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Chapter 3

Beyond Linear Models

The goal of this chapter is to to provide a cursory introduction to nonlinear processes
and models that may be used for data analysis. We motivate the need for nonlinear
and non-Gaussian models through real data examples, discussing why there is a need
for such models. We give some examples that may help explain some of the similari-
ties seen in nonlinear or non-Gaussian process from many different disciplines. Then
we exhibit some of the models used to analyze such processes and briefly discuss
their properties. Our intention is not to be exhaustive in covering these topics, but
rather to give a sampling of various situations and approaches to modeling nonlinear
and non-Gaussian processes.

As discussed in Chapter 1, the main goal of classical time series is the analysis of
the second order structure of stationary processes. This structure is fully determined
by the autocovariance or autocorrelation functions, or alternatively by the associ-
ated spectral measure. The second order structure of the process fully determines the
structure of stationary Gaussian processes. It is known from the Wold decomposition
(see Theorem 1.25) that a regular second order stationary process {Xt , t ∈ Z} may
be represented as

Xt =
∞

∑
j=0

ψ jZt− j , (3.1)

where ∑
∞
j=0 ψ2

j < ∞ and {Zt , t ∈ Z} ∼WN(0,σ2
z ) is white noise. In this case, the

spectral measure of the process {Xt , t ∈ Z} has a density fx(ω) =
σ2

z
2π

∣∣ψ(e−iω)
∣∣2,

where ψ(e−iω) is the transfer function associated to the impulse response {ψ j, j ∈
N}; see Example 1.33. If we are only interested in the second order structure, {Xt , t ∈
Z} is equivalent to the (strong sense) causal linear process {X̃t , t ∈ Z} given by

X̃t =
∞

∑
j=0

ψ jZ̃t− j , (3.2)

where {Z̃t , t ∈ Z} is strong (i.i.d.) white noise with variance σ2
z . The structure of a

linear process is therefore intimately related to the properties of causal linear systems.
For simplicity, assume that ∑

∞
j=0 |ψ j| < ∞. First, if the input of a linear sys-

tem is a sine wave of pulsation ω0, i.e., Zt = Acos(ω0t + ϕ), then the output,
Xt = ∑

∞
j=0 ψ jZt− j, is a sine wave of same frequency ω0 but with the amplitude scaled
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62 3. BEYOND LINEAR MODELS

by |ψ(e−iω0)| and phase shifted by arg[ψ(e−iω0)]; see Exercise 3.1. This property
is typically lost in nonlinear systems. If we input a sine wave into a nonlinear sys-
tem, then the output (provided it is well defined) contains not only a component
at the fundamental frequency ω0 but also components at the harmonics, i.e., mul-
tiples of the fundamental frequencies 2ω0,3ω0, and so on. Second, a linear pro-
cess satisfies a superposition principle, i.e., if we input a sum {Z(1)

t , t ∈ Z} and
{Z(2)

t , t ∈ Z} into a linear system, then the output will be the sum Xt = X (1)
t +X (2)

t ,
where X (i)

t =∑
∞
j=0 ψ jZ

(i)
t− j, i= 1,2. This property clearly extends to an arbitrary num-

ber of components and explains why the process {Xt , t ∈ Z} may be represented as

Xt =
∫

π

−π

eiωt
ψ(e−iω)dZ(ω) ,

where Z(ω) is the spectral field associated with {Zt , t ∈Z}, i.e., Zt =
∫

π

−π
eiωtdZ(ω).

In the linear world, there is a kind of natural duality between the time-domain and the
frequency-domain, since linear transformation preserves the frequencies and obeys
a superposition principle. In the nonlinear world, there is no such thing as impulse
response or transfer function and there is no longer a nice correspondence between
time and frequency domains.

When a linear process is invertible, the innovations {Zt , t ∈ Z} can be expressed
in terms of the process {Xt , t ∈ Z}. If the process is causally invertible, then there
exists a sequence {π j, j ∈ N} such that

Zt =
∞

∑
j=0

π jXt− j ;

see Definition 1.30. If Zt∼ iid(0,σ2
z ), then, according to (3.1), for any t ∈ Z, Xt is a

(linear function) of Zs, for s≤ t. Hence, Xt is FZ
t measurable, where FZ

t = σ(Zs,s≤
t) is the past history at time t of the process {Zt , t ∈ Z}; this implies that FX

t ⊂ FZ
t ,

where FX
t = σ(Xs, s ≤ t). Thus, for any t ∈ Z, Zt is independent of FX

t−1 ⊂ FZ
t−1.

Therefore E
[
Zt
∣∣ FX

t−1
]
= 0 showing that the conditional expectation of Xt of the

process given the past FX
t−1 can be linearly expressed as a function of its past values,

the optimal predictor is linear.

3.1 Nonlinear non-Gaussian data

In Chapter 1, we indicated that linear Gaussian models can handle a broad range of
problems, but that it is often necessary to go beyond these models. One might say
that in the linear Gaussian world, “∞ = 2”. In Section 1.5, however, we argued that
the annual sunspot numbers were not a linear Gaussian process because the data are
not time reversible, i.e., the data plotted in time order as X1:n = {X1,X2, . . . ,Xn} does
not look the same as the data plotted in reverse time order Xn:1 = {Xn,Xn−1, . . . ,X1}.
In that section we pointed out that such an occurrence will not happen for a linear
Gaussian process because, in that case, X1:n and Xn:1 have the same distribution.

Trying to model something that is not linear or not Gaussian might seem like a



3.1. NONLINEAR NON-GAUSSIAN DATA 63

●●
●
●
●

●

●

●

●

●

●
●●●

●

●
●

●

●

●●●●●
●
●

●
●

●
●●●●

●

●

●●

●

●
●●●

●

●

●

●

●

●
●●●

●

●●
●

●
●
●●●●

●

●

●

●

●

●
●●●●●

●

●

●
●

●
●●●

●
●

●

●
●

●

●

●●
●
●

●

●
●●

●

●
●●●●

●

●

●

●
●

●

●●●
●
●

●

●

Figure 3.1 Top: Annual numbers (÷1000) of lynx trappings for 1821–1934 in Canada. Bot-
tom: Monthly rates of pneumonia and influenza deaths in the United States for 1968–1978.

daunting task at first, because how does one model something in the negative? That
is, how do you model a process that is not linear or not Gaussian; there are so many
different ways to be not something. Fortunately, there are patterns of nonlinearity
and non-Gaussianity that are common to many processes. In recognizing these sim-
ilarities, we are able to develop general strategies and models to cover a wide range
of processes observed in diverse disciplines. The following examples will help in ex-
plaining some of the commonalities of processes that are in the complement of linear
Gaussian processes.

Example 3.1 (Sunspots, felines, and flu). The irreversiblity of the sunspot data
(Figure 1.1) is a trait that is observed in a variety of processes. For example, the data
shown in Figure 3.1 are typical of predator-prey relationships; the data are the an-
nual numbers of lynx trappings for 1821–1934 in Canada; see Campbell and Waker
(1977). Such relationships are often modeled by the Lotka-Volterra equations, which
are a pair of simple nonlinear differential equations used to describe the interaction
between the size of predator and prey populations; e.g., see Edelstein-Keshet (2005,
Ch. 6). Note that, as opposed to the sunspot data set, the lynx data tend to increase
slowly to a peak and then decline quickly to a trough (↗↓). Another process that has
a similar pattern is the influenza data also shown in Figure 3.1. These data are taken
from Shumway and Stoffer (2011) and are monthly pneumonia and influenza deaths
per 1,000 people in the United States for 11 years. 3

Example 3.2 (EEG, S&P500, and explosions). The data shown in the top of Fig-
ure 3.2 are a single channel EEG signal taken from the epileptogenic zone of a sub-
ject with epilepsy, but during a seizure free interval of 23.6 seconds, and is series
(d) shown in Andrzejak et al. (2001, Figure 3). The bottom of Figure 3.2 shows the
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Figure 3.2 Top: A single channel EEG signal taken from the epileptogenic zone of a sub-
ject with epilepsy during a seizure free interval of 23.6 seconds; see Andrzejak et al. (2001).
Bottom: The innovations after removal of the signal using an autoregression based on AIC.
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Figure 3.3: Simulated infinite variance series generated as i.i.d. standard Cauchy errors.

innovations (residuals) after the signal has been removed based on fitting an AR(p)
using AIC to determine the order.

Due to the large spikes in the EEG trace, it is apparent that the data are not
normal. In fact, the innovations in Figure 3.2 look more like the simulated infinite
variance noise series shown in Figure 3.3, which were generated from i.i.d. standard
Cauchy errors.

Moreover, the left side of Figure 3.4 shows the sample ACF of the EEG inno-
vations. The fact that the values are small indicates that the innovations are white
noise. However, the right side of Figure 3.4 shows the sample ACF of the squared
EEG innovations, where we clearly see significant autocorrelation. Thus, while the
innovations appear to be white, the are clearly not independent, and hence not Gaus-
sian.

The behavior seen in the EEG trace is not particular to EEGs, and in fact is
quite common in financial data. For example, the top of Figure 3.5 shows the daily
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Figure 3.4 The sample ACF of the EEG innovations (left) and the squared innovations (right);
the EEG innovations series is shown in Figure 3.2.

returns1 of the S&P 500 from 2001 to the end of 2011. There, the data exhibit what is
called volatility clusters, that is, regions of highly volatile periods tend to be clustered
together. As with the EEG series, the data have very little autocorrelation, but the
squares of the returns have significant autocorrelation; this is demonstrated in the
bottom part of Figure 3.5.

Figure 3.6 shows the two phases or arrivals (the P-wave and then the S-wave)
along the surface of an explosion at a seismic recording station. The recording instru-
ments are observing earthquakes and mining explosions with the general problem of
interest being to distinguish between waveforms generated by earthquakes and those
generated by explosions. This distinction is key in enforcing a comprehensive nu-
clear test ban treaty. The general problem of interest, which is discussed in more
detail in Shumway and Stoffer (2011, Chapter 7), is in discriminating between wave-
forms generated by earthquakes and those generated by explosions. The data behave
in a similar fashion to the EEG trace and the S&P500 returns; see Exercise 3.2. 3

Example 3.3 (Great discoveries and polio). Another situation in which normality
is an unreasonable assumption is when the data are discrete-valued and small. Two
such process are the numbers of “great” inventions and scientific discoveries in each
year from 1860 to 1959, shown in Figure 3.7, and the number of poliomyelitis cases
reported to the U.S. Centers for Disease Control for the years 1970 to 1983, displayed
in Figure 3.8.

These two unrelated processes have striking similarities in that the marginal dis-
tributions appear to be Possion, or more specifically generalized Poisson or negative
binomial (which are a mixture of Poissons; this is often used to account for over- or
under-dispersion, where the mean and the standard deviation are not equal; e.g., see
Joe and Zhu (2005). Moreover, we see that the ACFs of each process seems to imply a
simple autocorrelation structure, which might be modeled as a simple non-Gaussian
AR(1) type of model.

1 If Xt is the price of an asset at time t, the return or growth rate of that asset, at time t, is Rt =
(Xt −Xt−1)/Xt−1. Alternately, we may write Xt = (1+Rt)Xt−1, or ∇ lnXt = ln(1+Rt). But ln(1+Rt) =
Rt −R2

t /2+R3
t /3− ·· · for −1 < Rt ≤ 1. If Rt is a small percentage, then the higher order terms are

negligible, and ln(1+Rt) ≈ Rt . It is easier to program ∇ lnXt , so this is often used instead of calculating
Rt directly. Although it is a misnomer, ∇ lnXt is often called the log-return.
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Figure 3.5 Top: Daily returns of the S&P 500 from 2001 to the end of 2011. Bottom: The
sample ACF of the returns and of the squared returns.
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Figure 3.6 Two phases or arrivals along the surface of an explosion at a seismic recording
station. Compressional waves, also known as primary or P-waves, travel fastest, at speeds
between 1.5 and 8 kilometers per second in the Earth’s crust. Shear waves, also known as
secondary or S-waves, travel more slowly, usually at 60% to 70% of the speed of P-waves.

These data sets make it clear that, in addition to the problems discussed in the
previous examples, there is a need to have non-Gaussian time series models that can
take into account processes that produce discrete-valued observations that may have
an autocorrelation structure similar to what is seen in ARMA models. The data set
discoveries is an R data set that was taken from McNeil (1977). The polio data
set is taken from Zeger (1988) and can be found in the R package gamlss.data. We
test if the marginal number of reported polio cases is Poisson or negative binomial
using goodfit from the R package vcd.
> summary(goodfit(as.integer(polio))) # Poisson

Goodness-of-fit test for poisson distribution

X^2 df P(> X^2)

Likelihood Ratio 78.04415 9 3.949539e-13
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Figure 3.7 The numbers of “great” inventions and scientific discoveries in each year from
1860 to 1959. Source: The World Almanac and Book of Facts, 1975 Edition.
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Figure 3.8 Poliomyelitis cases reported to the U.S. Centers for Disease Control for the years
1970 to 1983.

> summary(goodfit(as.integer(polio), "nbinomial")) # Neg Binomial

Goodness-of-fit test for nbinomial distribution

X^2 df P(> X^2)

Likelihood Ratio 12.8793 8 0.116070

Clearly the Poisson distribution does not fit, while the negative binomial appears to
be satisfactory. 3

The essential points of Examples 3.1, 3.2 and 3.3 are that (i) linear or Gaussian
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time series models are limited, and not all situations can be handled by such models
even after transformation; (ii) similar types of departures from the linear or Gaussian
process are observed in data from many diverse fields, and in varied and unrelated sit-
uations. Hence, the development of general nonlinear models has played a prominent
role in the field of time series for decades.

3.2 Volterra series expansion

A natural idea for going beyond the linear structure of (3.1) is to consider the follow-
ing Volterra series. An M-th order Volterra process is given by

Xt =
M

∑
i=1

∞

∑
m1=0

. . .
∞

∑
mi=0

ψ
(i)
m1,...,mi

i

∏
j=1

Zt−m j , (3.3)

where {Zt , t ∈Z} is an i.i.d. sequence. The coefficients {ψ(i)
m1,...,mi , (m1, . . . ,mi)∈Ni}

are the coefficients determining the i-th order Volterra kernel. For simplicity, it
is assumed that ∑ |ψ(i)

m1,...,mi | < ∞, but of course, this assumption may be weak-
ened. These types of expansions were first considered by Wiener (1958), where
the concern was with the case when both the input {Zt , t ∈ Z} and the output
{Xt , t ∈ Z} were observable. In the context of time series, only {Xt , t ∈ Z} is ob-
servable. The first term H1[Zs, s≤ t] = ∑

∞
m=0 ψ

(1)
m Zt−m is a linear model. The second

term H2[Zs, s≤ t] = ∑
∞
m1,m2=0 ψ

(2)
m1,m2Zt−m1Zt−m2 is a linear combination of quadratic

terms. The higher order terms may be called the cubic component, the quartic compo-
nent, and so on. This expansion might be seen as the M-th order principal part of the
multidimensional Taylor expansion of the generic nonlinear model Xt = g(Zs, s≤ t)
(assuming that the operator g is analytic). By the Stone-Weierstrass Theorem, any
continuous function g: (z1, . . . ,zm) 7→ g(z1, . . . ,zm) on a compact set of Rm can be ap-
proximated with an arbitrary precision in the topology of uniform convergence by a
polynomial p(z1, . . . ,zm). Hence, it is not difficult to guess that, under rather weak as-
sumptions, an arbitrary finite memory nonlinear system Xt = g(Zt ,Zt−1, . . . ,Zt−m+1)
can be approximated arbitrarily well by a Volterra series expansion. Infinite memory
processes Xt = g(Zs,s≤ t) can also be approximated arbitrarily well by a finite order
Volterra series provided that the infinite memory possesses some forgetting prop-
erty (roughly speaking, the influence of the infinite past should fade away in some
appropriate sense).

Even simple Volterra series expansions display properties that are markedly dif-
ferent from linear processes. For example, consider the process {Xt , t ∈ Z} defined
by,

Xt = Zt +βZt−1Zt−2 (3.4)

where {Zt , t ∈ Z} is a strong (i.i.d.) white noise sequence with zero mean and con-
stant variance. It follows immediately that {Xt , t ∈ Z} has zero mean, constant vari-
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ance, and autocovariance function given by,

E [XtXt+h] =

E
[
ZtZt+h +βZt−1Zt−2Zt+h +βZtZt+h−1Zt+h−2 +β

2Zt−1Zt−2Zt+h−1Zt+h−2
]
.

For all h 6= 0, each of the terms on the right-hand side is zero because Zt is a strong
white noise. Thus, as far as its second order properties are concerned, {Xt , t ∈ Z}
behaves just like a white noise process. However, given observations up to time t,
one can clearly construct a non-trivial prediction of Xt+h. Specifically, if we adopt
the mean square error criterion, the optimal forecast of a future observation, Xt+h, is
its conditional expectation, Xt+h|t = E

[
Xt+h

∣∣ FX
t
]
, where FX

t = σ(Xs,s≤ t). Com-
puting this conditional expectation is not entirely trivial as we shall see. Assume that
the system is invertible, i.e., that there exists a measurable non-anticipative function
such that Zt = g(Xs,s≤ t). In this case, for any t ∈ Z, Zt belongs to FX

t and therefore

E
[
Xt+1

∣∣ FX
t
]
= βg(Xs,s≤ t)×g(Xs,s≤ t−1) P-a.s.

Note that such inverse does not always exist; in this case, more delicate arguments
are used to compute forecasts.

There is a substantial literature on the theoretical properties of these models,
which plays an important role in nonlinear system theory. Estimating the coefficients
of the Volterra kernels individually is difficult for two reasons. First, the kernels of
the Volterra series are strongly dependent. A direct approach leads to the problem of
simultaneously solving a strongly coupled set of nonlinear equations for the kernel
coefficients. Second, the canonical representation (3.3) contains, in general, far too
many parameters to estimate efficiently from a finite set of observations. To allevi-
ate this problem, following the original suggestion by Wiener, the estimation of the
Volterra kernels is generally performed by developing the coefficients on appropri-
ately chosen orthogonal basis function, such as the Laguerre and Kautz functions or
generalized orthonormal basis functions (GOBFs); see Campello et al. (2004) and
the references therein. This technique requires us to assume that the coefficients in
the expansion may be expressed as known functions of some relatively small number
of other parameters.

3.3 Cumulants and higher-order spectra

We have seen that in the linear Gaussian world, it is sufficient to work with second-
order statistics. Now, reconsider Example 1.35 where X ,Y,Z are i.i.d. N(0,1) random
variables with Y = X2 +Z. This could be a model (appropriately parameterized) for
automobile fuel consumption Y versus speed X ; i.e., fuel consumption is lowest at
moderate speeds, but is highest at very low and very high speeds. In that example,
we saw that the BLP (Ŷ = 1) was considerably worse than the minimum mean square
predictor (Ŷ = X2). If, however, we consider linear prediction onM= sp{1,X ,X2},
then from Proposition 1.34, the prediction equations are

(i) E [Y −PMY ] = 0; (ii) E [Y −PMY ]X = 0; (iii) E [Y −PMY ]X2 = 0 (3.5)
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where PMY = a+bX +cX2. Solving these equations will yield a = b = 0, and c = 1
(see Exercise 3.3) so that PMY =X2, which was also the optimal predictor E

[
Y
∣∣ X
]
.

The problem with the BLP in Example 1.35 was that it only considered moments up
to order 2, e.g., E [Y X ] and E

[
X2
]
. But here, we have improved the predictor by

considering slightly higher-order moments such as E
[
Y X2

]
and E

[
X4
]
.

For a collection of random variables {X1, . . . ,Xk}, let ϕ(ξ1, . . . ,ξk) = ϕ(ξ ) be the
corresponding joint characteristic function,

ϕ(ξ ) = E

[
exp
{

i
k

∑
j=1

ξ jX j

}]
. (3.6)

For r = (r1, . . .rk), if the moments µr = E
[
X r1

1 · · ·X
rk
k

]
exist up to a certain order

|r| := ∑
k
j=1 r j ≤ n, then they are the coefficients in the expansion of ϕ(ξ ) around

zero,
ϕ(ξ ) = ∑

|r|≤n
(iξ )r

µr/r!+o(|ξ |n), (3.7)

where r! = ∏
k
j=1 r j! and ξ r = ξ

r1
1 . . .ξ

rk
k . Similarly, the joint cumulants κrrr ≡

cum[X r1
1 · · ·X

rk
k ] are the coefficients in the expansion of the cumulant generating func-

tion, defined as the logarithm of the characteristic function:

lnϕ(ξ ) = ∑
|r|≤n

(iξ )r
κr/r!+o(|ξ |n). (3.8)

A special case of (3.8) is X j = X for j = 1, . . . ,k, in which one obtains the r-th cumu-
lant of X . If X ∼ N(µ,σ2), then lnϕ(ξ )= iµξ− 1

2 σ2ξ 2, so that κ1 = µ , κ2 =σ2, and
κr = 0, for r > 2. In fact, the normal distribution is the only distribution for which this
is true (i.e., there are a finite number of non-zero cumulants, Marcinkiewicz, 1939).
Another interesting case is the Poisson(λ ) distribution wherein lnϕ(ξ ) = λ (eξ −1)
and consequently κr = λ for all r.

Some special properties of cumulants are:

• The cumulant is invariant with respect to the permutations: cum(X1, . . . ,Xk) =
cum(Xσ(1), . . . ,Xσ(k)) where σ is any permutation on {1, . . . ,k}.

• For every (a1, . . . ,ak) ∈ Rk, cum(a1X1, . . . ,akXk) = a1 · · ·ak cum(X1, . . . ,Xk).
• The cumulant is multilinear:

cum(X1 +Y1,X2, . . . ,Xk) = cum(X1,X2, . . . ,Xk)+ cum(Y1,X2, . . . ,Xk) .

• If {X1, . . . ,Xk} can be partitioned into two disjoint sets that are independent of
each other, then cum(X1, . . . ,Xk) = 0.

• If {X1, . . . ,Xk} and {Y1, . . . ,Yk} are independent, then cum(X1 +Y1, . . .Xk +Yk) =
cum(X1, . . . ,Xk)+ cum(Y1, . . . ,Yk).

• cum(X) = E [X ] and cum(X ,Y ) = Cov(X ,Y ).
• cum(X ,Y,Z) = E [XY Z] if the means of the random variables are zero.
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Further information on the properties of cumulants may be found in Brillinger
(2001), Leonov and Shiryaev (1959), and Rosenblatt (1983).

Using Theorem 1.23 for a zero-mean stationary time series {Xt , t ∈Z}, and defin-
ing κx(r) = cum(Xt+r,Xt) = γx(r) we may write

κx(r) = E [Xt+rXt ] =

π∫∫
−π

ei(t+r)ω ei tλ E [dZ(ω)dZ(λ )]

=

π∫∫
−π

ei t(ω+λ ) eirω E [dZ(ω)dZ(λ )] .

(3.9)

Because the left-hand side of (3.9) does not depend on t, the right-hand side cannot
depend on t. Thus, it must be the case that E [dZ(ω)dZ(λ )] = 0 unless λ =−ω , and
consequently, as pointed out in Theorem 1.23, E [dZ(−ω)dZ(ω)] = E

[
|dZ(ω)|2

]
=

dF(ω). If κx(r) = γx(r) is absolutely summable, then by Proposition 1.19, dF(ω) =
f (ω)dω , where f (ω) is the spectral density of the process.

This concept may be applied to higher order moments. For example, suppose the
cumulant κx(r1,r2) = cum(Xt+r1 ,Xt+r2 ,Xt) = E [Xt+r1 Xt+r2 Xt ] exists and does not
depend on t. Then,

κx(r1,r2) =

π∫∫∫
−π

ei(t+r1)ω1 ei(t+r2)ω2 ei tλ E [dZ(ω1)dZ(ω2)dZ(λ )]

=

π∫∫∫
−π

ei t(ω1+ω2+λ ) eir1ω1 eir2ω2 E [dZ(ω1)dZ(ω2)dZ(λ )] .

(3.10)

Because κx(r1,r2) does not depend on t, it must be that E [dZ(ω1)dZ(ω2)dZ(λ )] = 0
unless ω1 +ω2 +λ = 0. Consequently, we may write

κx(r1,r2) =

π∫∫
−π

eir1ω1 eir2ω2E [dZ(ω1)dZ(ω2)dZ(−[ω1 +ω2])] . (3.11)

Hence, the bispectral distribution may be defined as

dF(ω1,ω2) = E [dZ(ω1)dZ(ω2)dZ(−[ω1 +ω2])] . (3.12)

Following Proposition 1.19, under absolute summability conditions, we may define
the bispectral density or bispectrum as f (ω1,ω2) where

κx(r1,r2) =

π∫∫
−π

eir1ω1 eir2ω2 f (ω1,ω2)dω1dω2 (3.13)

and
f (ω1,ω2) = (2π)−2

∑∑
−∞<r1,r2<∞

κx(r1,r2)e−ir1ω1 e−ir2ω2 . (3.14)
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If {Xt} is Gaussian, then κx(r1,r2) = 0 for all (r1,r2) ∈ Z2, and thus the bis-
pectrum f (ω1,ω2) ≡ 0 for (ω1,ω2) ∈ [−π,π]2. Consequently, tests of linearity and
Gaussianity may rely on the bispectrum; see Exercise 3.4.

Finally, higher order cumulant spectra may be defined analogously to the bis-
pectrum. That is, let κx(r) = κx(r1, . . . ,rk) = cum(Xt+r1 , . . . ,Xt+rk ,Xt) and assume
that

∑ . . .∑
−∞<r<∞

|κx(r)|< ∞.

Then, the k+1-st order cumulant spectrum is defined by

fx(ω1, . . . ,ωk) = ∑ . . .∑
−∞<r<∞

κx(r) exp
{
−i

k

∑
j=1

r jω j

}
. (3.15)

We note that higher-order spectra are generally complex-valued. The inverse rela-
tionship is,

κx(r1, . . . ,rk) =

π∫
· · ·
∫

−π

fx(ω1, . . . ,ωk) exp
{

i
k

∑
j=1

r jω j

}
dω1 . . . dωk. (3.16)

For further details, the reader is referred to Brillinger (1965, 2001) and Rosenblatt
(1983).

3.4 Bilinear models

In Example 3.2, we saw that time series data may exhibit simple or no autocorrela-
tion structure, but still be highly dependent; this dependence was seen in the squares
of the observations. For example, the EEG innovations shown in Figure 3.2 and the
autocorrelation structure shown in Figure 3.4 suggest that the innovations are white
(i.e., uncorrelated noise), but the squared innovations indicate that there is still a de-
pendence structure. This is a common occurrence, especially in financial time series.
For example, in Figure 3.5, the daily returns of the S&P 500 exhibit obvious de-
pendence, whereas the sample ACF indicates only a small correlation structure. The
squares of the process, however, indicate a strong correlation structure is present.
Exercise 3.2 explores the fact that the innovations of the explosion series shown in
Figure 3.6 also have this property.

One early exploration of models for this type of behavior was the bilinear model
developed for the statistical analysis of time series by Granger and Andersen (1978)
and explored further by Subba Rao (1981) and others. The basic idea is that of us-
ing higher order terms of a Volterra expansion of the noise. For example, think of
an ARMA model, Xt = ∑

∞
j=0 ψ jZt−i, as a first order (linear) approximation of the

Volterra expansion (3.3). In the nonlinear case, it seems reasonable to, at least, use a
second order approximation, and that is the idea behind the bilinear model,

Xt =
p

∑
j=1

φ j Xt− j +
q

∑
j=1

θ j Zt− j +
P

∑
i=1

Q

∑
j=1

bi j Xt−i Zt− j +Zt , (3.17)
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which is denoted as BL(p,q,P,Q). In this case, the process {Xt , t ∈ Z} is said to be
causal (or nonanticipative) if for all t ∈ Z, Xt is measurable with respect to FZ

t =
σ(Zs,s≤ t), i.e., Xt can be expressed as a measurable (but nonlinear) function of Zs,
for s≤ t.

While the model appears to be a simple extension of the ARMA model to in-
clude nonlinearity, the existence, stationarity and invertibility of bilinear processes is
a delicate topic. In fact, the model is too complicated to be examined in full gener-
ality. Consequently, investigations such as Granger and Andersen (1978), Pham and
Tran (1981), Subba Rao (1981) and Subba Rao and Gabr (1984) focus on restricted
models. Although the model has the desired property of exhibiting ARMA-type cor-
relation structure for Xt with dependent innovations, the problem of examining the
model in its generality seems to be the reason the model lost favor as a procedure
to analyze nonlinear time series. Priestley (1988) has a nice discussion of the model
and its history.

As a simple illustration of the properties of the model, consider the following
bilinear model, BL(0,0,2,1),

Xt = bZt−1 Xt−2 +Zt , (3.18)

where Zt∼ iid(0,σ2
z ) with Zt independent of Xs for s < t. If we assume that E

[
Z4

t
]
<

∞ and b2σ2
z < 1, we can show that Xt is stationary using the techniques of Chapter 4;

see Exercise 4.11. LetFt = σ(Xt ,Xt−1, . . .), then direct calculation (see Exercise 3.6)
establishes that E [Xt ] = 0 and

E
[
Xt Xt−h

∣∣ Ft−2
]
=


σ2

z +b2 σ2
z X2

t−2, h = 0,
bσ2

z Xt−2, h = 1,
0, h≥ 2,

(3.19)

with probability one. From these facts we can establish that Xt is white noise, but X2
t

is predictable from its history. Such a model could be used to describe the innovations
of the EEG data set shown in Figure 3.2. Recall Figure 3.4 where the innovations are
white, but the squares of the innovations are correlated.

3.5 Conditionally heteroscedastic models

An autoregressive conditional heteroscedastic model of order p, ARCH(p), is defined
as

Xt = σt εt , (3.20)

σ
2
t = α0 +α1X2

t−1 + · · ·+αpX2
t−p , (3.21)

where the coefficients α j ≥ 0, j ∈ {0, . . . , p} are non-negative and εt∼ iid(0,1) is the
driving noise. If the driving noise is assumed to be Gaussian, the model implies that
the conditional distribution of Xt given Xt−1, . . . ,Xt−p is Gaussian,

Xt
∣∣ Xt−1, . . . ,Xt−p ∼ N(0,α0 +α1X2

t−1 + · · ·+αpX2
t−p). (3.22)
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Often, the driving noise is not normal and other distributions, such as the t-
distribution, are used to model the noise.

To explore the properties of the model, first define FX
t = σ(Xs, s≤ t). In general,

we are mainly interested in causal (or nonanticipative) solutions in which Xt is mea-
surable with respect to F ε

t = σ(εs, s ≤ t). This implies that FX
t ⊆ F ε

t for all t ∈ Z.
Assume that the parameters {αi; i = 0, . . . , p} are chosen in such a way that there
exists a nonanticipative second-order stationary solution to (3.20)-(3.21). It then fol-
lows from (3.20) that

E
[
Xt
∣∣ FX

t−1
]
= E

[
σtεt

∣∣ FX
t−1
] (1)
= σtE

[
εt
∣∣ FX

t−1
]

(2)
= σtE

[
E
[
εt
∣∣ F ε

t−1
] ∣∣ FX

t−1
] (3)
= 0 P-a.s., (3.23)

where we have used that for all t ∈Z: (1) σt isFX
t−1-measurable (the process {σ2

t , t ∈
Z} is previsible); (2) that FX

t−1 ⊂ F ε
t−1 (the process {Xt , t ∈ Z} is nonanticipative);

(3) E
[
εt
∣∣ F ε

t−1

]
=E(εt) = 0. Note that, as a consequence of (3.23), we have E [Xt ] =

E
[
E
[
Xt
∣∣ FX

t−1
]]

= 0.
Because E

[
Xt
∣∣ FX

t−1
]
= 0 P-a.s., for all t ∈ Z, the process {Xt , t ∈ Z} is said

to be a martingale difference or increment process (see Appendix B). Assume that
E
[
X2

t
]
< ∞. The fact that {Xt , t ∈ Z} is a martingale difference implies that it is also

an uncorrelated sequence. To see this, let h > 0, then

Cov(Xt+h,Xt) = E [Xt Xt+h] = E
[
E
[
Xt Xt+h

∣∣ FX
t+h−1

]]
= E

[
Xt E

[
Xt+h

∣∣ FX
t+h−1

]]
= 0. (3.24)

The last line of (3.24) follows because Xt is FX
t+h−1-measurable for h > 0, and

E
[
Xt+h

∣∣ Ft+h−1
]
= 0 P-a.s., as determined in (3.23).

While (3.24) implies that the ARCH process is white noise, it is still a dependent
sequence. In fact, it is possible to write the ARCH(p) model as a non-Gaussian AR(p)
model in the squares, X2

t . First, square (3.20), X2
t = σ2

t ε2
t , and then subtract (3.21),

to obtain
X2

t − (α0 +α1X2
t−1 + · · ·+αpX2

t−p) = Zt , (3.25)

where Zt = σ2
t (ε

2
t − 1). If the driving noise is Gaussian, then ε2

t is the square of
a standard normal random variable, and ε2

t − 1 is a shifted (to have mean-zero) χ2
1

random variable. The fact that {Zt , t ∈ Z} is white noise follows from the fact that
it is a martingale difference, E

[
Zt
∣∣ FX

t−1
]
= σ2

t E
[
ε2

t −1
]
= 0, P-a.s., noting that

σ2
t ∈ FX

t−1.
ARCH models were introduced by Engle (1982) to model the varying (condi-

tional) variance or volatility of time series. It is often found in economics and fi-
nance that the larger values of time series (shocks) also cause instability at later times
(i.e., larger variances); this phenomenom is referred to as conditional heteroscedas-
ticity. For example, as illustrated in Figure 3.5 the returns of the S&P 500 exhibit
largest variance after shocks. Allowing the conditional variance of Xt to depend on
X2

t−1, . . . ,X
2
t−p is a first step in this direction.
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The limitation of the ARCH model is that the squared process admits an AR
correlation structure, which is not always the case. Bollerslev (1986) generalized the
ARCH model by allowing the conditional variance E

[
X2

t
∣∣ FX

t−1
]

to depend not only
on the lagged squared returns (X2

t−1, . . . ,X
2
t−p) but also on the lagged conditional vari-

ances, leading to the generalized autoregressive conditional heteroscedastic model,
GARCH(p,q), where (3.20) still holds, but now

σ
2
t = α0 +α1X2

t−1 + · · ·+αpX2
t−p +β1σ

2
t−1 + · · ·+βqσ

2
t−q , (3.26)

where the coefficients α j, j ∈ {0, . . . , p} and β j, j ∈ {1, . . . ,q} are nonnegative (al-
though this assumption can be relaxed). The extension of the ARCH process to the
GARCH process bears much similarity to the extension of standard AR models to
ARMA models described in Section 1.3.2. To see this, consider a GARCH(1,1)
model (for ease of notation). As with the ARCH model, square (3.20), X2

t = σ2
t ε2

t ,
and then subtract σ2

t to obtain

X2
t −σ

2
t = σ

2
t (ε

2
t −1) := Zt . (3.27)

Consequently,
β1(X2

t−1−σ
2
t−1) = β1Zt−1 , (3.28)

and thus subtracting (3.28) from (3.27), we obtain

(X2
t −σ

2
t )−β1(X2

t−1−σ
2
t−1) = Zt −β1Zt−1 ,

or
X2

t −β1X2
t−1− (σ2

t −β1σ
2
t−1) = Zt −β1Zt−1.

But σ2
t −β1σ2

t−1 = α0 +α1X2
t−1, so finally

X2
t − (α1 +β1)X2

t−1 = Zt −β1Zt−1 , (3.29)

implying {X2
t , t ∈ Z} is a non-Gaussian ARMA(1,1). We note that this technique

generalizes to any GARCH(p,q) by writing it as a GARCH(m,m) model where m =
max(p,q) and setting any additional coefficients to zero, i.e., αp+1 = · · ·= αq = 0 if
p < q or βq+1 = · · ·= βp = 0 if p > q; see Exercise 3.7.

Summarizing, in general, if {Xt , t ∈ Z} is GARCH(p,q), then it is a martingale
difference, E

[
Xt
∣∣ FX

t−1
]
= 0 P-a.s., and consequently is white noise. In addition,

{X2
t , t ∈ Z} is a non-Gaussian ARMA(p,q) process. This type of result was the goal

of the bilinear model presented in Section 3.4, but as opposed to the bilinear model,
the correlation structure of the GARCH model easily generalizes.

Another reason for the popularity of GARCH(p,q) models is that parameter esti-
mation is straight-forward by conditioning on initial values. That is, the conditional
likelihood of the data Xp+1, . . . ,Xn given X1, . . . ,Xp, and σ2

p = · · · = σ2
p+1−q = 0 (if

q > 0) is

L(θ ; X1, . . . ,Xp, σ
2
p = · · ·= σ

2
p+1−q = 0) =

n

∏
t=p+1

pθ (Xt
∣∣ Xt−1, . . . ,X1), (3.30)
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where
θ = {α0,α1, . . . ,αp,β1, . . . ,βq}.

If εt∼ iid N(0,1), then the conditional densities pθ (·|·) in (3.30) are Gaussian, i.e.,

Xt
∣∣ Xt−1, . . . ,X1 ∼ N(0,α0 +α1X2

t−1 + · · ·+αpX2
t−p +β1σ

2
t−1 + · · ·+βqσ

2
t−q),

for t = p+1, . . . ,n, with σ2
p = · · ·= σ2

p+1−q = 0. The sample size is typically large in
financial applications so that conditioning on a few initial values is not problematic.
Because the conditional likelihood is easily evaluated for a specified θ , a numerical
routine such as Newton–Raphson (Section 1.3.4) is typically employed. In addition,
the gradient of the likelihood is easily evaluated; see Exercise 3.8.

Some drawbacks of the GARCH model are that the likelihood tends to be flat
unless n is very large, and the model tends to overpredict volatility because it re-
sponds slowly to large isolated returns. Returns are rarely conditionally normal or
symmetric, so various extensions to the basic model have been developed to han-
dle the various situations noticed empirically. Interested readers might find the gen-
eral discussions in Bollerslev et al. (1994) and Shephard (1996) worthwhile reading.
Also, Gouriéroux (1997) gives a detailed presentation of ARCH and related models
with financial applications and contains an extensive bibliography. Excellent texts
on financial time series analysis are Chan (2002), Teräsvirta et al. (2011), and Tsay
(2005).

Finally, we briefly mention stochastic volatility models; a detailed treatment of
these models is given in Chapter 9. The volatility component, σ2

t , in the GARCH
model is conditionally nonstochastic. For example, in the ARCH(1) model, any time
the previous return is zero, i.e., Xt−1 = 0, it must be the case that σ2

t = α0, and so
on. This assumption seems a bit unrealistic in that one would expect some variability
in this outcome. The stochastic volatility model adds a stochastic component to the
volatility in the following way. The GARCH model assumes Xt = σt εt , or equiva-
lently,

lnX2
t = lnσ

2
t + lnε

2
t . (3.31)

Thus, the observations, lnX2
t , are generated by two components, the unobserved

volatility lnσ2
t and the unobserved non-Gaussian noise lnε2

t . While, for example, the
GARCH(1,1) models volatility without error, σ2

t+1 = α0 +α1X2
t +β1σ2

t , the basic
stochastic volatility model assumes the latent variable is an autoregressive process,

lnσ
2
t+1 = φ0 +φ1 lnσ

2
t +Zt (3.32)

where Zt∼ iid N(0,σ2
z ). The introduction of the noise term Zt makes the latent volatil-

ity process stochastic.
Together (3.31) and (3.32) comprise the stochastic volatility model. In fact, the

model is a non-Gaussian state space model. Let ht = lnσ2
t , Yt = lnX2

t , and Vt = lnε2
t ,

then the basic stochastic volatility model may be written as

ht+1 = φ0 +φ1ht +Zt (state)
Yt = ht +Vt (observation)
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where Zt is a Gaussian process, but Vt is not a Gaussian process. Given n observa-
tions, the goals are to estimate the parameters φ0, φ1 and σ2

z , and then predict future
volatility. Further details and extensions are discussed in Chapter 9.

3.6 Threshold ARMA models

Self-exciting threshold ARMA (SETARMA or TARMA) models, introduced by
Tong (1978, 1983, 1990), have been widely employed as a model for nonlinear time
series. Threshold models are piecewise linear ARMA models for which the linear
relationship varies according to delayed values of the process (hence the term self-
exciting). In this class of models, it is hypothesized that different autoregressive pro-
cesses may operate and that the change between the various ARMA is governed by
threshold values and a time lag. A k-regimes TARMA model has the form

Xt =


φ
(1)
0 +∑

p1
i=1 φ

(1)
i Xt−i +Z(1)

t +∑
q1
j=1 θ

(1)
j Z(1)

t− j if Xt−d ≤ r1 ,

φ
(2)
0 +∑

p2
i=1 φ

(2)
i Xt−i +Z(2)

t +∑
q2
j=1 θ

(2)
j Z(2)

t− j if r1 < Xt−d ≤ r2 ,
...

...

φ
(k)
0 +∑

pk
i=1 φ

(k)
i Xt−i +Z(k)

t +∑
qk
j=1 θ

(k)
j Z(k)

t− j if rk−1 < Xt−d ,

(3.33)

where Z( j)
t ∼ iid N(0,σ2

j ), for j = 1, . . . ,k, the positive integer d is a specified de-
lay, and −∞ < r1 < · · · < rk−1 < ∞ is a partition of X = R. These models allow for
changes in the ARMA coefficients over time, and those changes are determined by
comparing previous values (back-shifted by a time lag equal to d) to fixed thresh-
old values. Each different ARMA model is referred to as a regime. In the definition
above, the values (p j,q j) of the order of ARMA models can differ in each regime,
although in many applications, they are equal. Stationarity and invertibility are ob-
vious concerns when fitting time series models. For the threshold time series mod-
els, such as TAR, TMA and TARMA models, however, the stationary and invertible
conditions in the literature are less well-known in general. If known, often they are
restricted to TAR or TMA processes with order one, and/or only sufficient conditions
for higher orders; see e.g., Petruccelli and Woolford (1984), Brockwell et al. (1992),
Ling (1999), and Ling et al. (2007).

The model can be generalized to include the possibility that the regimes depend
on a collection of the past values of the process, or that the regimes depend on an
exogenous variable (in which case the model is not self-exciting). For example, in
the case such as that of the lynx, its prey varies from small rodents to deer, with
the Snowshoe Hare being its overwhelmingly favored prey. In fact, in certain areas
the lynx is so closely tied to the Snowshoe that its population rises and falls with
that of the hare, even though other food sources may be abundant. In this case, it
seems reasonable to replace Xt−d in (3.33) with say Yt−d , where Yt is the size of the
Snowshoe Hare population.

The popularity of TAR models is due to their being relatively simple to specify,
estimate, and interpret as compared to many other nonlinear time series models. In
addition, despite its apparent simplicity, the class of TAR models could reproduce
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many nonlinear phenomena such as stable and unstable limit cycles, jump resonance,
harmonic distortion, modulation effects, chaos and so on.

As a simple example, Tong (1990, p. 377) fit the following TAR model with two
regimes with delay variable d = 2 to the logarithm (base 10) of the lynx data,

Xt =

{
0.62+1.25Xt−1−0.43Xt−2 +Z(1)

t , Xt−2 ≤ 3.25 ,

2.25+1.52Xt−1−1.24Xt−2 +Z(2)
t , Xt−2 > 3.25 ,

(3.34)

although more complicated models were also fit to these data. Tong and Lim (1980)
fit a two-regime TAR(11) to the sunspot data, the square root of which is shown in
Figure 1.1. Also, Shumway and Stoffer (2011, Section 5.5) fit a threshold model to
the differenced influenza and pneumonia mortality data set shown at the bottom of
Figure 3.1.

3.7 Functional autoregressive models

In its basic form, a functional AR(p) model is written as

Xt = f (Xt−1, . . . ,Xt−p)+Zt (3.35)

where {Zt , t ∈ N} is a strong white noise and is independent of Xs for s < t. The
function f (·) is understood to be the conditional expectation, f (Xt−1, . . . ,Xt−p) =
E
[
Xt
∣∣ Xt−1, . . . ,Xt−p

]
, and can be left unspecified but with various smoothness con-

ditions on f (·) and often under weak-dependence conditions on the process {Xt}.
Sometimes the noise process is written as

Zt = h(Xt−1, . . . ,Xt−p)εt , (3.36)

where εt∼ iid(0,1). The function h(·) represents the possibility of conditionally het-
eroscedastic variance, with h(·)≡ σz representing the homoscedastic case.

The basic goal is to estimate f (·), often via nonparametric methods, and then use
the estimated relationship for prediction. We note, however, that many parametric
models fit into this general model. For example, the TAR model in Section 3.6 would
be considered a parametric form of the model with f (·) being an AR(q j) with param-
eters depending on Xt−d as specified in (3.33), and with σ(·) = σ j also depending on
the observed value of Xt−d , with d specified as in (3.33). The model with (3.36) added
clearly includes various forms of the ARCH model. As another example, we mention
the amplitude-dependent exponential autoregressive (EXPAR) model introduced in
Haggan and Ozaki (1981), which assumes that

f (x1, . . . ,xp) = (φ1 +π1e−γx2
1)x1 + · · ·+(φp +πpe−γx2

1)xp . (3.37)

In this case, the autoregressive part retains an additive form, but the coefficients en-
tering the regression are made to change instantaneously with x2

1.
In more recent works, estimation of f or h is performed using some of the same

tools used in non- or semi-parametric estimation of regression functions. Note, how-
ever, that some care should be exercised in controlling the functions f and h in such
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a way that there exists a (strict-sense or second-order) stationary solution for (3.35)–
(3.36). This of course involves some rather non-trivial conditions on the behavior of
f and h; we will have to wait until Chapter 4 to develop the tools required to show
the existence of such solutions. Various versions of the non- or semi-parametric ap-
proach have been explored. For example, Hastie and Tibshirani (1990) examined the
additive model,

Xt = f1(Xt−1)+ · · ·+ fp(Xt−p)+Zt (3.38)

and Chen and Tsay (1993) explored the functional coefficient AR model, which, in
its simplest form, is written as

Xt = f1(Xt−d)Xt−1 + · · ·+ fp(Xt−d)Xt−p +Zt (3.39)

where d > 0 is some specified delay. Another interesting model is the partially linear
model, where for example, we might have

f (Xt−1, . . . ,Xt−p) = µ(t)+
p

∑
j=1

φ jXt− j (3.40)

where µ(t) is a local trend function of time t that we do not wish to model paramet-
rically. For example, the rates of pneumonia and influenza mortality series shown at
the bottom of Figure 3.1 exhibits some negative, but not necessarily linear trend over
the decade (e.g., it appears that the decline in the average annual mortality is more
pronounced over the first part of the series than at the end of the series). In this case,
we may wish to fit f (·) via semiparametric methods.

Semiparametric and nonparametric estimation for time series models in various
forms runs the gamut of the methods used for independent data. These mainly involve
some type of local smoothing such as running means or medians, kernel smoothing,
local polynomial regression, smoothing splines, and backfitting algorithms such as
the ACE algorithm. There are a number of excellent modern expositions on this topic
and we refer the reader to texts by Fan and Yao (2003) and by Gao (2007). In addition,
the comprehensive review by Härdle et al. (1997) provides an accessible overview of
the field.

3.8 Linear processes with infinite variance

In Example 3.2, we argued that the EEG data shown at the top of Figure 3.2 may be
best described as having infinite variance, and we compared the innovations after an
AR(p) fit to the data to Cauchy noise, a realization of which is shown in Figure 3.3.
Such models have been used in a variety of situations, for example Fama (1965) used
them to examine stock market prices.

An important property of Gaussian random variables is that the sum of two of
them is itself a normal random variable. One consequence of this is that if Z is nor-
mal, then for Z1 and Z2 independent copies of Z and any positive constants a and b,
aZ1 + bZ2 =d cZ + d, for some positive c and some d ∈ R. (The symbol =d means
equality in distribution). In other words, the shape of Z is preserved (up to scale and
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shift) under addition. One typically defines an infinite variance linear process via
symmetric (about zero) stable innovations.
Definition 3.4 (Stable law). A random variable Z is said to be stable, or have a
stable distribution, if Z1 and Z2 are two independent copies of Z, and for any positive
constants a and b, the linear combination aZ1 + bZ2 has the same distribution as
cZ+d, for some positive c and d ∈R. A random variable is said to be strictly stable
if d = 0 for all positive a and b. A random variable is symmetric stable if X and −X
have the same stable distribution.

Equivalently, the random variable Z is stable if for every n ∈ N∗, there exists
constants an > 0 and bn such that the sum of i.i.d. copies, Z1 + · · ·+Zn, has the same
distribution as anZ +bn. We say that Z is strictly stable if bn = 0.

Remark 3.5. It is possible to show that the only possible choice for the scaling
constant an is an = n1/α for some α ∈ (0,2].

Remark 3.6. The addition rule for independent random variables says that the mean
of the sum is the sum of the means and the variance of the sum is the sum of the
variances. Suppose Z ∼ N(µ, σ2). Let Z1 and Z2 be two independent copies of Z.
Then, aZ1 ∼ N(aµ, (aσ)2), bZ2 ∼ N(bµ, (bσ)2), and cZ +d ∼ N(cµ +d, (cσ)2).
The addition rule implies that c2 = a2 +b2 and d = (a+b− c)µ .

The most effective way to define the set of stable distributions is through their
characteristic functions; see Billingsley (1995, Chapters 5, 26).
Theorem 3.7. A random variable X is stable if and only if X =d aZ + b, where
a > 0, b ∈ R and Z is a random variable with characteristic function

ϕ(ξ ) = E exp(iξ Z) =

{
exp (−|ξ |α [1− iβ tan πα

2 (sign ξ )]) α 6= 1
exp (−|ξ |[1+ iβ 2

π
(sign ξ ) ln |ξ |]) α = 1

,

where 0 < α ≤ 2, −1≤ β ≤ 1, and sign is the sign function given by sign(ξ ) =−1
if ξ < 0, sign(ξ ) = 0 if ξ = 0 and sign(ξ ) = 1 if ξ > 0.

When β = 0 and b = 0, these distributions are symmetric around zero, in which
case the characteristic function of aZ has the simpler form

ϕ(ξ ) = e−aα |ξ |α

Remark 3.8. The Gaussian distribution is stable with parameters α = 2, β = 0. The
Cauchy distribution is stable with parameters α = 1, β = 0. A random variable Z is
said to be Lévy(γ, δ ) if it has density

f (x) =
√

γ

2π

1
(x−δ )3/2 exp

(
− γ

2(x−δ )

)
, δ < x < ∞.

The Lévy distribution is stable with parameters α = 1/2, β = 1.

Remark 3.9. Both the Gaussian and Cauchy distributions are symmetric and bell-
shaped, but the Cauchy distribution has much heavier tails. If Z is standard normal,
P(Z ≥ 3) is 1.310−3, whereas if Z is standard Cauchy (equivalently, a t-distribution
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with 1 degree of freedom), P(Z ≥ 3) = 10−1. In a sample from these two distribu-
tions, there will be (on average) more than 100 times as many values above 3 in the
Cauchy case than in the normal case. This is the reason stable distributions are called
heavy tailed. In contrast to the normal and Cauchy distributions, the Lévy distribution
is highly skewed. The distribution is concentrated on x > 0, and it has even heavier
tails than the Cauchy.

Remark 3.10. For non-normal stable random variables Z (i.e., α < 2), it can be
shown that E

[
|Z|δ

]
< ∞ only for 0 < δ < α . Consequently, Var Z = ∞ for 0 < α < 2

and E [|Z|] = ∞ for 0 < α ≤ 1.

It is possible to define an ARMA-type model with stable innovations. That is, we
may define a process {Xt , t ∈ Z} such that P-a.s.,

Xt =
∞

∑
j=−∞

ψ jZt− j,

where {Zt , t ∈ Z} is a sequence of i.i.d. stable random variables, and ∑ j |ψ j|δ < ∞

for some δ ∈ (0,α)∩ [0,1]. Moreover, it is possible to write the process as

φ(B)Xt = θ(B)Zt ,

where {Xt , t ∈ Z} is strictly stationary (but, of course, not covariance stationary
unless α = 2) and φ(B) and θ(B) are as in Section 1.3.2. These models are described
in a fair amount of detail in Brockwell and Davis (1991, §12.5), who also discuss
fitting these models to data.

3.9 Models for counts

In Example 3.3, we presented two time series that are discrete-valued and take on
small values. These series should be contrasted with the series discussed in Sec-
tion 1.5 and Example 3.1, which are also counts (the number of sunspots in Fig-
ure 1.1; the number of lynx trappings and the number of flu deaths in Figure 3.1), but
are quite different in that one could use, for example, a TAR model with Gaussian
noise as a reasonable approximation in the latter cases, but any use of normality is
out of the question for the great discoveries series displayed in Figure 3.7 and for the
cases of polio time series displayed in Figure 3.8.

There are two basic approaches to the problem. One approach is to develop mod-
els that produce integer-valued outcomes, and the other is to develop generalized
linear models for dependent data. We briefly describe each approach in the follow-
ing sections. Our presentation is very brief, the texts by MacDonald and Zucchini
(1997) and by Kedem and Fokianos (2002) present rather extensive discussions of
these models. In addition, the second part of Durbin and Koopman (2012) details the
generalized linear model approach to the problem.

3.9.1 Integer valued models

In the late 1970s and through the 1980s, there were a number of researchers who
worked on models with specific non-Gaussian marginals. The driving force behind
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these models is that discrete-valued time series can have ARMA-type autocorrelation
structures along with marginal distributions that follow standard distributions such
as Poisson, negative binomial, and so on. For a linear model to have marginals that
match the innovations, the distributions must be stable; see Section 3.8. However, a
number of researchers focused on random mixing or random summation as a method
to obtain models that admit desired marginals and correlation structures.

For example, Jacobs and Lewis (1978a,b, 1983) developed DARMA, or discrete
ARMA, models via mixing. For example, a DAR(1) model is of the form

Xt =Vt Xt−1 +(1−Vt)Zt (3.41)

where Vt is i.i.d. Bernoulli with Pr{Vt = 1} = 1−Pr{Vt = 0} = ρ , and {Zt} is i.i.d.
according to some specified discrete-valued distribution. Clearly, the support of Xt is
the support of the noise Zt . It is easy to show that (3.41) has the ACF structure of
an AR(1), i.e., ρ(h) = ρh for h ∈ N; see Exercise 3.9. The authors also developed a
‘new’ DARMA, or NDARMA model with similar properties. These types of models
are discussed further in Example 4.22 of Chapter 4.

Langberg and Stoffer (1987), and Block et al. (1988, 1990) developed (bivariate)
exponential and geometric time series with ARMA correlation structure. We briefly
discuss the univariate aspects of the geometric model; the bivariate model was called
the BGARMA model. The authors developed the model using both random mixing
and random summation, and then showed that the two methods are equivalent. The
basic idea is as follows. If X ∼ G(p) and Z ∼ G(p/π) are independent geometric
random variables [e.g., Pr(X = k) = p(1− p)k−1 for k∈N∗], independent of I, which
is Bernoulli(1− π), then X ′ = IX +Z, has the same distribution as X . For random
summation, suppose N ∼ G(π) independent of Z j∼ iid G(p/π), then X ′ = ∑

N
j=1 Z j

has the representation X ′ = IX + Z. This basic idea can be extended and used to
formulate various non-Gaussian multivariate processes, and we refer the reader to
Block et al. (1988) for a thorough presentation. As a simple example, let X0 ∼ G(p)
and define, for t ∈ N,

Xt = ItXt−1 +Zt (3.42)

where It∼ iid Bernoulli(1 − π), and Zt∼ iid G(p/π) is the noise process. Then,
{Xt , t ∈ N} is a process with the autocorrelation structure of an AR(1), and where
Xt ∼ G(p); see Exercise 3.9.

Finally we mention some models that are based on the notion of thinning that
was discussed in Steutel and Van Harn (1979) as an integer-valued analog to stability
for continuous-valued random variables. The idea is closely related to the random
summation concept in Block et al. (1988), but in this case, the decomposition is
given by X ′ = α ◦X +Xα where X and Xα are independent, and α ◦X = ∑

X
j=1 N j

where N j∼ iid Bernoulli(α). Under this decomposition, X ′ and X have the same dis-
tribution, and such processes are called discrete stable; Steutel and Van Harn (1979)
show, for example, that the Poisson distribution is discrete stable. McKenzie (1986),
Al-Osh and Alzaid (1987) and others used the idea of thinning to obtain the INAR,
or integer-valued AR, model. For example, an INAR(1) has the form

Xt = α ◦Xt−1 +Zt (3.43)
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for α ∈ [0,1), where Zt is an i.i.d. sequence of integer-valued random variables such
as Poisson(λ ) wherein the marginal of Xt is also Poisson with rate λ/1−α . More-
over, the ACF of Xt is like an AR(1) and is given by ρ(h) = αh for h ∈ N; see
Exercise 3.9.

3.9.2 Generalized linear models

The basic idea here is to extend the theory of generalized linear models to dependent
data. This approach is apparently more successful for data analysis than the integer-
valued models discussed in the previous subsection because there seem to be fewer
pathologies in this setup. This topic is best discussed in more generality than is done
in this section, and should be presented after the material in Part III on nonlinear
state space models. Our brief discussion here can be supplemented with the texts
mentioned in the introduction to this section.

We restrict attention to the univariate case. Let Ut be a vector of deterministic
exogenous inputs or covariates, let Ft = σ(Xt ,Xt−1, . . . ; Ut), and denote the condi-
tional mean and variance by µt = E

[
Xt
∣∣ Ft−1

]
and σ2

t = Var(Xt
∣∣ Ft−1). Assume

that conditionally, the observations are from an exponential family,

f (xt
∣∣ θt ,Ft−1) = exp

[
xtθt −b(θt)

φ
+ c(xt ;φ)

]
. (3.44)

The parameter φ is called the dispersion or scale parameter. It is assumed that b(θt) is
twice differentiable, c(xt ;φ) does not involve θt , and θt is the (monotone) canonical
link function. For this family, it can be shown that µt = b′(θt) and σ2

t = φ b′′(θt). As
an example, consider the Poisson distribution with mean function µt , in which case
φ = 1, θt = ln µt is the canonical link, b(θt) = exp(θt), and c(xt ;φ) =− ln(xt !); see
Exercise 3.9. In the basic overdispersed or quasi-Poisson model, the scale parameter
φ is left unspecified and estimated from the data rather than fixing it at 1. Typically,
an estimating function is used and a quasi-Poisson model does not correspond to
models with a fully specified likelihood.

Various approaches to modeling θt exist and include non- and semi-parametric
methods, observation-driven models (i.e., µt is driven by the past data) and parameter
driven models (i.e., µt is driven by the past parameter values) and various combina-
tions of these models. In these settings, we have a link function,

θt := θt(µt) = h(Ut , X t−1, µ
t−1, εt) (3.45)

where X t−1 = {Xt−1,Xt−2, . . .} represents the data history, µ t−1 = {µt−1,µt−2, . . .},
and εt represents a vector of latent processes.

For time series of counts, the Poisson distribution is used most often. In the case
of time series, it is typically necessary to account for over-dispersion and autocorre-
lation found in the data. For example, in Example 3.3 we saw overdispersion in that
the data seem to have negative binomial marginals, and in Figure 3.7 and Figure 3.8,
where autocorrelation is evident. Static models have h(·) = β ′Ut where β is a vector
of regression parameters and Ut is a vector of fixed inputs as previously explained. It
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Figure 3.9 Display for Example 3.11. Top: Lag plots of the Lynx series with a lowess fit em-
phasizing nonlinearity. The vertical line shows the threshold value of 3.31. Bottom: The logged
Lynx series as points, and the one-step-ahead predictions as a solid line.

is also possible to have h(·) be non- or semi-parametric, particularly to evaluate non-
linear trend; see Example 3.13. An extension that is treated in Kedem and Fokianos
(2002) and reviewed in Fokianos (2009) is the case where h(·) = β ′Ut +∑

p
j=1 φ jXt− j.

Zeger (1988) introduced a stochastic element via a stationary latent process; i.e.,
h(·) = β ′Ut + εt . Here, overdispersion is introduced via the latent variable. Davis
et al. (2003) and Shephard (1995) extended this idea to the generalized linear ARMA,
or GLARMA, model by writing εt = ∑

p
j=1 α j(εt− j + et− j) + ∑

q
j=1 β jet− j, where

et = (Xt − µt)/
√

µt , and εt = et = 0 for t ≤ 0. Finally, we mention GARCH-type
Poisson models wherein µt = α0 +∑

p
j=1 α jXt− j +∑

q
k=1 β jµt− j; see Engle and Rus-

sell (1998). There is a considerable amount of literature on this topic, and we have
only presented a few approaches. For an extensive and up-to-date review, see Jung
and Tremayne (2011), which also presents an empirical comparison of various meth-
ods for analyzing discrete-valued time series.

3.10 Numerical examples

In this section, we use some of the models presented in this chapter to analyze a few
of the data sets presented in Section 3.1. In particular, we will fit a SETAR model to
the lynx data set using the R package tsDyn, an asymmetric GARCH-type model to
the S&P 500 data set using the package fGarch, and overdispersed Poisson models
to the polio data set using the packages dyn, mgcv, and glm. We also present some
tests for detecting nonlinearity.
Example 3.11 (SETAR model). We used the tsDyn package to fit the SETAR
model specified in (3.34) to the logarithm (base 10) of the lynx data. However, we
allow the program to choose the optimal value of the threshold, rather than the one
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Figure 3.10 Display for Example 3.12. Top: The S&P 500 returns. Bottom: The predicted
one-step-ahead volatility from an Asymmetric Power ARCH fit.

specified in (3.34), namely, 3.25. The top of Figure 3.9 shows two lag plots with
lowess fits superimposed; these plots clearly indicate nonlinear behavior. The verti-
cal line in the lag 2 plot indicates the optimal threshold value for the model, which is
3.31. The fitted model is similar to the fitted model displayed in (3.34). The results
of the fit are as follows.

SETAR model ( 2 regimes)

Coefficients:

Low regime: High regime:

phiL.1 phiL.2 const L phiH.1 phiH.2 const H

1.264279 -0.428429 0.588437 1.599254 -1.011575 1.165692

Threshold:

-Variable: Z(t) = + (0) X(t)+ (1)X(t-1)

-Value: 3.31

Proportion of points in low regime: 69.64% High regime: 30.36%

Finally, we note that it is not necessary to use a special package to fit a SETAR model.
The model can be fit using piecewise linear regressions, lm in R, once a threshold
value has been determined. 3

Example 3.12 (Asymmetric power ARCH). The R package fGarch was used to
fit a model to the S&P 500 returns discussed in Example 3.2. The data are displayed
in Figure 3.5, where a small amount of autocorrelation is noticed. Hence, we in-
clude an AR(1) in the model to account for the conditional mean. For the conditional
variance, we fit an Asymmetric Power ARCH (APARCH) model to the data; see Ex-
ercise 8.17 for details. In this case, the model is Xt = µt + εt where µt is an AR(1),
and εt is GARCH-type noise where the conditional variance is modeled as

σ
δ
t = α0 +

p

∑
j=1

α j f j(εt− j)+
q

∑
j=1

β jσ
δ
t− j , (3.46)
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where
f j(ε) = (|ε|− γ jε)

δ . (3.47)

Note that the model is GARCH when δ = 2 and γ j = 0, j ∈ {1, . . . , p}. The param-
eters γ j (|γ j| ≤ 1) are the leverage parameters, which are a measure of asymmetry,
and δ > 0 is the parameter for the power term. A positive (resp. negative) value of
γ j’s means that past negative (resp. positive) shocks have a deeper impact on current
conditional volatility than past positive shocks (Black, 1976). This model couples the
flexibility of a varying exponent with the asymmetry coefficient to take the leverage
effect into account. Further, to guarantee that σt > 0, we assume that α0 > 0, α j ≥ 0
with at least one α j > 0, and β j ≥ 0.

We fit an AR(1)-APARCH(1,1) model to the data. The (partial) results of the
fit are outlined below, and Figure 3.10 displays the returns as well as the estimated
one-step-ahead predicted volatilty, σ̂t .

Estimate Std. Error t value Pr(>t)

mu 5.456e-05 1.685e-04 0.324 0.74605

ar1 -6.409e-02 1.989e-02 -3.221 0.00128

alpha0 1.596e-05 3.419e-06 4.668 3.04e-06

alpha1 4.676e-02 8.193e-03 5.708 1.15e-08

gamma1 1.000e+00 4.319e-02 23.156 < 2e-16

beta1 9.291e-01 7.082e-03 131.207 < 2e-16

delta 1.504e+00 2.054e-01 7.323 2.42e-13

Standardised Residuals Tests:

Statistic p-Value

Shapiro-Wilk Test R W 0.9810958 0

Ljung-Box Test R Q(20) 19.58712 0.4840092

Ljung-Box Test R^2 Q(20) 25.55894 0.1808778

Finally, we mention that ACF of the squared returns shown in Figure 3.5 indi-
cates persistent volatility, and it seems reasonable that some type of integrated, or
IGARCH(1,1) model could be fit to the data. In this case, (3.26) would be fit but
with α1 +β1 ≡ 1; recall the discussion following (3.29). 3

Example 3.13 (Overdispersed Poisson model). At this point, we do not have all
the tools necessary to fit complex models to dependent count data, so we use some
existing R packages for independent data to fit simple time series models. In par-
ticular, we fit two overdispersed Poisson models to the polio data set displayed in
Figure 3.8. In both cases, we followed Zeger (1988) by adding sinusoidal terms to
account for seasonal behavior, namely, Ckt = cos(2πtk/12) and Skt = sin(2πtk/12),
for k = 1,2. The first model is fully parametric, while the second model is semi-
parametric. The link functions, (3.45), for the two models are:

Model 1 : ln(µt) = α0 +α1t +β1C1t +β2S1t +β3C2t +β4S2t +ϕXt−1 (3.48)
Model 2 : ln(µt) = α0 + sm(t)+β1C1t +β2S1t +β3C2t +β4S2t (3.49)

A lagged value of the series was included in Model 2 in a first run, but it was not
needed when the semi-parametrically fit smooth trend term, sm(t), was included in
the model. In each case, a scale parameter φ is estimated. The results are displayed
in Figure 3.11. 3
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Figure 3.11 Display for Example 3.13. In both cases, an overdispersed Poisson model is used.
Top: The result of the Model 1, (3.48), fit superimposed on the polio data set. Displayed are
the estimated mean function and linear trend lines. Bottom: The result of the Model 2, (3.49),
fit superimposed on the polio data set. Displayed are the estimated mean function and trend
lines; the assumed smooth trend is estimated via semi-parametric techniques.

Example 3.14 (BiSpectrum). A number of researchers have suggested tests of
nonlinearity based on the bispectrum given in 3.14. Given the results displayed in
Exercise 3.4, it is clear that an estimate of

B(ω1,ω2) =
| f (ω1,ω2)|2

f (ω1) f (ω2) f (ω1 +ω2)

could be used to determine whether or not a process is linear. Because the value of
B(ω1,ω2) is unbounded, some researchers have proposed normalizing it so that, like
squared coherence given in (1.82), it lives on the unit interval, with larger values
indicating nonlinear (specifically, quadratic) dynamics.

The method proposed in Hinich and Wolinsky (2005) uses “frame averaging”
wherein one first partitions time into blocks. Then, DFTs are calculated in each block
and their averages are used to estimate the spectrum and bispectrum and to form an
estimate of B(ω1,ω2). This estimate is then transformed using a normalization based
on a noncentral chi-squared distribution under the null hypothesis that the process is
linear. For details, we refer the reader to Hinich and Wolinsky (2005). We provide an
R script, bi.coh, that can be used to estimate and plot the normalized bispectrum.

Figure 3.12 shows the graphic produced by the script for the S&P 500 returns
discussed in Example 3.12. Note that values over .95 are dark (or pink if color is
used); numerous dark values indicate nonlinearity. 3

Example 3.15 (Time domain tests for nonlinearity). There are a number of time
domain tests for nonlinearity in the conditional mean, and many of them are dis-
cussed and compared in Lee et al. (1993). An obvious approach is to assess whether



88 3. BEYOND LINEAR MODELS

ω

ω

Figure 3.12 Display for Example 3.14. Estimated normalized bispectrum of the S&P 500 re-
turns displayed in Figure 3.5, with highlighted regions indicating departure from the linearity
assumption.

the coefficients of the higher-order (M≥ 2) terms in the Volterra series (3.3) are zero.
For practical purposes, given a finite set of data, tests typically focus on whether or
not there is the existence of second-order terms.

Keenan (1985) developed a one-degree-of-freedom test by first fitting a linear
AR(p) model, where p is chosen arbitrarily or by some model choice criterion such
as those described in (1.65). Given data, {X1, . . . ,Xn}, a model is fit, and the one-
step-ahead predictions,

X̂t|t−1 = φ̂0 + φ̂1Xt−1 + · · ·+ φ̂pXt−p,

for t = p+1, . . . ,n are calculated. Then, the AR(p) model is fit again, but now with
the squared predictions included in the model. That is, the model

Xt = φ0 +φ1Xt−1 + · · ·+φpXt−p +θ X̂2
t|t−1 +Zt

is fit for t = p+ 1, . . . ,n, and the null hypothesis that θ = 0 is tested against the
alternative hypothesis that θ 6= 0, in the usual fashion. In a sense, one is testing if the
squared forecasts have additional predictive ability.

Tsay (1986) extended this idea by testing whether any of the second-order terms
are additionally predictive. That is, the model,

Xt = φ0 +φ1Xt−1 + · · ·+φpXt−p + ∑∑
1≤i≤ j≤p

θi, jXt−iXt− j +Zt ,

is fit to the data and the null hypothesis θi, j = 0 for all 1≤ i≤ j ≤ p is tested against
the alternative hypothesis that at least one θi, j 6= 0.

Both of these tests are available in the R package TSA, and we perform both tests
on the logged Lynx data set analyzed in Example 3.11. Note that the series is fairly
short.
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> Keenan.test(log10(lynx))

$test.stat $p.value $order
[1] 11.669 [1] 0.001 [1] 11

> Tsay.test(log10(lynx))

$test.stat $p.value $order
[1] 1.316 [1] 0.226 [1] 11

We see that AIC chooses p = 11 and that the Keenan test identifies nonlinearity in
the conditional mean whereas the Tsay test does not. 3

Exercises

3.1. Suppose that Zt = Acos(ω0 t +ϕ), where A, ω0 and ϕ are fixed.

(a) If Zt is the input process in (3.1), show that the output, Xt is a sinusoid
of frequency ω0 with squared amplitude |ψ(e−iω0)|2 and phase shifted by
arg(ψ(e−iω0)).

(b) Let Xt = Z2
t . What are the frequency, amplitude and phase of Xt? Comment.

3.2. Using Example 3.2 as a guide, remove the signal from the explosion series
shown in Figure 3.6 using the R command ar. Then calculate the sample ACF of
the innovations of explosion series and compare it to the sample ACF of the squared
innovations. How do these results compare to the results of Example 3.2 for the EEG
and the S&P500 series?

3.3. Show that the solution to (3.5) is a = b = 0 and c = 1, as claimed.

3.4. Suppose Xt = ∑
∞
j=0 ψ jZt− j, where ∑ j |ψ j| < ∞ and {Zt , t ∈ Z} are i.i.d. with

mean-zero, variance σ2
z and finite third moment E

[
Z3

t
]
= µ3.

(a) Let κx(r1,r2)= cum(Xt+r1 ,Xt+r2 ,Xt). Show that κx(r1,r2)= µ3 ∑ j ψ jψ j+r1ψ j+r2 .
(b) Use part (a) and Proposition 1.22 (see also Example 1.33) to show that the bis-

pectrum of {Xt , t ∈ Z} is f (ω1,ω2) =
µ3

(2π)2 ψ(e−iω1)ψ(e−iω2)ψ(ei(ω1+ω2)).

(c) Finally, show that
| f (ω1,ω2)|2

f (ω1) f (ω2) f (ω1 +ω2)

is equal to µ2
3/2πσ6

z , independent of frequency.
(d) How can the facts of this exercise be used to determine if a process {Xt , t ∈ Z}

is (i) linear, and (ii) Gaussian?

3.5. Consider the process given by Xt = Zt + θZt−1Zt−2, where {Zt , t ∈ Z} is a
sequence of i.i.d. Gaussian variables with zero mean and variance σ2.

(a) Show that {Xt , t ∈ Z} is strict-sense and weak-sense stationary.
(b) Show that {Xt , t ∈ Z} is a (weak) white-noise.
(c) Compute the bispectrum of {Xt , t ∈ Z}.

3.6. For the bilinear model BL(0,0,2,1) shown in (3.18),

(a) Show that E [Xt ] = 0 and then verify (3.19).
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(b) Verify the statement that {Xt , t ∈ Z} is white noise but that {X2
t , t ∈ Z} is pre-

dictable from its history.

3.7. If {Xt , t ∈Z} is GARCH(p,q), show that {X2
t , t ∈Z} is non-Gaussian ARMA.

3.8. If {Xt , t ∈ Z} is ARCH(1), show that the gradient of the conditional log-
likelihood l(α0,α1 |X1) is given by the 2×1 gradient vector,(

∂ l/∂α0
∂ l/∂α1

)
=

n

∑
t=2

(
1

X2
t−1

)
×

α0 +α1X2
t−1−X2

t

2
(
α0 +α1X2

t−1

)2 .

3.9. The following problems are based on the material in Section 3.9.
(a) For the DAR(1) model in (3.41), show that the support of Xt and Zt are the same,

and then derive the ACF.
(b) Show that the marginal distribution of Xt defined by (3.42) is Geometric with

parameter p, and then show the ACF is that of an AR(1) model.
(c) Show that the marginal of Xt in (3.43) is Poisson if Zt is Poisson, and then derive

the ACF of Xt .
(d) Suppose Xt is Poisson with conditional mean given by µt . Verify that the

marginal of Xt is in the exponential family given by (3.44), identify the com-
ponents, θt , φ , b(·), and c(·), and verify that µt = b′(θt) and σ2

t = φ b′′(θt).

3.10. Using Section 3.10 as a guide, perform the following analyses.
(a) Fit a threshold model to the sunspots series displayed in Figure 1.1.
(b) For the mortality series, say Mt , shown at the bottom of Figure 3.1, calculate the

normalized bispectrum of the series itself and then of Xt = ∇ lnMt . What is the
interpretation of Xt? Comment on the difference between the results. Then, fit a
threshold model to Xt . Explain why it is better to fit such a model to Xt rather
than Mt .

(c) Fit a GARCH (or GARCH-type) model to the explosion series in Figure 3.6 and
comment.

(d) Analyze the great discoveries and innovations series displayed in Figure 3.7.

3.11. Using Example 3.12 as guide, use the fGarch package to fit an AR-GARCH-
type model to the returns of either (a) the CAC40, or (b) the NASDAQ. Include a
complete set of residual diagnostics.

3.12. Using Example 3.14 and Example 3.15 as guides:
(a) Generate an AR(2) with φ1 = 1, φ2 = −.9, and n = 2048 and calculate the nor-

malized bispectrum. Comment on the results.
(b) Calculate the normalized bispectrum of the R data set sunspots and comment.
(c) For the data generated in (a) and used in (b), perform the Keenan and Tsay tests

for nonlinearity and comment.



Chapter 9

Non-Gaussian and Nonlinear State
Space Models

The state space model has become a powerful tool for time series modeling and
forecasting. Such models, in conjunction with the Kalman filter, have been used in a
wide range of applications (see Chapter 3). A nonlinear state space model (NLSS)
or equivalently a Hidden Markov Model (HMM), keeps the hierarchical structure of
the Gaussian linear state space model, but removes the limitations of linearity and
Gaussianity. An HMM is a discrete time process {(Xt ,Yt), t ∈ N}, where {Xt , t ∈
N} is a Markov chain and, conditional on {Xt , t ∈ N}, {Yt , t ∈ N} is a sequence
of independent random variables such that the conditional distribution of Yt only
depends on Xt . We denote by (X,X ) the state space of the hidden Markov chain
{Xt , t ∈ N} and by (Y,Y) the state space of the observations.

Of the two processes {Xt , t ∈ N} and {Yt , t ∈ N}, only {Yt , t ∈ N} is actually
observed, so that inference on the parameters of the model must be achieved using
{Yt , t ∈ N}. Inference on the latent or state process, {Xt , t ∈ N}, is often also of
interest. As we shall see, these two statistical objectives are strongly intertwined.

In this chapter, we consider a number of prototype HMMs (used in some of these
applications) in order to illustrate the variety of situations; e.g., finite-valued state
spaces, nonlinear Gaussian state-space models, conditionally Gaussian state-space
models, and so on.

9.1 Definitions and basic properties

9.1.1 Discrete-valued state space HMM

If both X and Y are discrete-valued, the hidden Markov model is said to be dis-
crete, which is the case originally considered by Baum and Petrie (1966). Let M be
a Markov transition matrix on X, so that for any x ∈ X, x′ 7→M(x,x′) is a probability
on X. Thus, for any x′ ∈ X, M(x,x′)≥ 0 and ∑x′∈X M(x, x′) = 1. In the discrete state-
space setting, we identify any function f : X→ R, i.e., f : x 7→ f (x), with a column
vector f =( f (x))x∈X and any finite measure ξ on X, with a row vector ξ =(ξ (x))x∈X;
ξ is a probability if ∑x∈X ξ (x) = 1. Let {Xt , t ∈ N} be a Markov chain with initial
distribution ξ and Markov transition matrix M. For f ∈ F(X,X ) and any x ∈ X, we

287
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Figure 9.1 Representation of the dependence structure of a hidden Markov model, where
{Yt , t ∈ N} are the observations and {Xt , t ∈ N} is the state sequence.

get
E
[

f (Xt)
∣∣ Xt−1 = x

]
= M f (x) = ∑

x′∈X
M(x,x′) f (x′) .

For any integer t and any ft+1 ∈ Fb(X
t+1,X⊗(t+1)), the joint distribution of the chain

is given by

Eξ [ ft+1(X0,X1, . . . ,Xt)]

= ∑
x0∈X

. . . ∑
xt∈X

ξ (x0)M(x0,x1) . . .M(xt−1,xt) ft+1(x0,x1, . . . ,xt) .

The previous identity implies that ξt( f ) := Eξ [ f (Xt)] = ξ Mt f , where ξt denotes the
marginal distribution of Xt .

Let G be a Markov transition matrix from X to Y, i.e., for any x ∈ X, G(x, ·) is a
probability on Y, so that for any y ∈ Y, G(x,y) ≥ 0 and ∑y∈Y G(x,y) = 1. Consider
K, the Markov kernel on X× (X ⊗Y) given by

K(x; x′,y′) = M(x,x′)G(x′,y′) , (x,x′,y′) ∈ X2×Y .

For all x ∈ X and (x′,y′) ∈ X×Y, K(x; x′,y′)≥ 0 and for any x ∈ X,

∑
(x′,y′)∈X×Y

K(x; x′,y′) = ∑
x′∈X

M(x,x′) ∑
y′∈Y

G(x′,y′) = ∑
x′∈X

M(x,x′) = 1 .

Let ξ be a probability on X. Consider the stochastic process {(Xt ,Yt), t ∈ N} with
joint distribution given, for any t ∈ N and function ht+1 ∈ Fb((X× Y)t+1,(X ⊗
Y)⊗(t+1)) by

Eξ [ht+1((X0,Y0), . . . ,(Xt ,Yt))] (9.1)

= ∑
(x0,y0)

. . . ∑
(xt ,yt )

ht+1((x0,y0), . . . ,(xt ,yt))ξ (x0,y0)G(x0,y0)
t

∏
s=1

K(xs−1;xs,ys) .

The process {(Xt ,Yt), t ∈ N} is a Markov chain on X×Y with initial distribution ξG
where ξG(x,y) = ξ (x)G(x,y), (x,y) ∈ X×Y and transition kernel K. The marginal
distribution of {Xt , t ∈ N} is obtained by marginalizing with respect to the observa-
tions:

Eξ [ ft+1(X0,X1, . . . ,Xt)] = ∑
x0∈X

. . . ∑
xt∈X

ft+1(x0, . . . ,xt)ξ (x0)
t

∏
i=1

M(xi−1,xi) , (9.2)
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where ft+1 ∈ Fb(X
t+1,X⊗(t+1)), showing that {Xt , t ∈ N} is a Markov chain on X

with initial distribution ξ and transition kernel M.
On the other hand, let {h0, . . . ,ht} be a set of functions, hi ∈ Fb(Y,Y) and ft+1 ∈

Fb(X
t+1,X⊗(t+1)). We get

Eξ

[ t

∏
s=0

hs(Ys) ft+1(X0, . . . ,Xt)
]
= Eξ

[
ft+1(X0, . . . ,Xt)E

{ t

∏
s=0

hs(Ys) | X0, . . . ,Xt

}]
= ∑

x0∈X
. . . ∑

xt∈X
ξ (x0)

t

∏
s=1

M(xs−1,xs)
t

∏
s=0

∑
ys∈Y

G(xs,ys)hs(ys) ,

showing that the components of the vector of observations (Y0, . . . ,Yt) are condition-
ally independent given the state sequence X0, . . . ,Xt and that the conditional distribu-
tion of Ys given Xs is G(Xs, ·):

E

[
t

∏
s=0

hs(Ys)
∣∣ X0, . . . ,Xt

]
=

t

∏
i=0

E
[
hs(Ys)

∣∣ Xs
]
=

t

∏
s=0

Ghs(Xs) . (9.3)

The joint distribution of the sequence of observations Y0, . . . ,Yt may be deduced from
(9.1) by marginalizing with respect to the state sequence:

p
ξ ,t(Y0:t) = ∑

x0∈X
. . . ∑

xt∈X
ξ (x0)

t

∏
s=1

M(xs−1,xs)G(xs,Ys) . (9.4)

This expression of the joint distribution of the observations might look a little daunt-
ing at first sight, because it involves evaluating the joint distribution of the state-
sequence and the observations, and then marginalizing the state sequence. If the
number of states is m, then the number of state sequences is mt+1, so that the nu-
merical complexity seems to grow exponentially with t. We will see later that the
likelihood can be computed with an algorithm whose complexity grows quadrati-
cally in the number of states and linearly in the number of time steps t.

The marginal distribution of the t-th observation Yt is obtained by marginalizing
(9.4) with respect to (Y0, . . . ,Yt−1)

p
ξ ,t(Yt) = ∑

x0∈X
. . . ∑

xt∈X
ξ (x0)

t

∏
s=1

M(xs−1,xs)G(xt ,Yt)

= ∑
x∈X

Pξ [Xt = x]G(x,Yt) .

The marginal distribution is a mixture of the distributions {G(x,Yt),x ∈ X} with
weights given by {Pξ [Xt = x],x∈X}. If the Markov kernel M admits a stationary dis-
tribution π , then Pπ [Xt = x] = π(x), and the weights of the mixture remain constants
{π(x),x ∈ X}. Such behavior is a key property of HMMs; their marginal distribution
is a mixture of state-dependent distributions.



290 9. NONLINEAR STATE SPACE MODELS

Time

E
Q
co
un
t

1900 1920 1940 1960 1980 2000

5
15

25
35

5 10 15 20

−0
.2

0.
2

0.
4

0.
6

LAG

AC
F

5 10 15 20

−0
.2

0.
2

0.
4

0.
6

LAG

PA
C
F

Figure 9.2 Top: Series of annual counts of major earthquakes (magnitude 7 and above) in the
world between 1900-2006. Bottom: Sample ACF and PACF of the square root of the counts.

Example 9.1 (Number of major earthquakes). Consider the time series of annual
counts of major earthquakes displayed in Figure 9.2; see MacDonald and Zucchini
(2009, Chapter 1). As discussed in Example 3.3 and Example 3.13 an overdis-
persed Poisson or Negative Binomial distribution may be a satisfactory model for
the marginal distribution; however, given the serial correlation, it is perhaps more
important to model joint distributions. As suggested by MacDonald and Zucchini
(2009), a simple and convenient way to capture both the marginal distribution and
the serial dependence is to consider HMM model with a Poisson distribution. We
denote the number of major earthquakes in year t as Yt , whereas the state, or latent
variable, is denoted by Xt . For simplicity, we consider the process {Xt , t ∈ N} to be
a two-state Markov chain, X= {1,2}, where M is a 2×2 matrix given by,

M =

[
M(1,1) M(1,2)
M(2,1) M(2,2)

]
with M(1,1),M(2,2) ∈ (0,1), M(1,2) = 1−M(1,1), M(2,1) = 1−M(2,2). The
stationary distribution of this Markov chain is given by

π(1) =
M(2,1)

2−M(1,1)−M(2,2)
, and π(2) =

M(1,2)
2−M(1,1)−M(2,2)

.

For x ∈ X, denote λx as the parameter of the Poisson distribution:

G(x,y) =
(λx)

y

y!
e−λx , y ∈ N .

Assuming that the Markov chain is stationary (ξ = π), the marginal distribution is a
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mixture of Poisson distribution

pπ,t(Yt) = π(1)G(1,Yt)+π(2)G(2,Yt) = π(1)
(λ1)

Yt

Yt !
e−λ1 +π(2)

(λ2)
Y
t

Yt !
e−λ2 .

Let f : R+→ R be a function. The mean and the variance of f (Yt) are given by (see
Exercise 9.1)

Eπ [ f (Yt)] = π(1)µ(1)+π(2)µ(2) , (9.5)

Varπ [ f (Yt)] = Eπ [Y0]+π(1)π(2)(µ(2)−µ(1))2 ≥ Eπ [ f (Y0)] , (9.6)

where

µ(x) = ∑
y∈N

G(x,y) f (y) = ∑
y∈N

λ
y
x

y!
f (y) .

The marginal distribution of a two-state Poisson-HMM model is therefore overdis-
persed compared to the Poisson distribution. Using the conditional independence of
the observations and the states (9.3),

Eπ [ f (Yt) f (Yt+k)] = Eπ{Eπ [ f (Yt) f (Yt+k) |Xt ,Xt+k]} ,

Eπ [µ(Xt)µ(Xt+k)] = Eπ [µ(X0)µ(Xk)] =
1

∑
x0=0

1

∑
xk=0

π(x0)Mk(x0,xk)µ(x0)µ(xk) ,

where Mk(x,x′) denotes the (x,x′)-element of the k-th iterate of the transition ma-
trix M. Therefore, the process { f (Yt), t ∈ N} is a covariance stationary process with
autocovariance function

Covπ( f (Y0), f (Yk)) =
1

∑
x0=0

1

∑
xk=0

π(x0){Mk(x0,xk)−π(xk)}µ(x0)µ(xk) ,

= π(1)π(2)(µ(2)−µ(1))2(1−M(1,2)−M(2,1))k .

Therefore, for any function f : R+ → R, a two-state Poisson-HMM has an expo-
nentially decaying autocorrelation function (see Exercise 9.3). It is worthwhile to
note that the rate of decay of the autocorrelation does not depend upon the choice of
f . If we increase the number of states, more complex dependence structure may be
obtained; see Exercise 9.3. 3

A slightly more general example is when the state is discrete, but the observations
take values in a general state space. Let (Y,Y) be a measurable space, and let G be a
kernel on X×Y (see Definition 5.2). Denote by K, the Markov kernel on X×(X ⊗Y)
given for all x,x′ ∈ X, and A ∈ Y by

K(x; {x′}×A) = M(x,x′)G(x′,A) . (9.7)

Let ξ be a probability on X. Consider the stochastic process {(Xt ,Yt), t ∈ N} with
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joint distribution given, for any t ∈ N and function ht+1 ∈ Fb((X× Y)t+1,(X ⊗
Y)⊗(t+1)) by

Eξ [ht+1({(Xs,Ys)}t
s=0)] = ∑

x0

· · ·∑
xt

∫
· · ·
∫

ht+1({(xs,ys)}t
s=0)

×ξ (x0,dy0)G(x0,dy0)
t

∏
s=1

K(xs−1;xs,dys) . (9.8)

The process {(Xt ,Yt), t ∈ N} is a Markov chain on X×Y with initial distribution
ξG where ξG({x}×A) = ξ (x)G(x,A), x ∈ X and A ∈ Y and transition kernel K. By
marginalizing with respect to the observations, (9.8) implies that {Xt , t ∈ N} is a
Markov chain with transition kernel M and initial distribution ξ ; see (9.2). Simi-
larly, proceeding as in (9.3), the sequence of observations Y0, . . . ,Yt are independent
conditional to the states.

If, for all x∈X, G(x, ·) is absolutely continuous with respect to µ , G(x, ·)� µ(·),
with transition density function g(x, ·). Then, for A ∈ Y , G(x,A) =

∫
A g(x,y)µ(dy)

and the joint transition kernel K can be written as

K(x,C) =
∫∫

C
M(x,dx′)g(x′,y′)µ(dy′) , C ∈ X ⊗Y . (9.9)

In this case, the joint distribution of the sequence of observations Y0, . . . ,Yt has a
density with respect to the product measure µ⊗(t+1) given by

p
ξ ,t(Y0:t) = ∑

x0∈X
. . . ∑

xt∈X
ξ (x0)

t

∏
s=1

M(xs−1,xs)g(xs,Ys) . (9.10)

The marginal distribution of the t-th observation Yt is obtained by marginalizing
(9.10) with respect to the observations (Y0, . . . ,Yt−1) and is therefore a mixture of
the densities {g(x,Yt),x ∈ X}.

p
ξ ,t(Yt) = ∑

x∈X
Pξ [Xt = x]g(x,Yt) .

If f is a function and ξ is chosen to be the stationary distribution of the Markov
chain P (assuming that it exists) then Eπ [ f (Yt)] = ∑x∈X π(x)µ( f ;x), where µ( f ;x)
is the conditional expectation of f (Yt) given state x, µ( f ;x) = E

[
f (Y0)

∣∣ X0 = x
]
,

x ∈X. For instance, if f (y) = y2, then µ( f ;x) equals the conditional second moment.
Assume that the number of states, d, is finite. Defining Γ ( f ) = diag{µ( f ;x),x ∈
X}, the unconditional mean can be written more compactly as Eπ [ f (Yt)] = πΓ ( f )111.
Furthermore, for h > 0,

Eπ [ f (Yt) f (Yt+h)] = ∑
x,x′

E
[

f (Yt) f (Yt+h)
∣∣ (Xt ,Xt+h) = (x,x′)

]
Pπ [(Xt ,Xt+h) = (x,x′)]

= ∑
x,x′

µ( f ;x)µ( f ;x′)π(x)Ph(x,x′) ,
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Figure 9.3 Top: Weekly log-returns of S&P500 from January 2, 2003 to September 28, 2012.
Histogram superimposed with a mixture of three Gaussian distributions. Bottom: Sample ACF
and PACF of the squares of the log-returns.

where we have used

E
[

f (Yt) f (Yt+h)
∣∣ (Xt ,Xt+h) = (x,x′)

]
= E

[
f (Yt)

∣∣ Xt = x
]
E
[

f (Yt+h)
∣∣ Xt+h = x′

]
= µ( f ;x)µ( f ;x′) ,

which follows from the conditional independence of the observations given the state
and Pπ [(Xt ,Xt+h) = (x,x′)] = P(Xt+h = x′ |Xt = x)Pπ [Xt = x] = π(x)Ph(x,x′). In
matrix form, this can be written as

Eπ [ f (Yt) f (Yt+h)] = πΓ ( f )Ph
Γ ( f )111 .

Finally, the covariance of f (Yt) and f (Yt+h) is

Covπ( f (Yt), f (Yt+h)) = πΓ ( f )Ph
Γ ( f )111− (πΓ ( f )111)2 .

Example 9.2 (S&P500 weekly returns). In this example, we consider the weekly
S&P500 log-returns from January 3, 2003 until September 28, 2012. The time series
is displayed in the upper left of Figure 9.3; the bottom row of the figure shows the
sample ACF and PACF of the squared returns indicating that there is dependence
among the returns.

Financial markets are usually characterized as bullish (most investors expect up-
ward price movement), neutral or bearish (most investors expect downward price
movement). It has also been reported that the equity market returns and volatility tend
to move in opposite directions. To assess this assumption, we modeled the marginal
distribution of the log-return by a mixture of three Gaussian distributions. We fit-
ted the marginal distributions using the R package mixtools, which can be used
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to implement MLE to fit the normal mixtures via the EM algorithm. The proce-
dure, however, assumes the data are independent, which is obviously not the case.
We will consider a more appropriate analysis later in Example 9.12. Under the as-
sumption of independence, we fitted the observations with three components yield-
ing means (µ̂1, µ̂2, µ̂3) = (.005,−.003,−.002), standard deviations (σ̂1, σ̂2, σ̂3) =
(.013, .030, .082), and mixing probabilities (π̂1, π̂2, π̂3) = (.55, .42, .03). A histogram
of the data along with the three fitted normals are displayed in the upper right of Fig-
ure 9.3. Note that state 1 may be interpreted as the bullish state, with positive mean
and a lower volatility. State 2 may be seen as the bearish state with negative mean and
comparatively higher volatility. The meaning of state 3 should be interpreted more
carefully, since it captures mostly the outliers occurring during the 2008 and 2011
crises.

As previously indicated, a Gaussian mixture model is not appropriate here be-
cause the log-returns are serially correlated. The market may stay in a bullish regime
for some time before moving to another regime at a later date. As suggested by Rydén
et al. (1998), a Hidden Markov model with Gaussian emission probability is a good
candidate to capture these stylized facts. 3

The previous example leads us to examine a more general model. Suppose that
{Xt , t ∈N} is a Markov chain with state space X := {1, . . . ,m} and that the observa-
tions {Yt , t ∈ N}, conditional on {Xt , t ∈ N}, are independent Gaussian with means
{µXt , t ∈ N} and variance {σ2

Xt
, t ∈ N}. The distribution of the Markov chain is

specified by a Markov transition matrix M = {M(x,x′)}(x,x′)∈X2 , which is assumed
to have a unique invariant distribution denoted π . Assume for simplicity that the
Markov chain is stationary. Suppose the marginal distribution of {Yt , t ∈ N} is a
mixture of m Gaussian distributions with mixing weights (π(1), . . . ,π(m)). The ob-
servations may be expressed as Yt = µXt +σXtVt , where {Vt , t ∈N} are i.i.d. N(0,1).
The autocorrelation function of {Yt , t ∈ N} is given by, for h > 0,

Cov(Yt ,Yt+h)

Var(Yt)
=

πΓ1PhΓ1111− (πΓ1111)2

πΓ2111− (πΓ1111)2 ,

where Γp = diag{
∫

ypg(y; µx,σ
2
x )dy, x ∈ X}. For a two-state model, the autocorrela-

tion is given by
Cov(Yt ,Yt+h)

Var(Yt)
=

π(1)π(2)(µ1−µ2)
2

π(1)σ2
1 +π(2)σ2

2
λ

h ,

where λ := 1−M(1,2)−M(2,1). The process is not autocorrelated if µ1 = µ2. For
the squared process, we have

Cov(Y 2
t ,Y

2
t+h)

Var(Y 2
t )

=
πΓ2PhΓ2111− (πΓ2111)2

πΓ4111− (πΓ2111)2 .

For a two-state model, the autocovariance of the squared process is given by

Cov(Y 2
t ,Y

2
t+h) = π(1)π(2)(µ2

1 −µ
2
2 +σ

2
1 −σ

2
2 )λ

h, h > 0 .

Note that if µ1 = µ2 and λ 6= 0, the process {Yt , t ∈N} is white noise, but {Y 2
t , t ∈N}
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is autocorrelated. State dependent variances are neither necessary nor sufficient for
autocorrelation in the squared process. Even if σ1 = σ2, the marginal process shows
conditional heteroscedasticity provided that M(1,1) 6= M(2,1). On the other hand, if
M(1,1) = M(2,1), the squared process is not autocorrelated even if σ1 6= σ2. These
results extend directly to more general families of distributions.

9.1.2 Continuous-valued state-space models

It is not necessary restrict the definition of HMM to discrete state-spaces.
Definition 9.3 (Hidden Markov model). Let (X,X ) and (Y,Y) be two measurable
spaces and let M and G denote, respectively, a Markov kernel on (X,X ) and a
Markov kernel from (X,X ) to (Y,Y). Denote by K the Markov kernel on X×(X ⊗Y)
by

K (x;C) =
∫∫

C
M(x,dx′)G(x′,dy′) , x ∈ X , C ∈ X ⊗Y . (9.11)

The Markov chain {(Xt ,Yt), t ∈N} with Markov transition kernel K and initial distri-
bution ξ ⊗G, where ξ is a probability measure on (X,X ), is called a hidden Markov
Model (HMM).

The definition above specifies the distribution of {(Xt ,Yt), t ∈ N}; the term hidden
is justified because {Xt , t ∈ N} is not observable. As before, we shall denote by Pξ

and Eξ the probability measure and corresponding expectation associated with the
process {(Xt ,Yt), t ∈ N}, respectively.

An HMM is said to be partially dominated if there exists a probability measure
µ on (Y,Y) such that for all x ∈ X, G(x, ·) is absolutely continuous with respect to
µ , G(x, ·)� µ(·), with transition density function g(x, ·). Then, for A∈Y , G(x,A) =∫

A g(x,y)µ(dy) and the joint transition kernel K can be written as

K(x;C) =
∫∫

C
M(x,dx′)g(x′,y′)µ(dy′) , C ∈ X ⊗Y . (9.12)

A partially dominated HMM is fully dominated if there exists a probability mea-
sure λ on (X,X ) such that ξ � λ and, for all x ∈ X, M(x, ·)� λ (·) with transition
density function m(x, ·). Then, for A ∈ X , M(x,A) =

∫
A m(x,x′)λ (dx′) and the joint

Markov transition kernel K has a density k with respect to the product measure λ⊗µ

k
(
x;x′,y′

)
:= m(x,x′)g(x′,y′) , (x,x′,y′) ∈ X2×Y . (9.13)

Note that for the fully dominated model, we will generally use the notation ξ to
denote the probability density function of the initial state X0 (with respect to λ ) rather
than the distribution itself.
Proposition 9.4. Let {(Xt ,Yt), t ∈N} be a Markov chain over the product space X×
Y with transition kernel K given by (9.11). Then, for any integer p and any ordered
set {t1 < · · · < tp} of indices the random variables Yt1 , . . . ,Ytp are Pξ -conditionally
independent given (Xt1 ,Xt2 , . . . ,Xtp), i.e., and all functions f1, . . . , fp ∈ Fb(Y,Y),

E
ξ

[
p

∏
i=1

fi(Yti)
∣∣ Xt1 , . . . ,Xtp

]
=

p

∏
i=1

G fi(Xti) , (9.14)



296 9. NONLINEAR STATE SPACE MODELS

where G f (x) =
∫
Y G(x,dy) f (y).

Proof. See Exercise 9.10. �

Assume that the HMM is partially dominated (see (9.12)). The joint probability
of the unobservable states and observations up to index t is such that for any function
ht+1 ∈ Fb((X×Y)t+1,(X ⊗Y)⊗(t+1)),

Eξ [ht+1(X0,Y0, . . . ,Xt ,Yt)] =
∫
· · ·
∫

ht+1(x0,y0, . . . ,xt ,yt)

×ξ (dx0)g(x0,y0)
t

∏
s=1

M(xs−1,dxs)g(xs,ys)
t

∏
s=0

µ(dys) , (9.15)

Marginalizing with respect to the unobservable variables X0, . . . ,Xt , one obtains the
joint distribution of the observations Y0:t

p
ξ ,t(Y0:t) =

∫
· · ·
∫

ξ (dx0)g(x0,Y0)
t

∏
s=1

M(xs−1,dxs)g(xs,Ys) . (9.16)

Example 9.5 (Stochastic volatility). Denote by Yt the daily log-returns of some fi-
nancial asset. Most models for return data that are used in practice are of a multi-
plicative form,

Yt = σtVt , (9.17)

where {Vt , t ∈ N} is an i.i.d. sequence and the volatility process {σt , t ∈ N} is a
non-negative stochastic process such that Vt is independent of σs for all s ≤ t. It is
often assumed that Vt has zero mean and unit variance.

We have already discussed the ARCH/GARCH models in Section 3.5. An alter-
native to the ARCH/GARCH models is stochastic volatility (SV) models, in which
the volatility is a non-linear transform of a hidden linear autoregressive process. The
canonical model in SV for discrete-time data has been introduced by Taylor (1982)
and worked out since then by many authors; see Hull and White (1987) and Jacquier
et al. (1994) for early references and Shephard and Andersen (2009) for an up-to-
date survey. In this model, the hidden volatility process, {Xt , t ∈ N}, follows a first
order autoregression,

Xt+1 = φXt +σWt , (9.18a)
Yt = β exp(Xt/2)Vt . (9.18b)

where {Wt , t ∈ N} is a white Gaussian noise with mean zero and unit variance and
{Vt , t ∈ N} is a strong white noise. The error processes {Wt , t ∈ N} and {Vt , t ∈ N}
are assumed to be mutually independent and |φ | < 1. As Wt is normally distributed,
Xt is also normally distributed. All moments of Vt exist, so that all moments of Yt in
(9.18) exist as well. Assuming that X0 ∼ N(0,σ2/(1−φ 2)) (the stationary distribu-
tion of the Markov chain) the kurtosis1 of Yt is given by (see Exercise 9.12)

κ4(Y ) = κ4(V )exp(σ2
X ), (9.19)

1 For an integer m and a random variable U , κm(U) := E [|U |m]/(E
[
|U |2

]
)m/2. Typically, κ3 is called

skewness and κ4 is called kurtosis.
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where σ2
X = σ2/(1−φ 2) is the (stationary) variance of Xt . Thus κ4(Yt)> κ4(Vt), so

that if Vt ∼ N(0,1), the distribution of Yt is leptokurtic. The autocorrelation function
of {Y 2m

t , t ∈ N} for any integer m is given by

Cor(Yt ,Yt+h) =
exp(m2σ2

X φ h)−1
κ4m(V )exp(m2σ2

X )−1
, h ∈ N . (9.20)

The decay rate of the autocorrelation function is faster than exponential at small time
lags and then stabilizes to φ for large lags. 3

Example 9.6 (NGM model). We consider the univariate model introduced in
Netto, Gimeo, and Mendes (1978)—hereafter referred to as the NGM model—discussed
by Kitagawa (1987) and Carlin et al. (1992), given, in state-space form, by

Xt = Fθ
t (Xt−1)+Wt and Yt = Ht(Xt)+Vt , (9.21)

with

Fθ
t (Xt−1) = αXt−1 +βXt−1/(1+X2

t−1)+ γ cos[1.2(t−1)] , (9.22a)

Ht(Xt) = X2
t /20 , (9.22b)

where X0 ∼ N(µ0,σ
2
0 ), with Wt∼ iid N(0,σ2

w) independent of Vt∼ iid N(0,σ2
v ) and

each sequence independent of X0. Figure 9.4 shows a typical data sequence Yt and
the corresponding state process Xt with all the variances equal to unity and, as in
Kitagawa (1987) and Carlin et al. (1992), θ = (α = .5,β = 25,γ = 8). Additionally,
Figure 9.4 demonstrates the nonlinearity by exhibiting a scatterplot of the observa-
tions versus the states, and a phase space trajectory of the states that demonstrates
that the states are bifurcating near ±10.

Note that, in this case, there is no closed form for the covariance of the obser-
vations. However, because of the nonlinearity of the processes, the autocovariance
function contains little information about the dynamics of the Yt . In addition, the
marginal distribution of the observations is highly complex and no longer known.
This model has become a standard model for testing numerical procedures and is
used throughout Chapter 12. 3

9.1.3 Conditionally Gaussian linear state-space models

Conditionally Gaussian linear state-space models belong to a class of models that
we will refer to as hierarchical hidden Markov models, whose dependence structure
is depicted in Figure 9.5. In such models the variable It , which is the highest in the
hierarchy, influences both the transition from Wt−1 to Wt as well as the observation
Yt .

Conditionally Gaussian models related to the previous example are also com-
monly used to approximate non-Gaussian state-space models. Imagine that we are
interested in the linear model given by (2.1)–(2.2) with both noise sequences still be-
ing i.i.d. but at least one of them with a non-Gaussian distribution. Assuming a very
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Figure 9.4 Typical realization of the observations (Yt ) and state process (Xt ), for t =
1, . . . ,100, generated from the model (9.21). The bottom row shows the quadratic relation-
ship between the observations and states, and a phase space trajectory of the states indicating
the bifurcating dynamics of the process.

general form of the noise distribution would directly lead us into the world of (gen-
eral) continuous state-space HMMs. As a middle ground, however, we can assume
that the distribution of the noise is a mixture of Gaussians.

Let {It , t ∈ N} be a sequence of random variables taking values in a set I, which
can be finite or infinite. We often refer to these variables as the indicator variables
when I is finite. To model non-Gaussian system dynamics, we will typically model
the dynamic of the partial state sequence {Wt , t ∈ N} as follows

Wt+1 = µW (It+1)+A(It+1)Wt +R(It+1)Wt , Wt ∼ N(0, I) ,

where, µW , A and R are respectively vector-valued and matrix-valued functions of
suitable dimensions on I. When I = {1, . . . ,r} is finite, the distribution of the noise,
µW (It+1)+R(It+1)Wt , driving the state equation is a finite mixture of multivariate
Gaussian distributions. Similarly, the observation equation is modeled by

Yt = µY (It)+B(It)Wt +S(It)Vt , Vt ∼ N(0, I) ,

where µY , B and S are respectively vector-valued and matrix-valued functions. Here
again, when I = {1, . . . ,r} is finite, then the distribution of the observation noise
µY (It)+S(It)Vt is a finite mixture of multivariate distribution, allowing us to model
outliers, for example. Since B is also a function of I, this model may accommodate
changes in the way the state is observed.
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Figure 9.5: Graphical representation of the dependence structure of a hierarchical HMM.

Example 9.7 (Level shifts and outliers). Gerlach et al. (2000) have considered the
following model to analyze data with level shifts and outliers in both the observations
and innovations:

Yt =Wt +σV It,1Vt , (9.23)

Wt −µt =
p

∑
i=1

φi(Wt−i−µt−i)+σZIt,2Zt , (9.24)

µt = µt−1 +σW It,3Wt , (9.25)

where {(Vt ,Zt ,Wt), t ∈ Z} is an i.i.d. sequence of Gaussian vectors with zero mean
and identity covariance, and {(It,1, It,2, It,3), t ∈ Z} is i.i.d. taking values in I, which
is typically discrete. The time series {Wt , t ∈ Z} has mean level µt and is generated
by an autoregressive model with coefficients φ = (φ1, . . . , φp).

If It,1 and It,2 are equal to 1, then the observations are a noisy version of an AR(p)
process; recall Example 2.2. Observational outliers are modeled by assuming that It,1
takes some large values (like 10, 20). Similarly, innovation outliers are modeled by
large values of It,2. If It,3 = 0, then µt = µt−1. Level shifts occur at time points t for
which It,3 6= 0. 3

Example 9.8 (Stochastic volatility cont.). Another example of the use of mixtures
is in the observational noise of the SVM, (9.18),

Xt = φXt−1 +σWt , (9.26a)

lnY 2
t = β +Xt + lnV 2

t , (9.26b)

where Wt∼ iid N(0,1), but where now, the observational noise, Vt , is not assumed to
be normal. The assumption that the Vt are normal comes from the original ARCH
model, which is an assumption that is typically violated empirically. Under the nor-
mal assumption, lnV 2

t is the log of a χ2
1 random variable with density given by

f (x) =
1√
2π

exp
{
−1

2
(ex− x)

}
, −∞ < x < ∞ . (9.27)
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Figure 9.6 Density of the log of a χ2
1 as given by (9.27) (solid line) and a fitted normal mixture

(dashed line) from Shumway and Stoffer (2011, Example 6.18).

The mean of the distribution is −(γ + ln 2), where γ ≈ 0.5772 is Euler’s constant,
and the variance of the distribution is π2/2. It is a highly skewed density but it is, of
course, not flexible because the distribution is fixed; i.e., there are no parameters to
be estimated.

To avoid having a fixed observational noise distribution, Kim and Stoffer (2008)
and Shumway and Stoffer (2011, Chapter 6) assumed that the observational noise in
(9.26b) is a mixture of two normals with parameters to be estimated. That is,

lnV 2
t = ItZt,0 +(1− It)Zt,1 , (9.28)

where It∼ iid Ber(π), with π ∈ [0,1], Zt,0∼ iid N(0,σ2
0 ), and Zt,1∼ iid N(µ1,σ

2
1 ). The

advantage to this model is that it is easy to fit because it uses conditional normal-
ity and there are three additional parameters to provide flexibility in the analysis.
Figure 9.6 compares the ln χ2

1 density to a fitted mixture distribution taken from
Shumway and Stoffer (2011, Example 6.18). Note that the mixture distribution is
able to accommodate kurtosis when the volatility is large. 3

9.1.4 Switching processes with Markov regimes

Markov-switching models perhaps constitute the most significant generalization of
HMMs. In such models, the conditional distribution of Yt+1, given all the past
variables, depends not only on Xt+1 but also on Yt (and possibly more lagged Y -
variables). Thus, conditional on the state sequence {Xt , t ∈ N}, {Yt , t ∈ N} forms a
(non-homogeneous) Markov chain. Graphically, this is represented as in Figure 9.7.
In state-space form, a Markov-switching model may be written as

Xt+1 = at(Xt ,Wt) , (9.29)
Yt+1 = bt(Xt+1,Yt ,Vt+1) . (9.30)

We can even go a step further and assume that {(Xt ,Yt), t ∈ N} jointly forms a
Markov chain, but that only {Yt , t ∈ N} is actually observed.

A switching linear autoregression is a model of the form

Yt = µ(It)+
p

∑
i=1

ai(It)(Yt−i−µ(It−i))+σ(It)Vt , p≥ 1 , (9.31)
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Figure 9.7 Graphical representation of the dependence structure of a Markov-switching
model, where {Yt , t ∈ N} is the observable process and {Xt , t ∈ N} is the hidden chain.

where {It , t ∈ N}, called the regime, is a Markov chain on a finite state space I =
{1,2, . . . ,r}, and {Vt , t ∈ N} is white noise independent of the regime; the functions
µ : I→ R, ai : I→ R, i = 1, . . . ,r, and σ : I→ R describe the dependence of the
parameters on the realized regime.

This model can be rewritten in state-space form as follows. Let

YYY t = [Yt ,Yt−1, . . . ,Yt−p+1]
′ ,

IIIt = [It , It−1, . . . , It−d+1]
′ ,

µ(IIIt) = [µ(It), . . . ,µ(It−p+1)]
′ ,

VVV t = [Vt ,0, . . . ,0]′ ,

and denote by A(i) the p× p companion matrix associated with the autoregressive
coefficients of the state i,

A(i) =


a1(i) a2(i) . . . . . . ap(i)

1 0 0

0 1 0
...

...
. . . . . . . . .

...
0 . . . 0 1 0

 . (9.32)

The stacked observation vector YYY t then satisfies

YYY t = µ(It)+A(It)(YYY t−1−µ(IIIt−1))+σ(It)VVV t . (9.33)

Note that the model is a random coefficient vector autoregression as discussed in
Chapter 4.
Example 9.9 (Influenza mortality). In Example 3.1, we discussed the monthly
pneumonia and influenza mortality series shown in Figure 3.1. We pointed out the
non-reversibility of the series, which rules out the possibility that the data are gen-
erated by a linear Gaussian process. In addition, note that the series is irregular, and
while mortality is highest during the winter, the peak does not occur in the same
month each year. Moreover, some seasons have very large peaks, indicating flu epi-
demics, whereas other seasons are mild. In addition, it can be seen from Figure 3.1
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that there is a slight negative trend in the data set (this is best seen by focusing on the
troughs), indicating that flu prevention is getting better over the eleven year period.

Although it is not necessary, to ease the discussion, we focus on the differenced
data, which will remove the trend. In this case, we denote Yt =∇flut , where flut repre-
sents the data discussed in Example 3.1. Shumway and Stoffer (2011, Example 5.6)
fit a threshold model to Yt , but we might also consider a switching autoregessive
model given in (9.31) or (9.33) where there are two hidden regimes, one for epi-
demic periods and one for more mild periods. In this case, the model is given by

Yt =

{
φ
(1)
0 +∑

p
j=1 φ

(1)
j Yt− j +σ (1)Zt , for It = 1 ,

φ
(2)
0 +∑

p
j=1 φ

(2)
j Yt− j +σ (2)Zt , for It = 2 ,

(9.34)

where Zt∼ iid N(0,1), and It is a hidden, two-state Markov chain. 3

9.2 Filtering and smoothing

Statistical inference for nonlinear state-space models involves computing the pos-
terior distribution of a collection of state variables Xs:s′ := (Xs, . . . ,Xs′), with s < s′

conditioned on a batch of observations, Y0:t = (Y0, . . . ,Yt), which we denote by φξ ,s:s′|t
(where ξ is the initial distribution), the dependence on the observations being im-
plicit for ease of notation. Specific problems include filtering, which corresponds to
s = s′ = t, fixed lag smoothing, when s = s′ = t−L and fixed interval smoothing, if
s = 0 and s′ = t (see Section 2.2).

Definition 9.10 (Smoothing, filtering, prediction). For non-negative indices s, t,
and n with t ≥ s, and any initial distribution ξ on (X,X ), denote by φξ ,s:t|n (the
dependence in the observations is implicit to avoid overloading the notation) the
conditional distribution of Xs:t given Y0:n. Specific choices of s, t and n give rise to
several particular cases of interest:

Joint Smoothing: φξ ,0:n|n, for n≥ 0;

(Marginal) Smoothing: φξ ,t|n for 0≤ t ≤ n;

Prediction: φ
ξ ,t+1|t for t ≥ 0;

p-step Prediction: φξ ,t+p|t for t, p≥ 0.

Filtering: φξ ,t|t for t ≥ 0; Because the use of filtering will be preeminent in the
following, we shall most often abbreviate φξ ,t|t to φ

ξ ,t .

Despite the apparent simplicity of the above problems, the smoothing distribution
can be computed in closed form only in very specific cases, principally, the linear
Gaussian model (see Section 2.2) and the discrete-valued Hidden Markov model
(where the state {Xt , t ∈ N} takes its values in a finite alphabet).
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9.2.1 Discrete-valued state-space HMM

We denote by φ
ξ ,t the filtering distribution, i.e., the distribution of Xt given the ob-

servations up to time t, Y0:t . To simplify the notations, the dependence of the filtering
distribution with respect to the observations is implicit.

Denote by γ
ξ ,t the joint distribution of the state Xt and the observations Y0:t :

γ
ξ ,t(xt) = ∑

x0

. . . ∑
xt−1

ξ (x0)g0(x0)
t

∏
s=1

Qs(xs−1,xs) ,

where we have set, for s ∈ N

gs(xs) = g(xs,Ys) and Qs(xs−1,xs) = M(xs−1,xs)g(xs,Ys) . (9.35)

This equation may be rewritten in matrix form as follows

γ
ξ ,t = ξ Q0Q1 . . .Qt ,

where Q0 = diag{g(x,Y0), x ∈ X} and

Qs = M diag{g(x,Ys), x ∈ X} , for s≥ 1 . (9.36)

This distribution may be computed recursively as follows

γ
ξ ,0(x0) = ξ (x0)g0(x0) and γ

ξ ,t(xt) = ∑
xt−1∈X

γ
ξ ,t−1(xt−1)Qt(xt−1,xt) (9.37)

or equivalently in matrix form γ
ξ ,0 = ξ Q0 and for t ≥ 1, γ

ξ ,t = γ
ξ ,t−1Qt . The com-

putational complexity grows like the square of the number of states. The joint distri-
bution of (Y0, . . . ,Yt) may be obtained by marginalizing the joint distribution γ

ξ ,t of
(Y0, . . . ,Yt ,Xt) with respect to the state Xt , i.e., p

ξ ,t(Y0:t) = ∑xt∈X γ
ξ ,t(xt) or, in ma-

trix form, p
ξ ,t(Y0:t) = γ

ξ ,t111. The filtering distribution is the conditional distribution
of the state Xt given (Y0, . . . ,Yt). It is obtained by dividing the joint distribution of
(Xt ,Y0, . . . ,Yt) by p

ξ ,t(Y0:t),

φ
ξ ,t(xt) =

γ
ξ ,t(xt)

∑xt∈X γ
ξ ,t(xt)

, (9.38)

or in matrix form φ
ξ ,t = γ

ξ ,t/γ
ξ ,t111. By plugging the recursion (9.37), the filtering

distribution can thus be updated recursively as follows

φ
ξ ,t(xt) =

∑xt−1∈X φ
ξ ,t−1(xt−1)Qt(xt−1,xt)

∑(xt−1,x′t−1)∈X2 φ
ξ ,t−1(xt−1)Qt(xt−1,x′t)

. (9.39)

In matrix form, this recursion reads

φ
ξ ,t =

φ
ξ ,t−1Qt

φ
ξ ,t−1Qt111

.
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Algorithm 9.1 (Forward Filtering)
Initialization: For x ∈ X,

φ
ξ ,0|−1(x) = ξ (x) .

Forward Recursion: For t = 0, . . . ,n,

cξ ,t = ∑
x∈X

φ
ξ ,t|t−1(x)gt(x) , (9.40)

φ
ξ ,t(x) = φ

ξ ,t|t−1(x)gt(x)/cξ ,t , (9.41)

φ
ξ ,t+1|t(x) = ∑

x′∈X
φ

ξ ,t(x
′)M(x,x′) , (9.42)

for each x ∈ X.

The algorithm is summarized in Algorithm 9.1, which in the Rabiner (1989) termi-
nology, corresponds to the normalized forward recursion. The computational cost of
filtering is thus proportional to n, the number of observations, and scales like |X|2
(squared cardinality of the state space X) because of the |X| vector matrix products
corresponding to (9.42).

The predictive distribution of the observation Yt given Y0:t−1 is equal to the ratio

p
ξ ,t(Y0:t)

p
ξ ,t−1(Y0:t−1)

=
∑xt∈X γ

ξ ,t(xt)

∑xt−1∈X γ
ξ ,t−1(xt−1)

= ∑
(xt−1,xt )∈X2

φ
ξ ,t−1(xt−1)Qt(xt−1,xt) . (9.43)

or in matrix form
p

ξ ,t(Y0:t)

p
ξ ,t−1(Y0:t−1)

= φ
ξ ,t−1Qt111 .

The likelihood of n+1 the observations may therefore be written as

p
ξ ,n(Y0:n) = p

ξ ,0(Y0)
n

∏
t=1

p
ξ ,t(Y0:t)

p
ξ ,t−1(Y0:t−1)

(9.44)

= p
ξ ,0(Y0)

n

∏
t=1

∑
(xt−1,xt )∈X2

φ
ξ ,t−1(xt−1)Qt(xt−1,xt) .

In matrix form, the likelihood may be expressed as

p
ξ ,n(Y0:n) = p

ξ ,0(Y0)
n

∏
t=1

φ
ξ ,t−1Qt111 .

The complexity to evaluate this joint distribution grows linearly with the number of
observations n and quadratically with the number of states m, whereas the complexity
of the direct evaluation of the likelihood (summing up on all the possible sequences
of states) grows exponentially fast O(mn). The direct evaluation of the likelihood is
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therefore manageable even when the number of observations is large, which enables
likelihood inference. We will discuss this issue in depth in Chapter 12.

The filtering recursion yields the probability distribution of the state Xt given the
observations up to time t. When analyzing a time series by batch, the inference of
the state Xt that incorporates all the observations (Y0, . . . ,Yn) is in general preferable.
Such probability statements are given by the fixed interval smoothing probabilities.
To simplify the derivations, we denote by pξ (xs:t ,ys′:t ′) the density with respect to the
counting measure of the vector (Xs:t ,Ys′:t ′). Note first that, for any s ∈ {0, . . . ,n−1},

pξ (xs|xs+1:n,y0:n) =
pξ (y0:s,xs,xs+1,ys+1:n,xs+2:n)

∑x′s∈X pξ (y0:s,x′s,xs+1,ys+1:n,xs+2:n)

(1)
=

pξ (y0:s,xs,xs+1)

∑x′s∈X pξ (y0:s,x′s,xs+1)

(2)
=

φ
ξ ,s(xs)M(xs,xs+1)

∑x′s∈X φ
ξ ,s(x

′
s)M(x′s,xs+1)

= pξ (xs|xs+1,y0:s) ,

where (1) follows from

pξ (ys+1:t ,xs+2:n|y0:s+1,x0:s+1) = pξ (ys+1:t ,xs+2:n|xs+1)

which cancels in the numerator and the denominator, (2) from

pξ (xs+1|xs,y0:s) = p(xs+1|xs) = M(xs,xs+1) ,

where we have used (9.7) and the fact that {(Xt ,Yt), t ∈ N} is a Markov chain. This
shows that {Xn−s,s ∈ {0,1, . . . ,n}} conditioned on the observations Y0:n is a Markov
chain, with initial distribution φ

ξ ,n and transition kernel B
φ

ξ ,s
where for any measure

η on X, Bη is the Markov matrix given by

Bη(x,x
′) :=

η(x′) m(x′,x)
∑x′′∈X η(x′′) m(x′′,x)

. (9.45)

In matrix form, the backward kernel may be written as

Bη = diag(M′Dη 111)−1M′Dη , Dη := diag(η(x),x ∈ X) .

Here, 111 denotes the matrix with all entries equal to one. For any integers n > 0,
s ∈ {0, . . . ,n−1}, the posterior distribution φξ ,s:n|n may be expressed as

φξ ,s:n|n(xs:n) = φ
ξ ,n(xn)Bφ

ξ ,n−1
(xn,xn−1) . . .Bφ

ξ ,s
(xs+1,xs) . (9.46)

In particular, the marginal smoothing distribution φξ ,s|n may be expressed in matrix
form as

φξ ,s|n = φ
ξ ,nBφ

ξ ,n−1
Bφ

ξ ,n−2
. . .Bφ

ξ ,s
.
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Algorithm 9.2 (Backward marginal smoothing)
Given stored values of φ

ξ ,0, . . . ,φξ ,n and starting from n, backwards in time.

Initialization: For x ∈ X,
φξ ,n|n(x) = φ

ξ ,n(x) .

Backward Recursion: For t = n−1, . . . ,0,
• Compute the backward transition kernel according to

Bφ
ξ ,t
(x,x′) =

φ
ξ ,t(x

′)M(x′,x)

∑x′′∈X φ
ξ ,t(x

′′)M(x′′,x)

for (x,x′) ∈ X×X.
• Compute

φξ ,t|n(x) = ∑
x′∈X

φξ ,t+1|n(x
′)Bφ

ξ ,t
(x′,x) .

for (x,x′) ∈ X×X.

The marginal smoothing distribution can be generated recursively, backwards in time
as follows

φξ ,s|n = φξ ,s+1|nBφ
ξ ,s

. (9.47)

This recursion, summarized in Algorithm 9.2, is the forward-backward algorithm
or the Baum-Welch algorithm for discrete Hidden Markov Models. In the forward
pass, the filtering distributions {φ

ξ ,t , t ∈ {0, . . . ,n}} are computed and stored. In the
backward pass, these filtering distributions are corrected by recursively applying the
backward kernels.

When X is finite, it turns out that it is also possible to determine the path X̂0:n
which maximizes the joint smoothing probability

X̂0:n := argmax
x0:n∈Xn+1

Pξ (X0:n = x0:n | Y0:n) = argmax
x0:n∈Xn+1

φξ ,0:n|n(x0:n) . (9.48)

Solving the maximization problem (9.48) over all possible state sequences x0:m by
brute force would involve mn+1 function evaluations, which is clearly not feasible
except for small n. The algorithm that makes it possible to efficiently compute the a
posteriori most likely sequence of states is known as the Viterbi algorithm, which is
based on the well-known dynamic programming principle. The logarithm of the joint
smoothing distribution may be written as

lnφξ ,0:t|t(x0:t) = (`ξ ,t−1− `ξ ,t)

+ lnφξ ,0:t−1|t−1(x0:t−1)+ lnm(xt−1,xt)+ lngt(xt) , (9.49)

where `ξ ,t denotes the log-likelihood of the observations up to index t. The salient
feature of (9.49) is that, except for a constant term that does not depend on the state
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Figure 9.8 Top: Earthquake count data and estimated states. Bottom left: Smoothing proba-
bilities. Bottom right: Histogram of the data with the two estimated Poisson densities super-
imposed (solid lines).

sequence (on the right-hand side of the first line), the a posteriori log-probability of
the subsequence x0:t is equal to that of x0:t−1 up to terms that only involve the pair
(xt−1,xt). Define

µt(x) = max
x0:t−1∈Xt

lnφξ ,0:t|t(x0:t−1,x)+ `ξ ,t , (9.50)

that is, up to a number independent of the state sequence, the maximal conditional
probability (on the log scale) of a sequence up to time t and ending with state x ∈ X.
Also define bt(x) to be that value in X of xt−1 for which the optimum is achieved in
(9.50); in other words, bt(x) is the second final state in an optimal state sequence of
length t +1 and ending with state x. Using (9.49), we then have the simple recursive
relation

µt(x′) = max
x∈X

[
µt−1(x)+ lnm(x,x′)

]
+ lngt(x′) , (9.51)

and bt(x′) equals the state for which the maximum is achieved. The backward re-
cursion first identifies the final state of the optimal state sequence. Then, once the
final state is known, the next to final one can be determined as the state that gives the
optimal probability for sequences ending with the now known final state. After that,
the second next to final state can be determined in the same manner, and so on.

Example 9.11 (Number of major earthquakes; Example 9.1, cont.). For a model
with two states, we assume that the parameters of the Poisson distribution (λ1,λ2) ∈
R+ associated with each state and of the transition matrix [M(x,x′)](x,x′)∈X2 are un-
known, where X = {1,2}. Denote by θ these parameters, which are assumed to be-
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Figure 9.9 S&P 500 weekly return from January 3, 2003 to September 30, 2012 and the es-
timated state based on the smoothing distributions. The states are indicated by points labeled
1,2 or 3. For display purposes, the vertical axis has been truncated; cf. Figure 9.3.

long to a compact subset of

Θ =
{
{λx}x∈X, [M(x,x′)](x,x′)∈X2 , M(x,x′)≥ 0 and ∑

x′∈X
M(x,x′) = 1

}
. (9.52)

Given observations Y0, . . . ,Yn, we may use (9.44) to write the log-likelihood as

lnpθ

ξ ,n(Y0:n) = ln
(

pθ

ξ ,0(Y0)
)
+

n

∑
t=1

ln

 ∑
(xt−1,xt )∈X2

φ
θ

ξ ,t−1(xt−1)Qθ
t (xt−1,xt)

 .

Consequently, MLE can be performed via numerical maximization.
We fit the model to the time series of earthquake counts using the R package

depmixS4. The package does not provide standard errors, so we obtained them by
a parametric bootstrap procedure; see Remillard (2011) for justification. We note,
however, that the standard errors may be obtained as a by-product of the estima-
tion procedure; see Chapter 12. The MLEs of the intensities, along with their stan-
dard errors, were (λ̂1, λ̂2) = (15.4(.7),26.0(1.1)). The MLE of the transition ma-
trix was [M̂(1,1),M̂(1,2),M̂(2,1),M̂(2,2)] = [.93(.04), .07(.04), .12(.09), .88(.09)]. Fig-
ure 9.8 displays the counts, the estimated state (displayed as points) and the smooth-
ing distribution for the earthquakes data, modeled as a 2-state Poisson HMM model
with parameters fitted using the MLEs. Finally, a histogram of the data is displayed
along with the two estimated Poisson densities superimposed as solid lines. 3

Example 9.12 (S&P500; Example 9.2, cont.). In Example 9.2, we fitted a mixture
of three Gaussian distributions to the weekly S&P500 log-returns from January 3,
2003 until September 28, 2012. The results, which are displayed in Figure 9.3, are
obtained under the unlikely assumption that the data are independent.

Here, we fit an HMM using the R package depmixS4, which takes into account
that the data are dependent. As in Example 9.2, we chose a three-state model and we
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Figure 9.10 The differenced flu mortality data of Figure 3.1 along with the estimated states
(displayed as points). The smoothed state 2 probabilities are displayed in the bottom of the
figure as a straight line. The filtered state 2 probabilities are displayed as vertical lines.

leave it to the reader to investigate a two-state model (see Exercise 9.11). Standard
errors (shown in parentheses below) were obtained via a parametric bootstrap based
on a simulation script provided with the package.

The fitted transition matrix was

M̂ =

 .945(.107) .055(.107) .000(.005)
.739(.362) .000(.069) .261(.351)
.031(.029) .027(.069) .942(.062)

 ,

and the three fitted normals were N(µ̂1 = .004(.018), σ̂1 = .014(.020)), N(µ̂2 =
−.034(.020), σ̂2 = .009(.006)), and N(µ̂3 = −.003(.006), σ̂3 = .044(.012)). The data,
along with the predicted state (based on the smoothing distribution), are plotted in
Figure 9.9.

The major differences between these results and the results from Example 9.2 are
that regime 2 appears to represent a somewhat large-in-magnitude negative return,
and may be a lone dip, or the start or end of a highly volatile period. States 1 and 3
represent clusters of regular or high volatility, respectively. Note that there is a large
amount of uncertainty in the fitted normals, and in the transition matrix involving
transitions from state 2 to states 1 or 3. 3

Example 9.13 (Influenza mortality; Example 9.9, cont.). In Example 9.9, we
considered fitting a two-state switching AR model given by (9.34). In particular, the
idea was that data exhibit two different dynamics, one during an epidemic period,
and another during a non-epidemic period.

We used the R package MSwM to fit the model specified in (9.34), with p = 2. The
results were

Ŷt =

{
.006(.003)+ .293(.039)Yt−1 + .097(.031)Yt−2 + .024Zt , for It = 1 ,
.199(.063)− .313(.281)Yt−1−1.604(.276)Yt−2 + .112Zt , for It = 2 ,
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with estimated transition matrix

M̂ =

[
.927 .073
.300 .700

]
.

Figure 9.10 displays the data Yt = ∇flut along with the estimated states (displayed as
points labeled 1 or 2). The smoothed state 2 probabilities are displayed in the bottom
of the figure as a straight line. The filtered state 2 probabilities are displayed in the
same graph as vertical lines. 3

9.2.2 Continuous-valued state-space HMM

The recursion developed for the discrete-valued state space extends directly to the
general state-space setting. At time t−1, the filtering distribution φ

ξ ,t−1 summarizes
all information the observations Y0, . . . , Yt−1 contain about the state Xt−1.

Denote by γ
ξ ,t

γ
ξ ,t( f ) =

∫
· · ·
∫

ξ (dx0)g0(x0)
t

∏
s=1

Qs(xs−1,dxs) f (xt) (9.53)

where f ∈ F+(X,X ) and

gt(xt) := g(xt ,Yt) and Qt(xt−1,A) :=
∫

A
M(xt−1,dxt)gt(xt) for all A ∈ X . (9.54)

This distribution may be computed recursively as follows

γ
ξ ,0( f ) =

∫
ξ (dx0)g0(x0) f (x0) = ξ (g0 f )

γ
ξ ,t( f ) =

∫∫
γ

ξ ,t−1(dxt−1)Qt(xt−1,dxt) f (xt) = γ
ξ ,t−1Qt( f ) .

The joint distribution of the observations (Y0, . . . ,Yt) is obtained by marginalizing the
joint distribution γ

ξ ,t with respect to the state Xt , i.e.,

p
ξ ,t(Y0:t) =

∫
γ

ξ ,t(dxt) = γ
ξ ,t(111) . (9.55)

The filtering distribution is the conditional distribution of the state Xt given
(Y0, . . . ,Yt). It is obtained by dividing the joint distribution of (Xt ,Y0, . . . ,Yt) by
p

ξ ,t(Y0:t),

φ
ξ ,t( f ) =

γ
ξ ,t( f )

γ
ξ ,t(111)

=

∫
···
∫

f (xt)ξ (dx0)g0(x0)∏
t
s=1 M(xs−1,dxs)gs(xs)∫

···
∫

ξ (dx0)g0(x0)∏
t
s=1 M(xs−1,dxs)gs(xs)

=

∫
···
∫

f (xt)φξ ,t−1(dxt−1)M(xt−1,dxt)gt(xt)∫
···
∫

φ
ξ ,t−1(dxt−1)M(xt−1,dxt)gt(xt)

=
φ

ξ ,t−1Qt f

φ
ξ ,t−1Qt111

. (9.56)
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The forward recursion in (9.56) may be rewritten to highlight a two-step procedure
involving both the predictive and filtering distributions. For t ∈ {0,1, . . . ,n} and f ∈
Fb(X,X ), with the convention that φξ ,0|−1 = ξ , (9.56) may be decomposed as

φ
ξ ,t|t−1 = φ

ξ ,t−1M , (9.57a)

φ
ξ ,t( f ) =

φ
ξ ,t|t−1( f gt)

φ
ξ ,t|t−1(gt)

. (9.57b)

Filter to Predictor: The first equation in (9.57) means that the updated predictive
distribution φ

ξ ,t|t−1 is obtained by applying the transition kernel M to the current
filtering distribution φ

ξ ,t−1. The predictive distribution is the one-step distribution
of the Markov chain with kernel M given its initial distribution.

Predictor to Filter: The second equation in (9.57) is recognized as Bayes’ rule to
correct the predictive distribution through the information contained in the actual
observation Yt .
• Xt is distributed a priori according to the predictive distribution φ

ξ ,t|t−1,

• gt is the conditional probability density function of Yt given Xt .
Although the recursions (9.57) appear relatively simple, they in fact must be approx-
imated by numerical methods. We discuss particle approximations in Chapter 10.

The joint smoothing distribution φξ ,0:t|t then satisfies, for ft+1 ∈ Fb(X⊗(t+1)),

φξ ,0:t|t( ft+1) =
(

p
ξ ,t(Y0:t)

)−1 ∫
· · ·
∫

ft+1(x0:t)ξ (dx0)g(x0,y0)
t

∏
s=1

Qs(xs−1,dxs)

(9.58)
assuming that p

ξ ,t(Y0:t)> 0. Likewise, for indices p≥ 0,

φξ ,0:t+p|t( ft+p+1) =
∫
· · ·
∫

ft+p+1(x0:t+p)

×φξ ,0:t|t(dx0:t)
t+p

∏
s=t+1

M(xs−1,dxs) (9.59)

for all functions ft+p+1 ∈ Fb(X⊗(t+p+1)). Eq. (9.58) implicitly defines the filtering,
the predictive and the smoothing distributions as these are obtained by marginaliza-
tion of the joint smoothing distribution; see Exercise 9.13.

The expression of the joint smoothing distribution (9.58) implicitly defines all
other particular cases of smoothing kernels as these are obtained by marginalization.
For instance, the marginal smoothing kernel φξ ,t|n for 0 ≤ t ≤ n is such that for
f ∈ F+(X,X ),

φξ ,t|n( f ) :=
∫
· · ·
∫

f (xt)φξ ,0:n|n(dx0:n) , (9.60)

where φξ ,0:n|n is defined by (9.58).
Similarly, we note that the p-step predictive distribution φξ ,n+p|n may be obtained

by marginalization of the joint distribution φξ ,0:n+p|n with respect to all variables xt
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except the last one (the one with index t = n+ p). A closer examination of (9.59)
directly shows that φξ ,n+p|n = φ

ξ ,nMp.
We now derive recursion for the smoothing distribution. For η ∈M1(X ), assume

that there exists a kernel Bη on (X,X ) that satisfies, for all h ∈ Fb(X
2,X⊗2),∫∫

h(x,x′)η(dx)M(x,dx′) =
∫∫

h(x,x′)ηM(dx′)Bη(x
′,dx) . (9.61)

This kernel is referred to as the backward kernel . When the HMM is fully dominated
(see Definition 9.3), then the backward kernel may be explicitly written as

Bη(x,A) :=
∫

η(dx′) m(x′,x)1A(x′)∫
η(dx′) m(x′,x)

, A ∈ X . (9.62)

In other words, denote by η the distribution of X0, and assume that the con-
ditional distribution of X1 given X0 is M(X0, ·). Then the joint distribution of
(X0,X1) is given by η ⊗ M, i.e., for any h ∈ Fb(X

2,X⊗2), Eη [h(X0,X1)] =∫∫
η(dx0)M(x0,dx1)h(x0,x1). The marginal distribution of X1 is ηM, and the con-

ditional distribution of X0 given X1 is specified by the kernel Bη(X1, ·).
Proposition 9.14. Given a strictly positive index t, initial distribution ξ , and index
t ∈ {0, . . . ,n−1},

E
[

f (Xt)
∣∣ Xt+1:n,Y0:n

]
= E

[
f (Xt)

∣∣ Xt+1,Y0:t
]
= Bφ

ξ ,t
f (Xt+1)

for any f ∈ Fb(X,X ). In addition,

E
ξ

[
f (X0:n)

∣∣ Y0:n
]
=
∫
· · ·
∫

f (x0:n)φ
ξ ,n(dxn)

n−1

∏
s=0

Bφ
ξ ,s
(xs+1,dxs) (9.63)

for any f ∈ Fb(X
n+1,X⊗(n+1)).

Proof. See Exercise 9.14. �

It follows from Proposition 9.14 that, conditionally on Y0:n, the joint distribu-
tion of the index-reversed sequence {Xn,Xn−1, . . . ,X0} is that of a non-homogeneous
Markov chain with initial distribution φ

ξ ,n and transition kernels {B
φ

ξ ,t
}n−1≥t≥0. The

backward smoothing kernel depends neither on the future observations nor on the in-
dex n. Therefore, the sequence of backward transition kernels {B

φ
ξ ,t
}0≤t≤n−1 may be

computed by forward recurrence on t. This decomposition suggests Algorithm 9.3 to
recursively compute the marginal smoothing decomposition. Although the algorithm
is apparently simple, the smoother must be approximated numerically. We discuss
particle methods in Chapter 11.

Example 9.15 (The Rauch-Tung-Striebel smoother). For a linear Gaussian state-
space model, all the conditional distributions are Gaussian distributions. Therefore,
in that case, only the mean vectors and the covariance matrices need to be evaluated,
and correspondingly the filtering or smoothing equations become equivalent to the
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Algorithm 9.3 (Forward Filtering/Backward Smoothing)

Forward Filtering: Compute, forward in time, the filtering distributions φ
ξ ,0 to

φ
ξ ,n using the recursion (9.56). At each index t, the backward transition kernel

B
φ

ξ ,t
may be computed according to (9.61).

Backward Smoothing: From φ
ξ ,n, compute, for t = n−1,n−2, . . . ,0,

φξ ,t|n = φξ ,t+1|n Bφ
ξ ,t

.

ordinary Kalman filter / smoother. The smoothing algorithm introduced above leads
to an alternative derivation of Proposition 2.7, which is referred to as the Rauch-
Tung-Striebel smoother; see Rauch et al. (1965). Let Xt+1 = ΦXt +Wt and Yt =
AXt +Vt , where {Wt , t ∈ N} is i.i.d. zero-mean Gaussian with covariance Q and
{Vt , t ∈ N} is i.i.d. zero mean-mean Gaussian with covariance R, {Vt , t ∈ N} and
{Wt , t ∈ N} are independent. The initial state X0 has a Gaussian distribution and is
independent of {Vt , t ∈ N} and {Wt , t ∈ N}.

We first determine the backward kernel. Let η be a Gaussian distribution with
mean µ0 and covariance Γ0, i.e., η = N(µ0,Γ0). Assume that X0 ∼ η and let X1 =
ΦX0 +W0. Note that, under this model,[

X0
X1

]
∼ N

([
µ0
µ1

]
,

[
Γ0 Γ0Φ ′

ΦΓ0 Q+ΦΓ0Φ ′

])
, (9.64)

where µ1 = Φµ0. For any x1 ∈ X, the backward kernel, (9.61), is the conditional
distribution of X0 given X1 = x1, in the model (9.64). This conditional distribution is
Gaussian, with mean and covariance

µ0|1 = µ0 + J0(x1−µ1) (9.65)

Γ0|1 = Γ0−Γ0Φ
′(ΦΓ0Φ

′+Q)−1
ΦΓ0 = Γ0− J0(ΦΓ0Φ

′+Q)J′0 (9.66)

where J0 is the Kalman gain

J0 = Γ0Φ
′(ΦΓ0Φ

′+Q)−1 . (9.67)

The action of this kernel is best understood by considering the Gaussian random
vector

X̃0 = µ0 + J0(X1−µ1)+Z0 (9.68)

where Z0 is a Gaussian random vector with zero-mean and covariance Γ0|1 indepen-
dent of X1. Conditional to X1 = x1, X̃0 is distributed according to Bη(x1, ·), provided
that η = N(µ0,Γ0). Assume now that X1 ∼ N(µ1,Γ1). Then, the (unconditional) dis-
tribution of X̃0 is Gaussian with mean and covariance given by

µ̃0 = µ0 + J0(µ1−µ0) , (9.69)

Γ̃0 = J0Γ1J′0 +Γ0− J0(ΦΓ0Φ
′+Q)J′0

= Γ0 + J0
(
Γ1− (ΦΓ0Φ

′+Q)
)

J′0 . (9.70)
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To obtain the recursion for the smoother covariance, it suffices to replace (µ0,Γ0) in
(9.65)-(9.66) by the filtering mean and covariance (Xt|t ,Pt|t), defined in (2.11)-(2.12)
and (µ1,Γ1) by (Xt+1|n,Pt+1|n), to obtain the forward-filtering, backward smoothing
recursion

Xt|n = Xt|t + Jt(Xt+1|n−Xt|t) (9.71)

Pt|n = Pt|t + Jt
(
Pt+1|n−Pt+1|t

)
J′t (9.72)

where Jt = Pt|tΦ
′(ΦPt|tΦ

′+Q)−1 is the Kalman Gain. The filtering mean and co-
variance (Xt|t ,Pt|t) are computed using the Kalman filter. The smoothing mean and
covariance are obtained by running (9.71)-(9.72) backwards in time, starting from
(Xn|n,Pn|n). 3

9.3 Endnotes

Nonlinear state space models and their generalizations are nowadays used in many
different areas. Several specialized books are available that largely cover applications
of HMMs to some specific areas such as speech recognition (Rabiner and Juang,
1993, Jelinek, 1997), econometrics (Hamilton, 1989, Kim and Nelson, 1999), com-
putational biology (Durbin et al., 1998, Koski, 2001), or computer vision (Bunke
and Caelli, 2001). The elementary theory of HMM is covered in MacDonald and
Zucchini (2009) and Fraser (2008), which discuss a lot of interesting examples of
applications.

Most of the early references on filtering and smoothing, which date back to the
1960s, focused on the specific case of Gaussian linear state-space models, following
the pioneering work by Kalman and Bucy (1961). The classic book by Anderson
and Moore (1979) on optimal filtering, for instance, is fully devoted to linear state-
space models; see also Kailath et al. (2000, Chapter 10) for a more exhaustive set of
early references on the smoothing problem. Although some authors, for example, Ho
and Lee (1964) considered more general state-space models, it is fair to say that the
Gaussian linear state-space model was the dominant paradigm. Until the early 1980s,
the works that did not focus on the linear state-space model were usually advertised
by the use of the words “Bayes” or “Bayesian” in their title; see, e.g., Ho and Lee
(1964) or Askar and Derin (1981).

Almost independently, the work by Baum and his colleagues on hidden Markov
models (Baum et al., 1970) dealt with the case where the state space X of the hidden
state is finite. These two streams of research (on Gaussian linear models and finite
state space models) remained largely separated. The forward-backward algorithm
is known to many, especially in the field of speech processing, as the Baum-Welch
algorithm, although the first published description of the approach is due to Baum
et al. (1970, p. 168).

The forward-backward algorithm was discovered several times in the early
1970s; see Fraser (2008) and MacDonald and Zucchini (2009). A salient example
is the paper by Bahl et al. (1974) on the computation of posterior probabilities for
a finite-state Markov channel encoder for transmission over a discrete memoryless
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channel. The algorithm described by Bahl et al. (1974) is fully equivalent to the
forward-backward and is known in digital communication as the BCJR (for Bahl,
Cocke, Jelinek, and Raviv) algorithm. Chang and Hancock (1966) is another less
well-known reference, contemporary with the work of Baum and his colleagues,
which also describes the forward-backward decomposition and its use for decoding
in communication applications.

Approximately at the same time, in applied probability, the seminal work
by Stratonovich (1960) stimulated a number of contributions that were to compose a
body of work generally referred to as filtering theory. The object of filtering theory
is to study inference about partially observable Markovian processes in continuous
time. A number of early references in this domain indeed consider some specific form
of discrete state space continuous-time equivalent of the HMM (Shiryaev 1966, Won-
ham 1965; see also Lipster and Shiryaev 2001, Chapter 9). Working in continuous
time, however, implies the use of mathematical tools that are definitely more com-
plex than those needed to tackle the discrete-time model of Baum et al. (1970). As a
matter of fact, filtering theory and hidden Markov models evolved as two mostly in-
dependent fields of research. A poorly acknowledged fact is that the pioneering paper
by Stratonovich (1960) (translated from an earlier Russian publication) describes, in
its first section, an equivalent to the forward-backward smoothing approach of Baum
et al. (1970). It turns out, however, that the formalism of Baum et al. (1970) general-
izes well to models where the state space is not discrete anymore, in contrast to that
of Stratonovich (1960).

Exercises

9.1. Let (Ω ,F ,P) be a probability space and Y a random variable such that E
[
Y 2
]
<

∞. Let G ⊂ F be a σ -algebra. Show that

E[(Y −E [Y |G])2] = E[(Y −E [Y |G])2]+E
[
(E [Y |G]−E[Y ])2] ,

and check (9.6).

9.2. Consider a discrete state-space HMM. Denote by X = {1, . . . ,m} the state-
space of the Markov chain, M, the m×m transition matrix and, for y ∈ Y, by
Γ = diag(G(1,y), . . . ,G(m,Y )). Assume that M admits a unique stationary distri-
bution denoted by π = [π(1), . . . ,π(m)].
(a) Show that the likelihood of the observations (9.4) may be expressed as

p
ξ ,t(Y0:t) = ξΓ (Y0)MΓ (Y1)M . . .MΓ (Yt)1

where 1= [1,1, . . . ,1]′.
(b) Show that for any h ∈ N,

p
ξ ,t(Yh:t+h) = ξ Mh

Γ (Y0)MΓ (Y1)M . . .MΓ (Yt)1

and check that p
ξ ,t(Yh:t+h) = p

ξ ,t(Y0:t).
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9.3. We use the notations of Exercise 9.2. Let (µx,x ∈ X) and (σ2
x ,x ∈ X) denote the

mean and variance of the distributions (G(x, ·),x ∈ X).
(a) Eπ [Yt ] = ∑x∈X π(x)µx.
(b) Eπ [Y 2

t ] = ∑x∈X π(x)(σ2
x +µ2

x ).

(c) Varπ(Yt) = ∑x∈X π(x)(σ2
x +µ2

x )− (∑x∈X π(x)µx)
2.

(d) If m = 2, Varπ(Yt) = π(1)σ(1)2 +π(2)σ2
2 +π(1)π(2)(µ1−µ2)

2.
(e) For k ∈ N,

Eπ [YtYt+k] = ∑
x0∈X

∑
xk∈X

π(x0)µx0Mk(x0,xk)µxk = πdiag(µ)Mk
µ ,

where µ = [µ1,µ2, . . . ,µm]
′.

(f) Show that, if the eigenvalues of M are distinct, then Covπ(X0,Xk) may be ex-
pressed as a linear combination of the k-th powers of those eigenvalues.

9.4. Consider the state-space model with non-linear state evolution equation

Xt = A(Xt−1)+R(Xt−1)Wt , Wt ∼ N(0, I) , (9.73)
Yt = BXt +SVt , Vt ∼ N(0, I) , (9.74)

where A and R are matrix-valued functions of appropriate dimensions. Show that the
conditional distribution of Xt given Xt−1 = x and Yt is multivariate Gaussian with
mean mt(x) and covariance matrix Σt(x), given by

Kt(x) = R(x)R′(x)B′
[
BR(x)R′(x)B′+SSt]−1

,

mt(x) = A(x)+Kt(x) [Yt+1−BA(x)] ,

Σt(x) = [I−Kt(x)B]R(x)R′(x) .

9.5. Assume that Yt = µXt +σXt Zt , where {Zt , t ∈ N}∼ iid N(0,1) and {Xt , t ∈ N}
is a two-state stationary Markov chain, independent of {Zt , t ∈ N}.
(a) Show that the unconditional distribution of Yt is given by a mixture of two normal

distributions: p(yt) = π1g(yt ; µ1, σ2
1 )+π2g(yt ; µ2, σ2

2 ) where πx = P(Xt = x),
x ∈ {1,2}.

(b) Show that the skewness is given by

E
[
(Yt −µ)3

]
(E [(Yt −µ)2])3/2 = π1π2(µ1−µ2)

3(σ2
2 −σ2

1 )
2 +(π2−π1)(µ2−µ1)

2

σ3 ,

with µ = E [Yt ] and σ2 = Var(Yt) being the mean and variance of the mixture
distribution: µ = π1µ1 +π2µ2 and σ2 = π1σ2

1 +π2σ2
2 +π1π2(µ2−µ1)

2.
(c) Show that the excess kurtosis is given by

E
[
(Yt −µ)4

]
(E [(Yt −µ)2])2 −3 = π1π2

3(σ2
2 −σ2

1 )
2 + c(µ1,µ2)

σ4 ,

where

c(µ1,µ2) = 6(π1−π2)(σ
2
2 −σ

2
1 )(µ2−µ1)

2 +(µ2−µ1)
4(1−6π1π2) .
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Remark 9.16. Note that skewness in the marginal distribution will be present
whenever both the means and the variances are different. For a model where the
means are the same, no skewness is present. If the variances are the same and the
means are different, skewness is possible only if π1 6= π2. Thus, for a Markov mix-
ture model with different means but equal variances, asymmetry is introduced into
the marginal distribution only through asymmetry in the persistence probabilities,
namely M(1,1) 6= M(2,2). If µ1 = µ2, the marginal distribution has fatter tails than
a normal distribution as long as σ2

1 6= σ2
2 ; see Frühwirth-Schnatter (2006, p. 309).

9.6 (Filtering distribution for a 2-state HMM). Let {Xt , t ∈N} be a two-state sta-
tionary Markov chain with transition kernel M and stationary distribution π . Let
{(Xt ,Yt), t ∈ N} be a partially dominated HMM.

(a) Show that the predictive distribution of Xt = 1,

φt|t−1(1) = π1 +λπ2φt−1(1)−λπ1φt−1(2),

where λ = M(1,1)−M(1,2) is equal to the second eigenvalue of M.
(b) Show that

φt|t−1(1) = (1−λ )π1 +λφt−1(1) .

Remark 9.17. When λ is close to 0 (the Markov chain is not very persistent), the
predictive distribution for Xt is dominated by the stationary distribution of the chain.
When λ is close to 1 (highly persistent Markov chains), the predictive distribution
for Xt will be dominated by the filtered state probability φt−1.

9.7. Consider a two-state Gaussian HMM, Yt = µXt +σXtVt , where {Vt , t ∈ N} is a
strong white Gaussian noise and {Xt , t ∈ N} is a stationary two-state Markov chain
with transition kernel M such that M(1,2) ∈ (0,1) and M(2,1) ∈ (0,1). Show that
{Yt , t ∈ N} is an ARMA(1,1) process.

9.8 (Spectral density of a discrete-valued Markov chain). Let X = {x1, . . . ,xn}
be a finite set and M be a transition kernel on X. Assume that M admits a unique
stationary distribution π . Let {Xt , t ∈ Z} be a stationary Markov chain on X with
transition kernel M. Define by M∞ = limk→∞ Mk = π111.

(a) Show that M∞ = MM∞ = M∞M and M∞ is idempotent.
(b) Let F = M−M∞. Show that (Mk−M∞) = Fk, k = 1,2, · · · .
(c) Set S = diag(x1, . . . ,xn) R = diag(π1, · · · ,πn). Show that µX = πS111, γX (0) =

πS(I −M∞)111 and γX (k) = πSF |k|S111, k =±1,±2, · · · .
(d) Show that the eigenvalues of F are zero and λi, |λi|< 1, i = 2, · · · , n, the sub-

dominant eigenvalues of P counted with their algebraic multiplicity.
(e) Denote by fX (ω) denote the spectral density of {Xt , t ∈ Z}. Show that

2π fX (ω) = πS[(I−M∞)+2Re(e−iω F(I− e−iω F)−1)]S111 . (9.75)

9.9 (Exercise 9.8, cont.). (a) Show that z−1F(I − z−1F)−1 = F(Iz − F)−1 =
QJ(Iz − J)−1Q−1 where J = Q−1FQ is the Jordan canonical form of F , where
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the Jordan matrix J = diag(J1 : · · · : Ju) where each diagonal block Ji is a νi×νi
matrix of the form 

ϕi 1 0 · · · 0
0 ϕi 1 · · · 0
...

. . . . . . . . .
...

0
. . . . . . 1

0 0 · · · 0 ϕi

 ,

i = 1, · · · , u, the ϕ j, i = 1, · · · , u, being the unique eigenvalues of F and νi =
1, ν1 + · · ·+νu = n, their respective algebraic multiplicities. Set Q = [Q1 : · · · :
Qu] and Q−1 = [Q1 : · · · : Qu]′ where Qi and Qi are n×νi matrices, i = 1, · · ·u.

(b) Show that J(Iz −J)−1 = diag(J1(Iz−J1)
−1 : · · · : Jn(Iz −Ju)

−1) and hence that

QJ(Iz− J)−1Q−1 =
u

∑
i=1

QiJi(Iz− Ji)
−1(Qi)′ . (9.76)

(c) Let qi j, · · · qiνi , and qi1, · · · ,qiνi denote the columns of Qi and Q j, respectively.
Show that J j(Iz −Ji)

−1 equals an upper triangular Toeplitz matrix with first row

[ϕi(z−ϕi)
−1, (z−2ϕi)(z−ϕi)

−2, · · · , (z−2ϕi)(z−ϕi)
−νi(−1)νi ] .

(d) Deduce that each of the summands in (9.76) gives rise to an expansion of the
form

Ri1
ϕi

(z−ϕi)
+

νi

∑
j=2

Ri j
(z−2ϕi)(−1) j

(z−ϕi) j , (9.77)

where the second and subsequent terms only appear if νi = 2 and

Ri j =
νi− j+1

∑
l=1

qil(qil+ j−1)′ .

(e) Show that πSQiJi(Iz − Ji)
−1(Qi)′S111 = bi(z)/β j(z) where

bi(z) = πS[Ri1ϕi(z−ϕi)
νi−1 +

νi

∑
j=2

Ri j(z−2ϕi)(z−ϕi)
νi− j(−1) j]S111

and βi(z) = (z−ϕi)
νi , i = 1, · · · , u.

(f) Show that

2π fX (ω) = γX (0)+
u

∑
i=2

bi(eiω)

βi(eiω)
+

bi(e−iω)

βi(e−iω)
= γX (0)+

a(eiω)

α(eiω)
+

a(e−iω)

α(e−iω)

where α(z)= z1−n
∏

u
i=2 βi(z)=∏

n
j=2(1−λ jz−1) and a(z)= z1−n

∑
u
i=2{bi(z)∏

u
j=2, j 6=i β j(z)}.
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(g) By combining the results above, show that the special density of a discrete-
valued Markov chain can be expressed in the rational form

fX (ω) =
1

2π

|m(eiω)|2

|α(eiω)|2
, −π < ω < π,

where m(z) = m0 + m1z−1 + · · ·+ mn−1z−n+1 and α(z) = 1 + α1z−1 + · · ·+
αn−1z−n+1 are relatively prime and n is the state dimension. Furthermore, if
λ j, j = 2, · · · , n, are the sub-dominant eigenvalues of P, then α(z) = ∏

n
j=2(1−

λ jz−1).

9.10. (a) Show that

Eξ

[
p

∏
i=1

fi(Yti)h(Xt1 , . . . ,Xtp)

]
= Eξ

[
h(Xt1 , . . . ,Xtp)

p

∏
i=1

G fi(Xti)

]
and check (9.14).

(b) Show that, for any integers t and p and any ordered t-tuple {t1 < · · · < tp} of
indices such that t 6∈ {t1, . . . , tp}, the random variables Yt and (Xt1 , . . . ,Xtp) are
Pξ -conditionally independent given Xt .

9.11. Fit a two-state model to the S&P 500 weekly returns discussed in Exam-
ple 9.12. Compare the AIC and BIC of the two-state model with the three-state model
and state your conclusions. Note: For the 3-state model, depmix reports:
'log Lik.' 1236.996 (df=14), AIC: -2445.992, BIC: -2386.738.

9.12. We consider the autoregressive stochastic volatility model Example 9.5.
(a) Show that for any integer m,

E
[
Y 2m

t
]
= β

2mE
[
V 2m

t
]

exp(m2
σ

2
X/2) ,

where σ2
X = σ2/(1−φ 2).

(b) Show (9.19).
(c) Show that for any positive integer h, Var(Xt +Xt+h) = 2σ2

X (1+φ h).
(d) Show that

Cov(Y 2m
t ,Y 2m

t+h) = β
4m (E[V 2m

t
])2
(

exp(m2
σ

2
X (1+φ

h))− exp(m2
σ

2
X )
)
.

(e) Establish (9.20).

9.13. The purpose of this exercise is to prove (9.59). Consider two functions f ∈
Fb(X

n+p+1,X⊗(n+p+1)) and h ∈ Fb(Y
n+1,Y⊗(n+1)).

(a) Show that

Eξ [h(Y0:n) f (X0:n+p)] =
∫
· · ·
∫

f (x0:n+p)ξ (dx0)g(x0,y0)

×

[
n

∏
s=1

Qs(xs−1,dxs)

]
h(y0:n)

[
n+p

∏
s=n+1

Qs(xs−1,dxs)

]
µn+p(dy0:n+p) ,

where Qs(xs−1,dxs) = M(xs−1,dxs)g− xs,ys).
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(b) Show that

Eξ [h(Y0:n) f (X0:n+p)] =
∫
· · ·
∫

h(y0:n) f (x0:n+p)

φξ ,0:n|n(y0:n,dx0:n)

[
n+p

∏
s=n+1

M(xs−1,dxs)

]
p

ξ ,n(y0:n)µn(dy0:n) .

9.14. Let t ∈ {0, . . . ,n−1} and h ∈ Fb(X
n−t ,X⊗(n−t)).

(a) Show that

E
ξ

[
f (Xt)h(Xt+1:n)

∣∣ Y0:n
]
=
∫
· · ·
∫

f (xt)h(xt+1:n)φξ ,t:n|n(dxt:n) .

(b) Show that

E
ξ

[
f (Xt)h(Xt+1:n)

∣∣ Y0:n
]
=

p
ξ ,t(Y0:t)

p
ξ ,n(Y0:n)

∫∫
φ

ξ ,t(dxt)M(xt ,dxt+1) f (xt)h̃(xt+1) ,

where

h̃(xt+1) := g(xt+1,Yt+1)
∫
· · ·
∫ [ n

∏
s=t+2

M(xs−1,dxs)g(xs,Ys)

]
h(xt+1:n) .

(c) Show that∫∫
φ

ξ ,t(dxt)M(xt ,dxt+1) f (xt)h̃(xt+1)

=
∫

φ
ξ ,tM(dxt+1)Bφ

ξ ,t
f (xt+1)h̃(xt+1) .

(d) Show that for any ĥ ∈ Fb(X
n−t ,X⊗(n−t)),

φξ ,t+1:n|n(ĥ) =

∫
···
∫

φ
ξ ,t(dxt)∏

n
s=t+1 M(xs−1,dxs)g(xs,Ys)ĥ(xt+1:n)∫

···
∫

φ
ξ ,t(dxt)∏

n
s=t+1 M(xs−1,dxs)g(xs,Ys)

.

(e) Deduce that

E
ξ

[
f (Xt)h(Xt+1:n)

∣∣ Y0:n
]
=
∫
· · ·
∫

Bφ
ξ ,t

f (xt+1)h(xt+1:n)φξ ,t+1|n(dxt+1:n) .

(f) Show that

E
ξ

[
f (Xt)h(Xt+1:n)

∣∣ Y0:n
]
= E

ξ

[
h(Xt+1:n)Bφ

ξ ,t
f (Xt+1)

∣∣ Y0:n

]
,

and conclude.

9.15. Using Proposition 9.14, show the validity of Algorithm 9.3.



Chapter 10

Particle Filtering

Prior to the mid-1980s, a number of methods were developed to approximate the
filtering/smoothing distribution for non-normal or nonlinear state-space models in
an attempt to circumvent the computational complexity of inference for such mod-
els. With the advent of cheap and fast computing, a number of authors developed
computer-intensive methods based on numerical integration. For example, Kitagawa
(1987) proposed a numerical method based on piecewise linear approximations to
the density functions for prediction, filtering, and smoothing for non-Gaussian and
nonstationary state-space models. Pole and West (1989) used Gaussian quadrature
techniques; see West and Harrison (1997, Chapter 13) and the references therein.

Sequential Monte Carlo (SMC) refers to a class of methods designed to approxi-
mate a sequence of probability distributions by a set of particles such that each have
an assigned non-negative weight and are updated recursively. SMC methods are a
combination of the sequential importance sampling method introduced in Handschin
and Mayne (1969) and the sampling importance resampling algorithm proposed in
Rubin (1987).

10.1 Importance sampling

Throughout this section, µ denotes a probability measure on a measurable space
(X,X ), which is referred to as the target distribution. The aim of importance sam-
pling is to approximate integrals of the form µ( f ) =

∫
X f (x)µ(dx) for f ∈ F(X,X ).

The plain Monte Carlo approach consists in drawing an i.i.d. sample {X i}N
i=1, from

the target distribution µ and then evaluating the sample mean N−1
∑

N
i=1 f (X i).

Importance sampling is based on the idea that in certain situations it is more
appropriate to sample from a proposal distribution ν , and then to apply a change-
of-measure formula. Assume that the target distribution µ is absolutely continuous
with respect to ν and denote by w = dµ/dν the Radon-Nikodym derivative of µ with
respect to ν , referred to in the sequel as the weight function. Then, for f ∈ L1(µ), the
change of measure formula implies

µ( f ) =
∫

f (x)µ(dx) =
∫

f (x)w(x)ν(dx) . (10.1)

If {X i}N
i=1 is an i.i.d. sample from ν , (10.1) suggests the following estimator of µ( f ):

321
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N−1
N

∑
i=1

f (X i)w(X i) . (10.2)

Because {X i}N
i=1 is an i.i.d. sample from ν , the Strong Law of Large Numbers

(SLLN) implies that N−1
∑

N
i=1 f (X i)w(X i) converges to ν( f w) = µ( f ) almost surely

as N tends to infinity; see Exercise 10.1. In addition, moments bounds, deviations in-
equalities, and central limit theorem for i.i.d. variables may be used to assess the
fluctuations of this estimator around its mean.

In many situations, the target probability measure µ is known only up to a nor-
malizing factor. This happens in particular when applying importance sampling ideas
to solve filtering and smoothing problems in NLSS. The weight function w is then
known up to a (constant) scaling factor only. It is however still possible to use the im-
portance sampling paradigm, by adopting the self-normalized form of the importance
sampling estimator,

N

∑
i=1

w(X i)

∑
N
j=1 w(X j)

f (X i) . (10.3)

The self-normalized importance sampling estimator is defined as a ratio of the sam-
ple means N−1

∑
N
i=1 f (X i)w(X i) and N−1

∑
N
i=1 w(X i). The SLLN implies that these

two sample means converge, almost surely, to ν( f w) = ν(w)µ( f ) and ν(w), respec-
tively, showing that the self-normalized importance sampling estimator is a consis-
tent estimator of µ( f ); see Exercise 10.5. Importance sampling is of considerable
generality and interest since it introduces very little restrictions on the choice of the
proposal distribution. This choice is typically guided by two requirements: the pro-
posal distribution should be easy to simulate and should lead to an efficient estimator.
This is discussed in the very simple example below.
Example 10.1. Assume that the target distribution is a Gaussian mixture, with den-
sity p(x) = αg(x;m1,σ

2
1 )+ (1−α)g(x;m2,σ

2
2 ). A natural choice for the proposal

distribution is the Student tκ -distribution,

qκ(x) =
Γ ((κ +1)/2)√

κπΓ (κ/2)

(
1+

x2

κ

)− κ+1
2

,

where κ is the number of degrees of freedom and Γ is the Gamma function. The
tκ -distribution is symmetrical about x = 0 and has a single mode at x = 0. It is easy
to show that limκ→∞ qκ(x) = (

√
2π)−1e−x2/2: As κ → ∞, the tκ distribution tends to

the unit normal distribution. For small to moderate number of degrees of freedom,
the fat-tailed behavior of the distribution is characterized by the kurtosis relative to
that of a normal distribution that is equal to 6/(κ−4). When κ is an integer, a draw
of a student tκ may be obtained by sampling Z1, . . . ,Zκ independent standard normal
random variables and computing

Tκ = Z0

(
κ
−1

κ

∑
i=1

Z2
i

)−1/2

.
3
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Figure 10.1 The importance sampling estimator for different choices of proposal distributions.
The proposal distribution is a Student t with 4 degrees of freedom. The scales are 0.5 (top row),
5 (middle row), and 15 (bottom row). The number of samples in each case is 1000. In the first
column of each row, the target pdf is displayed as a solid line and the proposal is displayed as
a dashed line.

Another possibility consists in resorting to the inversion method. We use the impor-
tance sampling estimator to estimate the mean of the target distribution (here equal
to αm1+(1−α)m2) using tκ distribution with κ = 4 and different scales (denoting s
the scale, the proposal distribution is x 7→ s−1qκ(s−1x)). As illustrated in Figure 10.1,
the choice of the scale plays a crucial role. When the scale is either too small or too
large, then the importance sampling estimator becomes very poor.

We can take the idea further. Assume that instead of drawing an independent
sample from ν , the distribution ν is already approximated by a set particles, each
associated to a non-negative weight.

Definition 10.2. A weighted sample {(XN,i,ωN,i)}N
i=1 is said to be adapted to FN ⊂

F if σ({(XN,i,ωN,i)}N
i=1)⊂FN .

A weighted sample {(XN,i,ωN,i)}N
i=1 is consistent for the probability measure

µ ∈M1(X ) if, as N→ ∞,

N

∑
i=1

ωN,i

Ω N f
(
XN,i) P−→ µ( f ) , for any f ∈ Fb(X,X ) , (10.4)

max
1≤i≤N

ωN,i

Ω N
P−→ 0 , (10.5)
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where Ω N is the sum of the importance weights

Ω
N :=

N

∑
i=1

ω
N,i . (10.6)

A weighted sample is a triangular array of random variables: For different values
of N, say N 6= M, the (ωN,i,XN,i) and (ωM,i,XM,i) are not necessarily equal for any
given i≤M∧N. To simplify the notation, this dependence is not mentioned explicitly
when it is obvious from the context.
Remark 10.3. It is not necessary for the weighted sample size to be equal to N. The
weighted sample size may be equal to MN , where MN is a deterministic or even ran-
dom sequence of integers satisfying MN → ∞ as N→ ∞. For simplicity, we assume
in this chapter that MN = N, for the weighted sample size. More general statements
can be found in Douc and Moulines (2008).

We may transform a weighted sample {(XN,i,ωN,i)}N
i=1 consistent for ν into

a weighted sample {(XN,i, ω̃N,i)}N
i=1 consistent for µ , simply by modifying the

weights. Setting ω̃N,i = w(XN,i)ωN,i, then {XN,i, ω̃N,i}N
i=1 is a weighted sample con-

sistent for µ; see Exercise 10.6. We can even consider a more complex transforma-
tion. Let Q be a finite kernel on X×X (not necessarily Markov) and assume that we
are willing to construct a weighted sample consistent for µ , where µ is given by

µ =
νQ

νQ(111)
. (10.7)

This type of recursive update is ubiquitous in NLSS; see Section 10.2. Assume that
we have already constructed a weighted sample {(XN,i,ωN,i)}N

i=1 consistent for ν .
We wish to apply a transformation to {(XN,i,ωN,i)}N

i=1 to obtain a new weighted sam-
ple {(X̃N,i, ω̃N,i)}N

i=1 consistent for µ . We will describe below one possible method
to achieve this goal. Consider a Markov kernel denoted R on X×X . Assume that
there exists a function w : X×X→ R+, such that, for each x ∈ X and A ∈ X ,

Q(x,A) =
∫
X

w(x,x′)R(x,dx′)1A(x′) . (10.8)

If the kernels Q and R have densities denoted by q and r with respect to the same
dominating measure, then we simply have to set

w(x,x′) =

{
q(x,x′)/r(x,x′) r(x,x′) 6= 0
0 otherwise.

(10.9)

The new weighted sample {(X̃N,i, ω̃N,i)}N
i=1 is constructed as follows. For i =

1, . . . ,N, we draw X̃N,i from the proposal kernel R(XN,i, ·) conditionally indepen-
dently given FN , where σ({(XN, j,ωN, j)}N

j=1) ⊂ FN . By construction, for any f ∈
F+(X,X ),

E
[

f (X̃N,i)
∣∣ FN]= R f (XN,i) . (10.10)

Note that we can take FN = σ({(XN, j,ωN, j)}N
j=1) if we are only performing a single
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step analysis, but the σ -algebraFN can be chosen larger than that (we will see exam-
ples of this later, when we will apply these results sequentially). We then associate
to each new particle positions the importance weight:

ω̃
N,i = ω

N,iw(XN,i, X̃N,i) , for i = 1, . . . ,N. (10.11)

We may now state the main consistency result for the importance sampling estimator.

Theorem 10.4. Assume that the weighted sample {(XN,i,ωN,i)}N
i=1 is adapted to

FN and consistent for ν . Then, the weighted sample {(X̃N,i, ω̃N,i)}N
i=1 defined by

(10.10) and (10.11) is consistent for µ .

Proof. We show first that for any f ∈ Fb(X
2,X⊗2),

1
Ω N

N

∑
j=1

ω̃
N, j f (XN, j, X̃N, j)

P−→ ν⊗Q( f ) , (10.12)

where X̃N, j and ω̃N, j are defined in (10.10) and (10.11), respectively. Here, ν⊗Q is
the tensor product of the probability ν and the kernel Q, which is the measure defined
for any C ∈ X⊗2,

ν⊗Q(C) =
∫∫

ν(dx)Q(x,dx′)1C(x,x′) . (10.13)

The definition (10.8) implies that,

E
[
ω̃

N,i f (XN,i, X̃N,i)
∣∣ FN]= ω

N,i
∫

w(XN,i,x′)R(XN,i,dx′) f (XN,i,x′)

= ω
N,i
∫

Q(XN,i,dx′) f (XN,i,x′) = ω
N,i

δXN,i ⊗Q( f ) . (10.14)

Therefore, we get

N

∑
i=1

E
[

ω̃N,i

Ω N f (XN,i, X̃N,i)

∣∣∣∣FN
]
=

N

∑
i=1

ωN,i

Ω N δXN,i ⊗Q( f ) .

Noting that the weighted sample {(XN,i,ωN,i)}N
i=1 is consistent, and that the

function x 7→ δx ⊗ Q( f ) is bounded, using that
∫

ν(dx)δx ⊗ Q( f ) = ν ⊗ Q( f ),
∑

N
i=1(ω

N,i/Ω N)δXN,i ⊗Q( f )→P ν⊗Q( f ) as N goes to infinity. We will now show
that

N

∑
j=1

{
ω̃N, j

Ω N f (XN, j, X̃N, j)−E
[

ω̃N, j

Ω N f (XN, j, X̃N, j)

∣∣∣∣FN
]}

P−→ 0 . (10.15)

Put UN, j = (ω̃N, j/Ω N) f (XN, j, X̃N, j) for j = 1, . . . ,N and appeal to Theorem B.18 on
the convergence of triangular array of random variables. There are two key conditions
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to check, the tightness (B.4) and the asymptotic negligibility (B.5). We first check
(B.4). Note that

N

∑
j=1

E
[
|UN, j|

∣∣FN]= N

∑
i=1

ωN,i

Ω N δXN,i ⊗Q(| f |) P−→ ν⊗Q(| f |) ,

showing that the sequence
{

∑
N
j=1E

[
|UN, j|

∣∣FN
]}

N≥0
is tight (Theorem B.18-

Eq.(B.4)). We now check the negligibility condition (B.5), i.e., for any ε > 0, put
AN := ∑

N
j=1E

[
|UN, j|1{|UN, j| ≥ ε}

∣∣FN
]
→P 0. For all C, ε > 0,

AN1

{
max

1≤i≤N
ω

N,i/Ω
N ≤ ε/C

}
≤

N

∑
j=1

(ωN, j/Ω
N)δXN, j ⊗R ([w| f |]C)

P−→ ν⊗R ([w| f |]C) , (10.16)

where for u ∈ R+, [u]C = u1{u≥C}. By dominated convergence, the right-hand side
can be made arbitrarily small by letting C→ ∞. Since max1≤i≤N ωN,i/Ω N →P 0, AN
tends to zero in probability, showing (B.5). Thus Theorem B.18 applies and (10.12)
holds; in addition, ∑

N
j=1 ω̃N, j/Ω N →P νQ(1). Combined with (10.12) this shows

that, for f ∈ F(X,X ),
N

∑
j=1

ω̃N, j

Ω̃ N
f (X̃N, j)

P−→ µ( f ) .

It remains to prove that max1≤ j≤N ω̃N, j/Ω̃ N →P 0. Because Ω̃ N/Ω N →P νQ(1), it
suffices to show that max1≤ j≤N ω̃N, j/Ω N→P 0 . For any C > 0, by applying (10.12),
we get

max
1≤ j≤N

ω̃N, j

Ω N 1{w(XN, j ,X̃N, j)≤C} ≤C max
1≤i≤N

ωN,i

Ω N
P−→ 0 ,

max
1≤ j≤N

ω̃N, j

Ω N 1{w(X̃N, j)>C} ≤
N

∑
j=1

ω̃N, j

Ω N 1{w(XN, j ,X̃N, j)>C}
P−→ ν⊗Q ({w >C}) .

The term in the RHS of the last equation goes to zero as C→∞, which concludes the
proof. �

Next, we discuss the asymptotic normality of the estimator. Asymptotic normal-
ity is crucial to assess the dispersion of the estimators and compute, in particular,
confidence intervals. We first need to extend our definition of consistent weighted
samples.

Definition 10.5 (Asymptotically normal weighted samples). Let µ ∈M1(X ) and
ζ ∈M+(X ). A weighted sample {(XN,i,ωN,i)}N

i=1 on X is said to be asymptotically
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normal for (µ,σ ,ζ ) if, for any f ∈ Fb(X,X ),

N1/2
N

∑
i=1

ωN,i

Ω N { f (XN,i)−µ( f )} P
=⇒ N{0,σ2( f )} , (10.17)

N
N

∑
i=1

(
ωN,i

Ω N

)2

f (XN,i)
P−→ ζ ( f ) , (10.18)

N1/2 max
1≤i≤N

ωN,i

Ω N
P−→ 0 , (10.19)

where Ω N is defined in (10.6).

We establish the asymptotic normality of the importance sampling estimator defined
by (10.10) and (10.11) in the following theorem.

Theorem 10.6. Suppose that the assumptions of Theorem 10.4 hold. Assume in
addition that the weighted sample {(XN,i,ωN,i)}N

i=1 is asymptotically normal for
(ν ,σ ,ζ ). Then, the weighted sample {(X̃N,i, ω̃N,i)}N

i=1 is asymptotically normal for
(µ, σ̃ , ζ̃ ) with

ζ̃ ( f ) := {νQ(1)}−2
∫∫

ζ (dx)R(x,dx′)w2(x,x′) f (x′) ,

σ̃
2( f ) :=

σ2{Q[ f −µ( f )]}
{νQ(1)}2 + ζ̃ ([ f −µ( f )]2)− ζ ({Q[ f −µ( f )]}2)

{νQ(1)}2 .

Proof. Pick f ∈ Fb(X,X ) and assume, without loss of generality, that µ( f ) = 0.
Write ∑

N
i=1 ω̃N,i/Ω̃ N f (X̃N,i) = (Ω N/Ω̃ N)(AN +BN) , with

AN =
N

∑
j=1

E
[

ω̃N, j

Ω N f (X̃N, j)

∣∣∣∣FN
]
=

N

∑
j=1

ωN, j

Ω N Q f (XN, j) ,

BN =
N

∑
j=1

{
ω̃N, j

Ω N f (X̃N, j)−E
[

ω̃N, j

Ω N f (X̃N, j)

∣∣∣∣FN
]}

.

Because Ω̃ N/Ω N →P νQ1 (see Theorem 10.4), the conclusion of the theorem fol-
lows from Slutsky’s theorem if we prove that N1/2(AN +BN)⇒P N(0,σ2(Q f ) +
η2( f )) where

η
2( f ) := ζ ⊗R(w2 f 2)−ζ ({Q f}2) , (10.20)

with w given in (10.8). Because {(XN,i,ωN,i)}N
i=1 is asymptotically normal for

(ν ,σ ,ζ ), N1/2AN ⇒P N(0,σ2(Q f )). Next we prove that for any real u,

E
[

exp(iuN1/2BN)
∣∣∣FN

]
P−→ exp

(
−(u2/2)η2( f )

)
,

where η2( f ) is defined in (10.20). For that purpose we use Theorem B.20, and we
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thus need to check (B.10)-(B.11) with UN, j := N1/2(ω̃N, j/Ω N) f (X̃N, j), j = 1, . . . ,N
Because {(XN,i,ωN,i)}N

i=1 is asymptotically normal for (ν ,σ ,ζ ), (10.18) implies

N

∑
j=1

E
[
U2

N, j
∣∣FN] P−→ ζ ⊗R(w2 f 2) ,

N

∑
j=1

(E
[
UN, j

∣∣FN])2 P−→ ζ{Q f}2 ,

showing (B.10). It then remains for us to check (B.11). For ε > 0, denote CN :=

∑
N
j=1E

[
U2

N, j1{|UN, j |≥ε}

∣∣∣FN
]
. Proceeding like in (10.16), for all C > 0, it is easily

shown that

CN ≤ N
N

∑
i=1

(
ωN,i

Ω N

)2

δXN,i ⊗R ([w f ]C)

+1

{
N1/2 max1≤i≤N ωN,i

Ω N ≥ ε

C

}
N

∑
j=1

E
[
U2

N, j
∣∣FN] ,

where for u ∈ R+, [u]C = u2
1{u≥C}. The RHS of the previous display converges

in probability to ζ ⊗ R ([w f ]C), which can be made arbitrarily small by taking C
sufficiently large. Therefore, condition (B.11) is satisfied and Theorem B.20 applies,
showing that N1/2(AN +BN)⇒P N

(
0,σ2(Q f )+η2( f )

)
.

Consider now (10.18). Recalling that Ω̃ N/Ω N →P νQ(1), it is sufficient to show
that for f ∈ Fb(X⊗2,X⊗∈),(

N1/2

Ω N

)2 N

∑
j=1

(ω̃N, j)2 f (XN, j, X̃N, j)
P−→ ζ ⊗R(w2 f ) , (10.21)

Define UN, j = N(ω̃N, j/Ω N)2 f (X̃N, j). Because {(XN,i,ωN,i)}N
i=1 is asymptotically

normal for (ν ,σ ,ζ ),

N

∑
j=1

E
[
UN, j

∣∣FN]= N
N

∑
i=1

(
ωN,i

Ω N

)2

δXN,i ⊗R(w2 f ) P−→ ζ ⊗R(w2 f ) .

The proof of (10.21) follows from Theorem B.18 along the same lines as above.
Details are omitted. Thus Theorem B.18 applies and condition (10.18) is proved.

Consider finally (10.19). Combining with Ω̃ N/Ω N→P νQ(1) (see proof of The-
orem 10.4) it is sufficient to show that CN := (N1/2/Ω N)2 max1≤ j≤N(ω̃

N, j)2→P 0.
For any C > 0,

CN ≤C2N max
1≤i≤N

(
ωN,i

Ω N

)2

+N
N

∑
j=1

(
ω̃N, j

Ω N

)2

1{w(XN, j ,X̃N, j)≥C} .

Applying (10.21) with f ≡ 1{w>C}, the RHS of the previous display converges in
probability to ζ ⊗R

(
w2
1{w ≥C}

)
. The proof follows since this quantity can be

made as small as we wish by taking C large enough. �
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10.2 Sequential importance sampling

We now specialize the importance sampling to NLSS models. We use the notations
introduced in Definition 9.3 where M denotes the Markov transition kernel of the
hidden chain, ξ is the distribution of the initial state X0, and g denotes the transition
density function of the observation given the state with respect to the measure µ

on (Y,Y). We denote the filtering distribution by φt , omitting the dependence with
respect to the initial distribution ξ and the observations for notational simplicity, and
by Qt the kernel on X×X defined, for all x ∈ X and f ∈ F+(X,X ), by

Qt f (x) =
∫
X

M(x,dx′)g(x′,Yt) f (x′) . (10.22)

According to (9.56), the filtering distribution φt is given by

φt( f ) =
γt( f )
γt(1)

, for all f ∈ F+(X,X ) (10.23)

where {γt , t ∈ N} are computed recursively as follows

γ0( f ) := ξ [g0 f ] , γt( f ) := γt−1Qt( f ) , t ≥ 1 , f ∈ F+(X,X ) . (10.24)

Let {Rt , t ≥ 1} be a family of Markov kernels on (X,X ) and r0 ∈ M1(X ). The
kernels Rt will be referred to as the proposal kernels. We assume that there exist
weight functions w0 : X→R+ and wt : X×X→R+ such that, for any (x,x′)∈X and
f ∈ F+(X,X ),

ξ [g0 f ] = r0[w0 f ] , (10.25)

Qt f (x) =
∫

wt(x,x′)Rt(x,dx′) f (x′) . (10.26)

When the kernels Qt and Rt have densities with respect to a common dominating
measure, then

wt(x,x′) =
qt(x,x′)
rt(x,x′)

, (x,x′) ∈ X×X . (10.27)

Assume that the weighted sample {(XN,i
t−1,ω

N,i
t−1)}N

i=1 is consistent for φt−1. We con-
struct a weighted sample {(XN,i

t ,ωN,i
t )}N

i=1 consistent for φt as follows. In the pro-
posal step, each particle XN,i

t−1 gives birth to a single offspring, XN,i
t , i ∈ {1, . . . ,N}

which is sampled conditionally independently from the past of the particles and
weights, i.e., FN

t−1 = σ{{(XN,i
s ,ωN,i

s )}N
i=1 , s ≤ t − 1}. The distribution of this off-

spring is specified by the proposal kernel Rt(X
N,i
t−1, ·). Next we assign to the new

particle XN,i
t , i = 1, . . . ,N, the importance weight

ω
N,i
t = ω

N,i
t−1wt(X

N,i
t−1,X

N,i
t ) . (10.28)

This construction yields to the Sequential Importance Sampling (SIS) algorithm (Al-
gorithm 10.1) . The first obvious choice is that of setting Rt =M. The weight function
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Algorithm 10.1 (SIS: Sequential Importance Sampling)
Initial State: Draw an i.i.d. sample X1

0 , . . . ,X
N
0 from r0 and set

ω
i
0 = g0(X i

0)w0(X i
0) for i = 1, . . . ,N .

Recursion: For t = 1,2, . . . ,

• Draw (X1
t , . . . ,X

N
t ) conditionally independently given {X j

s , j = 1, . . . ,N,s =
0, . . . , t−1} from the distribution X i

t ∼ Rt(X
i
t−1, ·).

• Compute the updated importance weights

ω
i
t = ω

i
t−1wt(X i

t−1,X
i
t ), i = 1, . . . ,N .

then simplifies to

wt(x,x′) = gt(x′) = g(x′,Yt) for all (x,x′) ∈ X2 , (10.29)

which does not depend on x. The prior kernel is often convenient: sampling from M
is often straightforward, and computing the incremental weight amounts to evaluat-
ing the conditional likelihood of the new observation given the current particle. The
optimal kernel is defined as

P?
t (x,A) =

Qt(x,A)
Qt(x,X)

, (10.30)

where Qt is given by (10.22). The kernel P?
t may be interpreted as the conditional

distribution of the hidden state Xt given Xt−1 and the current observation Yt . The
optimal kernel was introduced in Zaritskii et al. (1975) and Akashi and Kumamoto
(1977) and has been used since by many authors Liu and Chen (1995), Chen and Liu
(2000), Doucet et al. (2000, 2001), Tanizaki (2003). The associated weight function

wt(x,x′) = Qt(x,X) for (x,x′) ∈ X2, (10.31)

is the conditional likelihood of the observation Yt given the previous state Xt−1 = x.
Note that this weight does not depend on x′. The optimal kernel (10.30) incorporates
information both on the state dynamics and on the current observation. There are
however two problems with using P?

t . First, sampling from this kernel is most often
computationally costly. Second, calculation of the incremental importance weight
Qt(x,X) may be analytically intractable. However, when the observation equation is
linear (Zaritskii et al., 1975), these difficulties can be overcome as illustrated in the
following example:
Example 10.7 (Noisy ARCH(1)). We consider an ARCH(1) model observed in ad-
ditive noise:

Xt = σw(Xt−1)Wt , Wt∼ iid N(0,1) ,
Yt = Xt +σvVt , Vt∼ iid N(0,1) ,
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Figure 10.2 Violin plots of the particle distributions, ignoring the importance weights, for
5000 particles, with prior kernel and with optimal kernel, for the ARCH(1) model of Exam-
ple 10.7. The continuous line represents the actual hidden state trajectory, which is also the
observation.

with σ2
w(x)=α0+α1x2, where α0 and α1 are positive. The optimal kernel has density

p?t (x,x
′) = g

(
x′; m̃t(x,Yt), σ̃

2
t (x)

)
, (10.32)

where

m̃t(x,Yt) =
σ2

w(x)Yt

σ2
w(x)+σ2

v
, σ̃

2
t (x) =

σ2
w(x)σ

2
v

σ2
w(x)+σ2

v
. (10.33)

The associated weight function is given by

Qt(x,X) = g
(
Yt ;0,σ2

w(x)+σ
2
v
)
. (10.34)

When σ2
v � σ2

w(x) (the observation is non-informative), then m̃t(x,Yt) ≈ 0 and
σ̃2

t (x) ≈ σ2
w(x): the prior and the optimal kernel are almost identical. On the other

hand, when σ2
v � σ2

w(x), then m̃t(x,Yt) ≈ Yt and σ̃2
t (x) = σ2

v (i.e., the observation
is informative), the optimal kernel is markedly different from the prior kernel and
it is expected that the optimal kernel would display better performance. This is il-
lustrated in Figure 10.2, which compares the distribution of the posterior mean esti-
mates achieved with both kernels, on one single simulated dataset of 10 timesteps,
generated with parameters (α0 = 1,α1 = 0.99). The observations Yt were set to the
simulated hidden state Xt , i.e., the mode of the local likelihood: this setting favors the
prior kernel over the optimal kernel, by avoiding “extreme” observations, but makes
the comparison meaningful across different values of σV .

SIS was then run in turn with 5000 particles for each of the two proposal kernels,
for two distinct values of σV . The procedure was repeated independently 100 times,
to obtain a sample of posterior mean estimates in the four cases. The results are
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Figure 10.3 Boxplots of the posterior mean estimates of 100 independent SIS runs, each using
5000 particles, with prior kernel and with optimal kernel, for the ARCH(1) model of Exam-
ple 10.7. The continuous line represents the actual hidden state trajectory, which is also the
observation.

exhibited in Figure 10.3. With poorly informative observations, i.e., σV = 10, the
distribution of the posterior mean estimates for both kernels are similar: the filtering
distribution is mostly influenced by the dynamic equation. However, for informative
observations, i.e., σV = 1, while the SIS for both kernels is centered around a same
value, much closer to the actual hidden state, the variance of the point estimate is
markedly smaller when using the optimal kernel. 3

The weights ω i
t measure the adequacy of the particle X i

t to the target distribution
φt . A particle such that the associated weight ω i

t is orders of magnitude smaller than
the sum Ω N

t does not contribute to the estimator. If there are too many ineffective
particles, the particle approximation is inefficient.

Unfortunately, this situation is the rule rather than the exception, as the impor-
tance weights will degenerate as the time index t increases, with most of the normal-
ized importance weights ω i

t /Ω N
t close to 0 except for a few.

Example 10.8 (Example 10.7, cont.). Figure 10.4 displays the Lorenz curve of the
normalized importance weights after 5, 10, 25, and 50 time steps for the noisy
ARCH(1) with σV = 1 (see Example 10.7) for the prior kernel and the optimal ker-
nel. The number of particles is set to 5000. The Lorenz curve is a graphical repre-
sentation of the cumulative distribution function of the empirical probability distri-
bution. Assume that X is a random variable with cumulative distribution function F
and quantile function F−1(t) = inf{x : F(x)≥ t}. The Lorenz curve corresponding
to any random variable X with cumulative distribution function F and finite mean
µ =

∫
xdF(x) is defined to be

L(p) = µ
−1
∫ p

0
F−1(t)dt , 0≤ p≤ 1 . (10.35)
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Figure 10.4 Lorenz curves of the importance weights for the noisy ARCH model after 5, 10,
25, and 50 iterations with 5000 particles. Top panel: prior kernel; Bottom panel: optimal
kernel.
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Figure 10.5 Histograms of the base 10 logarithm of the normalized importance weights after
(from top to bottom) 5, 10, 25, and 50 iterations for the noisy ARCH model with N=5000
particles.

Applied in our setting, Figure 10.4 shows the fraction of the total sum of the im-
portance weights that the particles of the lowest x% fraction possess. The Lorenz
curves show that the normalized weights for the prior kernel quickly degenerate: the
total mass is concentrated on a small fraction of particles. For the optimal kernel,
the degeneracy is much slower, but after 50 steps, the bottom 75% of the importance
weights accounts for less than 10% of the total weights.

Figure 10.5 displays the histogram of the base 10 logarithm of the normalized
importance weights after 5, 10, 25, and 50 time steps for the same model using the
optimal kernel. Figure 10.5 shows that the normalized importance weights degener-
ate as the number of iterations of the SIS algorithm increases. 3
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Figure 10.6 Effective Sample Size curves of the importance weights for the noisy ARCH
model, 5000 particles, 100 time points. Note how the optimal kernel improves over the prior
kernel but eventually degenerates.

A simple criterion to quantify the degeneracy of a set of importance weights
{ω j}N

i=1 is the coefficient of variation used by Kong et al. (1994), which is defined
by

CV
(
{ω i}N

i=1
)

:=

[
1
N

N

∑
i=1

(
N

ω i

Ω N −1
)2
]1/2

. (10.36)

The coefficient of variation is minimal when the normalized weights are all equal
to 1/N, and then CV({ω i}N

i=1) = 0. The maximal value of CV({ω i}N
i=1) is

√
N−1,

which corresponds to one of the normalized weights being one and all others being
null. A related criterion is the effective sample size ESS (Liu, 1996), defined as

ESS({ω i}N
i=1) =

[
N

∑
i=1

(
ω i

Ω N

)2
]−1

=
N

1+
[
CV({ω i}N

i=1)
]2 , (10.37)

which varies between 1 and N (equal weights). The effective sample size may be un-
derstood as a proxy for the equivalent number of i.i.d. samples, but this interpretation
can sometimes be rather misleading.

As an example, Figure 10.6 shows the ESS curves of the importance weights for a
simulated noisy ARCH model as given in Example 10.7, with 100 time points. Using
5000 particles, note how the optimal kernel performs better than the prior kernel, but
eventually degenerates.

10.3 Sampling importance resampling

The solution proposed by Gordon et al. (1993) to avoid the degeneracy of the impor-
tance weights is based on resampling using the normalized weights as probabilities
of selection. Thus, particles with small importance weights are eliminated, whereas
those with large importance weights are replicated. After resampling, all importance
weights are reset to one.
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Algorithm 10.2 (SIR: Sampling Importance Resampling)
Sampling: Draw an i.i.d. sample X1, . . . ,XN from the instrumental

distribution ν .
Weighting: Compute the (normalized) importance weights

ω
i =

w(X i)

∑
N
j=1 w(X j)

for i = 1, . . . ,N .

Resampling:
• Draw, conditionally independently given (X1, . . . ,XN), N discrete random

variables (I1, . . . , IN) taking values in the set {1, . . . ,N} with probabilities
(ω1, . . . ,ωN), i.e.,

P(I1 = j) = ω
j , j = 1, . . . ,N . (10.39)

• Set, for i = 1, . . . ,N, X̃ i = X Ii
.

10.3.1 Algorithm description

The resampling method is rooted in the sampling importance resampling (or SIR)
method to sample a distribution µ , introduced by Rubin (1987, 1988). We discuss
this procedure first and we will then explain how this procedure can be used in com-
bination with the SIS procedure. We first consider the SIR in the simple setting of a
single step importance estimator. In this setting, the SIR proceeds in two stages. In
the sampling stage, an i.i.d. sample {X i}N

i=1 is drawn from the proposal distribution
ν . The importance weights are then evaluated at particle positions,

ω
i = w(X i) , (10.38)

where w is the importance weight function defined in (10.1). In the resampling stage,
a sample of size N denoted by {X̃ i}N

i=1 is drawn from the set of points {X i}N
i=1, with

probability proportional to the weights (10.38). The rationale is that particles X i as-
sociated to large importance weights ω i are more likely under the target distribution
µ and should thus be selected with higher probability during the resampling than
particles with low (normalized) importance weights.

This idea is easy to extend. Assume that {(X i,ω i)}N
i=1 is a weighted sample con-

sistent for ν . We may apply the resampling stage to {(X i,ω i)}N
i=1, i.e., draw a sample

{X̃ i}N
i=1 from the set of points {X i}N

i=1 with probability proportional to the weights
{ω i}N

i=1. Doing so we obtain an equally weighted sample {(X̃ i,1)}N
i=1 also targeting

ν . The SIR algorithm is summarized below.
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10.3.2 Resampling techniques

Denoting by Mi is the number of times that the particle X i is resampled. With these
notations, we get

1
N

N

∑
i=1

f (X̃ i) =
N

∑
i=1

Mi

N
f (X i) .

Assume that the weighted sample {(XN,i,ωN,i)}N
i=1 is adapted to FN . A resampling

procedure is said to be unbiased if

E
[
Mi ∣∣ FN]= Nω

i/Ω
N , i = 1, . . . ,N . (10.40)

It is easily seen that this condition implies that the conditional expectation of
N−1

∑
N
i=1 f (X̃ i), with respect to the weighted sample {(X i,ω i)}N

i=1, is equal to the
importance sampling estimator,

E

[
N−1

N

∑
i=1

f (X̃ i)
∣∣ FN

]
=

N

∑
i=1

ω i

Ω N f (X i) .

As a consequence, the mean square error of the estimator (1/N)∑
N
i=1 f (X̃ i) after

resampling is always larger than that of the importance sampling estimator (10.3):

E

(
1
N

N

∑
i=1

f (X̃ i)−µ( f )

)2

= E

(
1
N

N

∑
i=1

f (X̃ i)−
N

∑
i=1

ω i

Ω N f (X i)

)2

+E

(
N

∑
i=1

ω i

Ω N f (X i)−µ( f )

)2

. (10.41)

There are several different ways to construct an unbiased sampling procedure, the
most obvious approach being sampling with replacement with probability of sam-
pling each X i equal to the normalized importance weight ω i/Ω N . In this case, the
{Mi}N

i=1 is multinomial

{Mi}N
i=1|{X i,ω i}N

i=1 ∼Mult

(
N,

{
ω i

Ω N

}N

i=1

)
. (10.42)

Another possible solution is the deterministic plus residual multinomial resampling,
introduced in Liu and Chen (1995). Denote by bxc the integer part of x and by 〈x〉
the fractional part of x, 〈x〉 := x−bxc. This scheme consists of retaining bNω i/Ω Nc,
i = 1, . . . ,N copies of the particles and then reallocating the remaining particles by
applying the multinomial resampling procedure with the residual importance weights
defined as

〈
Nω i/Ω N

〉
. In this case, Mi may be decomposed as Mi = bNω i/Ω Nc+Hi

where {Hi}N
i=1 are multinomial

{Hi}N
i=1|{X i,ω i}N

i=1 ∼Mult

 N

∑
i=1

〈
Nω i

Ω N

〉
,

{ 〈
Nω i/Ω N

〉
∑

N
i=1 〈Nω i/Ω N〉

}N

i=1

 . (10.43)
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Assuming that the weighted sample {(XN,i,ωN,i)}N
i=1 is consistent for ν , it is a

natural question to ask whether the uniformly weighted sample {(X̃N,i,1)}N
i=1 is still

consistent for ν .

Theorem 10.9. Assume that the weighted sample {(XN,i,ωN,i)}N
i=1 is adapted to

FN and consistent for ν . Then, the uniformly weighted sample {(X̃N,i,1)}N
i=1 ob-

tained using either (10.42) or (10.43) is consistent for ν .

Proof. See Exercise 10.14 �

Similarly, the resampling procedures (10.42) and (10.43) transform an asymptoti-
cally normal weighted sample for ν into an asymptotically normal sample for ν . We
will discuss only the multinomial sampling case; the corresponding result for the de-
terministic plus multinomial residual sampling is given in Chopin (2004) and Douc
and Moulines (2008).

Theorem 10.10. Assume that {(XN,i,ωN,i)}N
i=1 is adapted to FN , consistent for ν ,

and asymptotically normal for (ν ,σ ,ζ ). Then the equally weighted particle sys-
tem {(X̃N,i,1)}N

i=1 obtained using (10.42) is asymptotically normal for (ν , σ̃ , ζ̃ ) with
σ̃2( f ) = Varν( f )+σ2( f ) and ζ̃ = ν .

Proof. See Exercise 10.15. �

10.4 Particle filter

10.4.1 Sequential importance sampling and resampling

The resampling step can be introduced in the sequential importance sampling frame-
work outlined in Section 10.2. As shown in (10.41), the one-step effect of resampling
seems to be negative, as it increases the variance, but, as we will show later, resam-
pling is required to guarantee that the particle approximation does not degenerate in
the long run. This remark suggests that it may be advantageous to restrict the use
of resampling to cases where the importance weights are unbalanced. The criteria
defined in (10.36) and (10.37), are of course helpful for that purpose. The result-
ing algorithm, which is generally known under the name of sequential importance
sampling with resampling (SISR), is summarized in Algorithm 10.3.

Example 10.11 (Example 10.7, cont.). The histograms shown in Figure 10.7 are
the counterparts of those shown in Figure 10.5. In this case, the resampling is applied
whenever the coefficient of variation, (10.36), of the normalized weights exceeds one.
The histograms of the normalized importance weights displayed in Figure 10.7 show
that the weight degeneracy is avoided. 3

The SISR algorithm combines importance sampling steps with resampling steps.
By applying iteratively the one-step consistency results Theorem 10.4 and Theo-
rem 10.9, a straightforward induction shows that, starting from a weighted sam-
ple {(XN,i

0 ,ωN,i
0 )}N

i=1 consistent for φ0, then the SISR algorithm produces at each
iteration a weighted sample {(XN,i

t ,ωN,i
t )}N

i=1 consistent for φt . Similarly, if the
weighted sample {(XN,i

0 ,ωN,i
0 )}N

i=1 is asymptotically normal for φ0, then by again
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Algorithm 10.3 (SISR: Sequential Importance Sampling with Resampling)

Sampling: • Draw {X̃ i
t }N

i=1 conditionally independently given
{{(X j

s ,ω
j

s )}N
j=1,s ≤ t − 1} from the proposal kernel X̃ i

t ∼ Rt(X
i
t−1, ·),

i = 1, . . . ,N.
• Compute the updated importance weights

ω̃
i
t = ω

i
t−1wt(X i

t−1, X̃
i
t ) , i = 1, . . . ,N .

where wt is defined in (10.26).
Resampling (Optional):

• Draw, conditionally independently given {(X i
s ,ω

i
s)}N

i=1,s≤ t−1} and {X̃ i
t }N

i=1,
a multinomial trial {Ii

t}N
i=1 with probabilities of success {ω̃ i

t /Ω̃ N
t }N

i=1 and set

X i
t = X̃ Ii

t
t and ω i

t = 1 for i = 1, . . . ,N.

applying iteratively the one-step asymptotic normality results, the weighted sam-
ple {(XN,i

t ,ωN,i
t )}N

i=1 is asymptotically normal for φt , because both the importance
sampling step and the resampling step preserve asymptotic normality. The limiting
variance can be computed iteratively.

As an illustration, we may consider a special instance of Algorithm 10.3 for
which the resampling procedure is triggered when the coefficient of variation ex-
ceeds a threshold κ , i.e., CV({ω̃N,i

t }N
i=1)> κ , we draw {IN,i

t }N
i=1 conditionally inde-

pendently given FN
t−1∨ σ

(
{X̃N,i

t , ω̃N,i
t }N

i=1

)
P
(

IN,i
t = j

∣∣∣FN
t

)
= ω̃

N, j
t /Ω̃

N
t , i = 1, . . . ,N , j = 1, . . . ,N (10.44)

and we set XN,i
t = X̃N,IN,i

t
t and ω

N,i
t = 1 for i = 1, . . . ,N. If CV(ω̃N,i

t )≤ κ , we simply
keep the updated particles and weights, i.e., we set (XN,i

t ,ωN,i
t ) = (X̃N,i

t , ω̃N,i
t ) for i =

1, . . . ,N. We have only described the multinomial resampling, but the deterministic
plus residual sampling, or even more sophisticated alternatives, can be considered as
well; see Douc and Moulines (2008).
Theorem 10.12. Assume that the equally weighted sample {(XN,i

0 ,1)}N
i=1 is consis-

tent for φ0 and asymptotically normal for (φ0,σ0,φ0). Assume in addition that for all
(x,y) ∈ X×Y, g(x,y)> 0, supx∈X g(x,y)< ∞ for all y ∈ Y, and sup0≤t≤n |wt |∞ < ∞.

Then, for any 1≤ t ≤ n, {(XN,i
t ,ωN,i

t )}N
i=1 is consistent for φt and asymptotically

normal for (φt ,σt) where the function σt is defined by the recursion

σ
2
t ( f ) = Varφt ( f )+

σ2
t−1(Qt [ f −φt( f )]){

φt−1Qt(111)
}2 +

∫∫
φt−1(dx)Rt(x,dx′)w2

t (x,x
′){ f (x′)−φt( f )}2−φt−1({Qt [ f −φt( f )]}2){

φt−1Qt(111)
}2 .
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Figure 10.7 Histograms of the base 10 logarithm of the normalized importance weights after
(from top to bottom) 5, 10, 25, and 50 iterations in the noisy ARCH model of Example 10.7.
Same model and data as in Figure 10.5. Resampling occurs when the coefficient of variation
gets larger than 1.

Proof. The proof is by repeated applications of Theorem 10.6 and Theorem 10.10;
see Exercise 10.12. �

10.4.2 Auxiliary sampling

In this section, we introduce the auxiliary particle filter (APF) proposed by Pitt
and Shephard (1999), which has proven to be one of the most useful implemen-
tations of the SMC methodology. The APF enables us to design a set of adjust-
ment multiplier weights involved in the selection procedure. Assume that we at
time t − 1 have a weighted sample {(X i

t−1,ω
i
t−1)}N

i=1 providing an approximation
φ N

t−1 = ∑
N
i=1(ω

i
t−1/Ω N

t−1)δX i
t−1

of the filtering distribution φt−1. When the observa-
tion Yt becomes available, an approximation of the filtering distribution φt may be
obtained by plugging the empirical measure φ N

t−1 into the recursion (10.23), yield-
ing, for A ∈ X ,

φ
N,tar
t (A) =

φ N
t−1Qt(A)

φ N
t−1Qt(X)

=
N

∑
i=1

ω i
t−1Qt(X

i
t−1,X)

∑
N
j=1 ω

j
t−1Qt(X

j
t−1,X)

P?
t (X

i
t−1,A) , (10.45)

where Qt and P?
t are defined in (10.22) and (10.30), respectively. Now, since we

want to form a new weighted sample approximating φt , we need to find a conve-
nient mechanism for sampling from φ

N,tar
t given {(X i

t−1,ω
i
t−1)}N

i=1. In most cases it is
possible—but generally computationally expensive—to simulate from φ

N,tar
t directly

using auxiliary accept-reject sampling (see Hürzeler and Künsch, 1998, Künsch,
2005). A computationally cheaper solution consists of producing a weighted sample
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approximating φ
N,tar
t by using an importance sampling procedure. Following Pitt and

Shephard (1999), this may be done by considering the auxiliary target distribution

φ
N,aux
t ({i}×A) :=

ω i
t−1Qt(X

i
t−1,A)

∑
N
`=1 ω`

t−1Qt(X `
t−1,X)

, i ∈ {1, . . . ,N} , A ∈ X , (10.46)

on the product space {1, . . . ,N}×X. By construction, the target distribution φ
N,tar
t is

the marginal distribution with respect to the particle index of the auxiliary distribution
φ

N,aux
t . Therefore, we may construct a weighted sample targeting φ

N,tar
t on (X,X )

by sampling from the auxiliary distribution, computing the associated importance
weights and then discarding the indices.

To sample from φ
N,aux
t , we use an importance sampling strategy on the product

space {1, . . . ,N}×X. To do this, we first draw conditionally independently pairs
{(Ii

t ,X
i
t )}N

i=1 of indices and particles from the proposal distribution

φ
N,prop
t ({i}×A) =

ω i
t−1ϑt(X

i
t−1)

∑
N
j=1 ω

j
t−1ϑt(X

j
t−1)

Rt(X
i
t−1,A) , A ∈ X , (10.47)

on the product space {1, . . . ,N}×X, where x 7→ ϑt(x) is the adjustment multiplier
weight function and Rt is the proposal kernel. We will discuss later the choice of ϑt .
For each draw {(Ii

t ,X
i
t )}N

i=1, we compute the importance weight

ω
i
t =

wt(X
Ii
t

t−1,X
i
t )

ϑt(X
Ii
t

t−1)
, (10.48)

where wt is the importance function defined in (10.26), and associate it to the
corresponding particle position X i

t . Finally, the indices {Ii
t}N

i=1 are discarded. The
weighted sample {(X i

t ,ω
i
t )}N

i=1 is taken as an approximation of φt . The simplest
choice, yielding to the bootstrap particle filter algorithm proposed by Gordon et al.
(1993), consists of setting, for all x ∈ X, ϑt ≡ 1 and Rt(x, ·) ≡ M(x, ·). A more
appealing—but often computationally costly—choice consists of using the adjust-
ment weights ϑt(x) = ϑ ?

t (x) := Qt(x,X), x ∈ X, and the proposal transition kernel
P?

t (x, ·) := Qt(x, ·)/Qt(x,X). In this case, ω i
t = 1 for all i ∈ {1, . . . ,N} and the aux-

iliary particle filter is said to be fully adapted. Except in some specific models, the
implementation of a fully adapted sampler is computationally impractical. Heuris-
tically, the adjustment multiplier weight function x 7→ ϑt(x) should be an easy to
compute proxy of x 7→ ϑ ?

t (x). Pitt and Shephard (1999) suggest that the adjustment
multiplier weight function be set as the likelihood of the mean of the predictive dis-
tribution corresponding to each particle,

ϑt(x) = g
(∫

x′ M(x,dx′),Yt+1

)
. (10.49)

Other constructions are discussed in Douc et al. (2009b) and Cornebise et al. (2008).
Let n be an integer. Consider the following assumptions:
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Assumption A10.13.
(a) For all (x,y) ∈ X×Y and 0≤ t ≤ n, gt(x,y)> 0 and sup0≤t≤n |gt |∞ < ∞.
(b) sup0≤t≤n |ϑt |∞ < ∞ and sup0≤t≤n sup(x,x′)∈X×X wt(x,x′)/ϑt(x)< ∞.

Theorem 10.14. Assume A10.13. Then, for all t ∈ {0, . . . ,n}, the weighted sample
{(XN,i

t ,ωN,i
t )} is consistent for φt and asymptotically normal for (φt ,σt ,ζt) where

ζt( f ) = {φt−1Qt111}−2
φt−1(ϑt)

∫∫
φt−1(dx)Rt(x,dx′)

w2
t (x,x

′)

ϑt(x)
f (x′) , (10.50a)

σ
2
t ( f ) = {φt−1Qt111}−2

σ
2
t−1(Qt [ f −φt( f )])+ζt([ f −φt( f )]2) . (10.50b)

Proof. See Exercise 10.16 �

Remark 10.15. The asymptotic variance is minimized if the auxiliary weights are
chosen to be equal to (see Exercise 10.19)

ϑ
opt
t (x) =

[∫
Rt(x,dx′)w2

t (x,x
′)[ f (x′)−φt( f )]2

]1/2

. (10.51)

As shown in Douc et al. (2009b), this choice of the adjustment weight can be related
to the choice of the sampling weights of strata for stratified sampling estimators; see
Exercise 10.21. The use of the optimal adjustment weights (10.51) provides, for a
given sequence {Rt}t≥0 of proposal kernels, the most efficient of all auxiliary particle
filters. However, exact computation of the optimal weights is in general infeasible
for two reasons: firstly, they depend (via φt( f )) on the expectation φt( f ), that is,
the quantity that we aim to estimate, and, secondly, they involve the evaluation of
a complicated integral; see Douc et al. (2009b) and Cornebise et al. (2008) for a
discussion.

10.5 Convergence of the particle filter

10.5.1 Exponential deviation inequalities

Non-asymptotic deviation inequality provides an explicit bound on the probability
that the particle estimator φ N

t (h) deviates from its targeted value φt(h) by ε > 0:
P(|φ N

t (h)− φt(h)| > ε) ≤ r(N,ε,h), where the rate function r is explicit. It is pos-
sible to derive such nonasymptotic bounds for the particle approximation. To make
the derivations short, we concentrate in this chapter only the auxiliary particle fil-
ter introduced in Section 10.4.2 and exponential deviation inequality for bounded
functions h. We preface the proof by an elementary Lemma:
Lemma 10.16. Assume that AN , BN and B are random variables such that there
exist positive constants β ,c1,c2,c3 such that

|AN/BN | ≤ c1, P-a.s. and B≥ β , P-a.s. (10.52a)

For all ε > 0 and N ≥ 1, P(|BN−B|> ε)≤ 2e−Nc2ε2
, (10.52b)

For all ε > 0 and N ≥ 1, P(|AN |> ε)≤ 2e−Nc3(ε/c1)
2
, (10.52c)
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Then,
P(|AN/BN |> ε)≤ 4e−N(c2∧c3)(εβ/2c1)

2) .

Proof. See Exercise 10.20. �

Theorem 10.17. Assume A10.13. For any t ∈ {0, . . . ,n} there exist constants 0 <
c1,t , c2,t < ∞ such that, for all N ∈ N, ε > 0, and h ∈ Fb(X,X ),

P

[∣∣∣∣∣N−1
N

∑
i=1

ω
i
t h(X

i
t )−

φt|t−1 (gth)
φt−1(ϑt)

∣∣∣∣∣≥ ε

]
≤ c1,te−c2,t Nε2/|h|2∞ , (10.53)

P
[∣∣φ N

t (h)−φt(h)
∣∣≥ ε

]
≤ c1,te−c2,t Nε2/osc2(h) , (10.54)

where the weighted sample {(X i
t ,ω

i
t )}N

i=1 is defined in (10.48).

Proof. We prove (10.53) and (10.54) together by induction on t ≥ 0. First note that,
by construction, the random variables {(X i

t ,ω
i
t )}1≤i≤N are i.i.d. conditionally to the

σ -field
FN

t−1 := σ{(X i
s ,ω

i
s);0≤ s≤ t−1,1≤ i≤ N} . (10.55)

The Hoeffding inequality implies

P

[∣∣∣∣∣N−1
N

∑
i=1

ω
i
t h(X

i
t )−E

[
N−1

N

∑
i=1

ω
i
t h(X

i
t )

∣∣∣∣∣FN
t−1

]∣∣∣∣∣> ε

]
≤ 2e−Nε2/(2|wt/ϑt |2∞|h|2∞) . (10.56)

For t = 0, we have

E

[
N−1

N

∑
i=1

ω
i
0h(X i

0)

∣∣∣∣∣FN
−1

]
= E

[
ω

1
0 h(X1

0 )
∣∣FN
−1
]
= ξ (g0h) = φ0|−1(g0h) .

Thus, (10.54) follows by Lemma 10.16 applied with AN = N−1
∑

N
i=1 ω i

0h(X i
0), BN =

N−1
∑

N
i=1 ω i

0, and B = β = ξ (g0) ((10.52a), (10.52b) and (10.52c) are obviously
satisfied). For t ≥ 1, we prove (10.53) by deriving an exponential inequality for
E
[

N−1
∑

N
i=1 ω i

t h(X
i
t )
∣∣FN

t−1

]
thanks to the induction assumption. It follows from the

definition that

E

[
N−1

N

∑
i=1

ω
i
t h(X

i
t )

∣∣∣∣∣FN
t−1

]
=

∑
N
i=1 ω i

t−1Qth(X
i
t−1)

∑
N
`=1 ω`

t−1ϑt(X `
t−1)

.

We apply Lemma 10.16 by successively checking conditions (10.52a), (10.52b) and
(10.52c) with 

AN := φ N
t−1(Qth)−

φt−1(Qt h)
φt−1(ϑt )

φ N
t−1(ϑt)

BN := φ N
t−1(ϑt)

B := β := φt−1(ϑt)
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Note that∣∣∣∣∣φ N
t−1(Qth)
φ N

t−1(ϑt)

∣∣∣∣∣= |E[ω
1
t h(X1

t )
∣∣FN

t−1
]
| ≤ |wt/ϑt |∞ |h|∞ ,∣∣∣∣φt−1(Qth)

φt−1(ϑt)

∣∣∣∣= ∣∣∣∣φt−1

[
ϑt(·)

∫ wt(·,x)
ϑt(·)

Rt(·,dx)h(x)
]/

φt−1(ϑt)

∣∣∣∣≤ |wt/ϑt |∞ |h|∞ .

Thus, condition (10.52a) is satisfied with c1 = 2|wt/ϑt |∞ |h|∞. Now, assume that the
induction assumption (10.54) holds where t is replaced by t−1. Then, AN = φ N

t−1(Ht)
where

Ht(x) := Qth(x)−
φt−1(Qth)
φt−1(ϑt)

ϑt(x) .

By noting that φt−1(Ht) = 0, exponential inequalities for AN and BN −B are then
directly derived from the induction assumption under A10.13. Thus Lemma 10.16
applies and finally (10.53) is proved for t ≥ 1.

Finally, we must show that (10.53) implies (10.54). Without loss of generality, we
assume that φt(h) = 0. We then apply Lemma 10.16 with AN := N−1

∑
N
i=1 ω i

t h(X
i
t ),

BN := N−1
∑

N
i=1 ω i

t , and B := β := φt−1(Qt111)/φt−1(ϑt). But, φt(h) = 0 implies
φt−1(Qth) = 0, so that conditions (10.52a), (10.52b), and (10.52c) follow from
(10.53). �

10.5.2 Time-uniform bounds

The results above establish the convergence, as the number of particles N tends to
infinity, of the particle filter for a finite time horizon t ∈N. For infinite time horizons,
i.e., when t tends to infinity, the convergence is less obvious. Indeed, each recursive
update of the weighted particles {(XN,i

t ,ωN,i
t )}N

i=1 is based on the implicit assumption
that the empirical measure φ N

t−1 associated with the ancestor sample approximates
perfectly well the filtering distribution φt−1 at the previous time step; however, since
the ancestor sample is marred by a sampling error itself, one may expect that the
errors induced at the different updating steps accumulate and, consequently, that the
total error propagated through the algorithm increases with t; this would for example
imply that the asymptotic variance σ2

t ( f ) grows to infinity as t → ∞, which would
make the algorithm useless in practice.

Fortunately, as we will show below, the convergence of particle filters can be
shown to be uniform in time under rather general conditions. To make the presenta-
tion simple, we will derive in this Section such stability results under very stringent
conditions, but stability can be established for NLSS models under much milder as-
sumptions.

We may decompose the error φ N
t (h)−φt(h) as follows

φ
N
t (h)−φt(h) = φ

N
t (h)−

φ N
t−1(Qth)

φ N
t−1(Qt111)︸ ︷︷ ︸

sampling error

+
φ N

t−1(Qth)
φ N

t−1(Qt111)
−

φt−1(Qth)
φt−1(Qt111)︸ ︷︷ ︸

initialization error

, (10.57)
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where we have used that φt(h) = φt−1(Qth)/φt−1(Qt111). According to (10.57), the
error φ N

t (h)− φt(h) may be decomposed into the sampling error introduced by re-
placing φt−1(Qth)/φt−1(Qt111) by its sampling estimate φ N

t (h) and the propagation
error originating from the discrepancy between empirical measure φ N

t−1 associated
with the ancestor particles and the true filter φt−1.

By iterating the decomposition (10.57), the error φ N
t (h)− φt(h) may be written

as a telescoping sum

φ
N
t (h)−φt(h) =

t

∑
s=1

(
φ N

s (Qs,th)
φ N

s (Qs,t111)
−

φ N
s−1(Qs−1,th)

φ N
s−1(Qs−1,t111)

)

+
φ N

0 (Q0,th)

φ N
0 (Q0,t111)

−
φ0(Q0,th)

φ0(Q0,t111)
, (10.58)

where Qt,t = I and for 0≤ s < t,

Qs,th = Qs+1 Qs+2 . . .Qth . (10.59)

To prove such uniform-in-time deviation inequality, we assume that the Markov
kernel M satisfies the following strong mixing condition.
Assumption A10.18.
(a) For all (x,y) ∈ X×Y, g(x,y)> 0 and sup(x,y)∈X×Y g(x,y)< ∞.

(b) supt≥0 supx∈X ϑt(x)< ∞ and supt≥0 sup(x,x′)∈X×X wt(x,x′)/ϑt(x)< ∞.

(c) There exist constants σ+ > σ− > 0 and a probability measure ν on (X,X ) such
that for all x ∈ X and A ∈ X ,

σ
−

ν(A)≤M(x,A)≤ σ
+

ν(A) . (10.60)

(d) There exists a constant c− > 0 such that, ξ (g0)≥ c− and for all t ≥ 1,

inf
x∈X

Qt111(x)≥ c− > 0 . (10.61)

Remark 10.19. A10.18-(b) is mild. It holds in particular under A10.18-(a) for the
bootstrap filter: in this case, ϑt(x)≡ 1 and

wt(x,x′) = gt(x′) for all x ∈ X and t ≥ 0.

It automatically holds also for the fully adapted auxiliary particle filter: in this case,
ϑt(x) =

∫
M(x,dx′)gt(x′) ≤ supt≥0 supx′∈X gt(x′) and wt(x,x′) ≡ 1, for all t > 0 and

all (x,x′) ∈ X×X.

The key result to prove the uniform in time stability is the following uniform forget-
ting property.
Proposition 10.20. Assume A10.18-(c). Then, for all distributions ξ , ξ ′ ∈M1(X )
and for all s≤ t and any bounded measurable functions h ∈ Fb(X,X ),∣∣∣∣ξ Qs,th

ξ Qs,t111
−

ξ ′Qs,th
ξ ′Qs,t111

∣∣∣∣≤ ρ
t−s osc (h) , (10.62)

where ρ := 1−σ−/σ+.
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Proof. Consider the Markov kernel defined for xs ∈ X and A ∈ X ,

Q̄s,t(xs,A) =
Qs,t(xs,A)
Qs,t111(xs)

. (10.63)

This kernel is obtained by normalizing the kernel Qs,t . By construction, for any h ∈
F(X,X), we get

ξ Qs,th
ξ Qs,t111

=

∫
ξ (dxs)Qs,t111(xs)Q̄s,th(xs)∫

ξ (dxs)Qs,t111(xs)
= ξs,tQ̄s,th , (10.64)

where ξs,t is the probability measure defined as

ξs,t(A) =

∫
A ξ (dxs)Qs,t111(xs)∫
X ξ (dxs)Qs,t111(xs)

. (10.65)

We have

Q̄s,t(xs,A) =
Qs,t(xs,A)
Qs,t111(xs)

=

∫
Qs+1(xs,dxs+1)Qs+1,t111(xs+1)Q̄s+1,t(xs+1,A)

Qs,t111(xs)

= Rs,tQ̄s+1,t(xs+1,A) ,

where the Markov kernel Rs,t is defined, for any xs ∈ X and A ∈ X , by

Rs,t(xs,A) =

∫
A Qs+1(xs,dxs+1)Qs+1,t111(xs+1)

Qs,t111(xs)
. (10.66)

By iterating this decomposition, we may represent the Markov kernel Q̄s,t as the
product of kernels

Q̄s,t = Rs,tRs+1,t . . .Rt−1,t . (10.67)

Using A10.18-(c) the kernel Rs,t is uniformly Doeblin: for any xs ∈ X and A ∈X , we
get

Rs,t(xs,A) =

∫
A Qs+1(xs,dxs+1)Qs+1,t111(xs+1)∫
X Qs+1(xs,dxs+1)Qs+1,t111(xs+1)

≥ σ−
σ+

νs,t(A) ,

where νs,t is the probability on (X,X ) given by

νs,t(A) =

∫
A ν(dxs+1)gs+1(xs+1)Qs+1,t111(xs+1)∫
X ν(dxs+1)gs+1(xs+1)Qs+1,t111(xs+1)

. (10.68)

Therefore, using Lemma 6.10, the Dobrushin coefficient ∆TV (Rs,t) ≤ ρ of the
Markov kernel Rs,t is bounded by ρ = 1− σ−/σ+ < 1 (see Definition 6.4). The
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submultiplicativity of the Dobrushin coefficient (6.8) and the decomposition (10.67)
imply that

∆TV
(
Q̄s,t
)
≤ ∆TV (Rs,t) ∆TV (Rs+1,t) . . . ∆TV (Rt−1,t)≤ ρ

t−s .

For any probability ξ ,ξ ′ ∈M1(X ), (10.64) and Lemma 6.5 imply that∥∥∥∥ ξ Qs,t

ξ Qs,t111
−

ξ ′Qs,t

ξ ′Qs,t111

∥∥∥∥
TV

=
∥∥ξs,tQ̄s,t −ξ

′
s,tQ̄s,t

∥∥
TV

≤
∥∥ξs,t −ξ

′
s,t
∥∥

TV ∆TV
(
Q̄s,t
)
≤ ρ

t−s∥∥ξs,t −ξ
′
s,t
∥∥

TV .

The proof follows. �

Theorem 10.21. Assume A 10.18. Then, the filtering distribution satisfies a time-
uniform exponential deviation inequality, i.e., there exist constants c1 and c2 such
that, for all integers N and t ≥ 0, all measurable functions h and all ε > 0,

P

[∣∣∣∣∣N−1
N

∑
i=1

ω
i
t h(X

N,i
t )−

φt|t−1(gth)
φt−1(ϑt)

∣∣∣∣∣≥ ε

]
≤ c1e−c2Nε2/|h|2∞ , (10.69)

P
[∣∣φ N

t (h)−φt(h)
∣∣≥ ε

]
≤ c1e−c2Nε2/osc2(h) . (10.70)

Proof. We first prove (10.70). Without loss of generality, we will assume that
φt(h) = 0. Similar to (Del Moral, 2004, Eq. (7.24)), the quantity φ N

t (h) is decom-
posed as,

φ
N
t (h) =

t

∑
s=1

(
Bs,t(h)
Bs,t(111)

−
Bs−1,t(h)
Bs−1,t(111)

)
+

B0,t(h)
B0,t111

, (10.71)

where

Bs,t(h) = N−1
N

∑
i=1

ω
i
s
Qs,th(X

i
s)

|Qs,t111|∞
. (10.72)

We first establish an exponential inequality for B0,t(h)/B0,t111 where the dependence
in t will be explicitly expressed. For that purpose, we will apply Lemma 10.16 by suc-
cessively checking Conditions (10.52a), (10.52b), and (10.52c), with AN := B0,t(h),
BN := B0,t111, and

B :=
∫

ξ (dx0)g0(x0)
Q0,t111(x0)

|Q0,t111|∞
, β :=

σ−
σ+

∫
ξ (dx0)g0(x0) .

Under the strong mixing condition Equation 10.60, for any 0 ≤ s < t and (x,x′) ∈
X×X, we have

Qs,t111(x)
Qs,t111(x′)

=

∫
···
∫

Qs+1(x,dxs+1)∏
t
r=s+2 Qr(xr−1,dxr)∫

···
∫

Qs+1(x
′,dxs+1)∏

t
r=s+2 Qr(xr−1,dxr)

≥ σ−
σ+

.

Therefore, for any x ∈ X and 0≤ s < t, it holds that

σ−
σ+
≤

Qs,t111(x)
|Qs,t111|∞

≤ 1 . (10.73)
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which implies that B≥ β . Since φt(h) = 0, the forgetting condition (10.62) implies∣∣∣∣AN

BN

∣∣∣∣= ∣∣∣∣B0,t(h)
B0,t111

−φt(h)
∣∣∣∣

=

∣∣∣∣∣∑
N
i=1 ω i

0Q0,th(X
i
0)

∑
N
i=1 ω i

0Q0,t111(X
i
0)
−
∫

ξ (dx0)g0(x0)Q0,th(x0)∫
ξ (dx0)g0(x0)Q0,t111(x0)

∣∣∣∣∣≤ ρ
t osc (h) . (10.74)

This shows condition (10.52a) with c1 = ρ t osc (h). We now turn to condition
(10.52b). We have

BN−B = N−1
N

∑
i=1

ω
i
0

Q0,t111(X
i
0)

|Q0,t111|∞
−
∫

r0(dx0)w0(x0)
Q0,t111(x0)

|Q0,t111|∞
.

Since ω i
0Q0,t111(X

i
0)/|Q0,t111|∞ ≤ |w0|∞, we have by Hoeffding’s inequality

P [|BN−B| ≥ ε]≤ 2exp
(
−2Nε

2/|w0|2∞
)
.

We finally check condition (10.52c). We have

AN = N−1
N

∑
i=1

ω
i
0

Q0,th(X
i
0)

|Q0,t111|∞
.

Since φt(h) = 0 implies
∫

ξ (dx)g0(x)Q0,th(x) = 0, it holds that E [AN ] = 0. Moreover,∣∣∣∣∣ω i
0

Q0,th(X
i
0)

|Q0,t111|∞

∣∣∣∣∣≤ |w0|∞

∣∣∣∣∣Q0,t111(X
i
0)

|Q0,t111|∞

(
Q0,th(X

i
0)

Q0,t111(X
i
0)
−φt(h)

)∣∣∣∣∣
≤ |w0|∞

∣∣∣∣∣δX i
0
Q0,th

δX i
0
Q0,t111

−
φ0Q0,th

φ0Q0,t111

∣∣∣∣∣≤ |w0|∞ρ
t osc (h) ,

using (10.62) and (10.52c) follows from Hoeffding’s inequality. Then, Lemma 10.16
implies

P [|B0,t(h)/B0,t111|> ε]≤ be−cNε2/(ρt osc(h))2
,

where the constants b and c do not depend on t. We now consider for 1 ≤ s ≤ t the
difference Bs,t(h)/Bs,t(111))−Bs−1,t(h)/Bs−1,t(111), where Bs,t is defined in (10.72). We
again use Lemma 10.16 with P(·) = P

(
· |FN

s−1

)
whereFN

s−1 is defined in (10.55) and
AN = Bs,t(h)−

Bs−1,t (h)
Bs−1,t (111)

Bs,t(111)

BN = Bs,t(111)

B =
∑

N
i=1 ω i

s−1
∫

Qs(X
i
s−1,dx)Qs,t 111(x)

|Qs,t 111|∞ ∑
N
`=1 ω`

s−1ϑs(X`
s−1)

Eq. (10.73) and (10.60) show that

B≥ β :=
c−σ−

σ+|ϑs|∞
,
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where σ− and c− are defined in (10.60) and (10.61), respectively. In addition, using
the forgetting condition (10.62),∣∣∣∣AN

BN

∣∣∣∣=
∣∣∣∣∣∑N

i=1 ω i
sQs,th(X

i
s)

∑
N
i=1 ω i

sQs,t111(X i
s)
−

∑
N
i=1 ω i

s−1Qs−1,th(X
i
s−1)

∑
N
i=1 ω i

s−1Qs−1,t111(X
i
s−1)

∣∣∣∣∣≤ ρ
t−s osc (h) , (10.75)

showing condition (10.52a) with c1 = ρ t−s osc (h). We must now check condition
(10.52b). By (10.56), we have

BN−B = N−1
N

∑
i=1

ω
i
s
Qs,t111(X

i
s)

|Qs,t111|∞
−E

[
ω

1
s

Qs,t111(X
1
s )

|Qs,t111|∞

∣∣∣∣∣FN
s−1

]
,

where FN
s−1 is defined in (10.55) Thus, since

∣∣ω i
sQs,t111(X

i
s)/|Qs,t111|∞

∣∣≤ supt |wt/ϑt |∞,
we have by conditional Hoeffding’s inequality

P
(
|BN−B|> ε |FN

s−1
)
≤ 2e−Nc2ε2

,

showing condition (10.52b) with c2 = (2supt |wt/ϑt |∞)−2. Moreover, write AN =
N−1

∑
N
`=1 η`

s where

η
`
s,t(h) := ω

`
s

Qs,th(X
`
s )

|Qs,t111|∞
−

φ N
s−1(Qs−1,th)

φ N
s−1(Qs−1,t111)

(
ω

`
s

Qs,t111(X
`
s )

|Qs,t111|∞

)
. (10.76)

Since {(X `
s ,ω

`
s )}N

`=1 are i.i.d. conditionally to the σ -fieldFN
s−1, we have that {η`}N

`=1
are also i.i.d. conditionally to FN

s−1. Moreover, it can be easily checked using (10.56)
that E

[
η1

s,t(h)
∣∣FN

s−1

]
= 0. In order to apply the conditional Hoeffding inequality, we

need to check that η1
s is bounded. This follows from (10.62),

|η`
s,t(h)|= ω

`
s

Qs,t111(X
`
s )

|Qs,t111|∞

∣∣∣∣∣Qs,th(X
`
s )

Qs,t111(X `
s )
−

∑
N
i=1 ω i

s−1Qs−1,th(X
i
s−1)

∑
N
i=1 ω i

s−1Qs−1,t111(X
i
s−1)

∣∣∣∣∣
≤ sup

t
|wt/ϑt |∞ρ

t−s osc (h) .

Consequently,

P
(
|AN |> ε |FN

s−1
)
= P

(∣∣∣∣∣N−1
N

∑
`=1

η
`
s,t(h)

∣∣∣∣∣> ε

∣∣∣∣∣FN
s−1

)

≤ 2exp

{
−Nc3

(
ε

ρ t−s osc (h)

)2
}

,

with c3 =(2supt |wt/ϑt |∞)−2. This shows condition (10.52c). Finally by Lemma 10.16,

P
(∣∣∣∣Bs,t(h)

Bs,t(111)
−

Bs−1,t(h)
Bs−1,t(111)

∣∣∣∣> ε

∣∣∣∣FN
s−1

)
≤ 4exp

{
−c3N

(
ε

ρ t−s osc (h)

)2
}

.

The proof is concluded by using Lemma 10.22. �
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Lemma 10.22. Let {Yn,i}n
i=1 be a triangular array of random variables such that

there exist constants b > 0, c > 0 and ρ , 0 < ρ < 1 such that, for all n, i ∈ {1, . . . ,n}
and ε > 0, P(|Yn,i| ≥ ε)≤ be−cε2ρ−2i

. Then, there exists b̄ and c̄ such that, for any n
and ε > 0,

P

(∣∣∣∣∣ n

∑
i=1

Yn,i

∣∣∣∣∣≥ ε

)
≤ b̄e−c̄ε2

.

Proof. Denote by S := ∑
∞
i=1
√

iρ i. It is plain to see that

P

(∣∣∣∣∣ n

∑
i=1

Yn,i

∣∣∣∣∣≥ ε

)
≤

n

∑
i=1

P
(
|Yn,i| ≥ εS−1

√
iρ i
)
≤ b

n

∑
i=1

e−cS−2ε2i .

Set ε0 > 0. The proof follows by noting that, for any ε ≥ ε0,

n

∑
i=1

e−cS−2iε2 ≤ (1− e−cS−2ε2
0 )−1e−cS−2ε2

.
�

10.6 Endnotes

Importance sampling was introduced by Hammersley and Handscomb (1965) and
has since been used in many different fields; see Glynn and Iglehart (1989), Geweke
(1989), Evans and Swartz (1995), or Robert and Casella (2004), and the references
therein.

Although the Sequential Importance Sampling (SIS) algorithm has been known
since the early 1970s (Handschin and Mayne, 1969 and Handschin, 1970), its use
in nonlinear filtering problems remained largely unnoticed until the early 1990s.
Clearly, the available computational power was too limited to allow convincing ap-
plications of these methods. Another less obvious reason is that the SIS algorithm
suffers from a major drawback that was not overcome and properly cured until the
seminal papers of Gordon et al. (1993) and Kitagawa (1996). As the number of it-
erations increases, the importance weights degenerate: most of the particles have
very small normalized importance weights and thus do not significantly contribute to
the approximation of the target distribution. The solution proposed by Gordon et al.
(1993) and Kitagawa (1996) is to rejuvenate the particles by replicating the particles
with high importance weights while removing the particles with low weights.

Early applications of the particle filters are described in the book by Kitagawa
and Gersch (1996), which included applications of spectral estimation and change
points analysis. The collection of papers Doucet et al. (2001) provide a large number
of methods and applications of the particle filters. The methodological papers Liu and
Chen (1998) [see also the book by Liu (2001)] and Doucet et al. (2000) introduced
variants of particle filters; these papers also showed that particle approximations can
go far beyond filtering and smoothing problems for time series. The book Ristic et al.
(2004) is devoted to the application of tracking. Recent methodological advances
are covered in the survey papers by Cappé et al. (2007), Creal (2009) [presenting
applications in economics and finance] and Doucet and Johansen (2009).
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The convergence of the particle filter (and more generally of the interacting par-
ticle approximations of the Feynman-Kac semigroup) have been studied in a series
of papers by P. Del Moral and co-authors. Early versions of the central limit theo-
rems have been given in Del Moral and Guionnet (1999). Deviation inequalities are
reported in Del Moral and Guionnet (1998). The book Del Moral (2004), which ex-
tends the survey paper Del Moral and Miclo (2000), provides a thorough coverage
of the theoretical properties of sequential Monte Carlo algorithms. Recent theoreti-
cal results are presented in the survey papers Del Moral et al. (2011) and Del Moral
et al. (2010). More elementary approaches of the convergence of the particle filter
are presented in Chopin (2004), Künsch (2005), Cappé et al. (2005) and Douc and
Moulines (2008).

The auxiliary particle filter was introduced in the work by Pitt and Shephard
(1999). The consistency and asymptotic normality of the auxiliary particle filter is
discussed in Douc et al. (2009b) and Johansen and Doucet (2008), which shows that
the auxiliary particle filter can be seen as a particular instance of the Feynman-Kac
formula. The concentration properties of interacting particle systems are studied in
Del Moral et al. (2010). Non-asymptotic bounds for the auxiliary particle filter are
given in Douc et al. (2010).

Exercises

10.1 (Some properties of the IS estimator). Let µ ∈M1(X ) be a target distribu-
tion and ν ∈M1(X ) be a proposal distribution. Assume that µ � ν and denote w =
dµ/dν . Let f ∈ F(X,X ) be a function such that µ(| f |)<∞ and

∫
f 2(x)w(x)µ(dx)<

∞. Let {X i}N
i=1 be a sequence of i.i.d. random variables from ν . Denote by µ̂N( f ) =

N−1
∑

N
i=1 f (X i)w(X i) the importance sampling estimator.

(a) Show that µ̂N( f ) is an unbiased estimator of µ( f ).
(b) Show that µ̂N( f ) is strongly consistent.
(c) Show that

Varν ( f w) = [µ( f )]2 ν

[(
| f |w

µ(| f |)
−1
)2
]
.

(d) Under which condition does the importance sampling estimator have lower vari-
ance than the naive Monte Carlo estimator?

(e) If we choose ν(dx) = | f (x)|µ(dx)/µ(| f |), show that the variance of the IS esti-
mator is always smaller than the variance of the naive Monte Carlo estimator.

(f) Assume that f is nonnegative. Show that the proposal distribution may be chosen
in such a way that Varν ( f w) = 0.

(g) Explain why this choice of the proposal distribution is only of theoretical interest.
(h) Assume that Varν ( f w)> 0. Show that µ̂N( f ) is asymptotically Gaussian,

√
N(µ̂N( f )−µ( f )) P

=⇒ N(0,Varν ( f w)) as N→ ∞ .
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10.2. Importance sampling is relevant to approximating a tail probability P(X ≥ x).
If the random variable X with density g(x) has cumulant generating function κX (t),
then tilting by t gives a new density ht(x) = ext−κX (t)g(x).
(a) Show that the importance weight associated with an observation X drawn from

ht(x) is wt(x) = e−xt+κX (t).
(b) If Et denotes expectation with respect to ht(x) , show that the optimal tilt mini-

mizes the second moment

Et [1{X≥x}e
−2Xt+2κX (t)] = E0[1{X≥x}e

−Xt+κX (t)]≤ e−xt+κX (t) .

(c) It is far simpler to minimize the displayed bound than the second moment. Show
that the minimum of the upper bound is attained when K′(t) = x.

(d) Assume that X is normally distributed with mean µ and variance σ2. Show that

the cumulant generating function is κX (t) = µt +
1
2

σ
2t2.

(e) For a given x, show that a good tilt is therefore t = (x−µ)/σ2.
(f) Calculate the cumulant generating functions κX (t) of the exponential and Pois-

son distributions. Solve the equation κX (t) = x for t.
(g) Suppose X follows a standard normal distribution. Write and test a program to

approximate the right-tail probability P(X ≥ x) by tilted importance sampling.
Assume that x is large and positive.

10.3. Assume that the target µ = C(0,1) is a standard Cauchy distribution, and the
instrumental distribution ν = N(0,1) is a standard Gaussian distribution.
(a) Show that the importance weight function is given by

w(x) =
√

2π
exp(x2/2)
π (1+ x2)

.

(b) Show that
1√
2π

∫
∞

−∞

w2(x)exp(−x2/2)dx = ∞ ,

and conclude that the IS estimator is consistent but does not converge at an
asymptotic rate

√
n.

(c) Plot the sample quantiles of the estimator of µ( f ) versus the quantiles of a stan-
dard normal distribution when f (x) = exp(−|x|).

10.4. Assume that the target distribution is a standard normal µ = N(0,1) and that
the proposal distribution is Cauchy ν = C(0,1).
(a) Show that the importance weight is bounded by

√
2π/e.

(b) Using Exercise 10.1, show that
√

N(µ̂N( f )− µ( f )) is asymptotically normal,
where f (x) = exp(−|x|) and µ̂N( f ) is the importance sampling estimator of
µ( f ). can be applied.

(c) Plot the sample quantiles of the IS estimator µ̂N( f ) versus the quantile of the
standard Gaussian distribution with (N = 50,100,1000).
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(d) Assume now that ν = C(0,σ) where σ > 0 is the scale parameter. Show that the
importance weight function is bounded by (

√
2π/eσ)eσ2/2, σ <

√
2, σ

√
π/2,

σ ≥
√

2.
(e) Show that the upper bound on the importance weight has a minimum at σ = 1.
(f) Argue that the choice σ = 1 leads to estimators that are better behaved than for

σ = 0.1 and σ = 10.

10.5. Let f be a measurable function such that µ(| f |)< ∞. Assume that µ� ν and
let X1,X2, . . . , be an i.i.d. sequence with distribution ν .
(a) Show that the self-normalized IS estimator µ̂N( f ) given by (10.3) is a strongly

consistent sequence of estimators of µ( f ).
(b) Assume in addition that f satisfies

∫
[1 + f 2]w2dν < ∞. Show that the self-

normalized IS estimator is asymptotically Gaussian:
√

N (µ̂N( f )−µ( f )) P
=⇒

N
(
0,σ2(ν , f )

)
where σ2(ν , f ) =

∫
w2{ f −µ( f )}2dν .

(c) Show that the empirical variance σ̂2
N(ν , f ) given by

σ̂
2
N(ν , f ) = N

∑
N
i=1( f (X i)− µ̂N( f ))2w2(X i)(

∑
N
i=1 w(X i)

)2 ,

is a consistent sequence of estimators of σ2(ν , f ).
(d) Construct an asymptotically valid confidence interval for the self-normalized IS.

10.6. Let µ (known up to a normalizing constant) and ν , the proposal distribution,
be probability distributions on (X,X ). Suppose that for some function w ∈ L1(ν),
we have

µ( f ) = ν(w f )/ν(w) . (10.77)

Consider the weighted sample {(XN,i,w(XN,i))}N
i=1, where for each N, {XN,i}N

i=1 are
i.i.d. distributed according to ν .
(a) Show that, for any ε,C > 0,

N−1E
[

max
1≤i≤N

ω
N,i
]
≤ ε +N−1

N

∑
i=1

E
[
ω

N,i
1{ωN,i ≥ εN}

]
≤ ε +ν (w1{w ≥C})

for all N ≥C/ε .
(b) Show that ν (w1{w ≥C}) converges to zero as C→ ∞.
(c) Show that the weighted sample {(XN,i,w(XN,i))}N

i=1 is consistent for µ .

10.7 (Importance sampling; Exercise 10.6, cont.). We use the notations and the
assumptions of Exercise 10.6. Assume in addition that ν(w2)<∞. For f ∈ Fb(X,X ),
define SN( f ) := ∑

N
i=1(w(XN,i)/Ω N)[ f (XN,i)−µ( f )].

(a) Show that Ω N/N→P ν(w) and N1/2SN( f ) P
=⇒ S, where S is Gaussian random

variable with zero-mean and variance

σ
2( f ) := ν

{
w2[ f −µ( f )]2

}
. (10.78)
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Figure 10.8 Variance of the importance sampling estimator of the mean as a function of the
scale of the t-distribution.

(b) Show that for any f ∈ Fb(X,X ),

N
N

∑
i=1

(
ωN,i

Ω N

)2

f (XN,i) = N
N

∑
i=1

(
w(XN,i)

Ω N

)2

f (XN,i)
P−→ ζ ( f ) = ν

[
w2 f

]
,

(c) Show that, for any ε,C > 0,

N−1E
[

max
1≤i≤N

(
ω

N,i)2
]
≤ ε

2 +N−1
N

∑
i=1

E
[(

ω
N,i)2

1{
(
ω

N,i)2 ≥ ε
2N}

]
≤ ε

2 +ν
(
w2
1{w2 ≥C}

)
for N ≥C/ε .

(d) Show that ν
(
w2
1{w ≥C}

)
goes to zero as C→ ∞.

(e) Show that (N1/2/Ω N)max1≤i≤N ωN,i→P 0.
(f) Show that {(XN,i,w(XN,i))}N

i=1 is asymptotically normal for µ .

10.8 (Variance of the IS; Exercise 10.7, cont.). (a) Compute the variance of the
importance sampling estimator of the mean of a Gaussian mixture using a
Student-t distribution with 4 degrees of freedom for different values of the scale.

(b) Explain Figure 10.8.

10.9 (Noisy AR(1) model). Consider an AR(1) model observed in additive noise

Xt = φXt +σWWt , Wt ∼ N(0,1) ,
Yt = Xt +σVVt , Vt ∼ N(0,1) ,

where |φ |< 1 and {Wt , t ∈N} and {Vt , t ∈N} are independent Gaussian white noise
processes. The initial distribution ξ is the stationary distribution of the Markov chain
{Xt , t ∈ N}, that is, normal with zero mean and variance σ2

W/(1−φ 2).
(a) Implement the particle filter with the prior kernel.
(b) Show that the optimal kernel has a density given by

N
(

σ2
W σ2

V

σ2
W +σ2

V

{
φx
σ2

W
+

Yt

σ2
V

}
,

σ2
W σ2

V

σ2
W +σ2

V

)
.
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(c) Show that the weight function is

Qt(x,X) ∝ exp
[
−1

2
(Yt −φx)2

σ2
W +σ2

V

]
.

(d) Implement a particle filter with systematic resampling and the optimal kernel.
(e) Compare the prior and the optimal kernels when σW � σV and σV � σW .
(f) Illustrate your conclusions by a numerical example.

10.10 (Stochastic volatility). Consider the following stochastic volatility model

Xt = φXt−1 +σWt , Wt ∼ N(0,1) ,
Yt = β exp(Xt/2)Vt , Vt ∼ N(0,1) .

(a) Show that

m(x,x′) =
1√

2πσ2
exp
[
− (x′−φx)2

2σ2

]
,

g(x′,Yt) =
1√

2πβ 2
exp
[
− Y 2

t

2β 2 exp(−x′)− 1
2

x′
]
.

(b) Determine the optimal kernel p?t and the associated importance weight.
(c) Show that the function x′ 7→ ln(m(x,x′)g(x′,Yt)) is concave.
(d) Show that the mode mt(x) of x′ 7→ p?t (x,x

′) is the unique solution of the non-
linear equation

− 1
σ2 (x

′−φx)+
Y 2

t

2β 2 exp(−x′)− 1
2
= 0 .

(e) Propose and implement a numerical method to find this maximum.

10.11 (Stochastic volatility, cont.). We consider proposal kernel t-distribution with
η = 5 degrees of freedom, with location mt−1(x) and scale σt(x) set as square-root
of minus the inverse of the second-order derivative of x′ 7→ (lnm(x,x′)g(x′,Yt)) eval-
uated at the mode mt(x).
(a) Show that

σ
2
t−1(x) =

{
1

σ2 +
Y 2

t

2β 2 exp [−mt−1(x)]
}−1

.

(b) Show that the incremental importance weight is given by

exp
[
− (x′−φx)2

2σ2 − Y 2
t

2β 2 exp(−x′)− x′
2

]
σ
−1
t−1(x)

{
η +

[x′−mt−1(x)]
2

σ2
t−1(x)

}−(η+1)/2 .

(c) Implement in R a particle filter with systematic resampling using this proposal
kernel.
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(d) Compare numerically this implementation and the particle filter with systematic
resampling and the prior kernel.

10.12. We adopt the notation of Theorem 10.12. We decompose the bootstrap filter
into two steps. Starting from the equally weighted sample {(XN,i

t−1,1)}N
i=1 we first

form an intermediate sample {(X̃N,i
t ,w(XN,i, X̃N,i))}N

i=1 where {X̃N,i
t }N

i=1 are sampled
conditionally independently from the proposal kernel X̃N,i

t ∼ Rt(X
N,i
t−1, ·).

(a) Show that N−1
∑

N
i=1 w(XN,i

t−1,X
N,i
t )→P φt−1(Qt1).

(b) Show that

N−1/2
N

∑
i=1

w(XN,i
t−1, X̃

N,i
t ) f (X̃N,i

t )

= N−1/2
N

∑
i=1

w(XN,i
t−1, X̃

N,i
t ) f (X̃N,i

t )−Qt f (XN,i
t−1)+N−1/2

N

∑
i=1

Qt f (XN,i
t−1) .

(c) Show that φt−1Qt [ f −φt( f )] = 0 and that

N−1/2
N

∑
i=1

N

∑
i=1

Qt [ f (X
N,i
t−1)−φt( f )] P

=⇒ N(0,σ2
t−1(Qt [ f −φt( f )])) .

(d) Show that the weighted sample {(X̃N,i
t ,w(XN,i

t−1, X̃
N,i
t ))}N

i=1 is asymptotically nor-
mal. Compute the asymptotic variance.

(e) Prove Theorem 10.12.

10.13 (Multinomial sampling). The ball-in-urn method of generating multinomial
variables proceeds in two stages. In an initialization phase, the cumulative probability
vector is generated, where pi

∗ = ∑
i
j=1 ω i/Ω N , for i ∈ {1, . . . ,N}. In the generation

phase, N uniform random variables {U i}N
i=1 on [0,1] are generated and the indices

Ii = sup{ j ∈ {1, . . . ,N},U i ≥ p j
∗} are then computed.

(a) Show that the average number of comparisons to sample N multinomial is
N log2N comparisons.

(b) Denote by {U (i)}N
i=1 the ordered uniforms. Prove that starting from {U (i)}N

i=1
the number of comparisons required to generate {Ii}N

i=1 is at most N, worst case,
only N comparisons.

(c) Show that the increments Si =U (i)−U (i−1), i∈{1, . . . ,N}, (where by convention
S1 =U(1)), referred to as the uniform spacings, are distributed as

E1

∑
N+1
i=1 E i

, . . . ,
EN

∑
N+1
i=1 E i

,

where {E i}N
i=1 is a sequence of i.i.d. exponential random variables.

(d) Propose an algorithm to sample N multinomial with a complexity growing only
linearly with N.
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Of course, much better algorithms are available; see Davis (1993). An efficient algo-
rithm is implemented in R with a call to the built-in function rmultinom(), wrapped
to repeat the indices.

10.14. (a) Show that the resampling procedures (10.42) and (10.43) are unbiased,
i.e., for any f ∈ Fb(X,X ),

N−1
N

∑
i=1

E
[

f (X̃N,i)
∣∣FN]= N

∑
i=1

ω
N,i/Ω

N f (XN,i) .

(b) Show that

N−1
N

∑
i=1

E
[
| f (X̃N,i)|1{| f (X̃N,i)|≥C}

∣∣∣FN
]

=
N

∑
i=1

ωN,i

Ω N | f (X
N,i)|1{| f (XN,i)|≥C}

P−→ ν(| f |1{| f |≥C}) . (10.79)

(c) For any i = 1, . . . ,N, put UN,i := N−1 f (X̃N,i) . Show that

N

∑
i=1

E
[
|UN,i| |FN]= N−1

N

∑
i=1

E
[
| f (X̃N,i)|

∣∣FN] P−→ ν(| f |)< ∞ ,

(d) Show that for any ε > 0 and C < ∞, we have for all sufficiently large N,

N

∑
i=1

E
[
|UN,i|1{|UN,i|≥ε}

∣∣∣FN
]
=

1
N

N

∑
i=1

E
[
| f (X̃N,i)|1{| f |(X̃N,i)≥εN}

∣∣∣FN
]

≤ N−1
N

∑
i=1

E
[
| f (X̃N,i)|1{| f |(X̃N,i)≥C}

∣∣∣FN
]

P−→ µ
(
| f |1{| f |≥C}

)
.

(e) Conclude.

10.15. Assume that {(XN,i,ωN,i)}N
i=1 is adapted toFN , consistent for ν , and asymp-

totically normal for (ν ,σ ,ζ ). Let {(X̃N,i,1)}N
i=1 denote the equally weighted sample

obtained by multinomial resampling; see (10.42). Let f ∈ Fb(X,X ).
(a) Show that N−1

∑
N
i=1 f (X̃N,i)−ν( f ) = AN +BN where

AN =
N

∑
i=1

ω
N,i/Ω

N{ f (XN,i)−ν( f )} ,

BN = N−1
N

∑
i=1

{
f (X̃N,i)−E

[
f (X̃N,i)

∣∣FN]} .

Prove that N1/2AN
P

=⇒ N
(
0,σ2( f )

)
.
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(b) Set UN,i := N−1/2 f (X̃N,i). Show that

N

∑
j=1
{E
[
U2

N, j
∣∣FN]− (E

[
UN, j

∣∣FN])2}=

N−1

 N

∑
i=1

ωN,i

Ω N f 2(XN,i)−

{
N

∑
i=1

ωN,i

Ω N f (XN,i)

}2
 P−→ (ν( f 2)−{ν( f )}2) .

(c) Pick ε > 0. For any C > 0, and N sufficiently large, show that

N

∑
j=1

E
[

U2
N, j1{|UN, j |≥ε}

∣∣∣FN, j−1
]
≤

N

∑
i=1

ωN,i

Ω N f 2(XN,i)1{| f (XN,i)| ≥C}

P−→ ν( f 2
1{| f | ≥C}) .

(d) Show that {(X̃N,i,1)}N
i=1 obtained using (10.42) is asymptotically normal for

(ν , σ̃ , ζ̃ ) with σ̃2( f ) = Varν( f )+σ2( f ) and ζ̃ = ν .

10.16 (Proof of Theorem 10.14). Assume A10.13. Let f ∈ F+(X,X ). Without loss
of generality, put φt( f ) = 0, and let N−1

∑
N
i=1 ω i

t f (X i
t ) =

1
N (A

N
t +BN

t ), where

AN
t = E

[
ω

1
t f (X1

t )
∣∣ FN

t−1
]
,

BN
t =

1
N

N

∑
i=1

{
ω

i
t f (X i

t )−E
[
ω

i
t f (X i

t )
∣∣ FN

t−1
]}

,

where FN
t−1 is defined in (10.55).

(a) Show that

AN
t =

N

∑
i=1

ω i
t−1

∑
N
j=1 ω

j
t−1ϑt(X i

t−1)
Qt f (X i

t−1) .

(b) By applying the induction assumption, show that

√
N

N

∑
i=1

ω i
t−1

Ω N
t−1

Qt f (X i
t−1)

P
=⇒ N(0,σ2

t−1(Qt f )) .

(c) Show that
N

∑
i=1

ω i
t−1

Ω N
t−1

ϑt(X
i
t−1)

P−→ φt−1(ϑt) .

(d) Deduce that
√

NAN
t

P
=⇒ N(0,{φt−1(ϑt)}−2σ2

t−1(Qt f )).
(e) Show that

NE
[
{BN

t }2 ∣∣ FN
t−1
]
= E

[
(ω1

t f (X1
t ))

2 ∣∣ FN
t−1
]
−
(
E
[
ω

1
t f (X1

t )
∣∣ FN

t−1
])2

.
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(f) Show that

E
[
(ω1

t f (X1
t ))

2 ∣∣ FN
t−1
] P−→ α

2
t =

∫∫
φt−1(dx)
φt−1(ϑt)

w2
t (x,x

′)

ϑt(x)
Qt(x,dx′) f 2(x′) .

(g) Show that E
[
ω1

t f (X1
t )
∣∣ FN

t−1

] P−→ 0,
√

NBN
t

P
=⇒N(0,α2

t ), and that
√

NAN
t and√

NBN
t are asymptotically independent.

(h) Show that Ω N
t /N P−→ φt−1(Qt1)/φt−1(ϑt) and conclude.

10.17. Assume A10.13 and that ϑs ≡ 1 for all t ∈ {1, . . . ,n} and Qt ≡M. Show that
for any t ∈ {0, . . . ,n} and any f ∈ Fb(X,X ),

√
N(φ N

t ( f )−φt( f )) is asymptotically
normal with zero mean and variance

σ
2
t ( f ) =

t

∑
s=1

Varφs

{
Qs,t [ f −φt( f )]

}[
φsQs,t(111)

]2 +
σ2

0

{
Q0,t [ f −φt( f )]

}
[φ0Q0,t(111)]2

,

where Qs,t is defined in (10.59). Assume A10.18. Show that supt≥0 σ2
t ( f )< ∞.

10.18. In this exercise, we provide an alternate proof of the central limit theorem for
the auxiliary particle filter, based on the decomposition (10.58). This proof allows us
to obtain an explicit expression of the asymptotic variance. Assume A10.13. Set for
s ∈ {0, . . . , t}, W N

s,t(h) = N−1/2
∑

N
`=1 η

N,`
s,t (h) where, for s ∈ {1, . . . , t},

η
N,`
s,t (h) := ω

`
s

{
Qs,th(X

`
s )−

φ N
s−1(Qs−1,th)

φ N
s−1(Qs−1,t111)

Qs,t111(X
`
s )

}
,

and for s = 0,

η
N
0,t := ω

`
0

{
Q0,th(X

`
s )−

φ0(Q0,th)

φ N
0 (Q0,t111)

Q0,t111(X
`
0)

}
.

Denote αN
s,t =

{
N−1

∑
N
`=1 Qs,t111(X

`
s )
}−1.

(a) Show that
√

N{φ N
t (h)−φt(h)}= ∑

t
s=1 αN

s,tW
N
s,t(h).

(b) Show that, for all s ∈ {0, . . . , t}, {η`
s,t(h)}N

`=1 are zero-mean and i.i.d. condition-
ally on FN

s−1, defined in (10.55).

(c) Show that, for all s ∈ {0, . . . , t}, W N
s,t(h) converges in distribution to a zero-mean

Gaussian variable, conditionally independent of FN
s−1.

(d) Show that the [W N
0,t(h),W

N
1,t(h), . . . ,W

N
t,t (h)] converges in distribution to a zero-

mean random vector with diagonal covariance matrix.

(e) Show that, for s ∈ {1, . . . , t}, αN
s,t

P−→ φs−1(ϑs)/φs(111).

(f) Show that,
√

N[(φ N
0 (h)−φ0(h)), . . . ,(φ

N
n (h)−φn(h))] converges to a multivari-

ate Gaussian distribution with zero mean and covariance matrix Γn.
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10.19. Show that, for any ν ∈M1(X ) and any functions f ,g ∈ F+(X,X ),(∫
ν(dx) f 1/2(x)

)2

≤
∫

ν(dx)g(x)
∫

ν(dx)
f (x)
g(x)

.

Establish Eq. (10.51).

10.20. We use the notations and definitions of Lemma 10.16. Show that: |AN/BN | ≤
B−1|AN/BN ||B−BN |+B−1|AN |. Conclude.

10.21. We consider the problem of estimating, for some given measurable target
function f , the expectation π( f ), where π = ∑

d
i=1 ωiµi. ωi ≥ 0, ∑

d
i=1 ωi = 1 and

{µi}N
i=1 ∈M1(X ). In order to relate this to the particle filtering paradigm, we will

make use of the following algorithm. Let {νi}d
i=1 ⊂M1(X ) be probability measures

such that µi(A) =
∫

A wi(x)νi(dx) for some wi ∈ F+(X,X ).

For k = 1 to N,
(i) draw an index IN,k multinomially with probability proportional to the weights

ωiτi, 1≤ i≤ d;
(ii) simulate Xk ∼ νIN,k .

Subsequently, having at hand the sample {XN,i}N
i=1, we use

π̂
N( f ) =

∑
N
k=1 τ

−1
IN,k wIN,k(XN,k) f (XN,k)

∑
N
k=1 τ

−1
IN,k wIN,k(XN,k)

.

(a) Show that

N1/2 [
π̂

N( f )−π( f )
] P
=⇒ N

(
0,

d

∑
i=1

ωiαi( f )
τi

)
, (10.80)

where αi( f ) :=
∫
X [wi(x)]

2 [ f (x)−π( f )]2 νi(dx).

(b) Show that the adjustment weights τ∗i := α
1/2
i ( f ), i = 1, . . . ,d minimize the

asymptotic variance of the limiting distribution (10.80).
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