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Abstract. In this paper we establish a statistical methodology for the spectral
analysis of stationary multivariate time series via the Walsh—Fourier transform.
Theoretical results pertaining to the definition and estimation of the Walsh—Fourier
spectral matrix and functions of that matrix including cross-spectra, coherency and
phase are given. An example of the statistical techniques developed in this paper is
given; in particular, the methodologies are applied to neonatal sleep data collected
from @ study of the effect of maternal substance use during pregnancy.
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1. INTRODUCTION

Recently, attention has been focused on the statistical applications of Walsh-
Fourier analysis to real-time stationary time series. Kohn (1980a,b) laid the
groundwork by showing that many of the results concerning the decomposi-
tion of stationary time series using trigonometric functions have their Walsh
function analogs, although Morettin (1974) had obtained limit theorems for
the Walsh-Fourier transform of stationary time series carlier. Other papers
establishing Walsh—Fourier theory for real-time stationary processes are those
of Morettin (1981, 1983) and Stoffer (1985, 1987). Statistical data analysis via
the Walsh—Fourier transform can be found in Ott and Kronmal (1976), where
the transform is used in classification problems for strictly stationary binary
data, and in Stoffer et al. (1988), where an analysis of variance based on the
Walsh—Fourier transform is used to assess the effect of maternal alcohol
consumption on neonatal sleep-state cycling. Further applications of Walsh
spectral analysis can be found in the Proceedings of the Symposium on the
Applications of Walsh Functions, Ahmed and Rao (1975); and Beauchamp
(1975, 1984), to mention a few. Beauchamp (1975, Section VF: 1984, Section
3.3.4) empirically demonstrated that the roles of Walsh and Fourier spectral
analysis for discontinuous and smooth-varying signals respectively are clear.
He concluded that where the signal is derived from a sinusoidally based
waveform, Fourier analysis is relevant, and where the signal contains sharp
discontinuities and a limited number of levels, Walsh analysis is appropriate.
The aforementioned works demonstrate that the Walsh—Fourier transform
can be a powerful tool in the statistical analysis of spectra. Hence it is of
considerable importance that the existing Walsh—Fourier theory for the
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statistical analysis of time series data (both univariate and multivariate), and
in particular processes with a limited number of levels such as discrete-valued
and categorical processes (i.e. square waveforms), be extended at least to the
point of development of the statistical theory of Fourier (trigonometric)
analysis for sinusoidal waveforms.

The Walsh functions form a complete orthonormal sequence on [0, 1) and
take on only two values, +1 and —1 (or ‘on’ and ‘off’). They are ordered by
the number of zero-crossings (or switches) which is called sequency (although
other orderings exist, sequency ordering is the easiest to interpret since it is
comparable with the frequency ordering of sines and cosines). Let W(n, 4),
n=0,1,2,...,0=< A< 1, denote the nth sequency-ordered Walsh function;
then W(n,.) makes n zero-crossings in [0, 1). The first eight sequency-
ordered Walsh functions W(n, m/N), m, n =0, 1, . .., 7, corresponding to a
sample of length N = 2% are shown below as the rows (columns) of a
symmetric matrix called the Walsh-ordered Hadamard matrix Hw(3):

1 1 1 I 1 I 1 1
1 1 1 1 = =1 -1 =1
1 1 =] -1 =5 =i I 1
Hw(3) =| 1 1 ~1 =1 1 1 -1 =]
1 =] —] 1 1 =] ~] I
1 =] -1 1 ! 1 1 =1
1 =1 1 = =1 1 =] 1
1 -1 1 -1 1 = 1 -1

Let X(0), X(1), ..., X(N —1) be a sample of length N =27, p>0
integer, from an r X 1 vector-valued stationary zero-mean time series {X(¢),
t=0,+1,+2, ...} with an r X r autocovariance function matrix

dn(i) = N-12 E{:xmwu, ) (0=si<1)
is the r x 1 finite (or discrete) Walsh—Fourier transform of the data. The
r X r covariance matrix of dy(A) is
var {dy(A)} = E;:r(j)W(j. A)
where (j) is the r X r logical covarianc:: matrix of X(r) and is given by
201

W) =290 Y@k —-k+I{®k—k)} (9<j<2i*);
k=0

j @ k denotes the dyadic addition of j and k (the concept of the logical
covariance function was introduced by Robinson (1972) and formalized by
Kohn (1980a)). Denote the elements of I(h) by cu(h), a,b =1, ..., r. If
the c.(h) are absolutely summable (i.e. X|cu(h)| < %, although slightly
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weaker conditions will suffice), then var {dy(1)} — f(4) as N — = where
fa) = ZITU)WU- )
]j=

is the r x r Walsh—Fourier spectral density matrix of X(r).

In the univariate case r = 1, various results relating the convergence of
dy(2) to f(A) exist. For example, Kohn (1980a) shows that if Ay is dyadically
rational (i.e. its binary representation is finite) and Ay @ A — 0 as N — =,
then E{d}(An)} — f(A) as N — . Although the asymptotic covariance of the
Walsh—Fourier transform at two distinct sequences is not in general zero,
Kohn (1980a) also shows that, if A,y and A,y are dyadically rational,
Ay —Aon| =N"' and Ay®A—>0 (i=1,2) as N-— =, then
E{dy(A n)dn(22 )} — 0. These results are useful in obtaining consistent
estimators of f(A). Morettin (1974, 1983), Kohn (1980a,b), and Stoffer (1985,
1987) have established central limit theorems for the Walsh—Fourier trans-
form under a wide range of conditions; the basic result is that under
appropriate Logdluons (which typically include some type of mixing condi-
tion) dﬂl)—) N{O, f(4)}. Estimation of the Walsh—Fourier spectrum is
discussed by Kohn (1980b) and Stoffer (1987). With the exception of the
work of Stoffer (1987) and Stoffer er al. (1988), little has been done to extend
the statistical theory of Walsh—Fourier analysis beyond the basic kinds of
results just mentioned.

Similarly, little is known beyond the basics about the multivariate case
r > 1. Kohn (1980b, section 3) addresses the multivariate case in a brief note
claiming that, with a few exceptions, the results obtained by Kohn (1980a.b)
for the scalar case carry over, in an obvious way, to the vector case; while
this is true, it ignores a most important aspect of the analysis of multivariate
time series, namely cross-spectral analysis.

In this paper we establish the analysis of multivariate stationary time series
via the Walsh—Fourier transform with emphasis on the analysis of cross-
spectra, coherency and phase. Since Walsh analysis is appropriate when the
signal contains sharp discontinuities and a limited number of levels, our
assumptions will be fairly general. Thus, for example, we do not assume that
the process of interest is generated by a linear process. Theoretical results
pertaining to the Walsh—Fourier spectral matrix, cross-spectra, coherency,
gain and phase spectra and their estimation are given in Section 2. An
example of the application of the techniques given in Section 2 is presented in
Section 3. Here, a bivariate Walsh-Fourier analysis of neonatal sleep data
collected from a study of the effects of maternal substance use during
pregnancy is used to aid the detection of alterations or disruptions in the
ultradian rhythms of sleep as a result of exposure to alcohol.

One final comment should be made. As will be seen, Walsh-Fourier
analysis is not a replacement for Fourier (trigonometric) analysis, nor is it
simply a replicate of Fourier analysis. Thus it is not necessary to choose
between the two approaches—both may be simultaneously useful in some
problems.
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2. ESTIMATION OF THE WALSH-FOURIER SPECTRAL MATRIX

In this section we present theoretical results pertaining to the definition and
estimation of the Walsh—Fourier spectral matrix and functions of the matrix.
As previously stated, in order to remain fairly general we follow the approach
of Brillinger (1975) by assuming that the process of interest has higher
moments (which is reasonable for processes with a limited number of levels)
and that cumulants of all orders exist (see Brillinger, 1975, p. 25).

Given an r X 1 vector time series X(¢), t =0, £1, £2, .. ., with compo-
nents X,(r) such that E| X, (1)|* <o, a=1,..., r, let

Coi.. s oy B) = eami{aXiy (1) o X))} (2.1)

for ay, ..., a,=1, ..., rand ¢y, ..., tu, =0, %1, £2, ..., be the joint
cumulant of order k of the series X(r). For X(r) strictly stationary we use the
asymmetric notation (Brillinger, 1975, p. 23)

Carocar(T1s - 5 k1) = Capa(t1y - - o5 =1, 0).
The following assumption is made throughout.

AssumpTioN 1. {X(1), t =0, £1, £2, ...} is a strictly stationary zero-mean
r x 1 vector series with components X,(f), a=1, ...,r. all of whose
moments exist with

x

2 |Cu| ..... m(jl' e ‘aj&—l)l < ®

Tveiafga)=—%

foray, ... ;@ =1; vosrand K=2.3. 5 o s

Note that, by Assumption 1,

> leah) < (@, b= 1,....7)
h=—x
and hence the Walsh—Fourier spectral matrix is well defined.
We now discuss the asymptotic properties of the transform d y(4). Theorem
1 is the multivariate extension of the central limit theorem given by Morettin
(1983, Theorem 1). Let N,(0, V) denote the r-dimensional normal distribu-
tion with zero mean and covariance matrix V.

Tueorem 1. Let X(t) satisfy Assumption I; then as N — =

dx(A) —=N,{0. f(A)}.

Proor. Since E{dy(A)} = 0 and var{dy(A)} — f(A) as N — o the first-
and second-order cumulants behave as required in the theorem. Next, we
show that all cumulants of order k& > 2 tend to zero as N — = and the



MULTIVARIATE WALSH-FOURIER ANALYSIS 61

theorem will follow from Brillinger (1975, p. 403, Lemma P4.5). Using the
notation (2.1), we obtain

cum {d,,(A1), . . .., da(Ak)}
N-1
— N_k-'? E W(jh ;‘.[) E b W(jks ;tk)cn',.. ..:’f.-(U1' + eey jk)'
froofe=0
Thus

x

cum {d,, (A1), . . ., da,(Ae)} < N5+ | 2 (TR  PRORER |
HNeerik==—>
from which it follows that all cumulants of order k > 2 tend to zero as
N— =, ]

In order to estimate the spectral matrix f(A) consistently, the following
lemma is needed. This lemma follows from Theorem 1 and from Kohn
(1980a, Corollary 3); the result of the lemma was discussed in Section 1.

LemMa 1. Let Ajy = j/N for 1 < j< N — 1 and suppose that the collection
{Ajmns m=1, ..., M} is close to A such that A ® Ajpmyny — 0 as N — =
and |Ajomyn = Ajgow| = N7 for m # k =1, ..., M. Then, under Assumption
1, the dy(Ajmn), m =1, .., M are asymptotically independent N,{0, f(1)}
vector variables.

As previously stated, the asymptotic covariance of the Walsh—Fourier
transform at two distinct sequencies is not necessarily zero. Hence, Lemma 1
is not true for a general collection of sequencies {A,n}. With this being
considered, we also note that, while some of the results that follow may look
similar to their trigonometric counterparts, they are not trivial consequences
of the analogous Fourier results.

Let Ix(A) = dy(A)dy(2) be the r X r periodogram matrix with components
Lip(4), @, b =1, ..., r. The next theorem establishes asymptotic properties of
the periodogram matrix.

Tueorem 2. Let X(1) satisfy Assumption 1 and let the collection {Aj,.x.

m=1,... M} be as in Lemma 1. Then
O(N Y m + k
CoV{1s0,(Ajimy.N)s Lbbs(Ajca).n =[ . )
HoraByon s I} =2 L yE o 3) + foin o) + o(m = k
form, k=1,.... M.
Proor. To simplify the notation, put 4, = Ay n, [ =1, ..., M. Then using

Hannan (1970, p. 23)
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N=-1 N-1
E{lsuhi) i)} = N2, .. -3 {Cauilta — t1)Cpinits = t3)
s dg=l
+ Cap,(ts — 1)Casps(ts — £2) + Cap(ta — 11)Cawp(t3 — 12)
+ Cﬂw?-‘hh:(fl‘ Iz, 13, "-I)} x W("ln Am)W{’Z- 1,,,)W(!_1, AL)W(F;. ;l;\)
= § + 5, + 83 + S..

It follows from the above that S, + S; + S, is the desired covariance. By
Lemma 1, as N — =,

L 0 m # k
Sl = E{dm(hm)dh(Ak)}E{{IFI:(A-‘!J)db}{Ak)} — fmbl(}')fﬂ:h:(}") m = k.

Similarly §;— 0 when m # k and S3— f,5.(A)fus,(A) when m = k. Also. by
Assumption 1 we have that §;— 0 as N — . To establish the bound when
m # k note that, following Kohn (1980a. Corollary 2), it can be shown that
there exists an integer N, (m, k) such that E{d,(4,)dp(4s)} =0 for
N>Ng(m, k) and m # k; a,b=1,...,r. This implies that there is an
integer N(m, k) such that S, = §; =0 for N > N(m, k), m # k. Finally, by
Assumption 1 and following the proof of Theorem 1,

N-1  N-I
1S4 = N2, .. 0 Veaninillis <= )]
.. Jdi=0

= N]z . z |r~‘!ru_~f’|h:(f!' s | |
which completes the proof. B

The result of Theorem 2 suggests the following consistent estimate of the
Walsh—Fourier spectral density matrix f(4). For the collection {4 x:
m=1,... M}, as defined in Lemma 1, define the smoothed periodogram
estimate of f(4) to be the r X r matrix

. M
Foaun@) = 2 Hy(m)Iy(jim.v) 2.2)
m=1
such that M — = and M/N— 0 as N— =, and such that Hy(m) =0,
m=1,....M, ZM_ Hy(m)=1, but with Hy(m)=O0OM"") so that
M H3(m)— 0 as N— = (for notational convenience the dependence of M
on N will be understood). Note that the estimator given in (2.2) is in general
different from the estimator given by Kohn (1980b) for the univariate case.
This estimator also has some advantages over that described by Kohn: one
advantage is that the estimator is computationally simpler, but more impor-
tant is that the estimator will be easy to interpret while interpretation of
Kohn’s estimator may be difficult owing to its dependence on dyadic addition.
These claims will become evident in the application. The consistency of
S mn(A) is now established.
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THeEOREM 3. Let X(t) mf:sfy A&sumpnon I and let fMN()L) = {fw(A)} be
defined in (2.2). Put hy v = ZM_ H3(m); then as N —

(a) a’:{fu NA)} - f(A),
(b) hyi M,N COV {fﬂm (’1) fb by (A)} = fr-'rm(l)fﬂ 2bs (’1') 7 fmb (l}fu .‘:;(A)

Proor. To establish (a) note that

M
E{f unA)) = 3 Hy(m)E{In(Aimn))

m=|

M
= 2 Hy(m){f(2) + o(1)} = f(4) + o(1).

m=|

To establish (b) put Ajyn = A, [ =1,..., M; then
M

cov {ffnﬂ‘()“)* ff?n"?(;‘)} = z Hi‘(m)cov{[mu:(‘lm)v lhn‘!:(’lfll)}

m=1

M
#= ZEHN("N)HN(I()COV {Iu.u_-(km)\ !b,h_»{’lkJ}-

m #k

From Theorem 2 when m # k, |cov {1,0.(Am). Ipp.(A:)} =< cN7'. so that

M
| EZHN(m)HN{k)COV {Inm_‘(lm)' [b.bg('lk)H cN~ : 2 HV(?")]

m +k {
< ¢N- ‘{

= O(h‘.i'f..'\")‘

From Theorem 2 when m = k, cov{l,0.(An). Lp,p,(An)} = furan(A) + 0(1),
where f, 4.5,5.() denotes the right-hand side of (b). Hence

Cov{fﬂr":()‘)! fb;b;()'}} = hif,;’\’ﬁhd:hﬂl;(i} at: o(hif.f\'} *+ 0(hi.'.,\-')

and the theorem follows. @

It is possible to improve on the result of Theorem 3(a) which pertains to
the asymptotic bias of the spectral estimate (2.2) and to calculate the rate at
which the bias tends to zero. First the following assumption is needed.

AsSUMPTION 2. 7 jlca(j)] < ©,ab =1, ..., r.

Tueorem 4. Ler Assumptions 1 and 2 hold. Then
(i) PIE(Fan®)) = faB) =0 (@b =1,....7)

as N — % where h}, y is defined in Theorem 3.

Proor. First note that, since W(k, A\)W(k, A,) = W(k, A, @ A,),
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N-1

E{fa(R)} = zhu(m) zrf,,,(k)W(k Aiom).N)

N-1

= zra,,(k)W(k A)Z Hy(m)W(k, & @ Ajjm.x)-

m=1

Using the fact that 1 = {ZM_,Hy(m))}?* < h3yM, we obtain

(hw. \)”’|E{fab(/1)} ,,.a(ﬂ)l

w—z lrab(k)iz Hy{m){1 = W(k, A ® Ajgmyn)} + M"/ ’2 |2as(K)|

k=
= S: + S‘J.
By Assumption 2, Zi_y|ts(k)| = cN~' for some positive constant ¢ (see

Kohn, 1980b, Lemma 3) so that $, < cM'?N~'— 0 as N — =. Also, since
Hy(m) = O(M™") there is a positive constant ¢ such that

S, <cM- “"ZIM(MLZ{I — W(k, A & Ajm.n))-

m=1
However, by the definition of {A;om).~},

lim 2{1 — W(k, A ® Ajomyn)} < @

Nz =)

independent of k (by the root test for example), and hence §,—0 as
N — =, |

Next define the Walsh—Fourier coherency between the component series
X,(t) and X,(¢) as

ab(A)
Xh) = 22
{faa(R)fon(A)}'1*
provided that the denominator is not zero; note that —1 < Kp(A) =

consistent estimate of %, (4) based on the smoothed periodogram deﬁned in
(2.2) is now established.

TueoReM 5. Let  Assumptions 1 and 2 be satusfied and let
F un(d) = {Ta(A)} be the estimate given in (2.2). Then fora, b =1, ..., r.
such that a # b, the random vector (F w(1). fu(A), fas(2)) is asympiotically
multivariate normal with mean (faa(2). fon(A), fan(2))' and covariance matrix
hi~A where hiyy is defined in Theorem 3 and

2fedd) 2 a(2) 2faa(A)fun(2)
A= zfﬁh(}‘) 2fbb()‘)fﬂfi ()‘l
symmetric fuu(A)fbb()*) it f.':b(l}
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The proof of Theorem 5 is based on the results of Theorems 3 and 4 and is
similar to the proof given by Brillinger (1975, Theroem 7.4.4)—the details are
omitted. The asymptotic covariance matrix A is evaluated via Theorem 3.
The reader is also referred to Kohn (1980b, Theorem 3).

An estimate of the Walsh—Fourier coherency X,,(A) is given by

~

A)

Z(A) = —= S as( - (2.3)
B = T @)

provided that the denominator is not zero, where f yx(A) = {fu(4)} is the
estimate given in (2.2). The next theorem establishes the asymptotic distribu-
tion of (2.3).

_ THEOREM 6. Let the conditions of Theorem 5 hold. Then for X%, (1) > 0,
Kaw(A) is asymptotically normal with mean ¥, (A) and variance
hayn{l — X25(4)}2, where hiy y is given in Theorem 3.

PrROOF. Let g(y1, ya2, ¥3) = y3/(y1y2)'? for y;, y2>0. Fix 0< i< 1 and
henceforth omit it from the notation. For a+# b=1,..,r, put
J= (fﬂﬂ' fb-"' fﬂ'b) and f= Uaav fbbvfab) so that X, = g(f) and

Ka = g(f). Define the row vector D as
_[38() 3g(f) 38
I af.rm J afb-b ) afrfb J'
Then by Theorem 5 and Brockwell and Davis (1987, Proposition 6.4.3), g( f)

is asymptotically normal with mean g(f) and variance h}, yDAD' where A is
given in Theorem 3. The results of the theorem now follow. [ |

D

Theorem 6 admits an approximate confidence interval estimate for Kap(A);
however, the width of the interval will vary with A. This problem can be
alleviated by applying a variance-stabilizing transformation. As in the trigo-
nometric case, the appropriate transformation is tanh™', in which case
tanh~'{ X,5(4)} is asymptotically normal with mean tanh '{¥,(4)} and
variance h3 v.

Although it is possible to define a Walsh-Fourier amplitude spectrum and
phase spectrum, there is no natural interpretation of such parameters. For
example, a Walsh—Fourier phase spectrum can be defined using the notion of
‘cosine’ and ‘sine’ Walsh functions. Note that the even-numbered Walsh
functions in sequency order {W(j, 1), j=2k, k=0,1.2... .} are even
functions about 4 =} and the odd-numbered Walsh functions in sequency
order {W(j,4), j =2k — 1,k =1,2, ...} are odd functions about A = i. For
example, using the discrete Walsh functions displayed in Section 1 in the
Hadamard matrix Hw(3) with N = 8, we can see that W(n, m/8) is an even
function about the midpoint (A =4/8) when n=0.2.4.6 and is an odd
function about the midpoint when n=1,3,5,7, as A varies, 0 <A < |.
Hence
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cal(k, 2) = Wk, ) (k=0,1,2,...),
sal(k, ) = W2k - 1,4) (k=1,2,...)

are called the cal (cosine Walsh) and sal (sine Walsh) functions respectively
by analogy with the even cosine functions and the odd sine functions (for
further discussions of the cal and sal functions, refer to Ahmed and Rao
(1975) or Beauchamp (1975, 1984)). The Walsh—Fourier spectral matrix can
then be decomposed as f(1) = fc(A) + fi(A) where f(4) = i gr(k)cal (k, A)
and f.(1) = Zi_,7(k)sal (k, 2). However, unlike the sine and cosine functions,
the sal and cal functions are not shifted versions of each other (again refer to
the Hadamard matrix in Section 1 for an example). Thus, while it is possible
to give an analogy of the trigonometric case and define a Walsh—Fourier
phase spectrum, say @a(A) = tan™'{fa(4)/fean(A)}. between the component
series X,(1) and X,(1), @u(4) will not have a constant slope of o if
Xp(t) = X,(t = 0) for example.

This type of problem is also inherited by coherency X,(4). That is, since
the Walsh—Fourier transform is not invariant to cyclic shifts of the data (see
the discussion in Ahmed and Rao (1975, p. 115) for example), it will not be
the case that X%,(1) =1 if X,(f) = Zy())Xa(t — j), where S| < o=,
unless ¥(j) = 0 for j = 1. It would, however, be the case that X,(4) = 1 if
Xy(1) = ZZgp(j) Xa(t @ j), although such filters have no realistic interpreta-
tion; see Morettin (1981) for a discussion of dyadic filters.

3. EXAMPLE

In this section the techniques of Section 2 are applied to neonatal sleep—state
data collected in a study of the effects of moderate maternal alcohol
consumption on neonatal electroencephalographic (EEG) sleep patterns; this
study is part of a larger study of the effects of maternal substance use during
pregnancy. A detailed description of the study design, the methods used for
measuring alcohol use and the scoring of the neonatal EEG sleep records can
be found in Day er al. (1985) and Scher et al. (1988). Briefly, an EEG sleep
recording of duration approximately 2 h is obtained on a full-term infant
24-36 h after birth, and recordings are scored (by an electroencephalographer
who is not aware of the prenatal substance exposure of the infant) for EEG
sleep state, rapid eye movements (REMs), arousals and body movements
using scoring epochs of 1 min. Sleep state is categorized (per minute) into one
of six possible states: (1) quiet sleep—trace alternant; (2) quiet sleep—high
voltage: (3) indeterminate sleep; (4) active sleep—low voltage: (5) active
sleep—mixed; (6) awake.

First we compare the bivariate Walsh-Fourier spectra of the EEG sleep
state and total number of body movements (discounting sucking) per minute
for an infant whose mother abstained from using alcohol during pregnancy
(ID 465) and for an infant whose mother used alcohol regularly at a rate of
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0.5 drinks per day throughout pregnancy (ID 223). Finally, the results of this
analysis are used to examine the coherency between sleep state and body
movements for unexposed versus exposed groups of infants.

Figures 1 and 2 show the sleep states (using the preceding state labels 1-6)
and total number of body movements for the unexposed infant (ID 465) and
for the exposed infant (ID 223) respectively for 120 min of sleep. Spectral
analysis was accomplished using the fast Walsh—Fourier transform given in
Ahmed and Rao (1975) by padding each record to 128 time points. Spectral
estimation was based on the estimate given in (2.2) with M = 5, centering on
the sequency of interest and using the following weights: 0.1 {2, 1,4, 1, 2}.
The significance of this type of filter reveals a major difference between the
Walsh—Fourier approach and the Fourier approach as well as the flexibility of
an estimator of the form of (2.2). It is clear that power associated with odd
(even) sequencies correspond to sleep cycles that are odd (even) functions
about the middle of the sleep record. Thus the aforementioned filter yields an
estimate that will emphasize the cal and sal components of the spectrum
rather than simply smooth the periodogram. It is important to the analysis to
be able to distinguish between the odd and even cycles around the 1 h time
point since normal sleep is expected to cycle according to odd cycles of about
60 min (i.e. the middle of the sleep record).
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FiGure 1. Sleep state (——) and total number of body movements (---) of the unexposed
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FiGure 2. Sleep state (——) and total number of body movements (—--) of the exposed infant.
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FiGure 3. Estimated sleep-state spectrum for the unexposed infant (——) and for the exposed
infant (——-).
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The estimated log spectra of sleep state for the unexposed and the exposed
infant are compared in Figure 3. There are many similarities between the two
spectra; however, there is typically more power at the slower sequencies for
the unexposed infant and more power at the higher sequencies for the
exposed infant. The peak power for both infants is at the odd sequencies of
3,5 and 7 (per 128 min) which correspond to periods of roughly 45, 25 and
18 mins respectively. Note that in the Walsh—Fourier domain a peak period
of p min means ‘one switch every p min’ as opposed to the usual trigo-
nometric definition of ‘one cycle every p min’.

The log spectra of body movements for each infant are compared in Figure
4, and there are considerable differences here. The spectrum of the unex-
posed infant has its peak power at the lower sequencies with some additional
power at the middle sequencies. There is considerable more power through-
out for the exposed infant than for the unexposed infant, and these peak
periods are spread over a wide range of sequencies, These results are
expected from the sleep records shown in Figures 1 and 2 where it is noted
that the number of body movements is much more variable throughout the
record of the exposed infant than throughout that of the unexposed infant.

Log Paower

1 Sequency 127

FiGure 4. Estimated spectrum of the total number of body movements for the unexposed infant
( ) and the exposed infant (-—-).

Figure 5 shows the estimated cross-spectrum between sleep state and body
movements for each infant. This sort of plot will be new to investigators of
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spectra, and it reveals another major difference between this approach and
the trigonometric approach, i.e. the Walsh—Fourier cross-spectrum is real
whereas the Fourier cross-spectrum is complex. In the Fourier domain we
typically decompose the complex-valued cross-spectrum into polar coordinates
which results in an amplitude (or gain) spectrum and a phase spectrum, both
real. In the sequency domain, the cross-spectrum is analyzed directly.
Comparison of the unexposed and the exposed infant via figure 5 shows that
there is typically more power associated with the unexposed infant than with
the exposed infant. The peak periods for the unexposed infant correspond to
the sequencies 1, 3, 5 and 7 (per 128 min), the very slowest odd Walsh
signals, whereas the peak periods for the exposed infant corespond to the
sequencies 4, 6, 8 and 13 (per 128 min). It is of interest to note the
differences between the two cross-spectra at the very fastest periods: this
difference becomes more noticeable when the cross-spectra are normalized
and the coherence is computed.

10

Power

1 Sequency 12T

FiGure 5. Estimated cross-spectrum between sleep state and body movements for the unexposed
infant (——) and the exposed infant (——-).

The coherencies of the unexposed infant and the exposed infant are
compared in Figure 6. Since the Walsh—Fourier cross-spectrum is real, unlike
the Fourier coherency (which is absolute correlation relative to frequency).
the Walsh—Fourier coherency can be negative; this is a considerable advan-
tage over the trigonometric case, especially in this example as will be seen. It
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is evident from Figure 6 that there are small isolated ranges of sequencies at
which the coherency between the sleep-state signal and the body-movement
signal for the unexposed infant and the exposed infant differ markedly in
sign, most notably at the very fast end of the sequency range (120-127).
Here. the coherency between the two signals is negative for the unexposed
infant and positive for the exposed infant. It is believed that this difference
will be an aid in the identification of a disturbance in the sleep cycle. This
distinction might have been missed in a trignometric analysis.

Coherency

| |

1 Sequency 127

FiGure 6. Coherency between sleep state and body movements for the unexposed infant (——)
and the exposed infant (---).

Finally, the average coherency of a group of 12 infants whose mothers
abstained from using alcohol during pregnancy is compared with another
group of 12 infants whose mothers used alcohol on a regular basis throughout
pregnancy. These are the same infants as those analyzed by Stoffer et al.
(1988). While there were differences between the average coherency of the
two groups at various isolated ranges of sequencies (that were consistent with
the differences between ID 465 and ID 223 previously mentioned), differ-
ences in the sequency range of 120-127 (per 128 min) will be illustrated. The
average coherency with its standard error for each group of 12 infants and the
normalized difference between the groups at sequencies 120-127 are listed in
Table 1. While the difference between the exposed group and the unexposed
group do not remain as marked as the individual analysis, a trend prevails. It



72 D. S. STOFFER

appears that, for the unexposed group, the sleep-state signal and the
body-movement signal have zero coherency on the average at the fast
sequencies (although there is a tendency to be on the negative side of zero as
in the case of ID 465), while the average coherency between the signals for
the exposed group is positive (which is consistent with the individual analysis
of ID 223).

TABLE
CoMpPARISON OF THE AVERAGE COHERENCY BETWEEN SLEEP STATE anp NumBeEr OF Bopy
MOVEMENTS
Sequency Exposed group*® Unexposed group® Normalized difference
(mean (se)) (mean (se))
120 0.07 (0.14) —0.10 (0.13) 0.91
121 0.21 (0.13) —0.04 (0.11) 1.46
122 0.17 (0.13) —0.08 (0.17) 1.16
123 0.20 (0.14) 0.01 (0.12) 1.08
124 0.30 (0.10) —0.03 (0.15) 1.94¢
125 0.29 (0.10) —0.00 (0.12) 1.91¢
126 0.23 (0.14) 0.00 (0.17) 0.99
127 0.29 (0.12) —0.06 (0.16) 177¢

* Group of 12 infants whose mothers used alcohol regularly during pregnancy.
b Group of 12 infants whose mothers abstained from alcohol during pregnancy.
¢ Exceeds 0.05-level critical value for a one-sided -test.
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