Detecting Common Signals in Multiple Time Series
Using The Spectral Envelope

David S. STOFFER

One often collects p individual time series Y;(t) for j = 1,...,p, where the interest is to discover whether any—and which—of
the series contain common signals. Let Y(¢) = (Y1(t), ..., Yp(t))’ denote the corresponding p X 1 vector-valued time series with
p X p positive definite spectral matrix fy (w). Models are proposed to answer the primary question of which, if any, series have
common spectral power at approximately the same frequency. These models yield a type of complex factor analytic representation
for fy(w). A scaling approach to the problem is taken by considering possibly complex linear combinations of the components
of Y(t). The solution leads to an eigenvalue—eigenvector problem that is analogous to the spectral envelope and optimal scaling
methodology first presented by Stoffer, Tyler, and McDougall. The viability of the techniques is demonstrated by analyzing data
from an experiment that assessed pain perception in humans and by analyzing data from a study of ambulatory blood pressure in

a cohort of preteens.
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1. INTRODUCTION

Frequently, p > 1 time series {Y;(t),t = 1,...,n;} for
j=1,...,p, are collected with the primary interest being
whether any—and how many—have common cyclic com-
ponents. The series need not be in phase, and the sample
lengths, n;, need not be the same, but must be of the same
magnitude. In this case a common sample length, n, that
is highly composite is chosen, and the data are padded or
- shortened accordingly. The problem of whether all of the
series contain unspecified fundamental harmonics was dis-
cussed by MacNeill (1977). The method can be viewed as
an extension of Fisher’s method for discovering a periodic
component and suffers from the same problems. Basically,
the technique tests whether all of the series have the same
r fundamental harmonics by looking at the (m — r)th or-
der statistic of D; = min{I11(27l/n),..., Ip,(2nl/n)}, 1 =
1,...,m = [(n — 1)/2], where I;;(-) is a normalized peri-
odogram of the jth series. Another approach to this problem
is spectral domain factor analysis (see, e.g. Geweke 1977).
Some drawbacks of the factor analytic method are that as
it has been developed, it requires the unknown signal to
be generated by a linear process and that all series be in
phase. This is also true for Brillinger’s (1980) spectral do-
main analysis of variance approach.

This approach grew out of the need to analyze multiple
time series without having to make restrictive assumptions
about the nature of the signal, and with the knowledge that
the signals may be only approximately the same. It may also
be the case that some of the series being analyzed do not
have any signal. For example, in humans, body temperature,
hormone levels, heart rate, and blood pressure typically fol-
low circadian rhythms. These rhythms are approximate and,
for example, if we were to make ambulatory blood pressure
readings on many subjects, then we would expect the sig-
nal frequency to vary slightly from subject to subject, but
for all intents and purposes, these rhythms would be con-
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sidered the same. In addition, we would not expect all of
the subjects’ blood pressures to be rhythmic. An example
examining the diastolic blood pressure of preteens is con-
sidered in Section 4. Another example of the kind of data
that one can analyze is as follows.

Example 1: An Experiment in Pain Using Functional
Magnetic Resonance Imaging. In this experiment func-
tional magnetic resonance imaging (fMRI) was used to
examine pain perception in humans. Two types of stim-
uli were presented to awake subjects: electric shock (15
mA, 2 Hz) and a nonpainful brush on the subject’s hand.
The effects of general anesthesia on pain perception were
evaluated by comparing results from alert volunteers with
those from the same volunteers while anesthetized and
paralyzed with .15 mg/kg vecuronium. Data were also
collected under two anesthetic conditions, .7% (low) and
1.3% (high) isoflurane. During the anesthetized conditions,
a supramaximal shock (50 mA, 100 Hz) stimulus was
added. This stimulus was used to simulate surgical inci-
sion without inflicting tissue damage. The stimulus con-
ditions were [1] awake-brush (five subjects), [2] awake-
shock (five subjects), [3] low-brush (three subjects), [4] low-
supramaximal shock (four subjects), [5] high-brush (four
subjects), and [6] high-supramaximal shock (five subjects).
The specific locations of the brain where the signal was
measured were [L1] cortex: primary somatosensory, con-
tralateral; [L.2] cortex: primary somatosensory, ipsilateral;
[L3] cortex: secondary somatosensory, contralateal; [L4]
cortex: secondary somatosensory, ipsilateral; [L5] caudate;
[L6] thalamus: contralateral; [L7] thalamus: ipsilateral; [L8]
cerebellum: contralateral; and [L9] cerebellum: ipsilateral.

The data comprise consecutive measures of blood oxy-
genation level dependent (BOLD) signal intensity (for de-
tails, see Ogawa and Lee 1990 and Ogawa, Lee, Nayak,
and Glynn 1990). Areas of activation were analyzed over
time at the level of the voxel, or three-dimensional pixel;
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the voxel with the highest activation was chosen from each
brain location. The sampling rate was one observation ev-
ery 2 seconds for 256 seconds (n = 128). Each stimulus
was applied for 32 seconds and then stopped for 32 sec-
onds; thus the signal period is 64 seconds, and the signal
is nonsinusoidal. For this analysis, I averaged over subjects
in each stimulus condition (these were evoked responses
and all subjects were in phase) producing data, Y;(t), for
each stimulus condition [1]-[6]. Thus for a given stimu-
lus condition, Y;(t) represents the average BOLD signal
intensity at location j, for j = 1,...,9, at time point ¢, for
t=1,...,128.

The types of data encountered in this experiment are quite
varied. For example, Figure 1 shows the nine time series,
one for each location, of the stimulus condition awake-
shock. It is clear from the data that in this case many loca-
tions received the shock signal of approximately four cy-
cles in 128 points. Figure 2 shows the nine series for the
stimulus condition high-brush, which is quite different than
Figure 1, and it is not clear whether or not any location re-
ceived any signal, or if signals are being received, whether
or not they are being received in phase (at the same time).
The main interest is in which locations are receiving the
stimulus signal. A secondary question focuses on whether
or not the locations are receiving the signals in phase. These
questions are discussed further in Section 4.

In this article the concept of the spectral envelope, first
presented by Stoffer, Tyler, and McDougall (1993) for cat-
egorical time series and by McDougall, Stoffer, and Tyler
(1997) for real-valued time series, is extended to analyz-
ing multiple time series collected in a simple experimental
design. First, we develop a general approach to handle the
case where data can contain the same harmonic compo-
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As a general description, the spectral envelope is a
frequency-based principal components technique applied to
multivariate time series. Most of the technical details have
been given by Stoffer, Tyler, and McDougall (1993); this
technique is also related to Brillinger’s (1975, chap. 9) prin-
cipal components methods. Briefly, if Y (¢) is a p x 1 vector-
valued time series with p x p nonsingular spectral density
matrix fy(w), then we define the univariate process X (¢; 3)
by X(t;8) = B*Y(t), where 3 is a p x 1 vector of con-
stants (that are not all 0), which may be real or complex.
The * means to transpose and conjugate. We call X (¢; 3) the
scaled process, because it is obtained by scaling the vector
process Y (¢). The goal is to find such vectors so that the
standardized spectral density of X (¢; 3), say fx(w,8)/ af,,
where 0 = var{X(t; 3)}, is in some sense interesting. In
this particular setting, for each frequency, 3(w) is called the
optimal scaling at frequency w if it satisfies

Mw) :sup{%—)}. (1)

98

Note that A\(w) can be thought of as the largest proportion of
the power (variance) that can be obtained at frequency w for
any scaling of the time series Y (¢), and 3(w) is the partic-
ular scaling that maximizes the power at frequency w. Thus
A(w) is called the spectral envelope. The term “spectral en-
velope” is appropriate because A(w) envelopes the spectrum
of any scaled process. That is, for any linear combination
of the elements of Y (¢), the standardized spectral density
of the resulting univariate series is no bigger than the spec-
tral envelope, with equality only when the scale vector, 3,
is proportional to the optimal scaling, 3(w).

Because X (¢, 3) = B8*Y (¢), this relationship implies that

nents, and then we present the more difficult problem of _ B fy(w)B
: . : - - Aw) =sup§ o3 (> 2)
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Figure 2. The BOLD Signal Intensities at all Nine Locations for the Stimulus Condition High-Brush.
where Vy is the positive definite variance—covariance ma- as the sum of K independent random signals; that is,
trix of Y (¢). It follows from (2) that A\(w) is the (real-valued) K
largest eigenvalue associated with the determinantal equa- ,
tion ; Yjt) = i+ ) criSult —ms) +e5(t),  J=1,....p
k=1
®)

lfy(w) — AVy| =0, 3)
and B(w) is the corresponding eigenvector satisfying
fy(w)B(w) = AMw)VyB(w), 4)

subject to constraint B(w)*VyB(w) = 1.

If we restrict attention to real-valued scales [ie.,
X(t;8) = PB'Y(t), where B is real-valued], then al-
though fy(w) is complex, the following relationship holds:
B'fy(w)B = B'fy*(w)B, where f§°(w) denotes the real part
of fy(w). It follows that A(w) and B(w) can be easily ob-
tained by solving an eigenvalue problem with real-valued
positive definite matrices. That is, A(w) is the largest eigen-
value of f3°(w) in the metric of Vy, and 3(w) is the corre-
sponding eigenvector.

The viability of the spectral envelope for solving the
stated signal detection problems comes from the follow-
ing simple observation. If the Y;(t) are of the “signal plus
independent noise” form, say Y;(t) = S(t) + €;(¢), then
in terms of spectra, fy,(w) = fs(w) + o2, using obvious
notation, where var(e;) = o2 for j = 1,...,p. The av-
erage of the Y;(t), say X(¢;p'1) = p~11Y(t), where
Y(t) = (Yi(t),...,Yp(t)) and 1 is a vector of 1’s, will have
spectrum fx (w;p~'1) = fs(w) + p~to?. Thus the signal-
to-noise ratio of X (¢,p~'1) has increased by a factor of p
over the individual series.

2. A MODEL AND AN EXAMPLE

In this section I suppose that the data Y} (¢) can be written

where p; is the mean level of the jth series; Sy (t) are in-
dependent, zero mean, unit variance random signals with
spectra fs, (w); cx; are the signal amplitudes (any of which
may be 0) corresponding to the jth series; and the ¢;(¢) are
independent white noise processes with variance crf. and in-
dependent of the Si(t). The individual phases, 7;, need
not be integral, and it may be the case that all series are in
phase; that is, 741 = --- =7, = 0for k =1,..., K (e.g,
evoked responses).

Denote the discrete Fourier transforms (DFTs) of the

Y;(t) by dy,(w) for j = 1,...,p; that is,
dy, (w) = n" Y2 " Y;(t) exp(—2mitw). (6)
t=1

They are evaluated over w in the set of positive fundamental
frequencies {w = [/n;l =1,2,...,[(n—1)/2]}. In terms of
the model (5), these can be written as

K
dy,(@) =Y _ akjds, (W) + de, (w), (7)
k=1

where ds, (w),k =1,..., K, d.,;(w) represent the DFTs of
the signals and of the noise, and ax; = ci; exp(—27iTy;w).
Let Y(t) = (Ya(t),...,Yp(t)) be the vector of observa-
tions, and let dy(w) denote the p x 1 vector of transforms
with jth component dy, (w). Then (7) can be written as

K
dy(w) =Y ards, (w) + de(w), (®)
k=1
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 where ay, is the p x 1 complex vector a; = (ag1,...,akp)
and d.(w) is the p x 1 vector of transforms with jth com-
ponent de, (w).

From (8), a variance components model for the trans-
forms can be identified in terms of the respective spectra;
that is,

K
fy(w) =Y axfs, ()aj +f(w), ©)
k=1

where fy(w) is the p x p positive definite Hermitian spectral
matrix of the observation vector Y (¢), fs, (w) is the scalar
real-valued spectrum of the signal Si(t) for k =1,..., K,
and f.(w) is the p x p diagonal, real, positive definite ma-
trix given by f.(w) = diag{o%,...,02}. Note that f.(w) is
constant with respect to frequency.

The assumption on the signals Si(¢), and hence on their
spectra fg, (w), for k = 1,..., K, is that they are narrow
band and that the peaks are well separated. Thus from
a practical standpoint, at any particular frequency w, the
model (9) reduces to a single-signal model (i.e., K = 1).
As described in Section 1, the spectral envelope, A(w), is a
frequency-dependent investigation in that its optimality cri-
terion focuses on individual frequencies. That is, if A(wo)
is the spectral envelope at frequency wg, then the corre-
sponding optimal scaling, B(wp), is optimal at wy but not
necessarily anywhere else. Hence I focus on the case where
K =1 and drop k from the notation.

The model I work with is given by

fy(w) = afs(w)a” + f(w),

where the scalar signal spectrum is written as fg(w). The
vector a is now a p x 1 complex vector, with elements of the
form a; = ¢; exp(—2mit;w), for j =1,..., p. If component
j does not contain the signal, then ¢; = 0 (and hence a; =
0), and (10) is arranged so that for 0 < ¢ < p,a,11 =

- = ap = 0, and none of the {ai,...,a,} are 0. Thus in
(10), afs(w)a* is a Hermitian block-diagonal matrix with
0’s everywhere except the upper ¢ x g block, and f.(w) =
diag{o?,...,02} is a real diagonal matrix.

Rather than work with the original series, I prefer to
work with the standardized series, Z(t) = V~Y2Y(t),
where V. = diag{oy,,..., o%,p} with o%,j = var{Y;(t)}.
Note that the diagonal elements of V' get contributions from
both the signals (if any are present) and the noise; that is,
oy, = DO ; 02, where any or all of the c; could be
0. Writing (10) in terms of the standardized processes, Z(t),

fz(w) = a(w)a™ (w) + D(w). (11)

Note that (11) is a type of complex factor-analytic repre-
sentation for

(10)

fz(w) = V7 28y (0) V12 (12)

that is, fz(w) is the sum of a rank 1, nonnegative definite
Hermitian matrix, a(w)a*(w), and a diagonal positive def-
inite matrix, D(w), where a(w) is a p x 1 complex-valued
vector such that

a(w)a*(w) = V" 2afg(w)a*VL/2, (13)

Journal of the American Statistical Association, December 1999

and the final p—g elements of a(w) are 0. The value ¢ corre-
sponds to the number of elements that contain the particular
signal associated with frequency w. In addition, I restrict at-
tention to case where

D(w) = V72f, (w)V~1/2 (14)
is constant over w; that is, D(w) = diag{o?/ a%,l ey
o5/0%, }. Because fs(w) is real, if the series are in phase
with respect to this particular signal (i.e., 71 = --- = 74 = 0),
then fz(w) will also be real.

To apply the spectral envelope to the standardized series,
let 3 # 0 be a complex-valued p x 1 vector of scalings and
consider the standardized scaled complex series, X (¢; 3) =
(B*Z(t). One may now write

fx(w’ﬂ) :ﬂ*fZ(w)ﬁa (15)
where fx(w,3) is the spectral density of X(¢;3). If it is
believed that the series are in phase with respect to this
particular signal (1, = --- = 74 = 0), then there is no
particular advantage to considering complex-valued scales,
and one would restrict 3 to be a vector of real scalings. For
generality, I focus on the complex case.

The goal is to find 3, at each w, to maximize (15), subject
to the constraint 3*3 = 1. I denote the solution by B(w).
Setting b = V~1/23 leads to the optimality criterion

{ b*fy(w)b }
Up{ ——=—— p .
b£0 | b*Vb

AMw) =s (16)

The function A(w) is the spectral envelope, because
fx(w,B) < Aw), for any scaling 3, with equality when
B « B(w). The corresponding scaling, B(w), is the opti-
mal scaling. As mentioned in Section 1, the idea in us-
ing (16) is that the right (perhaps complex) linear com-
bination of the p series, namely X (¢; 3(w)), will enhance
the signal and dampen the noise. Note that the role of
B3 in this section is slightly different than in the previ-
ous section, because I am working with the standardized
series. If V = diag{o¥,,...,0%, } in (16) is replaced by
Vy = var{Y (¢)}, then b in (16) is the 3 of Section 1. The
reason that V is preferred over Vy in this problem is that
using V leads to the simple decomposition of (11)—(14).
In addition, simulation studies have shown that using V is
superior to Vy in identifying signals.

The solution to (16) is obtained by finding, at each Fourier
frequency w, the largest eigenvalue, A(w), and correspond-
ing eigenvector, B(w), of the matrix fz(w) given in (12),
which, as previously stated, is the sum of the block-diagonal
matrix (with nonzero values only in the upper g x ¢ portion)
a(w)a*(w) given in (13) and the diagonal real matrix D(w)
given in (14), which is constant with respect to w. From
this, it is seen that if there is a harmonic component near w
in ¢ of the p series, then \(w) will be “large,” and the final
p— ¢ components of 3(w) will be 0. In regions where there
is no harmonic component, fs(w) will be negligible, so that
A(w) will be flat and the final p — ¢ components of 3(w)
will not be 0—in fact, the modulus of those p — ¢ elements
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may dominate the first ¢ elements if the signal amplitudes
are large. These facts will lead to reasonable conclusions
about the nature of the signal and the number of elements
q that contain the signal. I have also found that it is worth-
while to look at the unstandardized results; that is, replace
V with the identity matrix in (16); this aids identification
of interesting frequencies.

There are many methods for obtaining consistent and effi-
cient estimators of fy(w) (see, e.g., Brillinger 1975, chap. 7,
Hannan 1970, chap. 5). One particular method is by smooth-
ing the p x p periodogram matrices, I,,(w) = dy(w)dy (w).
Let w; = I/n be the [th Fourier frequency and denote the
p x p sample spectral matrix by

fy(w) =Y hlu(wigs), (17)

T=—m

where {h,} are symmetric (h, = h_,) positive weights
that sum to unity and m, which is a function of n, con-
trols the degree of smoothness. For fy(w;) to be consistent,
the weights must satisfy >~ h2 — 0 for m,n — oco. I con-
centrate on the estimator described in (17), but in general,
fy(w) may be any consistent and efficient estimator of the
spectral matrix fy(w).

1345

Denoting the diagonal matrix of sample variances by v,
the sample spectral envelope, A(w;), is the largest eigenvalue
of

fz(wl) = V‘l/ny(wl)V_l/Q, (18)

and the sample optimal scaling, 3(w;), is the correspond-
ing eigenvector. The elements of 3(w;) can be inspected to
determine which of the series contain the signal.

If 3 is restricted to be real, then one retains only the real
part of fy(w;), say f°(w), in the calculations performed in
(17) and (18). In this case, the results of Stoffer et al. (1993,
thms. 3.1-3.3) apply. As a summary, the results state that if
A(w) is a distinct root (which implies that A(w) > 0), then,
independently for large n and m (put m = m,, and take
m, — 00 as n — oo but with m,,/n — 0),

Vm[A(W) = A)]/Aw)
has a standard normal distribution, (19)
and
vm[B(w) = B(w)]
has a multivariate normal distribution, (20)
where the term v,, depends on the type of estimator used.
In the case of (17), v;,,2 = Y.~ h2;if a simple average is

T=—m
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Figure 4. Spectral Envelopes of the 12 Time Series Generated in Example 2, Based on Complex Scales (Thin Line) and on Real Scales (Thick

Line).

used, b, = 1/(2m+1), then 12, = (2m+1). Based on these
results, asymptotic normal confidence intervals and tests for
A(w) can be readily constructed. Similarly, for 3(w), asymp-
totic confidence ellipsoids and chi-squared tests can be con-
structed. In particular, a simple asymptotic test statistic for
B(w) can be obtained. Let H(w) = fi*(w) — A(w)I,, where
I, is the p x p identity matrix, and

m(w) = Vormfy (w)T/*H(w)(B(w)
Then

— BW)/Aw)"/2.

Em (W) Em(w) (1)

converges (m,n — 00) in distribution to a distribution that
is stochastlcally less than Xp 1 and stochastically greater
than x2_,. Note that the test statistic (21) is 0 if B(w) is
replaced by 3(w). One can check whether or not a particular
element of 3(w) is 0 by inserting B(w) for B(w), but with

Table 1. Example 2 Results for Frequency w = .10

the particular element zeroed out and the resulting vector
rescaled to be of unit length, into (21).

For practical purposes, the following method can be used
to inspect the spectral envelope for peaks. Using a first-
order Taylor expansion,

Aw) = A(w)
Aw)

so that in view of (19), v, [log AM(w) — log M(w)] is approx-
imately standard normal. If no signal is present in a se-
quence of length n, then one would expect A\(w;) ~ 2/n for
1 < 1 < n/2, and hence approximately (1—«) x 100% of the
time, log A(w;) will be less than log(2/n) + (za/vm), Where
24 18 the (1 — ) upper tail cutoff of the standard normal
distribution. Exponentiating, the o critical value for \(w;)
becomes (2/n)exp(zq/Vm). Although this method is a
bit crude, from my experience, thresholding at very small

log A(w) = log A(w) + (22)

Table 2. Example 2 Results for Frequency w = .25

Series Amplitude Complex scale P Real scale #°
1 59 51 (179.59) .49 (74.60)
2 36 29 (148.47) .38 (40.08)
3 87 52 (368.31) 5 (75.76)
4 21 .25 (31.20) 7 (12.53)
5 0 .05 (12.34) 6 (4.56)
6 0 .06 (8.35) 2 (0.56)
7 0 .04 (3.53) 1 (0.10)
8 0 .03 (2.24) .01 (0.39)
9 .34 .36 (107.62) 7 (15.34)

10 .84 3 (155.14) 1 (22.50)
11 0 5 (5.99) 2 (0.40)
12 0 3 (3.39) 5 (2.29)

NOTE: 2Values shown are the absolute values of the particular scale.
5The value of the test statistic based on (23) is shown in parentheses; compare cautiously to
2
a X5-
®The value of the test statistic based on (21) is shown in parentheses; compare cautiously to
2
a xfo-

Series Amplitude Complex scale &b Real scale °
1 0 .07 (2.49) .04 (.34)
2 0 .18 (65.82) 19 (10.70)
3 0 17 (24.99) .07 (.81)
4 0 13 (8.89) 19 (6.08)
5 62 36 (179.44) 37 (47.21)
6 39 25 (101.66) 32 (31.62)
7 1.06 50 (172.54) 53 (39.39)
8 54 40 (223.99) 44 (55.85)
9 37 42 (205.44) .35 (15.95)
10 48 29 (92.94) 8 (14.55)
11 0 12 (14.75) 4 (.28)
12 0 12 (12.36) .1 0 (3.86)

NOTE 2Values shown are the absolute values of the particular scale.

The value of the test statistic based on (23) is shown in parentheses; compare cautiously to
a X22

The value of the test statistic based on (21) is shown in parentheses; compare cautiously to
a X1o
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Figure 5. Expected Value of the Signal as Given by (27) With wyg = .1 and A = .1/(2x) = .016.

a levels (say, a = 1073 to 1079, depending on the size on
n) works well.

If 3 is allowed to be complex, then (19) remains valid,
but B(w) has a complex multivariate normal distribution.
Inference about the optimal (complex) scaling vector can
be performed following Brillinger (1975, thms. 9.4.3 and
9.4.4), wherein the asymptotic (n,m — co) covariance ma-
trix of the sample optimal scaling 3(w), say 3s(w), is given
by

P

(@) = vt (@) Y (@) A (w) =)} 2Buw)B (W),

=2

where {\i(w) = A(w), A2(w),...,A\p(w)} are the latent
roots of V~lfy(w) arranged in decreasing order and
{B1(w) = B(w),B2(w),...,Bp(w)} are the corresponding
latent vectors. This result may be used to form an asymp-

totic test for B(w) by approximating the distribution of

2(B(w) ~ Bw))"E} () (Bw) ~ Bw)) (23)

by a chi-squared distribution with 2(p — 1) degrees of free-
dom. In (23), $5(w) is the estimate of Zg(w) and * de-
notes a Moore-Penrose inverse. One can use (23) to check
whether or not a particular element is 0, as discussed for the
real case, by inserting 3(w) into (23), but with the particular
element zeroed out and the resulting vector rescaled to be of
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Figure 6. Periodogram of the Expected Signal Shown in Figure 5.
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unit length. Alternately, one may use this result to form con-
fidence regions for the components, 3; ;(w),j =1,...,p, of
the optimal scaling vector by approximating the distribution
of

2|B1,5(w) — B (w)[?

s2(w)

(24)

by a chi-squared distribution with 2 degrees of freedom.
In (24), s? (w) is the jth diagonal element of f]g(w). One
can use (24) to check whether or not the value of 0 is in
the confidence region by comparing 2|3, ;(w)|?/s3(w) with
X2(1 — ), the 1 — « upper tail cutoff of the x2 distribution.

Caution should be used when applying (21), (23), or (24)
due to the fact that for the asymptotics to be valid, the
smoothing value, m, must be large. In some situations, mak-
ing m too large can smooth away peaks in the spectral en-
velope, especially when the signals are extremely narrow
band signals. Consequently, one might consider repeating
the analysis for various values of m.

Example 2. To test these methods, I generated 12 time
series of length n = 128 under various conditions. In each

Journal of the American Statistical Association, December 1999

1,...,128. The first four series are of the form

Y;(t) = ¢j cos(2mtwg) +¢;(t) +.5¢;(t — 1), j=1,...,4,

where w, = .1 (which is not a Fourier frequency) and the
amplitudes (which were chosen on an arbitrary basis to be
smaller than the standard deviation of the noise term) are
c1 = .59,¢c0 = .36,c3 = .87, and ¢4 = .21. Note that these
four series are in phase; also, I have departed from the basic
model assumption and added colored noise in the form of
a moving average. The next four series were generated as

Y;(t) = ¢ cos(2n[twy + 75]) + €,(t) — .Be;(t — 1),
j=5,...,8

where wy, = 32/128 = .25, 7; are iid U(0, 1), and the ampli-
tudes are ¢; = .62,c6 = .39,¢7 = 1.06, and cg = .54. Note
that these four series are not in phase. The next two series
are a mixture of the two types:
Y;(t) = 1, cos(2mtw,) + caj cos(2m[twy + 75])
—|—€j(t)+.58j(t—1), 7 =29,10,
where C1,9 = .34, C2,9 = .37, C1,10 = .84, and C2,10 = .48.
Finally, the last two series have no signals:

case, the ¢;(t), are iid N(0, 1), for j = 1,...,12, and t = Y;(t) =¢;(t) — .5e;(t — 1), j=11,12.
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..., 12, Generated in Example 4.
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The periodograms of the generated series are shown in Fig-
ure 3. The general appearance of the periodograms in Fig-
ure 3 is somewhat contrary to what is known to be true. For
example, it is known that series 1-4, 9, and 10 contain a sig-
nal at frequency .10, but it appears from the periodograms
that series 2 and 4 do not. In addition, it is known that the
series 5-8, 9, and 10 contain a signal at frequency .25, but
it appears that 6 and 10 do not.

Figure 4 shows the spectral envelopes using complex
scales (thin line) and real scales (thick line). Both tech-
niques clearly identify the frequencies of .10 and .25. In
both cases, the spectral envelope was estimated using trian-
gular smoothing with m = 7 and weights {ho = 7/49,h; =
6/49,ho = 5/49,...,h; = 1/49}. Note that because the
real-valued case is a special case of the complex-valued
approach, the “real” spectral envelope is never above the
“complex” spectral envelope.

Table 3. Example 4 Results for Frequency w = .10

Series Amplitude é Complex scale®? Real scale®®
1 59 —.001 A7 (123.99) 9 (25.06)
2 36 .002 .38 (352.81) 0 (58.62)
3 87 .003 48 (322.42) 7 (56.76)
4 .21 .003 .27 (59.13) 1 (12.91)
5 0 18 (22.14) 5 (6.26)

6 0 .02 (.43) 4 (.50)

7 0 .09 (3.88) 6 (.63)

8 0 .01 (.08) .01 (.05)

9 34 0 34 (275.14) .38 (40.30)
10 84 .003 40 (55.01) /48 (30.82)
11 0 .06 (1.86) 04 (.34)
12 0 12 (5.20) 14 (5.50)

NOTE: 2Values shown are the absolute values of the particular scale.
5The value of the test statistic based on (23) is shown in parentheses; compare cautiously to
a x3,.
®The value of the test statistic based on (21) is shown in parentheses; compare cautiously to
2
a Xio-

Tables 1 and 2 show the complex and real scales at the
selected frequencies of 0.10 and 0.25. Except for one case,
Table 2, series 2, using the complex version, the conclusions
reached from this analysis are the correct conclusions using
both the complex version and the real version of the spectral
envelope.

3. RANDOM FREQUENCY EFFECTS

In this section I focus on the case where some series
contain signals that may be only approximately the same.
To accomplish this, I model frequency as a random effect.
My basic model is still (5), but I make some different as-
sumptions about the K signals. As in the previous section,
I assume that each signal is associated with a particular fre-
quency (which are well separated), and, because I am using
the spectral envelope, I eventually focus on the single-signal
model. I motivate the ideas with an example.

Example 3. Suppose that the time series of interest
Y;(¢t) follow the model
Yi(t) = pj +¢;8;(t) +€;5(t),  j=1,....p, (25)
where 15 is the level of the jth series and ¢;(¢) are in-
dependent white noise processes with variance ajz. that are
independent of the signals. The amplitude of the jth signal
is ¢; (which may be 0), where the random signals are given
by
S;(t) = cos(2mwo + 9]t + 277;). (26)
In (26), 7; is a fixed phase, wy is the common frequency,
and ¢; for j = 1,...,p are independent random uniform
perturbations, with §; ~ U(—A,A) and A > 0 is some
small amount.
In this model the frequency corresponding to each time
series is a random effect, so the series are allowed to be
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Figure 9. The Sample Spectral Envelopes, \(w) (Complex Version, Thin Line; Real Version, Thick Line), for the Awake-Shock Stimulus Condition.

The peak in the spectral envelope occurs at the frequency w = 4/128.

only approximately the same. In addition, wy need not be a
Fourier frequency. The expected behavior of the signal is

1 A
B(S;00) = 55 [ cos{m(u + O)t + 27y} do

= cos(2rm|wot + 7;]) sinc (27At), 27

using the definition sinc(u) = sin(u)/u,u # 0, and
sinc(0) = 1. As a general statement, (27) implies that the
particular signals given in (26) satisfy the general property
that

E{S;(t)} = So(t — 1)k (Al), (28)

where Sy(t — 7;) is a fixed harmonic signal (with arbitrary
phase) that oscillates at frequency wo and x(At) is a taper
controlled by A; the larger the value of A, the more dra-
matic the taper, and when A = 0, the taper has no effect.

Figure 5 shows an example of (27) with n = 100,wq = .1,
and A = .1/(2r) = .016. This means that the time series
analyzed can have periods of oscillation ranging between
about 8.5 cycles (1/.116) and about 12 cycles (1/.084) in
100 observations. Hence this value of A would be consid-
ered rather large. However, a Fourier analysis is still a viable
solution, as is seen from the periodogram of (27) shown in
Figure 6. Note that the periodogram is spread out around
wo, and hence smoothing the periodogram would be wise
in this type of situation. This is because the expected signal
is of the form cos(wyt) sin(At), where A is small. But

2 cos(wopt) sin(At) = sin([wo + AJt) — sin([wg — Alt),

and hence the twin peaks seen in Figure 6.
Now considering the DFTs of the data, (6), as in (7), the
model (25) can be written as

dy, (@) = ajds, (@) +de, (@) G=1,....p, (29)

where a; = ¢; exp(—27iTjw), ds; (w) is the DFT of the in-
dividual random signal term cos(27[wo +0d;]t), and d., (w) is
the DFT of the individual noise terms. To investigate (29),
it is easier to work with the complex version of the signal;
that is, let

Sj(t) = exp{2mi(wg + (5]')75}.
Then, as in (27),

E{ds,(w)} =n""/?

X Zexp{—ij(w — wp)t} sinc(2wAt), (30)
t=1
which is the tapered (by the sinc kernel) transform of
exp(2miwot). In addition, as seen in Figure 6, the modu-
lus of E{ds,(w)} will be extremely close to the modulus
of the finite transform of exp(iwot), provided that A is not
too large relative to n.
The individual series, Y;(t), are coherent with each other,
provided that their respective signal amplitudes are not 0.
If in (29) aja, = 0 for any pair j,k = 1,...,p, then

E{dy,(w)dy, (W)} = 071101 (j — k), (31)

where 0? is the variance of €;(¢) and I4(-) is the indicator
of the set A. If |aja,| > 0 when j # k, then

E{dy,(w)dy, (w)} = ajarE{ds,; (w)} E{d5, (w)}, (32)
where E{ds,(w)} was given in (30). If |a;| > 0, then

E{|dy, ()]} = |a;*E{|ds, ()[*} + 07,  (33)
where
B{ds, )P = 3 (1- 1)

|h|<n

X exp{—2mi(w — wo)h} sinc(2wAh).



Stoffer: Detecting Common Signals 1351
© 2 © 2 2
o S =] S o
QD) (2) (3) (4) (5)
o o 8 o o
o ) o =) S
13 £ E E E
g 8 g g g
g g g g g
K 8 8 8 3
& 8 & & 8
8 3 8 g 8
o o o o o
8 g g 8 L/\//\_/\_,v g
o o o o

0 2 4 6 8 10 12 14 16 18 20
Frequency (x 128)

0 2 4 6 8 10 12 14 16 18 20
Frequency (x 128)

0 2 4 6 8 10 12 14 16 18 20
Frequency (x 128)

o0 2 4 6 8 10 12 14 16 18 20
Frequency (x 128)

0 2 4 6 8 1012 14 16 18 20
Frequency (x 128)

® ® ® ®
S} S} S S}
(6) ) (&) (9)
o o = &
(=] 5] 5] S
=S 1= E E
g g g g
o o o 1=
o o 4 o
8 3 3 k]
2 ~ 2 =
& & & &
© © © ©
S Q =1 =]
o o o o
: ] ] JL A
=3 =3 =1

0.00

o
0 2 4 6 8 10 12 14 16 18 20
Frequency (x 128)

o
0 2 4 6 8 10 12 14 16 18 20
Frequency (x 128)

=
0 2 4 6 8 10 12 14 16 18 20
Frequency (x 128)

0 2 4 6 8 10 12 14 16 18 20
Frequency (x 128)

Figure 10. Periodograms of the Awake-Shock Series Y(t), for j= 1, ..., 9, Representing Locations [L1]-[L9].

A key point made in Example 3 is that even in the sit-
uation of (25)—(26), one may carry out an analysis similar
to that outlined in the previous section. That is, rather than
focus on the p individual transforms, one can use the in-
terrelationships inherent in the model to help identify wy.
To do this, one makes use of the cross-spectra among the p
time series Y;(t) for j = 1,...,p. This enhances the anal-
ysis, because if a particular series contains the harmonic
component of interest but with a low amplitude or a lot
of noise, then an individual analysis may miss this fact,
but this particular series may match well with other series
containing the harmonic. This particular effect was seen in
Example 2.

As a general model (for the case where K = 1), take the
form of (25) in Example 3; that is,

Y;(t) = py + ¢;S5(t) +€;5(¢), i=1,...,p. (34)

But where the signals S;(¢) belong to the general class of
modulated harmonic signals given by

S;(t) = g(t) cos(2m[wo + 9]t + 277;), (35)

where g(t) does not annihilate the basic common signal,
So(t) = cos(2mwot). In (35) wy is a fixed frequency and 4,
for j = 1,...,p, are independent U(—A, A) random vari-

ables, where A > 0 is some small value and 7; is a fixed,
but unknown phase. An example of a typical modulator is
the function g(t) = atexp(—~t), where o and v > 0 are
constants; in this case the signal dampens over time. An-
other standard example of a modulator is g(¢) = sin(2rAt).
Note that the S;(¢) in (35) satisfy the general relationship
of (28); that is,

E{S;(t)} = So(t — 73)K(At), (36)
where Sp(t) is a fixed harmonic signal that oscillates at
frequency wq and x(At) is a taper that does not annihilate
So(t). In fact, one could use (36) as a general definition of
the signals, S;(t), in (34). Of course, (34) may be extended
to the case where K > 1, as in (5), in an obvious way.

As in Example 3, (29), the model can be written in terms
of the DFTs,

dy;

J

(W) = ajds;(w) +de; (W),  j=1,...,p, (37)
where a; = c¢; exp(—2miT;w), ds; (w) is the DFT of the indi-
vidual random signal term satisfying (35), and d., (w) is the
DFT of the individual noise terms. In particular, E{ds, (w)}
is the DFT of Sy(¢)x(At), where now the taper is of the

form k(At) = g(t)sinc(2rAt).
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Let Y(t) = (Yi(t),...,Yp(t)) and let dy(w) denote the
px 1 vector of finite transforms with jth component dy; (w).
As in Section 2, arrange the vector so that for 0 < ¢ <
P,Gg+1 = -+ = ap = 0, and none of the {a1,...,a,} are 0.
Then (37) can be written as

dy(w) = Ads(w) + dg(w), (38)

where A is the p x p complex diagonal matrix A =
diag{ai,...,a4,0,...,0} and dg(w) and d.(w) are the
p x 1 vectors of transforms with jth component ds, (w) and
de; (w).

Let fy(w) = F{dy(w)d§y(w)} be the p x p complex ma-
trix with elements given by the values in (31)—(33), with
sinc(2wAt) replaced by the general form x(At). In an ob-
vious way, based on (38), decompose the elements of fy(w)
as

fy(w) = Afg(w)A* + £, (w), (39)

where Afg(w)A* is a Hermitian block-diagonal matrix and
f.(w) = diag{o?,...,02}. This situation is somewhat dif-
ferent than that discussed in Section 2, however. Here (39) is
a type of complex factor analytic representation for fy(w);
that is, fy(w) is the sum of a rank r» < ¢ < p nonnegative-
definite matrix Afg(w)A* and a positive-definite diagonal
matrix f.(w). If A = 0, then this model is the model of
Section 2, in which case r = 1. The elements of the matrix
fs(w) depend on n, x, A, and wy. In particular, using (30),
(32), and (33), the off-diagonal elements of fg(w) are of the
form (to ease the discussion I use the complex version of
the signal)

2

fou() =n"" > exp{—2mi(w — wo)t}K(At)| ,

t=1

j#k=1,...,p, (40)

20
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and the diagonal elements are

= (-2)

|h|<n
x exp{—2mi(w — wo)h}k(Ah),

fs;; (W) =

j=1,...,p. (41)

For w far from wy, fs(w) is approximately the zero matrix
(recall that I do not assume that wy is a Fourier frequency),
because its elements are convoluted Dirichlet kernels eval-
uated away from 0. As previously mentioned, the situation
in Section 2 can be thought of as the case where A = 0 and
g(t) is constant, in which case all of the elements of fg(w)
are the same, implying that the rank, r, of fg(w) is 1.

My preference is to work with the standardized se-
ries Z(t) = V~Y/2Y(t), where V is the diagonal ma-
trix of variances defined in Section 2. Thus with fz(w) =
V—1/2fy(w)V~1/2 as in (12), put

B(w)B*(w) = V7 Y2Afg(w)A* V™12 (42)
and
D(w) = V7Y2f (w)V—1/2
= diag{o7/0%,, ... ,ag/affp}, (43)
and write the model as
fz(w) = B(w)B*(w) + D(w), (44)

noting that B(w) is a p x ¢ matrix such that all of the
elements in the final p — ¢ rows of B(w) are 0, and
rank(B(w)) =r < q.

Note that it is not necessary to assume that the S;(t) are
sinusoidal as in (35). In fact, the basic results are the same
if one is willing to assume only that the S;(t) satisfy the
relationship described in (36). Estimation of the spectral en-
velope and optimal scalings is accomplished by smoothing
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Figure 11. The Sample Spectral Envelope, ;\(w) (Complex Version, Thin Line; Real Version, Thick Line), for the High-Brush Stimulus Condition.

The peak in the spectral envelope occurs at the frequency w = 4/128.
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the periodograms as in (17) and (18) so that cross-spectra
can be estimated. This is reasonable even near wg, because
one expects the spectra to be spread out around this fre-
quency, as seen in (40) and (41).

Example 4. This example is an extension of Example
2. I again generated 12 series of length n = 128 with the
same amplitudes and common frequencies as in Example
2, but in this example the noise terms are white. The first
four series were generated as
Y;(t) = cjg(t) cos(2m[we + 05]t) + €5(2), J=1,...,4,
where w, = .1 (which is not a Fourier frequency) and g(¢)
is an exponential modulator given by

g(t) = .5texp(—t/10).

The 6, are independent U(—A, A), where A = 1/2(128) =
.004; recall that the amplitudes are ¢; = .59,¢c2 = .36,¢c3 =
.87, and ¢4 = .21. The next four series were generated as

Yj(t) = ¢j cos(2mlwy+0;]t+2m75]) +¢;(t),  j=5,...,8,

where w, = 32/128 = .25. The 4, are also independent
U(—A, A), and the amplitudes are as in Example 2; that is,

o
0 2 4 6 8 10 12 14 16 18 20
Frequency (x 128)

o
0 2 4 6 8 10 12 14 16 18 20
Frequency (x 128)

Periodograms of the High-Brush Series Yj(t), for j= 1, ..., 9, Representing Locations [L1]-[L9].

cs = .62,c6 = .39,¢; = 1.06, and cg = .b4. Series Yg(t)
and Yio(t) are generated as the sum of two processes like
the first and second sets (with the same amplitudes as in
Example 2), but the first component is not modulated:

Y;(t) = c15 cos(2m|wg + 05]t) + coj cos(2m|wy + 05]t
+ 2775]) +&5(t), J=9,10,

where C1,9 = .34, C29 = .37, C1,10 = .84, C2,10 = A48, and
§; ~ U(—A, A). The last two series, Y71 (t) and Yi2(t), are
Gaussian white noise.

Figure 7 shows the individual periodograms, which are
similar to those of Example 2 (see Fig. 3). Figure 8 shows
the spectral envelope of the data. Note that the power in
the envelope at frequency .10 is much smaller here than in
Figure 4, but the envelope still identifies both the .10 and
.25 frequencies as important. Table 3 gives the results of
the frequency .10 analysis; the results for the .25 frequency
are similar. As in Example 2, although an individual peri-
odogram analysis would lead to the wrong conclusions (e.g.,
periodograms 1, 2, and 4 in Fig. 7 show no evidence of the
.10 harmonic), the spectral envelope leads to the appropriate
conclusions.
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Figure 13. Sample Spectral Envelopes, 5\(w), for the Black Group in the Ambulatory Blood Pressure Study Using Complex Scaling (Thin Line)
and Real Scaling (Thick Line). The straight line is an approximate o = 10~% significance threshold using (22).

4. APPLICATIONS

Two applications are presented in this section. The first
application, already discussed in Example 1, is a case of
evoked responses where the experiment is designed and thus
corresponds more closely to the discussion in Section 2. The
second application is not a designed experiment and would
correspond more closely to Section 3 ideas.

4.1  An Experiment in Pain (Example 1 Continued)

This analysis focuses on the study described in Example
1 that used fMRI to examine pain perception in humans.
The substantive issues have been reported by Antognini,
Buonocore, Disbrow, and Carstens (1998), and I use part of
the dataset as an example of the methodology. In particular,
I use this example to explore the similarities and differences
between the real and complex cases and to investigate how
they might also be used to examine phase.

Figure 9 shows the estimated spectral envelope for the
stimulus condition awake-shock (the data are shown in
Fig. 1) using triangular smoothing with m = 2; note that
real and complex cases are nearly identical. From this,
it can be concluded that the BOLD signals are in phase.
There is a clear peak in the sample spectral envelope,
A(4/128) = 32.4% (both cases), corresponding to frequency
of w = 4 cycles/128 points or 4/256 Hz, which corre-
sponds to the stimulation period of 64 seconds. The mag-
nitudes of the optimal sample scalings (the complex and
real scales are nearly the same) and the corresponding x3
test given by (2.20) are [L1] .41 (233.4), [L2] .42 (138.4),
[L3] .39 (389.5), [L4] .37 (352.7), [L5] .27 (107.2), [L6]
.14 (14.0), [L7] .16 (18.8), [L8] .31 (252.8), and [L9] .40
(539.5), indicating that all locations are receiving the shock
signal.

Figure 10 shows the individual periodograms at the nine
locations [L1]-[L9] for the awake-shock stimulus condition.

Note that at locations [L6] and [L7] the signals are very
weak, and it is doubtful that an individual analysis would
pick up this very weak (but present) signal at these loca-
tions.

Next, I repeat the analysis for the high-brush stimulus
condition (the data are shown in Fig. 2). Figure 11 displays
the sample spectral envelopes (real and complex), which
again are nearly identical. In this case the sample spectral
envelopes are about 18.8% at the stimulation period, which
is a little more than half of the power seen in the case of
the awake-shock stimulus condition. This indicates that the
high-brush signal is not as strong as the awake-shock sig-
nal. The magnitudes of the optimal sample scalings (the
complex and real scales are nearly the same) and the cor-
responding 3 test given in (24) are [L1] .51 (689.8), [L2]
28 (34.2), [L3] .48 (402.4), [L4] .43 (127.8), [L5] .34 (39.0),
[L6] .24 (25.3), [L7] .16 (9.7), [L8] .14 (2.8), and [L9] .18
(17.2), indicating that all locations except for [L8] are re-
ceiving the shock signal. Figure 12 displays the individual
periodograms; again it appears that a separate analysis of
the periodograms would lead to a somewhat different con-
clusion.

4.2 Ambulatory Blood Pressure and the Bogalusa
Heart Study

The Bogalusa Heart Study is a detailed study of chil-
dren focusing on understanding the early natural history
of coronary artery disease and essential hypertension. It is
a major program studying a well-defined, biracial (black—
white) population of children in a semirural community in
Louisiana. The study has conducted cardiovascular risk fac-
tor research both in the community and in the laboratory
since 1972. Details have been provided by Berenson et al.
(1991).
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Figure 14. Sample Spectral Envelopes, S\(w), for the White Group in the Ambulatory Blood Pressure Study Using Complex Scaling (Thin Line)
and Real Scaling (Thick Line). The straight line is an approximate o = 10~% significance threshold using (22).

Many different substudies have been conducted over the
years. These substudies include a special study on ambula-
tory blood pressure, which is the focus of this analysis. The
data collected are ambulatory blood pressure readings taken
every 15 minutes for 24 hours on preteens. Subjects wear a
noninvasive monitor that measures blood pressure and heart
rate at regular intervals throughout the day. The purpose of
ambulatory blood pressure monitoring is to obtain data that
reflect the cardiovascular state of patients under conditions
more representative of their everyday lifestyle than those
inherent in a clinical environment.

In this analysis I concentrate on the diastolic blood pres-
sure (DBP) readings of 29 preteens representing fairly
evenly blacks (14), whites (15), females (12, of which 6
are black), and males (17, of which 8 are black). A number
of techniques are used to screen the data for anomalies (e.g.,
a DBP reading that exceeds the systolic BP reading). In ad-
dition, the data are adjusted for periods of sleep (wherein
DBP drops by about 10-20 mm Hg), so that the level of
each DBP series is constant.

The raw data were given to me by a cardiologist involved
in the heart study a number of years ago. He was interested
in finding differences in the cyclic behavior of the blood
pressure readings between blacks and whites. It was appar-
ent that the cardiologist had a particular agenda. He had
written several controversial articles claiming that by the
time they reach age 20, black males have abnormally large
hearts due to stress, which increases their risk of cardiovas-
cular disease. How this claim related to these data, or what
the cardiologist thought we would find, was not revealed to
me. I was intrigued and agreed to perform spectral analyses
on the ambulatory blood pressure and heart rate readings
without knowing anything about the subjects at the time.
Unfortunately, the cardiologist passed away during this pe-

riod, but I was able to ascertain information about the data
from other sources working on the heart study. I never knew
what the cardiologist was looking for; the separate analyses
lead to nothing interesting, and I found only the expected
circadian and ultradian rhythms associated with blood pres-
sure and heart rate. It was this experience that led me to
think about random frequency effects and group analyses
that do not require the entire group to behave a certain way
(as, e.g., in MacNeill 1977).

Figures 13 and 14 show the estimated spectral envelopes
for the group of 14 blacks and the group of 15 whites, us-
ing triangular weighting with m = 5. In addition, each plot
shows the approximate o = 10~° significance threshold us-
ing (22). From these figures, note that (a) there is a differ-
ence between using real scalings and using complex scal-
ings (there is no reason to believe that the signals would be
in phase), (b) both groups show the expected low-frequency
circadian rhythm, and (c) using complex scalings, the white
group shows additional cyclic behavior near w = .20 (about
1 cycle every 75 minutes), with 10 of the 15 children having
this signal. In summary, these findings serve as an exam-
ple of the viability of this technique, but I hesitate to make
any substantive conclusions without further guidance from
cardiologists.

[Received July 1998. Revised February 1999.]
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