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SUMMARY

Many studies produce categorical time series in which harmonic analysis is of interest.
Although there exist time domain approaches for the analysis of categorical time series
such as Markov chains or link function based regression models, there is apparently little
statistical theory or methodology for analyzing qualitative-valued time series in the
frequency domain. The purpose of this paper is to initiate the development of a general
framework for the frequency domain analysis of categorical time series. In doing so, we
discuss the scaling of categorical time series and introduce a new concept that we call
the spectral envelope of a categorical time series. We demonstrate our methodology on
a data set from a problem in molecular biology.
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1. INTRODUCTION

There are numerous statistical techniques for analyzing continuous-valued time series
in both the time and frequency domains. If a time series is discrete-valued, there is also
a number of available techniques, for example, DARMA models (Lewis, 1980), INAR
models (Al-Osh & Alzaid, 1987), and truncated models (Heckman, 1981) in the time
domain, Fourier and Walsh-Fourier (Stoffer, 1987) analysis in the spectral domain. If
the time series is categorical-valued, then there is the theory of Markov chains (Billingsley,
1961; Raftery, 1985), and the link function approach (Fahmeir & Kaufmann, 1987) for
time domain analysis. But there is apparently little statistical theory or methodology for
doing frequency domain analysis of categorical time series. Categorical processes, in
which harmonic analysis is of interest, occur in many fields such as the medical,
behavioural, epidemiological and genetic sciences; see Stoffer (1991) for some specific
examples. Since a categorical process is qualitative, it is not even clear what is meant by
the spectrum of a categorical process. For earlier attempts at this problem, see Lai (1978)
and Tavaré & Giddings (1989).

In this paper, we introduce an approach for the spectral analysis and scaling of
categorical time series. We do not attempt to solve completely the problem of spectral
analysis for categorical time series; indeed, we will most likely raise as many questions
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as we answer. Our intention is to provide a sound statistical basis on which to establish
the analysis of categorical time series in the frequency domain.

One approach for exploring the periodic nature of a categorical process is to assign
numerical values to each of the states or categories followed by a spectral analysis of
the resulting discrete-valued time series. The observed spectrum will, of course, depend
on the particular values chosen for the state-space. Alternatively, rather than choose
arbitrary values, we propose selecting values that help emphasize any periodic feature
that may exist in the categorical process.

To motivate the problem, consider the following sequence: {a, b, c, b, a, b, c, b, .. .}.
Clearly there is not just one cyclic pattern in this sequence; for example, the given
sequence can also be viewed as {~b, b, ~b, b, ~b, b, ...} where ~b means ‘not b’.
Hence, not only is the process making one cycle every four time points, it is also making
one cycle every two time points. If we were to assign numerical values to the states, one
particular assignment (scaling) that emphasizes the harmonic component of one cycle
every four time points is a =0, b =1, ¢ =2, while the scaling a = ¢ =0, b = 1, emphasizes
the harmonic component of one cycle every two time points. This example makes it clear
that we do not want to focus on only one scaling, but all the scalings that will identify
the variety of signals that are present in a categorical process. In § 2, we introduce a new
concept called the spectral envelope which can be used to help select such scalings.

Statistical issues are discussed in § 3. In § 4 we present an analysis of a data set from
a problem in molecular biology. Some technical details are given in the Appendix.

2. SCALING AND THE SPECTRAL ENVELOPE

Let X, for t=0, £1, £2,..., be a categorical-valued time series with finite state-space
€={c1, ¢z, ..., c}. Assume throughout that X, is stationary and pi=pr(X,=¢)>0 for
J=12,...,k For B=(B,, Ba,- .., B)' €R¥ denote by X,(B) the real-valued stationary
time series corresponding to the scaling that assigns ¢ the value B; (j=1,2,...,k).
Regardless of the scaling, assume that X,(8) has a continuous spectral density denoted
by f(w; B), for = <w <. Our goal is to find scalings B so that the spectral density is
in some sense interesting.

Although it is not the only sensible criterion for determining B, we choose to find B
to maximize the power (variance) across frequencies w € (—, 7], relative to the total
power V(B)=var{X,(B8)}. That is, we want to maximize r(8)=sup,, {f(w; B)/ V(B)},
over all B not proportional to 1,, the k x 1 vector of ones. Note that () is not defined
if B=al; for some aeR since such a scaling corresponds to assigning each category
the same value a; in this case f(w; B)=0 and V(B)=0. The optimality criterion r(8)
possesses the desirable property of being invariant under location and scale changes,
that is, for any a,+0 and a,€R, r(a,8+a,1,) = r(B).

As in most scaling problems for categorical data, it is useful to represent the categories
in terms of the vectors ey, e,, ..., ¢, where e¢; represents the k X 1 vector with a one in
the jth row, and zeros elsewhere. We then define a k-dimensional stationary time series
Y. by Y, =e; when X, = ¢;. The time series X,(8) can be obtained from the Y, time series
by the relationship X,(8)=B'Y,. Assume throughout that the vector process Y, has a
continuous spectral density denoted by f(w). For each o, f(w) is, of course, a kxk
complex-valued Hermitian matrix. The assumption that f(w) is continuous is necessary
and sufficient for ensuring that X,(8) has a continuous spectral density for all 8 € R*.
Note that the relationship X,(B8)=B'Y, implies that f(w; 8) = B'f(w)B. The optimality
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criterion r(B) can thus be expressed as

r(B) =sup, {B'f(w)B/B'VB}, (2-1)

where V is the variance-covariance matrix of Y,.

For any fixed t, Y, represents a single observation from a simple multinomial sampling
scheme. It readily follows that V= D —pp’, where p = (p,, p2, ..., P«)’, and D is the kx k
diagonal matrix D = diag (p,, p», - - - , Px)- Since, by assumption, p;>0forj=1,2,..., Kk,
it follows that rank (V)= k—1 with the null space of V being spanned by 1,. For any
k x (k—1) full rank matrix A whose columns are linearly independent of 1,, A’'VA is a
(k—1)x(k—1) positive definite symmetric matrix.

Before addressing the problem of maximizing r(8), some additional notation is needed.
Denote the real part of f(w) by f(@) and let the matrix A be as previously defined.
For —7 < w < 7, define A(w) to be the largest eigenvalue of the determinantal equation

|A’f™(w)A—AA'VA| =0, (2-2)
and let b(w) e R*! be any corresponding eigenvector; that is,
A'f"(w)Ab(w)=A(w)A ' VAb(w). (2:3)

The eigenvalue A(w)=0 does not depend on the choice of A since for any two such
choices, say A; and A,, there exists a nonsingular matrix M such that A,M = A,M.
Although the eigenvector b(w) depends on the particular choice of A, the equivalence
class of scalings associated with 8(w) = Ab(w) does not depend on A. That is, the set

B(w)={B ERk|3 =a,8(w)tal} (a;#0,a,eR)

does not depend on A. A convenient choice of A is A=[I_,|0], where I,_, is the
(k—1)x (k—1) identity matrix and 0 is the (k—1)x 1 vector of zeros. For this choice,
A'f™(w)A and A’VA are the upper (k—1) x(k—1) blocks of f(w) and V, respectively.
This choice corresponds to setting the last component of 8(w) to zero.

We are now able to solve the problem of maximizing r(B).

THEOREM 2:1. Under the established notation and conditions, there exists 0<w,= =
such that A(w,) =sup, A(w). Furthermore, if Bo= B(w,) then r(B) < r(Bo) = A(wy).

Proof. First note by the continuity property of eigenvalues that AM(w) (—7<w <) is
continuous since, by assumption, f™(w) is continuous. In addition, f*(w)=f"(-w)
implies A(w) = A(—w) so that A(w) achieves its maximum on 0<=w <.

Now, since the imaginary part of a Hermitian matrix is skew symmetric, B'f(w)B =
B'f(w)B for B cR* Hence, for 0<w <,

Bf(w)B B'f*(w)B
sup; r(B) =supg su w{-—-—,——— =sup,, su —_— 2-4
Ps s Sup 8'VB P. SUPg B'VB (2:4)
where the supremum over B is for B8 +al,, acR. For B Fal,, acR, there exists a

beR*! with b+0 such that 8 = Ab+al,. Recalling that 1, f(w)1,=0 and 1} V1,=0,
we have

supg {B'f(w)B/B'VB}=sups+o {b'A’f“(w)Ab/b'A’VAD}. (2-5)

The supremum over b+0 in (2-5) occurs at b= b(w) with (2-5) itself being equal to
A(w). The theorem then follows by applying this observation to (2-4). O
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Remark 2-1. Alternatively, A(w) and B(w) can be defined as the largest scalar A(w)
such that for some B(w)+al,, aeR, f*(w)B(w)=A(w)VB(w). This definition avoids
introducing the matrix A. For computational purposes, (2-2) and (2-3) are more con-
venient, especially with A chosen to be [I;_,|0]". Note also that A(w) cannot be viewed
as the largest root of the determinantal equation |f™(w)— A V| =0 since this determinant
is zero for any A.

The value A(w) itself has a useful interpretation: specifically, A(w)dw represents the
largest proportion of the total power that can be attributed to the frequencies wdw for
any particular scaled process X,(8), with the maximum being achieved by the scaling
B(w). Thus, beside the optimal scaling, 8, other scalings 8(w) for which the correspond-
ing value of A(w) is relatively large warrant attention. Because of its central role, we
introduce the following name for A(w).

Definition 2-1. The spectral envelope of a stationary categorical time series X,
(r=0,£1,+£2,...) is defined to be A(w) (—7<w<).

The name spectral envelope is appropriate since A(w) envelopes the standardized
spectrum of any scaled process. That is, given any 8 normalized so that X,(B) has total
power one, f(w; B)< A(w) with equality if and only if 8 is proportional to B(w).

Although the law of the process X,(B8) for any one-to-one scaling B completely
determines the law of the categorical process X,, information is lost when one restricts
attention to the spectrum of X,(8). Less information is lost when one considers the
spectrum of Y,. Dealing directly with the spectral density f(w) itself is somewhat
cumbersome since it is a function into the set of complex Hermitian matrices. Alternatively,
one can view the spectral envelope as an easily understood, parsimonious tool for
exploring the periodic nature of a categorical time series with a minimal loss of infor-
mation.

3. ESTIMATING THE SPECTRAL ENVELOPE

Suppose that we observe a finite realization of the stationary categorical time series
X;, or equivalently, the multinomial process Y, (t=0,1,..., T—1). The theory for
estimating the spectral density of a multivariate, real-valued time series is well established
(Brillinger, 1981, Ch. 7; Hannan, 1970, Ch. 5; Rosenblatt, 1959), and can be applied to
estimating f(w), the spectral density of Y;. Given an estimate f;-(w) of f(w), an estimate
of the spectral envelope and the corresponding scalings, denoted Ar(w) and Br(w),
respectively, can then be defined in a manner analogous to (2:2)-(2-3).

Throughout this section we shall use the following notation. For a complex matrix B,
denote the real part of B by B™, the imaginary part of B by B™, and the conjugate
transpose of B by B*. For any k x k matrix B, the notation B will refer to the upper
(k—1)x(k—1) block of B. Operations on B refer to operations on the upper (k—1) x
(k—1) block of B; for example, B™' denotes the inverse of B and not the upper
(k—1)x (k—1) block of B™". For a symmetric nonnegative definite matrix B, the notation
B? refers to the unique symmetric nonnegative definite square root of B. Fora (k—1)x 1
vector v, the notation (v: 0) refers to the k x 1 vector whose first k — 1 elements correspond
to those of v, and whose last element is zero.
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For simplicity and without loss of generality, we define Ar(w) to be the largest
eigenvalue of g7(w) where

gr(w)= V;%f.T(w)V;%, (3-1)

and V; is the sample covariance matrix of Y, (t=0,1,..., T—1). The scaling Br(w) is
then defined by B1(w) = (br(w): 0), where Vibr(w)isthe elgenvector of g7(w) associated
with the root Ar(w). Furthermore, let br(w) be normalized so that b’ (@) Vebr(w) =1,
and with the first nonzero entry of Vi-br(w) taken to be positive.

To allow for the application of a general theory in obtaining asymptotic distributions
for the estimates of the spectral density f(w), we assume throughout this section that Y,
is strictly stationary and that all cumulant spectra, of all orders, exist for the series Y.
Rather than introduce excessive notation, we refer to Brillinger (1981, Assumption 2.6.1).
The periodogram of Y, is given by

Ir(w)=Q2nT) dr(w)dH(w) (-m<eo<m),

where d;(w) denotes the finite Fourier transform of Y;. Whenever the spectral estimate
refers to the periodogram, we shall refer to Ar(w) as the sample spectral envelope and
Br(w) as the sample scalings.

The following lemma concerning the asymptotic distribution of the periodogram
represents a special case of Brillinger (1981, Theorem 7.2.4). All limiting statements are
taken as T - o0, and for simplicity, the distinct frequencies w; (j=1,...,J) are assumed
to be strictly between 0 and 7. Let W(p, », 3) denote the Wishart distribution of dimension
p on v degrees of freedom and with p X p covariance parameter X; similarly, W.(p, v, 2)
denotes the complex Wishart distribution; see Brillinger (1981, § 4.2) for details.

LEMMA 3-1. Under the established notation and conditions, Ir(w;) (j=1,...,J) con-
verge in distribution to independent W {k, 1, f(w;)} (j=1,...,J).

Since Vr converges in probability to V, gr(w;) (j=1,...,J) are asymptotically
independent W {k—1,1, g(w;)} (j=1,...,J), where g(w)= V_%f(w)f/_%. Since the
eigenvalues and eigenvectors are continuous functions of a matrix argument, at least
almost everywhere with respect to Lebesgue measure, the asymptotic distributions of the
sample spectral envelope Ar{w) and the sample scalings Br(w) follow from Lemma 3-1.

THEOREM 3-1. Under the established notation and conditions, and for fT(w) I(w),
the collection {Ar(w;), Br(w;);j=1, ..., J} converges in distribution to {A;, v;; j = S Jh
wherev,=(V *u;: 0), and {A;, w;} (j=1,...,J) arethelargest eigenvalues and elgenvectors
of independent Wi{k—1,1, g(w,;)} matrices (j=1,...,J) with u; normalized so that
uju; =1 and the first nonzero entry of u; is positive.

The above theorem gives a representation for the limiting distribution of the sample
spectral envelope and sample scalings. Although the distribution of the largest root of a
Wishart matrix or of a complex Wishart matrix has been well studied, we are not aware
of any results on the distribution of the largest root of the real part of a complex Wishart
matrix. Except for special cases, the form of the distribution of the largest root of a
Wishart matrix or of a complex Wishart matrix is not tractable and contains the other
roots of the matrix argument as nuisance parameters (Muirhead, 1982, §9.7). The
distribution of the largest root of the real part of a complex Wishart matrix is more
problematic since the distribution W¢(p, v,%) is not Wishart itself, and depends not
only on 3 but also on Z'™.
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A special case of fundamental importance is the case where Y, is white noise wherein
2mg(w)=1I;_, for —m<w=<m. In this case, the distribution of the largest root of a
We{k—1,1, g(w)} matrix, which arises in Theorem 3-1, has a relatively simple form.

THEOREM 3-2. Under the established notation and conditions, if Y, is white noise
then, for fr(w)=Ir(w), the collection {Ar(w;);j=1,...,J} converges in distribution to
{A;5i=1,...,J}, where the \; (j=1,...,J) are independent and identically distributed
with

pr (27A, <x) =pr (x3w-1) <4x) — w*x*"2 exp (=x) pr (xi <2x)/T{(k-1)/2} (x>0).

Proof. By Theorem 3-1, we know that A; (j=1,...,J) are independent and identically
distributed with 27, being distributed as the largest root of a W™(k—1, 1, I,_,) matrix.
Now a Wi(k—1,1, I,_,) distribution is the same as a W(k—-1,2, I,_,)/2 distribution
and can be characterized as the distribution of ZZ’/2 where Z is a (k—1)x2 matrix
with mutually independent standard normal entries. Observe that the distribution of 27,
is equivalent to that of the largest root of Z’'Z/2, and that Z'Z is W(2,k—1, I,). The
distribution function of the largest root of a W(2, k—1, I,) matrix, which was first derived
by John (1963), can then be applied to obtain the stated result. O

If the spectral estimate f7(w) is chosen to be the smoothed periodogram estimate

fr(@)=Cm+1)" 3 I(e+27s/T),

sS=—m

then Lemma 3-1 holds with Ir(w;) and W, {k, 1, f(w;)} replaced by
fr(w) WAk 2m+1, f(w)}/ (2m+1),

respectively (Brillinger, 1981; Theorem 7.3.3). Consequently, Theorem 3-1 holds
when adjusted analogously. Theorem 3-2 also holds when Ir(w;) is replaced by the
estimate fr(w), in which case the distribution of 27A, is that of the largest root of a
W(k—1,4m+2, I,_,)/(4m+2) matrix. We refer the reader to Muirhead (1982, § 9.7) for
a discussion of the largest root of a W(p, v, I,) matrix.

Finally, we consider consistent window spectral estimates. Specifically, consider a
window function W(a) (—o0<a <o0), that is real-valued, even, of bounded variation,
with

jw W(a)da=1, J:|W(a)| da < .

—00

Define

Frl@)=Qa/T) S Wylw—2ms) T)I,(2ms/ T), (3-2)

s=

where

Wr(e)=B7' } W{B7'(a+2uj)}
j=—c0
and Br is a bounded sequence of nonnegative scale parameters such that Br-0 and
B;T->o as T->c0. The following limiting distribution for (3-2) is a special case of
Brillinger (1981, Theorem 7.4.4). Define vy = (B, T)}{2m [*, W(a)? da} ™
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LEMMA 3-2. Under the stated conditions and assumptions, for fr(w) defined by (3-2),
{vr(fr(w) —flw;));j=1,..., J} converges in distribution to {Z;;j=1,...,J} where the
Z; are mutually independent k x k complex matrices with (Z°, Zi™) having a multivariate
normal distribution with mean zero and covariance structure not dependent on the window
W(a).

The complete covariance structure of Z; defined in Lemma 3-2 is given by Rosenblatt
(1959), and for the sake of brevity is not restated here.

Before finding the asymptotic distribution of the estimated spectral envelope and
scalings, we first need the asymptotic distribution of g7(w). Let Z° be as defined in
Lemma 3-2. Since T Vy— V)= O,(T), we have, for j=1,...,J,

S;r= VT{nge(wj)“'gre(wj)}‘)Sj = ‘7—%2;‘6‘7_% (3-3)

jointly in distribution, with {S;} having mutually independent multivariate normal distri-
butions with mean zero and covariance structure not dependent on the window W(a).
The covariance structure of §; is given in the Appendix. If the largest root of g™(w;) is
distinct, then the delta method can be used to argue that Ar(w;) and Br(w;) are jointly
asymptotically normal. This follows since the maximum eigenvalue of a symmetric matrix
and the corresponding eigenvector are analytic in a neighbourhood of an argument with
a distinct maximum root. Let b(w) be normalized so that b(w) V'b(w) =1, and so that
the first nonzero element of V !b(w) is positive.

THEOREM 3-3. Under the stated conditions and assumptions, and for f(w) defined by
(3-2), if for each j=1, ..., J the largest root of g"(w;) is distinct, then

{"T(/\T(wj) _’\(wj))/A(mj); vT(BT(wj) _.B(“’j));j =1,..., J}

converges jointly in distribution to {z;, (y;: 0); j=1,..., J} with z;, y; being independent for
j=1,...,J. Furthermore, for each j=1,...,J, z; has a standard normal distribution and
is independent of y; which is multivariate normal with mean zero. The covariance matrix of
Viy, is given by

{)\(wj)H(wj)+gre(‘0j)H(wj)+ - a(wj)a(wj)l}/za (3-4)
where
H(wj) = gre(wj) —A(wj)Ik—I, a(wj) = H(wj)+gim(wj) V%b(wj)’
and H(w;)" is the Moore- Penrose inverse of H(w;).

The proof of Theorem 3-3 is fairly technical and hence is reserved for the Appendix.
Asymptotic normal confidence intervals and tests for A(w) can be readily constructed
using Theorem 3-3. For B8(w), asymptotic confidence ellipsoids and chi-squared tests can
also be constructed. A simpler asymptotic test statistic, however, can be constructed
by replacing the term a(w) in (3-4) by zero. Specifically, under the conditions of
Theorem 3-3,

277 {1 (@) 7'b(0) FH(@)b(0) + Ar(0)b(0) Vif5(w) ™ Vib(w) -2} (3-5)

converges in distribution to a distribution that is stochastically less than x%_, and
stochastically greater than x;_;. The proof of this last statement is also given in the
Appendix. Note that the test statistic (3-5) is zero if b(w) is replaced by by(w). The
reader should compare (3-5) with Anderson’s (1963) asymptotic test for a principal
component vector.
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The asymptotic distribution of Ar(w;) and Br(w;) is considerably more complicated
whenever the largest root of g°(w;) is multiple. Rather than give a full treatment here,
we refer the reader to the techniques given by Tyler (1981) and Eaton & Tyler (1991).

4. EXAMPLE AND DISCUSSION

The analysis of DNA sequences has become an important topic in statistical science;
see Karlin & Macken (1991), for example. In this example we consider the data presented
by Whisenant et al. (1991) which were used in a sequence analysis of a human Y-
chromosomal DNA fragment. A DNA molecule consists of a long string of linked nucleo-
tides, the pyrimidines, thymine (¢) and cytosine (c), and the purines, adenine (a) and
guanine (g), that are linked together by a backbone. It is sufficient to represent a DNA
molecule by a sequence of bases on a single strand. Thus, a strand of DNA can be
represented as a sequence of letters, termed base pairs (bp), from the finite alphabet
{a, ¢, g, t}. The DNA fragment considered by Whisenant et al. (1991) is a string of length
T = 4156 bp; the data are listed in that article and we do not reproduce the sequence here.

The sample spectral envelope of the DNA sequence is plotted in Fig. 1 where frequency
is measured in cycles per bp, » =w/27 (0<w<3), and the sample spectral envelope is
scaled by 47T~'. The scaled sample spectral_envelope, 47T “'Ar(v), is the largest
eigenvalue of 47T 'g5(v) where gr(v)= V7 I (v)V7. In this case, we can regard
4xIr(v) as representing the power of the process associated with frequency », and TV
as representing the total power across all Fourier frequencies of the process. Hence,
47T~ 'Ar(v) can be interpreted as the largest proportion of the total power at frequency
v that can be obtained for any scaling of the process X,, that is X,(8). The scaled sample
spectral envelope can be inspected for peaks by employing Theorem 3:2 to approximate
pr{27Ar(v) > Ty/2} for 0<y =<1, under the assumption that the process is white noise.
In Fig. 1, we also plot the approximate null significances of 0-0001 (y = 0-60%) and
0-00001 (y =0-71%) for a single a priori specified frequency ». The null significances
were chosen small in view of the problem of making simultaneous inferences about the
value of the spectral envelope over more than one frequency. Bonferroni’s inequality
could be considered here, but this is not rigorous since the results are asymptotic and

0-8

06 H-----mommm o]

Spectral envelope (%)

0-4 |

0-2

0-0 0-1 0-2 03 0-4 0-5
Frequency (cycles per bp)
Fig. 1. Scaled sample spectral envelope of the DNA data

(solid line); approximate 0-0001 and 0-00001 null sig-
nificance thresholds (dashed lines).
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the number of frequencies grows as the length of the series grows. A rigorous proof for
justifying the use of Bonferroni’s inequality would most likely involve large deviation
type results and we leave that for further research. Another possibility would be to
develop extensions of Fisher-type tests for hidden periodicities based on the sample
spectral envelope.

To facilitate the examination of the spectral envelope plotted in Fig. 1, only values of
47T 'Ar(v) that exceed 0-23% are plotted. Figure 1 shows a major peak at approximately
v =0-0007 cycles per bp, about three cycles in the DNA fragment of 4156 bp, with
corresponding sample scaling a =0, ¢ =0-09, g = —0-03, ¢ =0-10. This particular scaling
essentially puts a=g and c=t; this pairing is well established in the DNA literature
where the binary representation of the purine-pyrimidine (ag-tc) classification is
frequently studied (Tavaré & Giddings, 1989). As seen from Fig. 1, there are other large
values of the sample spectral envelope in the range of frequencies 0-0005=< »=<0-003
cycles per bp; the corresponding optimal scalings are roughly the same in this range.
There is also a secondary peak at approximately » = 0-25 cycles per bp, a period of about
one cycle every four bp with a corresponding sample scaling of a =0, ¢ = —0-05, g = 0-01,
t=0-10. Again we see the pairing of the purines, but the pyrimidines ¢ and ¢ are set
apart; the significance of this scaling warrants further investigation and at this time we
can offer no insight into this resuit.

Figure 2 shows the spectral envelope based on the smoothed periodogram estimate
with m = 25. Here we see that the peaks are more well defined and occur at approximately
v =0-001 cycles per bp with corresponding scaling a =0, ¢=0-12, g=-0-01, t=0-09,
and at approximately v =0-25 cycles per bp with corresponding scaling a =0, ¢=0-07,
g=0-01, t=—0-08. These scalings are consistent with the scalings that resulted in the
periodogram based analysis shown in Fig. 1, and more strongly support the aforemen-
tioned groupings of a, g, ¢ and ¢

Next, we employed (3-5) to get asymptotic tests for the scalings B,=B(0-001)=
(0,1,0,1), and B,=B(0-25)=(0, —1, 0, 1)’, where the elements of 8, and B3, correspond
to the scalings for {a, ¢, g, t} in that order. The asymptotic p-value for the test of B, was
between 0-06 and 0-16, while the asymptotic p-value for the test of 8, was between 0-57
and 0-85. The smoothed periodogram for the scaled process X,(B,), say fr(v; Bi), is
displayed in Fig. 3(a) and shows a marked peak at approximately » =0-001; note that
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Fig. 2. Spectral envelope based on a smoothed peri-

odogram estimate of the DNA data.
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Fig. 3. Smoothed periodogram of the scaled DNA data using the scaling a =g =0. (a) ¢ =t =1 (solid line);
lower edge of an approximate 99-99% one-sided confidence interval for the value of the spectrum at frequency
0-001 cycles per bp (dashed line). (b) ¢=—1, t=1 (solid line); lower edge of an approximate 99-99%
one-sided confidence interval for the value of the spectrum at frequency 0:25 cycles per bp (dashed line).

the peak at »=0-25 that appears in the sample spectral envelope is suppressed. Also
displayed in Fig. 3(a) is the lower limit of an approximate 99-99% chi-squared, one-sided
confidence interval for £(0-001; B,). We see that the lower confidence limit is roughly
two times larger than the baseline power level. Similarly, fr(»; B8,), the smoothed peri-
odogram for X,(8,), is displayed in Fig. 3(b) and shows a marked peak at approximately
v =0-25, and the peak at »=0-001 is suppressed. Here, the lower limit of a 99-99%
one-sided confidence interval for f(0-25; B8,) is approximately one and a half times larger
than the baseline power level.

Finally, we note that a smooth estimate of the spectral envelope is produced from a
smooth estimate of f(») and not by smoothing the sample spectral envelope itself. This
is evident from the definition of the spectral envelope since Ar(»;) (j=1,...,J) at
distinct frequencies »;, corresponds to different scalings, Br(v;) (j=1,...,J) of the
process X,. Thus, a weighted average of the A,(;) is essentially meaningless. Moreover,
since the largest eigenvalue is a convex function, smoothing the sample spectral envelope
would introduce positive bias into the estimate of the spectral envelope.
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APPENDIX
Technical details

The following notation is helpful when working with the covariance structure of random
matrices. For a p X g matrix B, let vec (B) denote the pq dimensional vector obtained by stacking
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the columns of B. If B is px q and C is ¢ X d, then the Kronecker product of B and C, denoted
by B®C, is the pcx qd partitioned matrix BQ C =[b,, C], with r=1,..., p varying over the
rows, and s=1,..., g varying over the columns of B. The commutation or permuted identity
matrix K,, is the pg X pg matrix defined by

-% ¥ E.®E.,,

r=1s=1

where E, is the p X g matrix with a one in the (7, s) position and zeros elsewhere. Two useful
properties are the following:

vec (BQC) = (C'® B) vec (Q), K., (B®C)=(C®B)K,, (A1)

when B is px g, C is c¢xd, and Q is g X c. See Magnus & Neudecker (1979) for details.

Rosenblatt (1959) gives the covariance structure of Z;, as defined in Lemma 3-2, in index form.
For our purposes, only the covariance structure of Z}° is needed. Using the above notation and
henceforth suppressing the index j, the covariance matrix of vec (Z) is

(L + K )[{ (@) @ f (@)} +{f (@) f ™(w)}]/2. (A-2)

The covariance matrix of vec (S), where S is defined in (3-3), can be obtained from (A-2) by
using the properties (A-1). For r=k—1, the covariance matrix of vec (S) is given by

(I + K )[{g"(0) ®g™(w)} +{g"™(0) ® "™ ()}]/2. (A-3)

Proof of Theorem 3-3. Taylor series expansions for the largest eigenvalue and corresponding
eigenvector of a symmetric matrix whose largest root is non-multiple (Izenman, 1975) give

Ar(w) = A(0)+ v7b(0) VESVib(0) + 0,(v7), (A-4)
Vibr(0)= V*b(w) - v H(w)*S;Vib(w)+ 0,(v7? (A-5)

It follows immediately from (A-4) that z = b(w)’ Visv V’b(w)/ A(w). A representation for y follows
from (A-5) since (Vr—V)=0O,(T" 1) and hence v (V4 — V-0 in probability. This then gives
V’y H(w)" SVzb(w) Thus z and y are jointly multivariate normal with mean zero. The variance
of z, the covariance between z and y, and the covariance matrix of Véy can be obtained from
(A-3). In obtaining the expressions given in the theorem, it is helpful to note the following. Since
g™(w) is skew-symmetric, »'g™(w)v=0 for any (k—1)-dimensional vector v. Also, H(w)"
commutes with g"(w), and H(w)" V7ib(w)=0. Finally, (B® C)(Q® D)= BQ® CD whenever
the dimensions of the matrices are compatible with the operations required. O

Derivation of (3:5). Let Hy(w)=g%(w)—~Ar(w)I,_,. Since V-V and H;(w)-> H(w) in
probability, we have that

Zr(w) =2 w18 (w) " Hr (@) Vi{br (@) — b(w)}/Ar(w)?

converges in distribution to a multivariate normal distribution with mean zero and covariance
matrix P —uu’, where P is an idempotent matrix of rank (k—2), and u is a (k—1)-dimensional
vector with Pu=wu, and w'u<1. Thus, Z;(w)'Z;(w) converges in distribution to Q=
Xx—s+(1—u'u)x?, with the chi-squares being independent. Note that the distribution of Q is
stochastically smaller than yi_, and stochastically greater than x3_;. Since Hr(w)Vibr(w)=0,
it follows from simple linear algebra that (3-5) is equal to

Zr(0) Zr(0) +4b(0) {vr(Vr— V)}b(w),

with the second term converging to zero in probability. O
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