ahead prediction problem can be easily handled as follows:
Suppose we desire an estimate of p(x,,.|y) where again y

= (V15 ..., ¥Yn) and Yuiq, ..., Vnexk have not yet been ob-
served. We simply add {X,+1, - -+ Xntks Vatls - - - » Yotk
Aitls -+ o> Antks @ity - -« » Wytk § O the Gibbs sampler as 4k

additional unknown parameters. The complete conditional
distributions for the new X’s are again obtained using the
lemma in Section 1, where now of course the upper endpoint
condition pertains to X, instead of x,,. Similarly, the com-
plete conditionals for the new \’s and w’s arise in a manner
analogous to that described in Section 1. Finally, the com-
plete conditional distributions for the new y variables come
directly from the model specification, namely

yn+t I {xi’ Ai: wl}:l:{c’ xO’ E: T’ y ~ yn+t |xn+t, Wptes T
~ N(hnis(Xn11)s @niT), t=1,...,k.

We now simply run the Gibbs sampler as usual, obtaining
forany i€ {1,. .., k} the slightly modified version of (11),

. 18 :
P(Xnsiy) = G 2 D(Xnai | XEi 1y X 81, NEY,

. g=1

wgfi')i, E(g), T(g), y;g—)z), (12)

the primary difference being the dependence on the generated
values {y{&), g = 1, ..., G} rather than on an observed
data value y,,;. Of course as these future y,,; values become
available, we simply use these values in lieu of sampled values
y§8) and rerun the algorithm—a computationally simple so-
lution to the filtering problem. Example 3.2 illustrates this
process.

3. NUMERICAL EXAMPLES

Example 3.1: Univariate Linear Model. Consider
again the model presented in Example 1.1. We apply this
model to the data displayed in Table 1, which gives estimated
total physician expenditures by year as measured by the So-
cial Security Administration. This data set was included in
a state-space analysis by Shumway and Stoffer (1982) using
a maximum likelihood procedure via the EM algorithm.

We assume that the estimates y, in the data are unbiased
for the true annual physician expenditures x,; thus set H
= 1. Further, a plot of the data and the analysis of Shumway
and Stoffer suggest that the simple exponential growth model
given by F;, = F is not unreasonable; however, we wish to
treat F as an unknown parameter. This can be easily incor-
porated into the Gibbs framework developed in Section 1
by assuming that F ~ N(ur, 0%) and noting that the com-
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Table 1. Estimated Physician Expenditures (Millions of Dollars)

Year (t) Vi Year (t) Ye Year (t) Vi Year (t) Vi Year (t) Ve
1949 2,633 1954 3,574 1959 5,481 1964 8,065 1969 12,629
1950 2,747 1955 3,689 1960 5,684 1965 8,745 1970 14,306
1951 2,868 1956 4,067 1961 5,895 1966 9,156 1971 15,835
1952 3,042 1957 4,419 1962 6,498 1967 10,287 1972 16,916
1953 3,278 1958 4,910 1963 6,891 1968 11,099 1973 18,200

plete conditional is given by F|\, w, ¢, 7, X, Yy ~ N(Bgbp,
Br), where
1 n

0" =1

Xt Xi—1 + HF
3 -

A OF

X2
Xt
A

~

As in Section 1, we place independent inverse gamma priors
with parameters (ao, by) and (¢y, dy) on o2 and 72, so that
their complete conditional distributions are again given by
(8). Similarly, the complete conditionals for x,, ¢ =0, .. .,
n are the same as those in Example 1.1 (recall that we use a
N(uo, ) prior on x,). The densities p(x,|y) may be esti-
mated using equation ( 11) with the argument F(® added to
the list of conditioning arguments, because F is no longer
known but instead is a component of the sampler.

To demonstrate the approach to nonnormal error distri-
butions, consider the two models /M, and M, given by

‘/M’1: U ~ N(Oa 02)5 v, ~ N(03 72)7
My u, ~ DE(O, o), v, ~ DE(O, 7).

and

For M, we take \;, = w, = 1 with probability 1 forall t = 1,

, n, leading to complete conditional distributions for A\,
and w, that also are degenerate at the value 1. For J/l, we
take both the A, and w, to be independently distributed a
priori as Exp(2) random variables, leading to the complete
conditionals

1 _ _ 2
)\,~GIG[—,1, (’C’—%) ] and
2 g

(5]
T

in a manner similar to that surrounding equation (9). We
complete the specification of the prior on x, by setting uo
= 2,500 and ¢, = 100 and place vague priors on ¢2 and 72
both having prior mean and prior standard deviation equal
to 100,000 (i.e., @y = co = 3, by = dy = 5 X 107%). Finally,
we set ur = 1.1 and o = .1, implying a rough a priori belief
in a 10% annual growth rate.

For our analysis we ran the Gibbs sampler for / = 50
iterations on each model separately, obtaining the two model-
specific density estimates p(F|y, #M;) shown in Figure 1. In
each case our algorithm used G = 2,500 parallel replications
per iteration, and convergence was judged both by moni-
toring sample moments of the Gibbs values themselves and
by plotting successive density estimates for the inflation con-
stant F. We see that the normal errors assumption produces
a posterior distribution for F that is slightly less variable and
centered around a slightly higher mean inflation rate. In ei-

1
w, ~ GIG[E R

ther case a point estimate of just over 9% for F is suggested.
A fully Bayesian approach would involve obtaining estimates
of the posterior probabilities p(M;|y), i = 1, 2, leading to a
Bayes factor between the two models; a Gibbs sampling ap-
proach useful in choosing among competing error distri-
butions was discussed by Carlin and Polson (1991). Overall,
the preliminary results obtained here indicate that the as-
sumption of normal errors is not a grossly misleading one.

As a computational remark we note that although we have
used a rather large value of G and included a fairly large
number of parameters (3n + 4 = 79), the fact that all gen-
eration is one-for-one (no rejection algorithms are needed)
means that a typical run takes no more than 10 minutes
using FORTRAN on a DECStation 3100.

Example 3.2: Univariate Nonstationary Growth
Model. The yand x values displayed as solid lines in Figure
2 were generated according to the model

X, = ax;—y + Bx,—1 /(1 + x7-y)
+ycos(1.2(t— 1)) + u,

yi=x2/20 + v, t=1,...,100, (13)

where x, = 0, the u, are independent random variables having
a r-distribution with v = 10 degrees of freedom, mean 0, and
variance 10, and the v, are distributed as N(0, 1) random
variables independent of the u,, t = 1, ..., 100. In the re-
joinder to his paper, Kitagawa (1987) fit a non-Gaussian
filter and smoother to data generated from this model, where
the u, and v, were both Gaussian white noise sequences with
these same means and variances and the values « = .5, 8
= 25, and v = 8 assumed known. We shall use these values
for o, B, and v in our study but will assume they are unknown
to the experimenter and obtain marginal posterior densities

60

density
40

20

1.06 1.08 1.10 1.12
Figure 1. Estimated Marginal Posteriors for F, Example 3.1. Density
estimates, for DE errors (solid line) and normal errors (dashed line), G

= 2500, modes are 1.091 and 1.094, respectively.
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Figure 2. Data and Estimates, Example 3.2: (a) Observed y Values,
(b) True x Values (solid line) and Point Estimates (dashed line), y1o1
Unknown.

for all three. In addition, we shall obtain an estimate of
p(x101]y), the density of the one-step ahead predicted state.

To implement the Gibbs sampler we follow the model
outlined in Example 1.2, where p = g = 1. We again assume
02 ~ 1G(ay, by) and 7% ~ 1G(¢y, dy), which again leads to
inverse gamma complete conditionals of a form similar to
that given in equation (8). Next, by letting »/\, ~ X2 we
get that marginally, u,| o ~ (0, ¢, v) as required, leading to
the complete conditional A,| s, a, B, v, ¥, X, X being dis-
tributed as

[x — ax—y — Bx;—1 /(1 + xt1)

IG(” +1 ’ 2[ — 7005(1.2(2— 1)]? + y]“) ’
2 o

t=1,...,101.
Because we are assuming the observation noise to be Gaus-
sian, we may take w, = 1,¢=1,..., 101. Turning to the x,
complete conditionals and again making the prior assump-
tion xo ~ N(uo, 04), we note that the nonlinear structure
in both the state and observational equations precludes
closed-form complete conditionals, but we may use the re-
jection algorithm discussed in Example 1.2 to generate the
necessary samples. That is, we generate x, from a N(ax, -,
+ Bx,—1/(1 + x2,) + v cos(1.2(t — 1)), \,¢?) distribution
and accept it with probability w,(x,)w,(x;), where

1
wi(x;) = exp{ — =— (Xr+1 — ax; + Bx,/(1 + x7)
2N 10

+ 5 cos(1.21))2] ,
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and

wy(x;) = exp[ Yon? (y; — x2/20) } t=1,...,100.

20,7

For ¢ = 0 we generate x, ~ N(uo, 03) and accept with prob-
ability w, (x,); for t = 101 we generate X, as usual but accept
with probability w,(x;). Note that this last complete con-
ditional depends on yyq;, a latent data value that is not ob-
served but instead is generated according to its complete
conditional distribution, which of course is N(x%/
20, w,72).

Finally, for the prior on the state equation model param-
eters we suppose that (o, 8, ¥)7 ~ Na((Ka> ks> #y) T, V),
where V = Diag(s2, o3, ¢2). This enables complete con-
ditionals of the form N(Bb, B), where for o

1 1 101 x2_ m
B_1 - i it § 1 — Pa
) "2:21 N and b o2
1 101 X, Xy
+- 121 ( ~ BT AL — ~ cos(1.2(¢ — 1)))
and for
1 1 101 x2
Bl'==+= = and b=
”% 2 ? t(l + X 1)2 B
+ L %1 ol (x - ax cos(1.2(z — 1))]
—_— — X — . - ,
o? AN+ x2,) o
and finally for v
1 & cos’(1.2(2 —
Oy =1 A Oy
1 9 cos(1.2(2 — 1)) X1
t=5 Y ———" - e — B |-
0'2 231 )\t (xt Xy B 1+ xtz—l)

For this example we took uo = 0 and ¢3 = 10, @, = 3 and
bo = .05 (so that the prior on o2 has mean and standard
deviation equal to 10), and ¢, = 3 and d,, = .5 (so that the
prior on 72 has mean and standard deviation equal to 1).
We also chose p, = .5, ug = 25, u, = 8, 0, = .25, 05 = 10,
and o, = 4. We then ran the Gibbs sampler for / = 50 iter-
ations, using G = 500 parallel replications per iteration. The
generation cycle in this case involves updating 3(101) + 7
= 310 parameters per iteration, 102 of which (the x’s) must
be sampled via rejection, thus substantially adding to the
computational burden; however, programming effort is still
quite minimal. Figure 3 shows the resulting marginal pos-
terior density estimates of the form given in (6) for o, 38, and
v. Note that this estimation is quite unambiguous, the pos-
teriors being centered nearly at the true parameter values
and fairly tightly concentrated. To compute the marginal
posterior density of x,9;, we could use equation (12) with
= 100 and i = 1; but the nonappearance of y;o; and x;¢, in
the likelihood implies that we may take advantage of the
simplified conditional density given in (5), obtaining the
estimated density as
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Figure 3. Estimated Marginal Posteriors, Example 3.2: (a) Marginal
Posterior for Alpha, G = 500; Mode = .56, (b) Marginal Posterior for Beta,
G = 500; Mode = 24.641, (c) Marginal Posterior for Gamma, G = 500;
Mode = 7.826.

P(xi011y)
1 G
=G 2 N oo + 8O/ (1 + (x160)%)
+ v ®cos(120), Nioi(¢9)?), (14)
where N( -

variance b. This estimate is given in Figure 4. To check the
validity of the bimodal shape of this postenor we constructed
a histogram of the actual Gibbs values {x,ol ,g=1, ,
G}, shown in Figure 4, which also supports a bimodal shape
If we look again at the pattern of the true x values in Figure
2, the reason for the bimodality becomes apparent: the system
is currently near the zero point and is likely to drop back
down into the negative realm, as it has done most recently.
However, there is a substantial probability that the system
will now return to the positive realm, explaining the second
mode.

To investigate the effect that knowledge of y,o; would have
on the posterior for x;o;, we repeated the above analysis

499

.06 .08

density
04

.02

30 40

20

10

Figure 4. One-Step-Ahead Prediction, Example 3.2: (a) Marginal Pos-
terior for x%, G = 500; Mode = —2.829, (b) Histogram of Gibbs X2,
Values, G = 500.

using the observed value y;; = 4.55. In computing the mar-
ginal posterior for x,o;, we are now solving the filtering prob-
lem. The addition of y,o, to the likelihood means obtaining
this marginal posterior by simple mixing, as in equation (14),
is no longer available and we must resort to mixing the full
posteriors, as in equation (12). The normalization constants
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Figure 5. Filtering, Example 3.2: (a) Marginal Posterlor for x%,,
G = 2,500; Mode = —8.859, (b) Histogram of Gibbs X9, values, G
= 2,500.
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needed for each term of this sum were computed using a
trapezoidal approximation. Figure 5 shows the resulting es-
timated posterior and actual Gibbs samples from running /
= 50 iterations of G = 2,500 replications each (the larger G
being required to obtain the same level of accuracy with the
more complicated density estimation procedure). We see
that the bimodal shape observed in Figure 4 has become
more exaggerated, the additional information provided by
Y101 leading to a tighter distribution for both modes. The
peaks also have shifted to the left by roughly 5 units; inter-
estingly, the true value x;o; = —9.05 is very close to the
location of the first mode (x = —8.86). The ability to effec-
tively handle bimodalities is a feature of Monte Carlo inte-
gration methods like the Gibbs sampler; analytic approxi-
mations such as Laplace’s method (Tierney and Kadane
1986) generally are not recommended for use in such situ-
ations.

We note that calculations similar to those undertaken for
Xi01 also could be performed for all of the remaining x; states.
In particular point estimates and credible sets for each x,
could be computed easily from the resulting estimated mar-
ginal posteriors. However, rough point and interval estimates
for any parameter § may be obtained simply by taking ap-
propriate functions or quantiles of the {§®), g=1,..., G}
iterates themselves. For example, point estimates of x, are
given by 2 ¢, x{®/G. These estimates are plotted as the
dashed lines in Figure 2. They perform surprisingly well and
on the whole seem quite competitive with those obtained by
Kitagawa (1987, p. 1062), especially given our assumption
of nonnormal errors in the state-space and that «, 8, v, o,
and 7 were all unknown.

4. CONCLUSION

In this article we have discussed some computational as-
pects of state-space modeling, forecasting, and smoothing.
The Gibbs sampler was shown to provide a convenient
mechanism for implementing our methods. The experi-
menter can account for nonnormality in either the obser-
vation or state-space via the notion of scale mixtures of nor-
mals. This process adds many more parameters to the model,
but the conditioning feature of the Gibbs algorithm and the
ready availability of the required distributions causes no in-
crease in programming complexity and offers a much broader
class of possible distributional assumptions than was previ-
ously available. Further, complicated nonlinear model
structures involving unknown parameters also are tractable
using this approach.

[Received July 1990. Revised May 1991.]
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