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CHAPTER 12

Random Variables and
Probability Distributions

Random Variables
Suppose that to each point of a sample space we assign a number. We then have a function defined on the sam-
ple space. This function is called a random variable (or stochastic variable) or more precisely a random func-
tion (stochastic function). It is usually denoted by a capital letter such as X or Y. In general, a random variable
has some specified physical, geometrical, or other significance.

EXAMPLE 2.1 Suppose that a coin is tossed twice so that the sample space is S � {HH, HT, TH, TT}. Let X represent
the number of heads that can come up. With each sample point we can associate a number for X as shown in Table 2-1.
Thus, for example, in the case of HH (i.e., 2 heads), X � 2 while for TH (1 head), X � 1. It follows that X is a random
variable.

CHAPTER 2

Sample Point HH HT TH TT

X 2 1 1 0

Table 2-1

It should be noted that many other random variables could also be defined on this sample space, for example, the
square of the number of heads or the number of heads minus the number of tails.

A random variable that takes on a finite or countably infinite number of values (see page 4) is called a dis-
crete random variable while one which takes on a noncountably infinite number of values is called a nondiscrete
random variable.

Discrete Probability Distributions
Let X be a discrete random variable, and suppose that the possible values that it can assume are given by x1, x2,
x3, . . . , arranged in some order. Suppose also that these values are assumed with probabilities given by

P(X � xk) � f (xk) k � 1, 2, . . . (1)

It is convenient to introduce the probability function, also referred to as probability distribution, given by 

P(X � x) � f (x) (2)

For x � xk, this reduces to (1) while for other values of x, f (x) � 0.
In general, f (x) is a probability function if

1. f (x) � 0

2.

where the sum in 2 is taken over all possible values of x.

a
x

f (x) � 1
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EXAMPLE 2.2 Find the probability function corresponding to the random variable X of Example 2.1. Assuming that
the coin is fair, we have

Then

The probability function is thus given by Table 2-2.

P(X � 0) � P(TT) �
1
4

P(X � 1) � P(HT < TH ) � P(HT ) � P(TH ) �
1
4 �

1
4 �

1
2

P(X � 2) � P(HH) �
1
4

P(HH ) �
1
4  P(HT ) �

1
4  P(TH ) �

1
4  P(T T ) �

1
4

Distribution Functions for Random Variables
The cumulative distribution function, or briefly the distribution function, for a random variable X is defined by

F(x) � P(X � x) (3)

where x is any real number, i.e., � � x � .
The distribution function F(x) has the following properties:

1. F(x) is nondecreasing [i.e., F(x) � F(y) if x � y].
2.

3. F(x) is continuous from the right [i.e., for all x].

Distribution Functions for Discrete Random Variables
The distribution function for a discrete random variable X can be obtained from its probability function by noting
that, for all x in (� , ),

(4)

where the sum is taken over all values u taken on by X for which u � x.
If X takes on only a finite number of values x1, x2, . . . , xn, then the distribution function is given by

(5)

EXAMPLE 2.3 (a) Find the distribution function for the random variable X of Example 2.2. (b) Obtain its graph.

(a) The distribution function is

F(x) � d0 �` � x � 0
1
4 0 �  x � 1
3
4 1 � x � 2

1 2 � x � `

F(x) � e0 �` � x � x1

f (x1) x1 � x � x2

f (x1) � f (x2) x2 � x � x3

(  (
f (x1) � c� f (xn) xn � x � `

F(x) � P(X � x) � a
u�x

f (u)

``

lim
hS0�

F(x � h) � F(x)

lim
xS�`

F(x) � 0;  lim
xS`

F(x) � 1.

``

x 0 1 2

f (x) 1 4 1 2 1 4>>>

Table 2-2
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(b) The graph of F(x) is shown in Fig. 2-1.

The following things about the above distribution function, which are true in general, should be noted.

1. The magnitudes of the jumps at 0, 1, 2 are which are precisely the probabilities in Table 2-2. This fact
enables one to obtain the probability function from the distribution function.

2. Because of the appearance of the graph of Fig. 2-1, it is often called a staircase function or step function.
The value of the function at an integer is obtained from the higher step; thus the value at 1 is and not . This
is expressed mathematically by stating that the distribution function is continuous from the right at 0, 1, 2.

3. As we proceed from left to right (i.e. going upstairs), the distribution function either remains the same or
increases, taking on values from 0 to 1. Because of this, it is said to be a monotonically increasing function.

It is clear from the above remarks and the properties of distribution functions that the probability function of
a discrete random variable can be obtained from the distribution function by noting that

(6)

Continuous Random Variables
A nondiscrete random variable X is said to be absolutely continuous, or simply continuous, if its distribution func-
tion may be represented as

(7)

where the function f (x) has the properties

1. f (x) � 0

2.

It follows from the above that if X is a continuous random variable, then the probability that X takes on any
one particular value is zero, whereas the interval probability that X lies between two different values, say, a and b,
is given by

(8)P(a � X � b) � 3
b

a
f (x) dx

3
`

�`
f (x) dx � 1

F(x) � P(X � x) � 3
x

�`
f (u) du  (�` � x � `)

f (x) � F(x) � lim
uSx�

F(u).

1
4

3
4

1
4,

1
2,

1
4

Fig. 2-1
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EXAMPLE 2.4 If an individual is selected at random from a large group of adult males, the probability that his height
X is precisely 68 inches (i.e., 68.000 . . . inches) would be zero. However, there is a probability greater than zero than X
is between 67.000 . . . inches and 68.500 . . . inches, for example.

A function f (x) that satisfies the above requirements is called a probability function or probability distribu-
tion for a continuous random variable, but it is more often called a probability density function or simply den-
sity function. Any function f (x) satisfying Properties 1 and 2 above will automatically be a density function, and
required probabilities can then be obtained from (8).

EXAMPLE 2.5 (a) Find the constant c such that the function

is a density function, and (b) compute P(1 � X � 2).

(a) Since f (x) satisfies Property 1 if c � 0, it must satisfy Property 2 in order to be a density function. Now

and since this must equal 1, we have c � 1 9.

(b)

In case f (x) is continuous, which we shall assume unless otherwise stated, the probability that X is equal
to any particular value is zero. In such case we can replace either or both of the signs � in (8) by �. Thus, in
Example 2.5,

EXAMPLE 2.6 (a) Find the distribution function for the random variable of Example 2.5. (b) Use the result of (a) to
find P(1 � x � 2).

(a) We have

If x � 0, then F(x) � 0. If 0 � x � 3, then 

If x � 3, then

Thus the required distribution function is

Note that F(x) increases monotonically from 0 to 1 as is required for a distribution function. It should also be noted
that F(x) in this case is continuous.

F(x) � •
0  x � 0

x3>27 0 � x � 3

1  x � 3

F(x) � 3
3

0
f (u) du � 3

x

3
f (u) du � 3

3

0

1
9

u2 du � 3
x

3
 0 du � 1

F(x) � 3
x

0
f  (u)  du � 3

x

0

1
9

u2 du �
x3

27

F(x) � P(X � x) � 3
x

�`
f  (u) du

P(1 � X � 2) � P(1 � X � 2) � P(1 � X � 2) � P(1 � X � 2) �
7

27

P(1 � X � 2) � 3
2

1

1
9  x2 dx �

x3

27  2  2
1

�
8

27 �
1

27 �
7

27

>

3
`

�`
f (x) dx � 3

3

0
cx2 dx �

cx3

3
 2  3

0
� 9c

f (x) � bcx2  0 � x � 3

0   otherwise

CHAPTER 2 Random Variables and Probability Distributions 37
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(b) We have

as in Example 2.5.

The probability that X is between x and is given by

(9)

so that if is small, we have approximately

(10)

We also see from (7) on differentiating both sides that

(11)

at all points where f (x) is continuous; i.e., the derivative of the distribution function is the density function.
It should be pointed out that random variables exist that are neither discrete nor continuous. It can be shown

that the random variable X with the following distribution function is an example.

In order to obtain (11), we used the basic property

(12)

which is one version of the Fundamental Theorem of Calculus.

Graphical Interpretations
If f (x) is the density function for a random variable X, then we can represent y � f (x) graphically by a curve as
in Fig. 2-2. Since f (x) � 0, the curve cannot fall below the x axis. The entire area bounded by the curve and the
x axis must be 1 because of Property 2 on page 36. Geometrically the probability that X is between a and b, i.e.,
P(a � X � b), is then represented by the area shown shaded, in Fig. 2-2.

The distribution function F(x) � P(X � x) is a monotonically increasing function which increases from 0 to
1 and is represented by a curve as in Fig. 2-3.

d
dx3

x

a
f (u) du � f  (x)

F(x) � μ
0 x � 1

x
2
 1 � x � 2

1 x � 2

dF(x)
dx

� f (x)

P(x � X � x � 
x) � f (x)
x


x

P(x � X � x � 
x) � 3
x�
x

x
f  (u) du

x � 
x

P(1 � X � 2) 5 P(X � 2) � P(X � 1)

5 F(2) � F(1)

5
23

27
�

13

27
�

7
27

Fig. 2-2 Fig. 2-3
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Joint Distributions 
The above ideas are easily generalized to two or more random variables. We consider the typical case of two ran-
dom variables that are either both discrete or both continuous. In cases where one variable is discrete and the other
continuous, appropriate modifications are easily made. Generalizations to more than two variables can also be
made.

1. DISCRETE CASE. If X and Y are two discrete random variables, we define the joint probability func-
tion of X and Y by

P(X � x, Y � y) � f (x, y) (13)

where 1. f (x, y) � 0

2.

i.e., the sum over all values of x and y is 1.
Suppose that X can assume any one of m values x1, x2, . . . , xm and Y can assume any one of n values y1, y2, . . . , yn.

Then the probability of the event that X � xj and Y � yk is given by 

P(X � xj, Y � yk) � f (xj, yk) (14)

A joint probability function for X and Y can be represented by a joint probability table as in Table 2-3. The
probability that X � xj is obtained by adding all entries in the row corresponding to xi and is given by

(15)P(X � xj) � f1(xj) � a
n

k�1
f (xj, yk)

a
x
a

y
f (x, y) � 1

CHAPTER 2 Random Variables and Probability Distributions 39

X

Y
y1 y2 yn Totals

x1 f (x1, y1) f (x1, y2) f (x1, yn) f1 (x1)

x2 f (x2, y1) f (x2, y2) f (x2, yn) f1 (x2)

xm f (xm, y1 ) f (xm, y2 ) f (xm, yn) f1 (xm)

Totals f2 (y1 ) f2 (y2 ) f2 (yn) 1 Grand Totaldc
S

c

(((((

c

c

c

Table 2-3

T

For j � 1, 2, . . . , m, these are indicated by the entry totals in the extreme right-hand column or margin of Table 2-3.
Similarly the probability that Y � yk is obtained by adding all entries in the column corresponding to yk and is
given by

(16)

For k � 1, 2, . . . , n, these are indicated by the entry totals in the bottom row or margin of Table 2-3.
Because the probabilities (15) and (16) are obtained from the margins of the table, we often refer to 

f1(xj) and f2(yk) [or simply f1(x) and f2(y)] as the marginal probability functions of X and Y, respectively. 

P(Y � yk) � f2(yk) � a
m

j�1
f (xj, yk)
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It should also be noted that

(17)

which can be written

(18)

This is simply the statement that the total probability of all entries is 1. The grand total of 1 is indicated in the
lower right-hand corner of the table.

The joint distribution function of X and Y is defined by

(19)

In Table 2-3, F(x, y) is the sum of all entries for which xj � x and yk � y.

2. CONTINUOUS CASE. The case where both variables are continuous is obtained easily by analogy with
the discrete case on replacing sums by integrals. Thus the joint probability function for the random vari-
ables X and Y (or, as it is more commonly called, the joint density function of X and Y ) is defined by

1. f (x, y) � 0

2.

Graphically z � f(x, y) represents a surface, called the probability surface, as indicated in Fig. 2-4. The total vol-
ume bounded by this surface and the xy plane is equal to 1 in accordance with Property 2 above. The probability
that X lies between a and b while Y lies between c and d is given graphically by the shaded volume of Fig. 2-4 and
mathematically by

(20)P(a � X � b,  c � Y � d ) � 3
b

x�a
3

d

y�c
f (x, y) dx dy

3
`

�`
3
`

�`
f (x, y) dx dy � 1

F(x, y) � P(X �  x,  Y �  y) � a  
u� x 

a
v� y

f (u, v)

a
m

j�1
 a

n

k�1
f (xj, yk) � 1

a
m

j�1
f1 (xj) � 1 a

n

k�1
f2 (yk) � 1

More generally, if A represents any event, there will be a region A of the xy plane that corresponds to it. In such
case we can find the probability of A by performing the integration over A, i.e.,

(21)

The joint distribution function of X and Y in this case is defined by

(22)F(x, y) � P(X �  x,  Y � y) � 3
x

u��`
3

y

v��`
f (u, v) du dv

P(A) � 33
5A

f (x, y) dx dy

5
5

Fig. 2-4
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It follows in analogy with (11), page 38, that

(23)

i.e., the density function is obtained by differentiating the distribution function with respect to x and y.
From (22) we obtain

(24)

(25)

We call (24) and (25) the marginal distribution functions, or simply the distribution functions, of X and Y, respec-
tively. The derivatives of (24) and (25) with respect to x and y are then called the marginal density functions, or
simply the density functions, of X and Y and are given by

(26)

Independent Random Variables
Suppose that X and Y are discrete random variables. If the events X � x and Y � y are independent events for all
x and y, then we say that X and Y are independent random variables. In such case,

(27)

or equivalently

f (x, y) � f1(x) f2(y) (28)

Conversely, if for all x and y the joint probability function f (x, y) can be expressed as the product of a function
of x alone and a function of y alone (which are then the marginal probability functions of X and Y), X and Y are
independent. If, however, f (x, y) cannot be so expressed, then X and Y are dependent.

If X and Y are continuous random variables, we say that they are independent random variables if the events
X � x and Y � y are independent events for all x and y. In such case we can write

P(X � x, Y � y) � P(X � x)P(Y � y) (29)

or equivalently

F(x, y) � F1(x)F2(y) (30)

where F1(z) and F2(y) are the (marginal) distribution functions of X and Y, respectively. Conversely, X and Y are
independent random variables if for all x and y, their joint distribution function F(x, y) can be expressed as a prod-
uct of a function of x alone and a function of y alone (which are the marginal distributions of X and Y, respec-
tively). If, however, F(x, y) cannot be so expressed, then X and Y are dependent.

For continuous independent random variables, it is also true that the joint density function f (x, y) is the prod-
uct of a function of x alone, f1(x), and a function of y alone, f2(y), and these are the (marginal) density functions
of X and Y, respectively.

Change of Variables
Given the probability distributions of one or more random variables, we are often interested in finding distribu-
tions of other random variables that depend on them in some specified manner. Procedures for obtaining these
distributions are presented in the following theorems for the case of discrete and continuous variables.

P(X � x,  Y � y) � P(X � x)P(Y � y)

f1(x) � 3
`

v��`
f (x, v) dv  f2( y) � 3

`

u��`
f (u, y) du

P(Y �  y) � F2( y) � 3
`

u��`
3

y

v��`
f (u, v) du dv

P(X �  x) � F1(x) � 3
x

u��`
3
`

v��`
f (u, v) du dv

'2F
'x'y � f (x, y)

CHAPTER 2 Random Variables and Probability Distributions 41
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1. DISCRETE VARIABLES
Theorem 2-1 Let X be a discrete random variable whose probability function is f (x). Suppose that a discrete

random variable U is defined in terms of X by U � �(X), where to each value of X there corre-
sponds one and only one value of U and conversely, so that X � �(U). Then the probability func-
tion for U is given by

g(u) � f [�(u)] (31)

Theorem 2-2 Let X and Y be discrete random variables having joint probability function f (x, y). Suppose that
two discrete random variables U and V are defined in terms of X and Y by U � �1(X, Y), V �
�2 (X, Y), where to each pair of values of X and Y there corresponds one and only one pair of val-
ues of U and V and conversely, so that X � �1(U, V ), Y � �2(U, V). Then the joint probability
function of U and V is given by

g(u, v) � f [�1(u, v), �2(u, v)] (32)

2. CONTINUOUS VARIABLES
Theorem 2-3 Let X be a continuous random variable with probability density f (x). Let us define U � �(X)

where X � � (U ) as in Theorem 2-1. Then the probability density of U is given by g(u) where

g(u)|du | � f (x) |dx | (33)

or (34)

Theorem 2-4 Let X and Y be continuous random variables having joint density function f (x, y). Let us define
U � �1(X, Y ), V � �2(X, Y ) where X � �1(U, V ), Y � �2(U, V ) as in Theorem 2-2. Then the
joint density function of U and V is given by g(u, v) where

g(u, v)|du dv | � f (x, y)|dx dy | (35)

or (36)

In (36) the Jacobian determinant, or briefly Jacobian, is given by

(37)

Probability Distributions of Functions of Random Variables
Theorems 2-2 and 2-4 specifically involve joint probability functions of two random variables. In practice one
often needs to find the probability distribution of some specified function of several random variables. Either of
the following theorems is often useful for this purpose.

Theorem 2-5 Let X and Y be continuous random variables and let U � �1(X, Y ), V � X (the second choice is
arbitrary). Then the density function for U is the marginal density obtained from the joint den-
sity of U and V as found in Theorem 2-4. A similar result holds for probability functions of dis-
crete variables.

Theorem 2-6 Let f (x, y) be the joint density function of X and Y. Then the density function g(u) of the 
random variable U � �1(X, Y ) is found by differentiating with respect to u the distribution 

∞J �
'(x, y)
'(u, v)

�

'x
'u   

'x
'v

'y
'u   

'y
'v

∞

g(u, v) �  f (x, y) 2  '(x, y)
'(u, v) 

2 � f [ c1 (u, v), c2(u, v)]ZJZ

g(u) � f (x) 2  dx
du

 2 � f [c (u)]Z  cr(u)Z
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function given by

(38)

Where is the region for which �1(x, y) � u.

Convolutions
As a particular consequence of the above theorems, we can show (see Problem 2.23) that the density function of
the sum of two continuous random variables X and Y, i.e., of U � X � Y, having joint density function f (x, y) is
given by

(39)

In the special case where X and Y are independent, f (x, y) � f1 (x) f2 (y), and (39) reduces to

(40)

which is called the convolution of f1 and f2, abbreviated, f1 * f2.
The following are some important properties of the convolution:

1. f1 * f2 � f2 * f1

2. f1 *( f2 * f3) � ( f1 * f2) * f3

3. f1 *( f2 � f3) � f1 * f2 � f1 * f3

These results show that f1, f2, f3 obey the commutative, associative, and distributive laws of algebra with respect
to the operation of convolution.

Conditional Distributions
We already know that if P(A) � 0,

(41)

If X and Y are discrete random variables and we have the events (A: X � x), (B: Y � y), then (41) becomes

(42)

where f (x, y) � P(X � x, Y � y) is the joint probability function and f1 (x) is the marginal probability function
for X. We define

(43)

and call it the conditional probability function of  Y given X. Similarly, the conditional probability function of X
given Y is

(44)

We shall sometimes denote f (x y) and f( y x) by f1 (x y) and f2 ( y x), respectively.
These ideas are easily extended to the case where X, Y are continuous random variables. For example, the con-

ditional density function of Y given X is

(45)f (y u x) ;
f (x, y)
f1(x)

uuuu

f  (x u  y) ;   
f (x, y)
f2(y)

f (y u  x) ;   
f (x, y)
f1(x)

P(Y � y u  X �  x) �  
f (x, y)
f1(x)

P(B uA) �  
P(A ¨  B)

P(A)

g(u) � 3
`

�`
f1(x) f2 (u � x) dx

g(u) �  3
`

�`
f (x, u � x) dx

5

G(u) � P[f1 (X, Y ) � u] � 6
5

 

 f (x, y) dx dy
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where f (x, y) is the joint density function of X and Y, and f1 (x) is the marginal density function of X. Using (45)
we can, for example, find that the probability of Y being between c and d given that x � X � x � dx is

(46)

Generalizations of these results are also available.

Applications to Geometric Probability
Various problems in probability arise from geometric considerations or have geometric interpretations. For ex-
ample, suppose that we have a target in the form of a plane region of area K and a portion of it with area K1, as
in Fig. 2-5. Then it is reasonable to suppose that the probability of hitting the region of area K1 is proportional
to K1. We thus define

P(c � Y � d u x � X � x � dx) � 3
d

c
f ( y u x) dy

Fig. 2-5

(47)

where it is assumed that the probability of hitting the target is 1. Other assumptions can of course be made. For
example, there could be less probability of hitting outer areas. The type of assumption used defines the proba-
bility distribution function.

SOLVED PROBLEMS

Discrete random variables and probability distributions
2.1. Suppose that a pair of fair dice are to be tossed, and let the random variable X denote the sum of the points.

Obtain the probability distribution for X.

The sample points for tosses of a pair of dice are given in Fig. 1-9, page 14. The random variable X is the sum of
the coordinates for each point. Thus for (3, 2) we have X � 5. Using the fact that all 36 sample points are equally
probable, so that each sample point has probability 1 36, we obtain Table 2-4. For example, corresponding to X � 5,
we have the sample points (1, 4), (2, 3), (3, 2), (4, 1), so that the associated probability is 4 36.>

>

P(hitting region of area K1) �  
K1

K

x 2 3 4 5 6 7 8 9 10 11 12

f (x) 1 36 2 36 3 36 4 36 5 36 6 36 5 36 4 36 3 36 2 36 1 36>>>>>>>>>>>

Table 2-4
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2.2. Find the probability distribution of boys and girls in families with 3 children, assuming equal probabilities
for boys and girls.

Problem 1.37 treated the case of n mutually independent trials, where each trial had just two possible outcomes,
A and A�, with respective probabilities p and q � 1 � p. It was found that the probability of getting exactly x A’s
in the n trials is nCx px qn�x. This result applies to the present problem, under the assumption that successive births
(the “trials”) are independent as far as the sex of the child is concerned. Thus, with A being the event “a boy,” n � 3,
and , we have

where the random variable X represents the number of boys in the family. (Note that X is defined on the
sample space of 3 trials.) The probability function for X,

is displayed in Table 2-5.

f (x) � 3Cx Q12R
3

P(exactly x  boys) � P(X �  x) � 3Cx Q12R
xQ1

2
R3�x

 �  3Cx Q12R
3

p � q �
1
2
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x 0 1 2 3

f (x) 1 8 3 8 3 8 1 8>>>>

Table 2-5

Discrete distribution functions
2.3. (a) Find the distribution function F(x) for the random variable X of Problem 2.1, and (b) graph this distri-

bution function.

(a) We have Then from the results of Problem 2.1, we find

(b) See Fig. 2-6.

F(x)  �   g0  �`  �  x �  2

1>36  2 �   x �  3

3>36  3 �   x �  4

6>36  4 �   x �  5

(   (
35>36 11 �   x �  12

1  12 �   x �  `

F(x) � P(X � x) � gu� x f (u).

Fig. 2-6

2.4. (a) Find the distribution function F(x) for the random variable X of Problem 2.2, and (b) graph this distri-
bution function.
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(a) Using Table 2-5 from Problem 2.2, we obtain

(b) The graph of the distribution function of (a) is shown in Fig. 2-7.

F(x)  �   e0  �`  �  x � 0

1>8 0 �   x �  1

1>2 1 �   x �  2

7>8 2 �   x �  3

1  3 �  x �  `

Fig. 2-7

Continuous random variables and probability distributions
2.5. A random variable X has the density function f (x) � c (x2 � 1), where � � x � . (a) Find the value of

the constant c. (b) Find the probability that X2 lies between 1 3 and 1.

(a) We must have i.e.,

so that c � 1 �.

(b) If then either or Thus the required probability is

2.6. Find the distribution function corresponding to the density function of Problem 2.5.

�
1
2

  �   
1
p  tan �1 x

�
1
p  [tan �1 x � tan �1(�`)]  �   

1
p  B tan �1 x �  

p
2
RF(x)  � 3

x

�`
f (u) du �

1
p3

x

�`
  

du
u2 � 1

�
1
p  B tan�1 uZx

�`
R

�
2
p ¢p4 �

p
6
≤ �  

1
6

�
2
p  Btan �1(1) � tan �1¢23

3
≤ R1

p3
�!3>3

�1

 
dx

x2 � 1
�

1
p3

1

!3>3
dx

x2 � 1
�

2
p3

1

!3>3
dx

x2 � 1

�1 � X � �
23
3 .

23
3  �   X �   1

1
3 � X2 � 1,

>
3
`

�`

c dx
x2 � 1

� c tan �1 x P`
�`

� cBp
2

 �  ¢�
p
2
≤ R � 1

3
`

�`
f (x) dx � 1,

>
``>
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2.7. The distribution function for a random variable X is

Find (a) the density function, (b) the probability that X � 2, and (c) the probability that �3 � X � 4.

(a)

(b)

Another method
By definition, P(X � 2) � F(2) � 1 � e�4. Hence,

P(X � 2) � 1 � (1 � e�4) � e�4

(c)

Another method

P(�3 � X � 4) � P(X � 4) � P(X � �3)

� F(4) � F(�3)

� (1 � e�8) � (0) � 1 � e�8

Joint distributions and independent variables
2.8. The joint probability function of two discrete random variables X and Y is given by f(x, y) � c(2x � y), where

x and y can assume all integers such that 0 � x � 2, 0 � y � 3, and f (x, y) � 0 otherwise.

(a) Find the value of the constant c. (c) Find P(X � 1, Y � 2).
(b) Find P(X � 2, Y � 1).

(a) The sample points (x, y) for which probabilities are different from zero are indicated in Fig. 2-8. The
probabilities associated with these points, given by c(2x � y), are shown in Table 2-6. Since the grand total,
42c, must equal 1, we have c � 1 42.>

P(�3 �  X �   4) � 3
4

�3
f (u) du � 3

0

�3
 0 du � 3

4

0
 2e�2u du

� �e�2u Z 4
0

� 1 � e�8

P(X � 2) � 3
`

2
 2e�2u du � �e�2u P `

2 � e�4

f (x)  �   
d
dx

 F(x) � e2e�2x x  �  0

0  x �  0

F(x) � e1 � e�2x x  �   0

0  x  �  0
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X
Y 0 1 2 3 Totals

0 0 c 2c 3c 6c

1 2c 3c 4c 5c 14c

2 4c 5c 6c 7c 22c

Totals 6c 9c 12c 15c 42cS

T

Fig. 2-8

Table 2-6

(b) From Table 2-6 we see that

P(X �  2,  Y �  1)  �  5c �  
5
42
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(c) From Table 2-6 we see that

as indicated by the entries shown shaded in the table.

2.9. Find the marginal probability functions (a) of X and (b) of Y for the random variables of Problem 2.8.

(a) The marginal probability function for X is given by P(X � x) � f1(x) and can be obtained from the margin
totals in the right-hand column of Table 2-6. From these we see that

Check:

(b) The marginal probability function for Y is given by P(Y � y) � f2(y) and can be obtained from the margin
totals in the last row of Table 2-6. From these we see that

Check:

2.10. Show that the random variables X and Y of Problem 2.8 are dependent.

If the random variables X and Y are independent, then we must have, for all x and y,

But, as seen from Problems 2.8(b) and 2.9,

so that

The result also follows from the fact that the joint probability function (2x � y) 42 cannot be expressed as a
function of x alone times a function of y alone.

2.11. The joint density function of two continuous random variables X and Y is

(a) Find the value of the constant c. (c) Find P(X � 3, Y � 2).

(b) Find P(1 � X � 2, 2 � Y � 3).

(a) We must have the total probability equal to 1, i.e.,

3
`

�`
3
`

�`
f (x, y) dx dy � 1

f (x, y) �  e cxy 0 � x � 4,  1 � y � 5

0 otherwise

>
P(X � 2, Y � 1) 2 P(X � 2)P(Y � 1)

P(Y �  1) �  
3
14P(X �  2) �  

11
21P(X �  2, Y �  1) �  

5
42

P(X � x, Y � y) � P(X � x)P(Y � y)

1
7 �

3
14 �

2
7 �

5
14 � 1

P(Y �  y) �  f2(y) �  μ
6c �  1>7 y �  0

9c �  3>14 y �  1

12c �  2>7 y �  2

15c �  5>14 y �  3

1
7

 �  
1
3

 �  
11
21

 �  1

P(X � x) � f1 (x) �  •
6c � 1>7 x � 0

14c � 1>3 x � 1

22c � 11>21 x � 2

� 24c �
24
42

�
4
7

� (2c � 3c � 4c)(4c � 5c � 6c)

P(X � 1, Y � 2) � a
x�1

 a
y�2

f (x, y)
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Using the definition of f (x, y), the integral has the value

Then 96c � 1 and c � 1 96.

(b) Using the value of c found in (a), we have

(c)

2.12. Find the marginal distribution functions (a) of X and (b) of Y for Problem 2.11.

(a) The marginal distribution function for X if 0 � x � 4 is

For x � 4, F1(x) � 1; for x � 0, F1(x) � 0. Thus

As F1 (x) is continuous at x � 0 and x � 4, we could replace � by � in the above expression.

F1(x) � •
0 x � 0

x2>16 0 � x � 4

1 x � 4

�
1

963
x

u�0
B 35

v�1
uvdvR  du �

x2

16

� 3
x

u�0
3

5

v�1
 
uv
96

dudv

F1(x) � P(X � x) � 3
x

u��`
3
`

v��`
f (u, v) dudv

�
1

963
4

x�3

3x
2

 dx �
7

128

�
1

963
4

x�3
B32

y�1
xydyR  dx �

1
963

4

x�3

xy2

2
2 2
y�1

dx

P(X � 3, Y � 2) � 3
4

x�3
3

2

y�1

xy
96

dx dy

�
1

963
2

x�1
 
5x
2

 dx �
5

192
ax2

2
b 2 2

1

�
5

128

�
1
963

2

x�1
B33

y�2
xy dyR  dx �

1
963

2

x�1

xy2

2
2 3
y�2

 dx

P(1 �  X �  2, 2 �  Y � 3)  �   3
2

x�1
3

3

y�2 

 
xy
96

  dx dy

>

� c3
4

x�0
 12x dx � c(6x2) 2 4

x�0

� 96c

�  c3
4

z�0
 
xy2

2
 2 5

y�1

dx � c3
4

x�0
¢25x

2
�

x
2
≤  dx

3
4

x�0
3

5

y�1
cxy dxdy � c3

4

x�0 

B35

y�1
xydyR  dx
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(b) The marginal distribution function for Y if 1 � y � 5 is

For y � 5, F2( y) � 1. For y � 1, F2(y) � 0. Thus

As F2(y) is continuous at y � 1 and y � 5, we could replace � by � in the above expression.

2.13. Find the joint distribution function for the random variables X, Y of Problem 2.11.

From Problem 2.11 it is seen that the joint density function for X and Y can be written as the product of a
function of x alone and a function of y alone. In fact, f (x, y) � f1(x) f2(y), where

and c1c2 � c � 1 96. It follows that X and Y are independent, so that their joint distribution function is given by>
f2(y) �  e c2y 1 �  y �  5

0 otherwise
f1 (x) � e c1x 0 �  x � 4

0 otherwise

F2(y) � •
0 y � 1

(y2 � 1)>24 1 � y � 5

1 y � 5

� 3
4

u�0
 3

y

v�1
  
uv
96

dudv �
y2 � 1

24

F2( y) � P(Y � y) � 3
`

u��`
 3

y

v�1
f (u, v) dudv

Fig. 2-9

In Fig. 2-10 we have indicated the square region 0 � x � 4, 1 � y � 5 within which the joint density
function of X and Y is different from zero. The required probability is given by

P(X �  Y � 3)  �   6
5

 

 f (x, y) dx dy

F(x, y) � F1(x)F2(y). The marginal distributions F1(x) and F2(y) were determined in Problem 2.12, and Fig. 2-9
shows the resulting piecewise definition of F(x, y).

2.14. In Problem 2.11 find P(X � Y � 3).



   Schaum's Outline of Probability and Statistics

where is the part of the square over which x � y � 3, shown shaded in Fig. 2-10. Since f (x, y) � xy 96
over , this probability is given by

�
1
963

2

x�0
 
xy2

2
 2 3�x

y�1

 dx �  
1

1923
2

x�0
[x(3 � x)2 � x] �  

1
48

�
1

963
2

x�0
B 33�x

y�1
 xy dyR  dx

3
2

x�0
 3

3�x

y�1
 
xy
96

dxdy

5
>5
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Fig. 2-10

Change of variables
2.15. Prove Theorem 2-1, page 42.

The probability function for U is given by

In a similar manner Theorem 2-2, page 42, can be proved.

2.16. Prove Theorem 2-3, page 42.

Consider first the case where u � �(x) or x � �(u) is an increasing function, i.e., u increases as x increases
(Fig. 2-11). There, as is clear from the figure, we have

(1) P(u1 � U � u2) � P(x1 � X � x2)

or

(2) 3
u2

u1

g(u) du � 3
x2

x1

f (x) dx

g(u) � P(U � u) � P[f(X) � u] � P[X � c(u)] � f [c(u)]

Fig. 2-11
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Letting x � �(u) in the integral on the right, (2) can be written

This can hold for all u1 and u2 only if the integrands are identical, i.e.,

This is a special case of (34), page 42, where (i.e., the slope is positive). For the case where
i.e., u is a decreasing function of x, we can also show that (34) holds (see Problem 2.67). The

theorem can also be proved if or .

2.17. Prove Theorem 2-4, page 42.

We suppose first that as x and y increase, u and v also increase. As in Problem 2.16 we can then show that

P(u1 � U � u2, v1 � V � v2) � P(x1 � X � x2, y1 � Y � y2)

or

Letting x � �1 (u, v), y � �2(u, v) in the integral on the right, we have, by a theorem of advanced calculus,

where

is the Jacobian. Thus

which is (36), page 42, in the case where J � 0. Similarly, we can prove (36) for the case where J � 0.

2.18. The probability function of a random variable X is

Find the probability function for the random variable .

Since the relationship between the values u and x of the random variables U and X is given by 

u � x4 � 1 or where u � 2, 17, 82, . . . and the real positive root is taken. Then the required

probability function for U is given by

using Theorem 2-1, page 42, or Problem 2.15.

2.19. The probability function of a random variable X is given by

Find the probability density for the random variable U �
1
3  (12 � X ).

f (x) � e x2>81 �3 � x � 6

0 otherwise

g(u) � e2�24 u�1 u � 2, 17, 82, . . .

0 otherwise

x � 24 u � 1,

U � X4 � 1,

U � X4 � 1

f (x) � e2�x x � 1, 2, 3, c

0 otherwise

g(u, v) � f [c1(u, v), c2(u, v)]J

J �
'(x, y)
'(u, v)

3
u2

v1

3
v2

v1

g(u, v) du dv � 3
u2

u1

3
v2

v1

f [c1 (u, v), c2(u, v)]J du dv

3
u2

v1

3
v2

v1

g(u, v) du dv � 3
x2

x1

3
y2

y1

f (x, y) dx dy

cr(u) � 0cr(u) � 0
cr(u) � 0,

cr(u) � 0

g(u) � f [c(u)]cr(u)

3
u2

u1

g(u) du � 3
u2

u1

f [c (u)] cr(u) du
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We have or x � 12 � 3u. Thus to each value of x there is one and only one value of u andu �
1
3   (12 � x)
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Fig. 2-12

But if 9 � u � 36, we have

G(u)  �   P(U �   u)  �   P(�3 �  X � !u) � 32u

�3
f (x) dx

conversely. The values of u corresponding to x � �3 and x � 6 are u � 5 and u � 2, respectively. Since
, it follows by Theorem 2-3, page 42, or Problem 2.16 that the density function for U is

Check:

2.20. Find the probability density of the random variable U � X2 where X is the random variable of
Problem 2.19.

We have or Thus to each value of x there corresponds one and only one value of u, but to
each value of there correspond two values of x. The values of x for which �3 � x � 6 correspond to
values of u for which 0 � u � 36 as shown in Fig. 2-12.

As seen in this figure, the interval �3 � x � 3 corresponds to 0 � u � 9 while 3 � x � 6 corresponds to 
9 � u � 36. In this case we cannot use Theorem 2-3 directly but can proceed as follows. The distribution
function for U is

G(u) � P(U � u)

Now if 0 � u � 9, we have

� 3
1u

�1u
f (x) dx

G(u) � P(U � u) � P(X2 � u) � P(�!u � X � !u)

u 2 0
x � 
!u.u � x2

3
5

2
 
(12 � 3u)2

27
du � �

(12 � 3u)3

243
 2 5

2

� 1

g(u) � e (12 � 3u)2>27 2 � u � 5

0 otherwise

cr(u) � dx>du � �3
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Since the density function g(u) is the derivative of G(u), we have, using (12),

Using the given definition of f (x), this becomes

Check:

2.21. If the random variables X and Y have joint density function

(see Problem 2.11), find the density function of U � X � 2Y.

Method 1
Let u � x � 2y, v � x, the second relation being chosen arbitrarily. Then simultaneous solution 
yields Thus the region 0 � x � 4, 1 � y � 5 corresponds to the region 0 � v � 4,x � v, y �

1
2 (u � v).

f (x, y) � e xy>96 0 � x � 4,  1 � y � 5

0 otherwise

3
9

0
 
!u
81

 du � 3
36

9
 
!u
162

  du �
2u3>2
243

 2 9
0

�
u3>2
243

  2 36

9

� 1

g(u) � •
!u>81   0 �   u �   9

!u>162    9 � u � 36

0 otherwise

g(u) � e f (!u) � f (�!u)

2!u
0 � u � 9

f (!u)

2!u
9 � u � 36

0 otherwise

Fig. 2-13

The Jacobian is given by

J � 4  'x'u 'x
'v

'y
'u

'y
'v

 4
0 1

1
2 �

1
2

�

� �
1
2

2 � u � v � 10 shown shaded in Fig. 2-13.



   Schaum's Outline of Probability and Statistics

CHAPTER 2 Random Variables and Probability Distributions 55

Then by Theorem 2-4 the joint density function of U and V is

The marginal density function of U is given by

as seen by referring to the shaded regions I, II, III of Fig. 2-13. Carrying out the integrations, we find

A check can be achieved by showing that the integral of g1 (u) is equal to 1.

Method 2
The distribution function of the random variable X � 2Y is given by

For 2 � u � 6, we see by referring to Fig. 2-14, that the last integral equals

The derivative of this with respect to u is found to be (u � 2)2(u � 4) 2304. In a similar manner we can obtain
the result of Method 1 for 6 � u � 10, etc.

>
3

u�2

x�0
3

(u�x)>2
y�1

 
xy
96  dx dy � 3

u�2

x�0
B x(u � x)2

768 �
x

192 R dx

P(X � 2Y �   u) � 6
x�2y�  u

f (x, y)dx  dy � 6
x�2y�u
0�x�4
1�y�5

 
xy
96 dx  dy

g1(u) � d (u � 2)2(u � 4)>2304 2 � u � 6

(3u � 8)>144 6 � u � 10

(348u � u3 � 2128)>2304  10 � u � 14

0 otherwise

g1(u) � g3u�2

v�0
 
v(u � v)

384 dv 2 �  u �  6

3
4

v�0
 
v(u � v)

384 dv 6 � u � 10

3
4

v�u�10

v(u � v)
384 dv 10 � u � 14

0  otherwise

g(u, v) � ev(u � v)>384 2 � u � v � 10, 0 � v � 4

0 otherwise

Fig. 2-14 Fig. 2-15
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2.22. If the random variables X and Y have joint density function

(see Problem 2.11), find the joint density function of U � XY 2, V � X2Y.

Consider u � xy2, v � x2y. Dividing these equations, we obtain y x � u v so that y � ux v. This leads to>>>

f (x,  y) � e xy>96 0 � x � 4,  1 � y � 5

0 otherwise

the simultaneous solution x � v2 3 u �1 3, y � u2 3 v �1 3. The image of 0 � x � 4, 1 � y � 5 in the uv-plane is
given by

which are equivalent to

This region is shown shaded in Fig. 2-15.
The Jacobian is given by

Thus the joint density function of U and V is, by Theorem 2-4,

or

Convolutions
2.23. Let X and Y be random variables having joint density function f (x, y). Prove that the density function of

U � X � Y is

Method 1
Let U � X � Y, V � X, where we have arbitrarily added the second equation. Corresponding to these we have 
u � x � y, v � x or x � v, y � u � v. The Jacobian of the transformation is given by

Thus by Theorem 2-4, page 42, the joint density function of U and V is

g(u, v) � f (v, u � v)

It follows from (26), page 41, that the marginal density function of U is

g(u) � 3
`

�`
 f (v, u � v)dv

J � 4 'x'u 'x
'v

'y
'u 

'y
'v

4 � 2  0 1

1 �1
 2 � �1

g(u) � 3
`

�`
 f (v, u � v)dv

g(u, v) � eu�1>3 v�1>3>288 v2 � 64u,  v � u2 � 125v

0 otherwise

g(u, v) � c(v2> 3u�1>3)(u2>3v�1>3)
96 (1

3  u�2>3 v�2>3)  v2 � 64u, v � u2 � 125v

0 otherwise

J � 4�1
3v

2>3 u�4>3 2
3 v

�1>3u�1>3

2
3 u�1>3 v�1>3 �

1
3 u2>3v�4>3

4 � �
1
3  u�2>3 v�2>3

v2 � 64u  v � u2 � 125v

0 � v2>3u�1>3 � 4  1 � u2>3v�1>3 � 5

>>>>
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Method 2
The distribution function of U � X � Y is equal to the double integral of f (x, y) taken over the region defined
by x � y u, i.e.,

Since the region is below the line x � y � u, as indicated by the shading in Fig. 2-16, we see that

G(u) � 3
`

x��`
B 3u�x

y��`  

f (x, y) dyR  dx

G(u) � 6
x�y�  u

f (x, y) dx dy

�

Fig. 2-16

The density function of U is the derivative of G (u) with respect to u and is given by

using (12) first on the x integral and then on the y integral.

2.24. Work Problem 2.23 if X and Y are independent random variables having density functions f1(x), f2(y),
respectively.

In this case the joint density function is f (x, y) � f 1(x) f2(y), so that by Problem 2.23 the density function 
of U � X � Y is

which is the convolution of f1 and f2.

2.25. If X and Y are independent random variables having density functions

find the density function of their sum, U � X � Y.

By Problem 2.24 the required density function is the convolution of f1 and f2 and is given by

In the integrand f1 vanishes when v � 0 and f2 vanishes when v � u. Hence

�  6e�3u 3
u

0 

ev dv � 6e�3u (eu � 1) � 6(e�2u � e3u)

g(u) � 3
u

0
(2e�2v)(3e�3(u�v)) dv

g(u) � f1 * f2 � 3
`

�`
f1(v) f2(u � v) dv

f2(y) � e3e�3y y � 0

0 y � 0
f1(x) � e2e�2x x � 0

0 x � 0

g(u) � 3
`

�`
f1(v) f2(u � v)dv � f1 * f2

g(u) � 3
`

�`
f (x, u � x)dx
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if u � 0 and g(u) � 0 if u � 0.

Check:

2.26. Prove that f1 * f2 � f2 * f1 (Property 1, page 43).
We have

Letting w � u � v so that v� u � w, dv � �dw, we obtain

Conditional distributions
2.27. Find (a) f (y 2), (b) P(Y � 1 X � 2) for the distribution of Problem 2.8.

(a) Using the results in Problems 2.8 and 2.9, we have

so that with x � 2

(b)

2.28. If X and Y have the joint density function

find (a) f ( y x), (b) 

(a) For 0 � x � 1,

and

For other values of x, f ( y x) is not defined.

(b)

2.29. The joint density function of the random variables X and Y is given by

Find (a) the marginal density of X, (b) the marginal density of Y, (c) the conditional density of X, (d) the
conditional density of Y.

The region over which f (x, y) is different from zero is shown shaded in Fig. 2-17.

f (x, y) � e8xy 0 �  x � 1, 0 � y �  x

0 otherwise

P(Y �  
1
2 u  

1
2 �  X �  

1
2 �  dx) � 3

`

1>2 f (y u 1
2) dy � 3

1

1> 2
 
3 � 2y

4  dy �
9

16

u

f (y u x) �
f (x, y)
f1(x) � •

3 � 4xy
3 � 2x 0 �  y �  1

0 other y

f1(x) � 3
1

0
¢ 3

4 � xy≤ dy �
3
4 �

x
2

P(Y �
1
2 u  

1
2 � X �  

1
2 � dx).u

f (x, y) � e 3
4 � xy  0 �  x � 1,  0 � y � 1

0 otherwise

P(Y � 1 u  X � 2) � f (1 u 2) �
5

22

f (y u 2) �
(4 � y)>42

11>21
�

4 �  y
22

f (y u x) �
f (x, y)
f1(x) �

(2x �  y)>42
f1(x)

uu

f1 * f2 � 3
�`

w�` 

 f1(u � w) f2(w)(�dw) � 3
`

w��`
 
 

f2(w)f1(u � w) dw � f2 * f1

f1 * f2 � 3
`

v��` 

f1(v) f2(u � v) dv

3
`

�`
 g(u) du �  63

`

0
(e�2u � e�3u) du � 6¢ 1

2 �
1
3 ≤ � 1
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(a) To obtain the marginal density of X, we fix x and integrate with respect to y from 0 to x as indicated by the
vertical strip in Fig. 2-17. The result is

for 0 � x � 1. For all other values of x, f1 (x) � 0.

(b) Similarly, the marginal density of Y is obtained by fixing y and integrating with respect to x from x � y to x � 1,
as indicated by the horizontal strip in Fig. 2-17. The result is, for 0 � y � 1,

For all other values of y, f2 ( y) � 0.

(c) The conditional density function of X is, for 0 � y � 1,

The conditional density function is not defined when f2( y) � 0.

(d) The conditional density function of Y is, for 0 � x � 1,

The conditional density function is not defined when f1(x) � 0.

Check:

2.30. Determine whether the random variables of Problem 2.29 are independent.

In the shaded region of Fig. 2-17, f (x, y) � 8xy, f1(x) � 4x3, f2( y) � 4y (1 � y2). Hence f (x, y) f1(x) f2( y),
and thus X and Y are dependent.

It should be noted that it does not follow from f (x, y) � 8xy that f (x, y) can be expressed as a function of x
alone times a function of y alone. This is because the restriction 0 y x occurs. If this were replaced by
some restriction on y not depending on x (as in Problem 2.21), such a conclusion would be valid.

��

2

3
x

0
f2( y u x) dy � 3

x

0
 
2y
x 2 dy � 1

3
1

y
 f1(x u y) dx � 3

1

y
 

2x
1 � y2  dx � 1

3
1

0
f1(x) dx � 3

1

0 

4x 3 dx � 1, 3
1

0
f2(y) dy � 3

1

0
 4y(1 � y2) dy � 1

f2(y u x) �
f (x, y)
f1(x) � e2y>x 2 0 � y �  x

0  other y

f1(x u y) �
f (x, y)
f2 (y) � e2x>(1 � y2) y �   x �   1

0 other x

f2 (y) � 3
1

x�y
 8xy dx �  4y(1 � y2)

f1(x) � 3
x

y�0
8xy dy �  4x 3

Fig. 2-17



   Schaum's Outline of Probability and Statistics

CHAPTER 2 Random Variables and Probability Distributions60

Applications to geometric probability
2.31. A person playing darts finds that the probability of the dart striking between r and r � dr is

Here, R is the distance of the hit from the center of the target, c is a constant, and a is the radius of the tar-
get (see Fig. 2-18). Find the probability of hitting the bull’s-eye, which is assumed to have radius b. As-
sume that the target is always hit.

The density function is given by

Since the target is always hit, we have

c3
a

0 

B1 � ¢ r
a ≤ 2R  dr � 1

f (r) � c B1 � ¢ r
a ≤ 2R

P(r �  R �  r � dr) � c B1 � ¢ r
a ≤ 2R dr

Fig. 2-18

from which c � 3 2a. Then the probability of hitting the bull’s-eye is

2.32. Two points are selected at random in the interval 0 x 1. Determine the probability that the sum of their
squares is less than 1.

Let X and Y denote the random variables associated with the given points. Since equal intervals are assumed to
have equal probabilities, the density functions of X and Y are given, respectively, by

(1)

Then since X and Y are independent, the joint density function is given by

(2)

It follows that the required probability is given by

(3)

where is the region defined by x2 � y2 1, x 0, y 0, which is a quarter of a circle of radius 1 (Fig. 2-19).
Now since (3) represents the area of , we see that the required probability is 4.>pr

���r

P(X2 � Y2 � 1) � 6
r

 

dx dy

f (x, y) � f1(x) f2(y) � e1 0 �  x � 1, 0 �  y � 1

0  otherwise

f2 ( y) � e1 0 �  y � 1

0  otherwise
f1(x) � e1 0 �  x � 1

0  otherwise

��

3
b

0 

f (r) dr �
3

2a 3
b

0 

B1 � ¢ r
a ≤ 2R  dr �

b (3a2 � b2)

2a3

>
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Miscellaneous problems
2.33. Suppose that the random variables X and Y have a joint density function given by

Find (a) the constant c, (b) the marginal distribution functions for X and Y, (c) the marginal density func-
tions for X and Y, (d) P(3 � X � 4, Y � 2), (e) P(X � 3), (f) P(X � Y � 4), (g) the joint distribution func-
tion, (h) whether X and Y are independent.

(a) The total probability is given by

For this to equal 1, we must have c � 1 210.

(b) The marginal distribution function for X is

The marginal distribution function for Y is

� g3`u��`
3

y

v��8
 0 du dv � 0   y � 0

3
6

u�0
3

y

v�0

2u � v
210   du dv �

y2 �  16y
105   0 �   y �  5

3
6

u�2
3

5

v�0

2u � v
210  du dv � 1  y �   5

F2(y) � P(Y �   y) � 3
`

u��`
3

y

v��`
 f (u, v) du dv

� g3x

u��`
3
`

v��`
0 du dv �  0  x � 2

3
x

u�2
3

5

v�0

2u � v
210 du dv �  

2x 2 � 5x � 18
84    2 �   x � 6

3
6

u�2
3

5

v�0

2u � v
210 du dv � 1   x �  6

F1(x) � P(X �  x) � 3
x

u��`
3
`

v��`
f (u, v) du dv

>

53
6

x�2
c¢10x �

25
2 ≤ dx � 210c

3
6

x�2
3

5

y�0
c(2x � y) dx dy � 3

6

x�2
c¢2xy �

y2

2 ≤ 2 50 dx

f (x, y) � e c (2x � y) 2 � x � 6, 0 � y � 5

0 otherwise

Fig. 2-19
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(c) The marginal density function for X is, from part (b),

The marginal density function for Y is, from part (b),

(d)

(e)

(f )

where is the shaded region of Fig. 2-20. Although this can be found, it is easier to use the fact that

where is the cross-hatched region of Fig. 2-20. We have

Thus P(X � Y � 4) � 33 35.>
P(X � Y �  4) �

1
2103

4

x�2
3

4�x

y�0 

(2x � y) dx dy �
2

35

rr

P(X � Y � 4) � 1 � P(X � Y �  4) � 1 � 6
r

 

f (x, y) dx dy

r

P(X � Y � 4) � 6
r

 

f (x, y) dx dy

P(X � 3) �  
1

2103
6

x�3
3

5

y�0
(2x � y) dx dy �

23
28

P(3 � X � 4, Y � 2) �
1

2103
4

x�3
3

5

y�2
(2x �  y) dx dy �

3
20

f2( y) �
d
dy F2(y) � e (2y �  16)>105 0 � y � 5

0  otherwise

f1(x) �
d
dx F1(x) � e (4x � 5)>84 2 � x � 6

0 otherwise

Fig. 2-20 Fig. 2-21

(g) The joint distribution function is

In the uv plane (Fig. 2-21) the region of integration is the intersection of the quarter plane u x, v y and
the rectangle 2 � u � 6, 0 � v� 5 [over which f (u, v) is nonzero]. For (x, y) located as in the figure, we have

F(x, y) � 3
6

u�2
3

y

v�0

2u � v
210 du dv �  

16y � y2

105

��

F(x, y) � P(X �  x, Y � y) � 3
x

u��`
3

y

v��` 

f (u, v) du dv
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When (x, y) lies inside the rectangle, we obtain another expression, etc. The complete results are shown in 
Fig. 2-22.

(h) The random variables are dependent since

f (x, y) f1(x) f2(y)

or equivalently, F(x, y) F1(x)F2(y).

2.34. Let X have the density function

Find a function Y � h(X) which has the density function

g(y) � e12y3(1 � y2) 0 � y � 1

0 otherwise

f (x) � e6x (1 � x) 0 � x � 1

0  otherwise

2

2

Fig. 2-22

We assume that the unknown function h is such that the intervals X x and Y y � h(x) correspond in a
one-one, continuous fashion. Then P(X x) � P(Y y), i.e., the distribution functions of X and Y must be
equal. Thus, for 0 � x, y � 1,

or 3x2 � 2x3 � 3y4 � 2y6

By inspection, x � y2 or is a solution, and this solution has the desired properties. Thus
.

2.35. Find the density function of U � XY if the joint density function of X and Y is f (x, y).

Method 1
Let U � XY and V � X, corresponding to which u � xy, v� x or x � v, y � u v. Then the Jacobian is given by

J � 4 'x'u 'x
'v

'y
'u 

'y
'v

4 � 2 0    1

v�1  �uv�2
2 � �v�1

>

Y � �!X
y � h(x) � �!x

3
x

0
6u(1 � u) du � 3

y

0
12v3 (1 � v2) dv

��

��
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Thus the joint density function of U and V is

from which the marginal density function of U is obtained as

Method 2
The distribution function of U is

For u � 0, the region of integration is shown shaded in Fig. 2-23. We see that

G(u) � 3
0

�`

 B 3`
u>x  

f (x, y) dyR  dx � 3
`

0 

B 3u>x
�`

f (x, y) dyR    dx

G(u) �  6
xy�  u

f (x, y) dx dy

g(u) �  3
`

�`
g(u, v) dv �  3

`

�`

1
u v u

 f ¢v, u
v ≤ dv

g(u,v) �
1
u v u

  f ¢v, u
v ≤

Fig. 2-23 Fig. 2-24

Differentiating with respect to u, we obtain

The same result is obtained for u � 0, when the region of integration is bounded by the dashed hyperbola in
Fig. 2-24.

2.36. A floor has parallel lines on it at equal distances l from each other. A needle of length a � l is dropped at
random onto the floor. Find the probability that the needle will intersect a line. (This problem is known as
Buffon’s needle problem.)

Let X be a random variable that gives the distance of the midpoint of the needle to the nearest line (Fig. 2-24). Let 
be a random variable that gives the acute angle between the needle (or its extension) and the line. We denote by
x and any particular values of X and . It is seen that X can take on any value between 0 and l 2, so that 0
x l 2. Also can take on any value between 0 and 2. It follows that

i.e., the density functions of X and are given by f1(x) � 2 l, f2( ) � 2 . As a check, we note that

3
l>2
0

2
l dx � 1 3

p>2
0

2
p du � 1

p>u>�

P(u �   � � du) �
2
p duP(x � X �   x � dx) �

2
l dx

>p�>�

�>�u

�

g(u) � 3
0

�`
¢�1

x ≤  f ¢x,
u
x ≤     dx � 3

`

0

1
x f ¢x, 

u
x ≤ dx � 3

`

�`
 

1
u x u

 f ¢x,  
u
x ≤ dx
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Since X and are independent the joint density function is

From Fig. 2-24 it is seen that the needle actually hits a line when X (a 2) sin . The probability of this
event is given by

When the above expression is equated to the frequency of hits observed in actual experiments, accurate
values of are obtained. This indicates that the probability model described above is appropriate.

2.37. Two people agree to meet between 2:00 P.M. and 3:00 P.M., with the understanding that each will wait no
longer than 15 minutes for the other. What is the probability that they will meet?

Let X and Y be random variables representing the times of arrival, measured in fractions of an hour after 
2:00 P.M., of the two people. Assuming that equal intervals of time have equal probabilities of arrival, the
density functions of X and Y are given respectively by

Then, since X and Y are independent, the joint density function is

(1)

Since 15 minutes hour, the required probability is

(2)

where 5 is the region shown shaded in Fig. 2-25. The right side of (2) is the area of this region, which is equal
to since the square has area 1, while the two corner triangles have areas each. Thus the
required probability is 7 16.>

1
2  (3

4)(
3
4)1 � (3

4)(3
4) �

7
16,

P¢ uX � Y u  �   
1
4 ≤ � 6

r 

dx dy

�
1
4

f (x, y) � f1(x) f2(y) � e1 0 �  x � 1,  0 �  y � 1

0 otherwise

f2( y) � e1 0 � y � 1

0  otherwise

f1(x) � e1 0 �  x � 1

0 otherwise

p

4
lp 3

p>2
u�0

 3
(a>2) sin  u

x�0
dx du �  

2a
lp

�>�

f (x, u) �
2
l ?

2
p �

4
lp

�

Fig. 2-25
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SUPPLEMENTARY PROBLEMS

Discrete random variables and probability distributions
2.38. A coin is tossed three times. If X is a random variable giving the number of heads that arise, construct a table

showing the probability distribution of X.

2.39. An urn holds 5 white and 3 black marbles. If 2 marbles are to be drawn at random without replacement and X
denotes the number of white marbles, find the probability distribution for X.

2.40. Work Problem 2.39 if the marbles are to be drawn with replacement.

2.41. Let Z be a random variable giving the number of heads minus the number of tails in 2 tosses of a fair coin. Find
the probability distribution of Z. Compare with the results of Examples 2.1 and 2.2.

2.42. Let X be a random variable giving the number of aces in a random draw of 4 cards from an ordinary deck of 52
cards. Construct a table showing the probability distribution of X.

Discrete distribution functions
2.43. The probability function of a random variable X is shown in Table 2-7. Construct a table giving the distribution

function of X.

x 1 2 3

f (x) 1 2 1 3 1 6>>>

Table 2-7

x 1 2 3 4

F(x) 1 8 3 8 3 4 1>>>

Table 2-8

2.44. Obtain the distribution function for (a) Problem 2.38, (b) Problem 2.39, (c) Problem 2.40.

2.45. Obtain the distribution function for (a) Problem 2.41, (b) Problem 2.42.

2.46. Table 2-8 shows the distribution function of a random variable X. Determine (a) the probability function,
(b) P(1 X 3), (c) P(X 2), (d) P(X � 3), (e) P(X � 1.4).

Continuous random variables and probability distributions
2.47. A random variable X has density function

Find (a) the constant c, (b) P(l � X � 2), (c) P(X � 3), (d) P(X � 1).

2.48. Find the distribution function for the random variable of Problem 2.47. Graph the density and distribution
functions, describing the relationship between them.

2.49. A random variable X has density function

Find (a) the constant c, (b) P(X � 2), (c) P(1 2 � X � 3 2).>>

f (x) � •
cx 2 1 � x � 2

cx 2 � x � 3

0 otherwise

f (x) � e ce�3x x � 0

0 x � 0

���
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2.50. Find the distribution function for the random variable X of Problem 2.49.

2.51. The distribution function of a random variable X is given by

If P(X � 3) � 0, find (a) the constant c, (b) the density function, (c) P(X � 1), (d) P(1 � X � 2).

2.52. Can the function

be a distribution function? Explain.

2.53. Let X be a random variable having density function

Find (a) the value of the constant c, (b) (c) P(X � 1), (d) the distribution function.

Joint distributions and independent variables
2.54. The joint probability function of two discrete random variables X and Y is given by f (x, y) � cxy for x � 1, 2, 3

and y � 1, 2, 3, and equals zero otherwise. Find (a) the constant c, (b) P(X � 2, Y � 3), (c) P(l X 2, Y 2),
(d) P(X � 2), (e) P(Y � 2), (f) P(X � 1), (g) P(Y � 3).

2.55. Find the marginal probability functions of (a) X and (b) Y for the random variables of Problem 2.54. 
(c) Determine whether X and Y are independent.

2.56. Let X and Y be continuous random variables having joint density function

Determine (a) the constant c, (b) (c) (d) (e) whether X and Y are
independent.

2.57. Find the marginal distribution functions (a) of X and (b) of Y for the density function of Problem 2.56.

Conditional distributions and density functions
2.58. Find the conditional probability function (a) of X given Y, (b) of Y given X, for the distribution of Problem 2.54.

2.59. Let

Find the conditional density function of (a) X given Y, (b) Y given X.

2.60. Find the conditional density of (a) X given Y, (b) Y given X, for the distribution of Problem 2.56.

2.61. Let

be the joint density function of X and Y. Find the conditional density function of (a) X given Y, (b) Y given X.

f (x, y) � e e�(x�y) x � 0, y � 0

0 otherwise

f (x, y) � e x � y 0 �  x � 1, 0 �  y � 1

0 otherwise

P(Y �
1
2),P (1

4 � X �
3
4),P(X �  

1
2, Y �

1
2),

f (x, y) � e c(x 2 � y2) 0 �  x � 1, 0 � y � 1

0 otherwise

���

P(1
2 � X �

3
2),

f (x) � e cx 0 �  x �  2

0 otherwise

F(x) � e c(1 � x2) 0 �  x � 1

0 otherwise

F(x) � •
cx3 0 � x � 3

1  x � 3

0 x � 0
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Change of variables
2.62. Let X have density function

Find the density function of Y � X2.

2.63. (a) If the density function of X is f (x) find the density function of X3. (b) Illustrate the result in part (a) by
choosing

and check the answer.

2.64. If X has density function find the density function of Y � X2.

2.65. Verify that the integral of g1(u) in Method 1 of Problem 2.21 is equal to 1.

2.66. If the density of X is f (x) � 1 (x2 � 1), , find the density of Y � tan�1 X.

2.67. Complete the work needed to find g1(u) in Method 2 of Problem 2.21 and check your answer.

2.68. Let the density of X be

Find the density of (a) 3X � 2, (b) X3 � 1.

2.69. Check by direct integration the joint density function found in Problem 2.22.

2.70. Let X and Y have joint density function

If U � X Y, V � X � Y, find the joint density function of U and V.

2.71. Use Problem 2.22 to find the density function of (a) U � XY2, (b) V � X 2Y.

2.72. Let X and Y be random variables having joint density function f (x, y) � (2 )�1 , ,
. If R and are new random variables such that X � R cos , Y � R sin , show that the density

function of R is

g(r) � e re�r2>2 r � 0

0 r � 0

����` � y � `

�` � x � `e�(x2�y2)p

>
f (x, y) � e e�(x�y) x �  0, y �  0

0 otherwise

f (x) � e1>2 �1 � x � 1

0 otherwise

�` � x � `p>

f (x) � 2(p)�1> 2e�x2> 2, �`  � x � `,

f (x) � e2e�2x x � 0

0 x � 0

f (x) � e e�x x � 0

0 x �  0
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2.73. Let

be the joint density function of X and Y. Find the density function of Z � XY.

Convolutions
2.74. Let X and Y be identically distributed independent random variables with density function

Find the density function of X � Y and check your answer.

2.75. Let X and Y be identically distributed independent random variables with density function

Find the density function of X � Y and check your answer.

2.76. Work Problem 2.21 by first making the transformation 2Y � Z and then using convolutions to find the density
function of U � X � Z.

2.77. If the independent random variables X1 and X2 are identically distributed with density function

find the density function of X1 � X2.

Applications to geometric probability
2.78. Two points are to be chosen at random on a line segment whose length is a � 0. Find the probability that the

three line segments thus formed will be the sides of a triangle.

2.79. It is known that a bus will arrive at random at a certain location sometime between 3:00 P.M. and 3:30 P.M. A
man decides that he will go at random to this location between these two times and will wait at most 5 minutes
for the bus. If he misses it, he will take the subway. What is the probability that he will take the subway?

2.80. Two line segments, AB and CD, have lengths 8 and 6 units, respectively. Two points P and Q are to be chosen at
random on AB and CD, respectively. Show that the probability that the area of a triangle will have height AP
and that the base CQ will be greater than 12 square units is equal to (1 � ln 2) 2.

Miscellaneous problems
2.81. Suppose that f (x) � c 3x, x � 1, 2 is the probability function for a random variable X. (a) Determine c.

(b) Find the distribution function. (c) Graph the probability function and the distribution function. (d) Find 
P(2 X 5). (e) Find P(X � 3).

2.82. Suppose that

is the density function for a random variable X. (a) Determine c. (b) Find the distribution function. (c) Graph the
density function and the distribution function. (d) Find P(X � 1). (e) Find P(2 X � 3).�

f (x) � e cxe�2x x �  0

0 otherwise

��

,c,>

>

f (t) � e te�t t � 0

0 t � 0

f (t) � e e�t t �  0

0 otherwise

f (t) � e1 0 �  t � 1

0 otherwise

f (x, y) � e1 0 �  x � 1, 0 � y � 1

0 otherwise
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2.83. The probability function of a random variable X is given by

where p is a constant. Find (a) P(0 X � 3), (b) P(X � 1).

2.84. (a) Prove that for a suitable constant c,

is the distribution function for a random variable X, and find this c. (b) Determine P(l � X � 2).

2.85. A random variable X has density function

Find the density function of the random variable Y � X2 and check your answer.

2.86. Two independent random variables, X and Y, have respective density functions

Find (a) c1 and c2, (b) P(X � Y � 1), (c) P(l � X � 2, Y 1), (d) P(1 � X � 2), (e) P(Y l).

2.87. In Problem 2.86 what is the relationship between the answers to (c), (d), and (e)? Justify your answer.

2.88. Let X and Y be random variables having joint density function

Find (a) the constant c, (b) (c) the (marginal) density function of X, (d) the (marginal) density
function of Y.

2.89. In Problem 2.88 is ? Why?

2.90. In Problem 2.86 find the density function (a) of X2, (b) of X � Y.

2.91. Let X and Y have joint density function

(a) Determine whether X and Y are independent, (b) Find (c) Find (d) Find

2.92. Generalize (a) Problem 2.74 and (b) Problem 2.75 to three or more variables.

P(X � Y �
1
2).

P(X �
1
2, Y �

1
3).P(X �

1
2).

f (x, y) � e1>y 0 � x � y, 0 � y � 1

0 otherwise

P(X �
1
2, Y �

3
2) � P(X �

1
2)P(Y �

3
2)

P(X �
1
2, Y �

3
2),

f (x, y) � e c(2x � y) 0 � x � 1, 0 � y � 2

0 otherwise

��

g( y) � e c2 ye�3y  y � 0

0 y �  0
f (x) � e c1e�2x  x � 0

0 x �  0

f (x) � e 3
2(1 � x2) 0 �  x � 1

0 otherwise

F(x) � e0 x � 0

c(1 � e�x)2 x � 0

�

f (x) � μ
2p x � 1

p x � 2

4p x � 3

0 otherwise
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2.93. Let X and Y be identically distributed independent random variables having density function
Find the density function of Z � X2 � Y 2.

2.94. The joint probability function for the random variables X and Y is given in Table 2-9. (a) Find the marginal
probability functions of X and Y. (b) Find P(l X � 3, Y 1). (c) Determine whether X and Y are
independent.

��

f (u) � (2p)�1> 2e�u2> 2, �` � u � `.

Y
X 0 1 2

0 1 18 1 9 1 6

1 1 9 1 18 1 9

2 1 6 1 6 1 18>>>
>>>
>>>

Table 2-9

2.95. Suppose that the joint probability function of random variables X and Y is given by

(a) Determine whether X and Y are independent. (b) Find (c) Find P(Y 1). (d) Find

2.96. Let X and Y be independent random variables each having density function

where . Prove that the density function of X � Y is

2.97. A stick of length L is to be broken into two parts. What is the probability that one part will have a length of
more than double the other? State clearly what assumptions would you have made. Discuss whether you
believe these assumptions are realistic and how you might improve them if they are not.

2.98. A floor is made up of squares of side l. A needle of length a � l is to be tossed onto the floor. Prove that the
probability of the needle intersecting at least one side is equal to .

2.99. For a needle of given length, what should be the side of a square in Problem 2.98 so that the probability of
intersection is a maximum? Explain your answer.

2.100. Let

be the joint density function of three random variables X, Y, and Z. Find (a) 
(b) P(Z � X � Y ).

2.101. A cylindrical stream of particles, of radius a, is directed toward a hemispherical target ABC with center at O as
indicated in Fig. 2-26. Assume that the distribution of particles is given by

f (r) � e1>a 0 � r � a

0 otherwise

P(X �
1
2, Y �

1
2, Z �

1
2),

f (x, y, z) � e24xy2z3 0 � x � 1, 0 � y � 1, 0 � z � 1

0 otherwise 

a(4l � a)>pl2

g(u) �
(2l)ue�2l

u!   u � 0, 1, 2,c

l � 0

f (u) �
lue�l

u   u � 0, 1, 2,c

P(1
2 � X � 1, Y �  1).

�P(1
2 � X � 1).

f (x, y) � e cxy 0 � x � 2, 0 � y � x

0 otherwise
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where r is the distance from the axis OB. Show that the distribution of particles along the target is given by

where is the angle that line OP (from O to any point P on the target) makes with the axis.u

g(u) � e cos  u 0 � u � p>2
0 otherwise

Fig. 2-26

2.102. In Problem 2.101 find the probability that a particle will hit the target between � 0 and � .

2.103. Suppose that random variables X, Y, and Z have joint density function

Show that although any two of these random variables are independent, i.e., their marginal density function
factors, all three are not independent.

ANSWERS TO SUPPLEMENTARY PROBLEMS

2.38. 2.39.

f (x, y, z) � e1�cospx cospy cospz 0 � x � 1, 0 � y � 1, 0 � z � 1

0 otherwise

p>4uu

x 0 1 2 3

f (x) 1 8 3 8 3 8 1 8>>>>
x 0 1 2

f (x) 3 28 15 28 5 14>>>
2.40.

2.42.

2.43.

2.46. (a) (b) 3 4 (c) 7 8 (d) 3 8 (e) 7 8 >>>>

x 0 1 2

f (x) 9 64 15 32 25 64>>>

x 0 1 2 3 4

f (x)
1

270,725
192

270,725
6768

270,725
69,184

270,725
194,580
270,725

x 0 1 2 3

f (x) 1 8 1 2 7 8 1>>>

x 1 2 3 4

f (x) 1 8 1 4 3 8 1 4>>>>
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2.47. (a) 3 (b) (c) (d) 2.48.

2.49. (a) 6 29 (b) 15 29 (c) 19 116 2.50.

2.51. (a) 1/27 (b) (c) 26 27 (d) 7 27

2.53. (a) 1 2 (b) 1 2 (c) 3 4 (d) 

2.54. (a) 1 36 (b) 1 6 (c) 1 4 (d) 5 6 (e) 1 6 (f) 1 6 (g) 1 2

2.55. (a) (b)

2.56. (a) 3 2 (b) 1 4 (c) 29 64 (d) 5 16

2.57. (a) (b)

2.58. (a) for y � 1, 2, 3 (see Problem 2.55)

(b) for x � 1, 2, 3 (see Problem 2.55)

2.59. (a)

(b)

2.60. (a)

(b)

2.61. (a) (b) 

2.62. 2.64. for y 0; 0 otherwise

2.66. for otherwise

2.68. (a) (b) 

2.70. for otherwiseu � 0, v � 0; 0ve�v>(1 � u)2

g( y) � •
1
6 (1 � y)�2>3 0 � y � 1
1
6 ( y � 1)�2>3 1 � y � 2

0 otherwise

g( y) � e
1
6 �5 � y � 1

0 otherwise

�p>2 � y � p>2; 01>p

�(2p)�1> 2y�1> 2 e�y> 2e�1y>2!y for y � 0; 0 otherwise

f (y u  x) � e e�y x � 0, y � 0

0 x � 0, y � 0
f (x uy) � e e�x x � 0, y � 0

0 x � 0, y � 0

f (y ux) � e (x 2 � y2)>(x 2 �
1
3) 0 � x � 1, 0 � y � 1

0 0 � x � 1, other y

f (x uy) � e (x2 � y2)>(y2 �
1
3) 0 � x � 1, 0 � y � 1

0 other x, 0 � y � 1

f (y ux) � e (x � y)>(x �
1
2) 0 � x � 1, 0 � y � 1

0 0 � x � 1, other y

f (x uy) � e (x � y)>( y �
1
2) 0 � x � 1, 0 � y � 1

0 other x, 0 � y � 1

f ( y u x) � f2(y)

f (x u y) � f1(x)

F2( y) � •
0 y � 0
1
2 (y3 � y) 0 � y � 1

1 y � 1

F1(x) � •
0 x � 0
1
2 (x 3 � x) 0 � x � 1

1 x � 1

>>>>

f2( y) � e y>6 y � 1, 2, 3

0 other y
f1(x) � e x>6 x � 1, 2, 3

0 other x

>>>>>>>

F(x) � •
0 x � 0

x 2>4 0 � x � 2

1 x � 2

>>>

>>f (x) � e x 2/9 0 �  x � 3

0  otherwise

F (x) � μ
0 x � 1

(2x 3 � 2)>29 1 � x � 2

(3x 2 � 2)>29 2 � x � 3

1 x � 3

>>>

F (x) � e1 � e�3x x �  0

0 x �  0
1 � e�3e�9e�3 � e�6
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2.73. 2.77.

2.74. 2.78. 1 4

2.75. 2.79. 61 72

2.81. (a) 2 (b) (d) 26 81 (e) 1 9

2.82. (a) 4 (b) (d) (e) 

2.83. (a) 3 7 (b) 5 7 2.84. (a) c � 1 (b) 

2.86. (a) c1 � 2, c2 � 9 (b) (c) (d) (e) 

2.88. (a) 1 4 (b) 27 64 (c) (d) 

2.90. (a) (b)

2.91. (b) (c) (d) 2.95. (b) 15 256 (c) 9 16 (d) 0

2.93. 2.100. (a) 45 512 (b) 1 14

2.94. (b) 7 18 2.102. !2>2>

>>g(z) � e 1
2 e�z> 2 z � 0

0 z � 0

>>1
2 ln 2

1
6 �

1
2 ln 2

1
2  (1 � ln 2)

e18e�2u u � 0

0 otherwise
e e�2y/!y y � 0

0 otherwise

f2(y) � e 1
4  (y � 1) 0 � y � 2

0 otherwise
f1(x) � e x �

1
2 0 � x � 1

0 otherwise
>>

4e�3e�2 � e�44e�5 � 4e�79e�2 � 14e�3

e�4 � 3e�2 � 2e�1>>
5e�4 � 7e�63e�2F(x) � e1 � e�2x (2x � 1) x � 0

0 x � 0

>>F(x) � e0 x � 1

1 � 3�y y � x � y � 1; y � 1, 2, 3,c

>g(u) � eue�u u � 0

0 u � 0

>g(u) � •
u 0 � u � 1

2 � u 1 � u � 2

0 otherwise

g(x) � e x 3e�x/6 x � 0

0 x � 0
g(z) � e�ln z 0 � z � 1

0 otherwise
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Mathematical Expectation

Definition of Mathematical Expectation
A very important concept in probability and statistics is that of the mathematical expectation, expected value, or
briefly the expectation, of a random variable. For a discrete random variable X having the possible values x1, , xn,
the expectation of X is defined as

(1)

or equivalently, if P(X � xj) � f (xj),

(2)

where the last summation is taken over all appropriate values of x. As a special case of (2), where the probabil-
ities are all equal, we have

(3)

which is called the arithmetic mean, or simply the mean, of x1, x2, , xn.
If X takes on an infinite number of values x1, x2, , then provided that the infinite se-

ries converges absolutely.
For a continuous random variable X having density function f (x), the expectation of X is defined as

(4)

provided that the integral converges absolutely.
The expectation of X is very often called the mean of X and is denoted by X, or simply , when the partic-

ular random variable is understood.
The mean, or expectation, of X gives a single value that acts as a representative or average of the values of X,

and for this reason it is often called a measure of central tendency. Other measures are considered on page 83.

EXAMPLE 3.1 Suppose that a game is to be played with a single die assumed fair. In this game a player wins $20 if
a 2 turns up, $40 if a 4 turns up; loses $30 if a 6 turns up; while the player neither wins nor loses if any other face turns
up. Find the expected sum of money to be won.

Let X be the random variable giving the amount of money won on any toss. The possible amounts won when the die
turns up 1, 2 6 are x1, x2 x6, respectively, while the probabilities of these are f(x1), f (x2), . . . , f (x6). The prob-
ability function for X is displayed in Table 3-1. Therefore, the expected value or expectation is

E(X) � (0)¢1
6 ≤ � (20)¢1

6 ≤ � (0)¢ 1
6 ≤ � (40)¢ 1

6 ≤ � (0)¢ 1
6 ≤ � (�30)¢ 1

6 ≤ � 5

,c,,c,

mm

E(X) � 3
`

�`
x f (x) dx

E(X) � g`
j�1 xj f (xj)c

c

E(X) �
x1 � x2 � c� xn

n

E(X) � x1 f (x1) � c� xn f (xn) � a
n

j�1
 xj f (xj) � ax f (x)

E(X) � x1P(X � x1) � c� xnP(X � xn ) � a
n

j�1
 xj P(X � xj)

c

CHAPTER 12CHAPTER 3
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It follows that the player can expect to win $5. In a fair game, therefore, the player should be expected to pay $5 in order
to play the game.

EXAMPLE 3.2 The density function of a random variable X is given by

The expected value of X is then

Functions of Random Variables
Let X be a discrete random variable with probability function f (x). Then Y � g(X) is also a discrete random vari-
able, and the probability function of Y is

If X takes on the values x1, x2, , xn, and Y the values  y1, y2, , ym (m n), then 
Therefore,

(5)

Similarly, if X is a continuous random variable having probability density f (x), then it can be shown that

(6)

Note that (5) and (6) do not involve, respectively, the probability function and the probability density function
of Y � g(X).

Generalizations are easily made to functions of two or more random variables. For example, if X and Y are two
continuous random variables having joint density function f(x, y), then the expectation of g(X, Y) is given by

(7)

EXAMPLE 3.3 If X is the random variable of Example 3.2,

Some Theorems on Expectation

Theorem 3-1 If c is any constant, then

E(cX) � cE(X) (8)

E(3X2 � 2X) � 3
`

�`
(3x2 � 2x) f (x) dx � 3

2

0 

(3x2 � 2x)¢ 1
2  x≤  dx �

10
3

E[g(X, Y)] � 3
`

�`
3
`

�`
g(x, y) f (x, y) dx dy

E[g(X)] � 3
`

�`
g(x) f (x) dx

� a
n

j�1
 g(xj) f (xj) � a  g(x) f (x)

E[g(X)] � g(x1) f (x1) � g(x2) f (x2) � c� g(xn)f (xn)

ymh(ym) � g(x1)f (x1) � g(x2) f (x2) � c� g(xn) f (xn).
y1h(y1) � y2h(y2) � c��cc

h(y) � P(Y � y) � a5xZg(x)�y6
P(X � x) � a5xZg(x)�y6 

 f (x)

E(X) � 3
`

�`
xf (x) dx � 3

2

0
x ¢ 1

2  x≤  dx � 3
2

0
  
x2

2   dx �
x3

6  2 2
0

�
4
3

f (x) � e
1
2x  0 � x � 2

0 otherwise

CHAPTER 3 Mathematical Expectation76

xj 0 �20 0 �40 0 �30

f (xj) 1 6 1 6 1 6 1 6 1 6 1 6>>>>>>

Table 3-1
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Theorem 3-2 If X and Y are any random variables, then

E(X � Y) � E(X) � E(Y) (9)

Theorem 3-3 If X and Y are independent random variables, then

E(XY) � E(X)E(Y ) (10)

Generalizations of these theorems are easily made.

The Variance and Standard Deviation
We have already noted on page 75 that the expectation of a random variable X is often called the mean and
is denoted by . Another quantity of great importance in probability and statistics is called the variance and is
defined by

Var(X) � E[(X � )2] (11)

The variance is a nonnegative number. The positive square root of the variance is called the standard deviation
and is given by

(12)

Where no confusion can result, the standard deviation is often denoted by instead of X, and the variance in
such case is 2.

If X is a discrete random variable taking the values x1, x2, . . . , xn and having probability function f (x), then
the variance is given by

(13)

In the special case of (13) where the probabilities are all equal, we have

(14)

which is the variance for a set of n numbers x1, . . . , xn.
If X takes on an infinite number of values x1, x2, . . . , then provided that the series

converges.
If X is a continuous random variable having density function f (x), then the variance is given by

(15)

provided that the integral converges.
The variance (or the standard deviation) is a measure of the dispersion, or scatter, of the values of the ran-

dom variable about the mean . If the values tend to be concentrated near the mean, the variance is small; while
if the values tend to be distributed far from the mean, the variance is large. The situation is indicated graphically
in Fig. 3-1 for the case of two continuous distributions having the same mean .m

m

s2
X � E[(X � m)2] � 3

`

�`
(x � m)2 f (x) dx

s2
X � g`

j�1 (xj � m)2f (xj),

s2 � [(x1 � m)2 � (x2 � m)2 � c� (xn � m)2]>n

s2
X � E[(X � m)2] � a

n

j�1
(xj � m)2f (xj) � a(x � m)2 f (x)

s

ss

sX � 2Var (X) � 2E[(X � m)2]

m

m
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EXAMPLE 3.4 Find the variance and standard deviation of the random variable of Example 3.2. As found in Example 3.2,
the mean is � E(X) � 4 3. Then the variance is given by

and so the standard deviation is 

Note that if X has certain dimensions or units, such as centimeters (cm), then the variance of X has units cm2

while the standard deviation has the same unit as X, i.e., cm. It is for this reason that the standard deviation is
often used.

Some Theorems on Variance

Theorem 3-4 2 � E[(X � )2] � E(X2) � 2 � E(X2) � [E(X)]2 (16)

where � E(X).

Theorem 3-5 If c is any constant,

Var(cX) � c2 Var(X) (17)

Theorem 3-6 The quantity E[(X � a)2] is a minimum when a � � E(X).

Theorem 3-7 If X and Y are independent random variables,

(18)

(19)

Generalizations of Theorem 3-7 to more than two independent variables are easily made. In words, the vari-
ance of a sum of independent variables equals the sum of their variances.

Standardized Random Variables
Let X be a random variable with mean and standard deviation ( � 0). Then we can define an associated stan-
dardized random variable given by

(20)

An important property of X* is that it has a mean of zero and a variance of 1, which accounts for the name stan-
dardized, i.e.,

E(X*) � 0, Var(X*) � 1 (21)

The values of a standardized variable are sometimes called standard scores, and X is then said to be expressed
in standard units (i.e., is taken as the unit in measuring X – ).

Standardized variables are useful for comparing different distributions.

Moments
The rth moment of a random variable X about the mean , also called the rth central moment, is defined as

r � E [(X � )r] (22)mm

m

ms

X* �
X � m
s

ssm

Var (X � Y) � Var (X) � Var (Y)  or  s2
X�Y � s2

X � s2
Y

Var (X � Y) � Var (X) � Var (Y)  or  s2
X�Y � s2

X � s2
Y 

m

m

mms

s � A2
9 �

22
3

s2 � E B ¢X �
4
3 ≤ 2R � 3

`

�`
¢x �

4
3 ≤ 2

 f (x) dx � 3
2

0
¢x �

4
3 ≤ 2¢ 1

2  x≤  dx �
2
9

>m
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where r � 0, 1, 2, . . . . It follows that 0 � 1, 1 � 0, and 2 � 2, i.e., the second central moment or second
moment about the mean is the variance. We have, assuming absolute convergence,

(23)

(24)

The rth moment of X about the origin, also called the rth raw moment, is defined as

(25)

where r � 0, 1, 2, . . . , and in this case there are formulas analogous to (23) and (24) in which � 0.
The relationship between these moments is given by

(26)

As special cases we have, using and 

(27)

Moment Generating Functions
The moment generating function of X is defined by

MX(t) � E(etX) (28)

that is, assuming convergence,

(29)

(30)

We can show that the Taylor series expansion is [Problem 3.15(a)]

(31)

Since the coefficients in this expansion enable us to find the moments, the reason for the name moment gener-
ating function is apparent. From the expansion we can show that [Problem 3.15(b)]

(32)

i.e., is the rth derivative of MX(t) evaluated at t � 0. Where no confusion can result, we often write M(t) in-
stead of MX(t).

Some Theorems on Moment Generating Functions
Theorem 3-8 If MX(t) is the moment generating function of the random variable X and a and b (b 0) are con-

stants, then the moment generating function of (X � a) b is

(33)M(X�a)>b(t) � eat>bMX ¢ t
b
≤ > 2

mrr

mrr �
dr

dtr  MX(t) 2
t�0

MX(t) � 1 � mt � mr2 
t2

2!
� c� mrr  

tr

r!
� c

MX(t) � 3
`

�`
etx  f (x) dx   (continuous variable)

MX(t) � a  etx  f (x)  (discrete variable)

m2 � mr2 � m2

m3 � mr3 � 3mr2 m � 2m3

m4 � mr4 � 4mr3 m � 6mr2 m
2 � 3m4

mr0 � 1,mr1 � m

mr � mrr � ¢ r

1
≤mrr�1 m � c� (�1) j¢ r

j
≤mrr�j  m

j � c� (�1)rmr0mr

m

mrr � E(Xr)

mr � 3
`

�`
(x � m)r f (x) dx   (continuous variable)

mr � a(x � m)r f (x)  (discrete variable)

smmm
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Theorem 3-9 If X and Y are independent random variables having moment generating functions MX(t) and
MY(t), respectively, then

MX � Y (t) � MX (t) MY (t) (34)

Generalizations of Theorem 3-9 to more than two independent random variables are easily made. In words, the
moment generating function of a sum of independent random variables is equal to the product of their moment
generating functions.

Theorem 3-10 (Uniqueness Theorem) Suppose that X and Y are random variables having moment generat-
ing functions MX (t) and MY (t), respectively. Then X and Y have the same probability distribu-
tion if and only if MX (t) � MY (t) identically.

Characteristic Functions
If we let t � i , where i is the imaginary unit, in the moment generating function we obtain an important func-
tion called the characteristic function. We denote this by

(35)

It follows that

(36)

(37)

Since the series and the integral always converge absolutely.
The corresponding results (31) and (32) become

(38)

where (39)

When no confusion can result, we often write ( ) instead of X( ).
Theorems for characteristic functions corresponding to Theorems 3-8, 3-9, and 3-10 are as follows.

Theorem 3-11 If X( ) is the characteristic function of the random variable X and a and b (b 0) are con-2vf

vfvf

mrr � (�1)rir 
dr

dvr  fX(v) 2
v�0

fX(v) � 1 � imv � mr2 
v2

2!
� c� irmrr 

vr

r!
� c

ueivx u � 1,

fX(v) � 3
`

�`
eivx  f (x) dx   (continuous variable)

fX(v) � aeivx  f (x)  (discrete variable)

fX(v) � MX(iv) � E(eivX)

v
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only if X ( ) � Y ( ) identically.vfvf

stants, then the characteristic function of (X � a) b is

(40)

Theorem 3-12 If X and Y are independent random variables having characteristic functions X( ) and Y ( ),
respectively, then

(41)

More generally, the characteristic function of a sum of independent random variables is equal to the product
of their characteristic functions.

Theorem 3-13 (Uniqueness Theorem) Suppose that X and Y are random variables having characteristic func-
tions X( ) and Y( ), respectively. Then X and Y have the same probability distribution if andvfvf

fX�Y (v) � fX (v) fY (v)

vfvf

f(X�a)>b(v) � eaiv>bfX¢vb ≤>
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An important reason for introducing the characteristic function is that (37) represents the Fourier transform
of the density function f (x). From the theory of Fourier transforms, we can easily determine the density function
from the characteristic function. In fact,

(42)

which is often called an inversion formula, or inverse Fourier transform. In a similar manner we can show in the
discrete case that the probability function f(x) can be obtained from (36) by use of Fourier series, which is the
analog of the Fourier integral for the discrete case. See Problem 3.39.

Another reason for using the characteristic function is that it always exists whereas the moment generating
function may not exist.

Variance for Joint Distributions. Covariance
The results given above for one variable can be extended to two or more variables. For example, if X and Y are
two continuous random variables having joint density function f (x, y), the means, or expectations, of X and Y are

(43)

and the variances are

(44)

Note that the marginal density functions of X and Y are not directly involved in (43) and (44).
Another quantity that arises in the case of two variables X and Y is the covariance defined by

(45)

In terms of the joint density function f (x, y), we have

(46)

Similar remarks can be made for two discrete random variables. In such cases (43) and (46) are replaced by

(47)

(48)

where the sums are taken over all the discrete values of X and Y. 
The following are some important theorems on covariance.

Theorem 3-14 (49)

Theorem 3-15 If X and Y are independent random variables, then

(50)

Theorem 3-16 (51)

or (52)

Theorem 3-17 (53)ZsXY Z � sX sY

s2
X
Y � s2

X � s2
Y 
 2sXY

Var (X 
 Y ) � Var (X) � Var (Y ) 
 2 Cov (X, Y )

sXY � Cov (X, Y ) � 0

sXY � E(XY ) � E(X)E(Y ) � E(XY ) � mXmY

sXY � a
x
a
y

 (x � mX)(y � mY) f (x, y)

mX � a
x
a
y

 xf (x, y)   mY � a
x
a
y

yf(x, y)

sXY � 3
`

�`
3
`

�`
(x � mX)(y � mY) f (x, y) dx dy

sXY � Cov (X, Y ) � E[(X � mX)(Y � mY)]

s2
X � E[(X � mX)2] � 3

`

�`
3
`

�`
(x � mX)2  f (x, y) dx dy

s2
Y � E[(Y � mY)2] � 3

`

�`
3
`

�`
( y � mY)2  f (x, y) dx dy

mX � E(X) � 3
`

�`
3
`

�`
xf (x, y) dx dy,  mY � E(Y) � 3

`

�`
3
`

�`
yf (x, y) dx dy

f (x) �
1

2p3
`

�`
e�ivx fX (v) dv

CHAPTER 3 Mathematical Expectation 81



   Schaum's Outline of Probability and Statistics

The converse of Theorem 3-15 is not necessarily true. If X and Y are independent, Theorem 3-16 reduces to
Theorem 3-7.

Correlation Coefficient
If X and Y are independent, then Cov(X, Y) � XY � 0. On the other hand, if X and Y are completely dependent,
for example, when X � Y, then Cov(X, Y) � XY � . From this we are led to a measure of the dependence
of the variables X and Y given by

(54)

We call the correlation coefficient, or coefficient of correlation. From Theorem 3-17 we see that .�1 � r � 1r

r �
sXY

sX sY

sX sYs

s
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In the case where � 0 (i.e., the covariance is zero), we call the variables X and Y uncorrelated. In such cases,
however, the variables may or may not be independent. Further discussion of correlation cases will be given in
Chapter 8.

Conditional Expectation, Variance, and Moments
If X and Y have joint density function f (x, y), then as we have seen in Chapter 2, the conditional density function
of Y given X is � f (x, y) f1 (x) where f1 (x) is the marginal density function of X. We can define the con-
ditional expectation, or conditional mean, of Y given X by

(55)

where “X � x” is to be interpreted as x � X x � dx in the continuous case. Theorems 3-1 and 3-2 also hold
for conditional expectation.

We note the following properties:

1. E(Y X � x) � E(Y) when X and Y are independent.

2.

It is often convenient to calculate expectations by use of Property 2, rather than directly.

EXAMPLE 3.5 The average travel time to a distant city is c hours by car or b hours by bus. A woman cannot decide
whether to drive or take the bus, so she tosses a coin. What is her expected travel time?

Here we are dealing with the joint distribution of the outcome of the toss, X, and the travel time, Y, where Y � Ycar if
X � 0 and Y � Ybus if X � 1. Presumably, both Ycar and Ybus are independent of X, so that by Property 1 above

E(Y X � 0) � E(Ycar X � 0) � E(Ycar) � c

and E(Y X � l) � E(Ybus X � 1) � E(Ybus) � b

Then Property 2 (with the integral replaced by a sum) gives, for a fair coin,

In a similar manner we can define the conditional variance of Y given X as

(56)

where 2 � E(Y X � x). Also we can define the rth conditional moment of Y about any value a given X as

(57)

The usual theorems for variance and moments extend to conditional variance and moments.

E[(Y � a)r uX � x] � 3
`

�`
(y � a)r f (y u x) dy

um

E[(Y � m2)2 uX � x] � 3
`

�`
(y � m2)2 f (y ux) dy

E(Y) � E(Y uX � 0)P(X � 0) � E(Y uX � 1)P(X � 1) �
c � b

2

uu

uu

E(Y) � 3
`

�`
E(Y uX � x) f1(x) dx.

u

�

E(Y uX � x) � 3
`

�`
y f (y ux) dy

>f (y u x)

r
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Chebyshev’s Inequality
An important theorem in probability and statistics that reveals a general property of discrete or continuous ran-
dom variables having finite mean and variance is known under the name of Chebyshev’s inequality.

Theorem 3-18 (Chebyshev’s Inequality) Suppose that X is a random variable (discrete or continuous) having
mean and variance 2, which are finite. Then if P is any positive number,

(58)

or, with P � k ,

(59)

EXAMPLE 3.6 Letting k � 2 in Chebyshev’s inequality (59), we see that

P ( X � 2 ) 0.25 or P( X � � 2 ) 0.75

In words, the probability of X differing from its mean by more than 2 standard deviations is less than or equal to 0.25;
equivalently, the probability that X will lie within 2 standard deviations of its mean is greater than or equal to 0.75. This
is quite remarkable in view of the fact that we have not even specified the probability distribution of X.

Law of Large Numbers
The following theorem, called the law of large numbers, is an interesting consequence of Chebyshev’s inequality.

Theorem 3-19 (Law of Large Numbers): Let X1, X2, . . . , Xn be mutually independent random variables (dis-
crete or continuous), each having finite mean and variance 2. Then if

(60)

Since Sn n is the arithmetic mean of X1, . . . , Xn, this theorem states that the probability of the arithmetic
mean Sn n differing from its expected value by more than P approaches zero as . A stronger result,
which we might expect to be true, is that but this is actually false. However, we can prove thatlim S

nS` n>n � m,
n S `m> >

lim
nS`

P¢ 2 Sn

n � m 2  � P≤ � 0

Xn(n � 1, 2, c),
Sn � X1 � X2 � c�sm

�sumu�s�umu

P(uX � m u �  ks) �
1
k2

s

P( uX � m u � P) �  
s2

P2

sm
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with probability one. This result is often called the strong law of large numbers, and, by contrast,lim S
nS` n>n � m

that of Theorem 3-19 is called the weak law of large numbers. When the “law of large numbers” is referred to
without qualification, the weak law is implied.

Other Measures of Central Tendency
As we have already seen, the mean, or expectation, of a random variable X provides a measure of central ten-
dency for the values of a distribution. Although the mean is used most, two other measures of central tendency
are also employed. These are the mode and the median.

1. MODE. The mode of a discrete random variable is that value which occurs most often or, in other words,
has the greatest probability of occurring. Sometimes we have two, three, or more values that have relatively
large probabilities of occurrence. In such cases, we say that the distribution is bimodal, trimodal, or multi-
modal, respectively. The mode of a continuous random variable X is the value (or values) of X where the
probability density function has a relative maximum.

2. MEDIAN. The median is that value x for which and In the case of a con-P(X � x) �
1
2.P(X � x) �

1
2

tinuous distribution we have and the median separates the density curve into
two parts having equal areas of 1 2 each. In the case of a discrete distribution a unique median may not
exist (see Problem 3.34).

>P(X � x) �
1
2 � P(X � x),
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Percentiles
It is often convenient to subdivide the area under a density curve by use of ordinates so that the area to the left
of the ordinate is some percentage of the total unit area. The values corresponding to such areas are called per-
centile values, or briefly percentiles. Thus, for example, the area to the left of the ordinate at in Fig. 3-2 is .
For instance, the area to the left of x0.10 would be 0.10, or 10%, and x0.10 would be called the 10th percentile
(also called the first decile). The median would be the 50th percentile (or fifth decile).

axa
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Fig. 3-2

Other Measures of Dispersion
Just as there are various measures of central tendency besides the mean, there are various measures of disper-
sion or scatter of a random variable besides the variance or standard deviation. Some of the most common are
the following.

1. SEMI-INTERQUARTILE RANGE. If x0.25 and x0.75 represent the 25th and 75th percentile values, the
difference x0.75 � x0.25 is called the interquartile range and is the semi-interquartile range.

2. MEAN DEVIATION. The mean deviation (M.D.) of a random variable X is defined as the expectation
of i.e., assuming convergence,

(discrete variable) (61)

(continuous variable) (62)

Skewness and Kurtosis
1. SKEWNESS. Often a distribution is not symmetric about any value but instead has one of its tails longer

than the other. If the longer tail occurs to the right, as in Fig. 3-3, the distribution is said to be skewed to the right,
while if the longer tail occurs to the left, as in Fig. 3-4, it is said to be skewed to the left. Measures describing
this asymmetry are called coefficients of skewness, or briefly skewness. One such measure is given by

(63)

The measure 3 will be positive or negative according to whether the distribution is skewed to the right or left,
respectively. For a symmetric distribution, 3 � 0.s

s

a3 �
E[(X � m)3]

s3
�
m3

s3

M.D.(X) � E [uX � mu] � 3
`

�`
u x � m u f (x) dx

M.D.(X) � E [uX � mu] � a ux � mu f (x)

uX � m u ,

1
2  (x0.75 � x0.25)

Fig. 3-3 Fig. 3-4 Fig. 3-5

2. KURTOSIS. In some cases a distribution may have its values concentrated near the mean so that the dis-
tribution has a large peak as indicated by the solid curve of Fig. 3-5. In other cases the distribution may be
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relatively flat as in the dashed curve of Fig. 3-5. Measures of the degree of peakedness of a distribution are
called coefficients of kurtosis, or briefly kurtosis. A measure often used is given by

(64)

This is usually compared with the normal curve (see Chapter 4), which has a coefficient of kurtosis equal to 3.
See also Problem 3.41.

SOLVED PROBLEMS

Expectation of random variables
3.1. In a lottery there are 200 prizes of $5, 20 prizes of $25, and 5 prizes of $100. Assuming that 10,000 tickets

are to be issued and sold, what is a fair price to pay for a ticket?

Let X be a random variable denoting the amount of money to be won on a ticket. The various values of X together
with their probabilities are shown in Table 3-2. For example, the probability of getting one of the 20 tickets
giving a $25 prize is 20 10,000 � 0.002. The expectation of X in dollars is thus

E(X) � (5)(0.02) � (25)(0.002) � (100)(0.0005) � (0)(0.9775) � 0.2

or 20 cents. Thus the fair price to pay for a ticket is 20 cents. However, since a lottery is usually designed to raise
money, the price per ticket would be higher.

>

a4 �
E[(X � m)4]

s4 �
m4

s4
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Table 3-2

x (dollars) 5 25 100 0

P(X � x) 0.02 0.002 0.0005 0.9775

3.2. Find the expectation of the sum of points in tossing a pair of fair dice.

Let X and Y be the points showing on the two dice. We have

Then, by Theorem 3-2,

E(X � Y) � E(X) � E(Y) � 7

3.3. Find the expectation of a discrete random variable X whose probability function is given by

We have

To find this sum, let

Then

Subtracting,

Therefore, S � 2.

1
2  S �

1
2 �  1

4 �
1
8 �  1

16 � c� 1

1
2  S �    1

4 � 2¢1
8 ≤ � 3¢ 1

16≤ � c

S �
1
2 � 2¢ 1

4 ≤ � 3¢ 1
8 ≤ � 4¢ 1

16 ≤ � c

E(X) � a
`

x�1
 x ¢1

2 ≤ x

�
1
2 � 2¢ 1

4 ≤ � 3¢ 1
8 ≤ � c

f (x) � ¢1
2
≤ x

   (x � 1, 2, 3, c)

E(X) � E(Y) � 1¢ 1
6 ≤ � 2¢ 1

6 ≤ � c� 6¢ 1
6 ≤ �

7
2
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3.4. A continuous random variable X has probability density given by

Find (a) E(X), (b) E(X2).

(a)

(b)

3.5. The joint density function of two random variables X and Y is given by

Find (a) E(X), (b) E(Y), (c) E(XY), (d) E(2X � 3Y).

(a)

(b)

(c)

(d)

Another method
(c) Since X and Y are independent, we have, using parts (a) and (b),

(d) By Theorems 3-1 and 3-2, pages 76–77, together with (a) and (b),

3.6. Prove Theorem 3-2, page 77.

Let f (x, y) be the joint probability function of X and Y, assumed discrete. Then

If either variable is continuous, the proof goes through as before, with the appropriate summations replaced by
integrations. Note that the theorem is true whether or not X and Y are independent.

� E(X) � E(Y)

� a
x
a
y

xf (x, y) � a
x
a
y

yf (x, y)

E(X � Y) � a
x
a
y

(x � y) f (x, y)

E(2X � 3Y) � 2E(X) � 3E(Y) � 2¢ 8
3 ≤ � 3¢ 31

9 ≤ �
47
3

E(XY) � E(X)E(Y) � ¢ 8
3 ≤ ¢ 31

9 ≤ �
248
27

E(2X � 3Y) � 3
`

�`
3
`

�`
(2x � 3y) f (x, y) dx dy � 3

4

x�0
3

5

y�1
(2x � 3y)¢ xy

96 ≤  dx dy �
47
3

E(XY) � 3
`

�`
3
`

�`
(xy) f (x, y) dx dy � 3

4

x�0
3

5

y�1
(xy)¢ xy

96 ≤  dx dy �
248
27

E(Y) � 3
`

�`
3
`

�`
yf (x, y) dx dy � 3

4

x�0
3

5

y�1
y¢ xy

96 ≤  dx dy �
31
9

E(X) � 3
`

�`
3
`

�`
xf (x, y) dx dy � 3

4

x�0
3

5

y�1
x¢ xy

96 ≤  dx dy �
8
3

f (x, y) � e xy>96 0 � x � 4, 1 � y � 5

0 otherwise

� 2B (x2)¢ e�2x

�2 ≤ � (2x)¢ e�2x

4 ≤ � (2)¢ e�2x

�8 ≤ R  2 `
0

�
1
2

E(X2) � 3
`

�`
x2f (x) dx � 23

`

0 

x2e�2x dx

� 2B (x)¢ e�2x

�2 ≤ � (1)¢ e�2x

4 ≤ R  2 `
0

�
1
2

E(X) � 3
`

�`
xf (x) dx � 3

`

0
x(2e�2x) dx � 23

`

0
xe�2x dx

f (x) � e2e�2x  x � 0

0 x � 0
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3.7. Prove Theorem 3-3, page 77.

Let f (x, y) be the joint probability function of X and Y, assumed discrete. If the variables X and Y are independent,
we have f (x, y) � f1 (x) f2 (y). Therefore,

If either variable is continuous, the proof goes through as before, with the appropriate summations replaced by
integrations. Note that the validity of this theorem hinges on whether f (x, y) can be expressed as a function of x
multiplied by a function of y, for all x and y, i.e., on whether X and Y are independent. For dependent variables it
is not true in general.

Variance and standard deviation
3.8. Find (a) the variance, (b) the standard deviation of the sum obtained in tossing a pair of fair dice.

(a) Referring to Problem 3.2, we have E(X) � E(Y) � 1 2. Moreover,

Then, by Theorem 3-4,

and, since X and Y are independent, Theorem 3-7 gives

(b)

3.9. Find (a) the variance, (b) the standard deviation for the random variable of Problem 3.4. 

(a) As in Problem 3.4, the mean of X is Then the variance is

Another method
By Theorem 3-4,

(b) s � 2Var (X) � A1
4 �

1
2

Var (X) � E[(X � m)2] � E(X2) � [E(X)]2 �
1
2 � ¢ 1

2 ≤ 2

�
1
4

Var (X) � E[(X � m)2] � E B¢X �
1
2 ≤ 2R � 3

`

�`
¢x �

1
2 ≤ 2

 f (x) dx

� 3
`

0
¢x �

1
2 ≤ 2

(2e�2x) dx �
1
4

m � E(X) �
1
2.

sX�Y � 2Var (X � Y) � A35
6

Var (X � Y) � Var (X) � Var (Y) �
35
6

Var (X) � Var (Y) �
91
6 � ¢ 7

2 ≤ 2

�
35
12

E(X2) � E(Y2) � 12¢ 1
6 ≤ � 22¢ 1

6 ≤ � c� 62¢ 1
6 ≤ �

91
6

>

E(XY) � a
x
a
y

 xyf (x, y) � a
x
a
y

 xyf1(x) f2 (y)

� a
x
Bxf1(x)a

y
yf2(y)R

� a
x

[(xf1(x)E(y)]

� E(X)E(Y)
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3.10. Prove Theorem 3-4, page 78.

We have

3.11. Prove Theorem 3-6, page 78.

since E(X � ) � E(X ) � � 0. From this we see that the minimum value of E[(X � a)2] occurs when mm

� E [(X � m)2] � (m � a)2

� E [(X � m)2] � 2(m � a)E(X � m) � (m � a)2

� E [(X � m)2 � 2(X � m)(m � a) � (m � a)2]

E [(X � a)2] � E [5(X � m) � (m � a)62]

� E(X2) � [E(X)]2

� E(X2) � 2m2 � m2 � E(X2) � m2

E[(X � m)2] � E(X2 � 2mX � m2) � E(X2) � 2mE(X ) � m2
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( � a)2 � 0, i.e., when a � .

3.12. If X* � (X � ) is a standardized random variable, prove that (a) E(X*) � 0, (b) Var(X*) � 1.

(a)

since E(X) � .

(b)

using Theorem 3-5, page 78, and the fact that E[(X � )2] � 2.

3.13. Prove Theorem 3-7, page 78.

using the fact that

since X and Y, and therefore X � X and Y � Y, are independent. The proof of (19), page 78, follows onmm

E[(X � mX)(Y � mY)] � E(X � mX)E(Y � mY) � 0

� Var (X ) � Var(Y )

� E [(X � mX)2] � 2E[(X � mX)(Y � mY)] � E[(Y � mY)2]

� E [(X � mX)2 � 2(X � mX)(Y � mY) � (Y � mY)2]

� E [5(X � mX) � (Y � mY)62]

Var (X � Y ) � E [5(X � Y ) � (mX � mY)62]

sm

Var (X*) � Var ¢X � m
s ≤ �

1
s2  E[(X � m)2] � 1

m

E(X*) � E ¢X � m
s ≤ �

1
s  [E(X � m)] �

1
s  [E(X) � m] � 0

s>m
mm

replacing Y by �Y and using Theorem 3-5.

Moments and moment generating functions
3.14. Prove the result (26), page 79.

� c� (�1)r�1 ¢ r

r � 1
≤Xmr�1 � (�1)rmrR� E BXr � ¢ r

1
≤Xr�1m � c� (�1) j ¢ r

j
≤Xr�j m j

mr � E[(X � m)r]
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where the last two terms can be combined to give (�l)r�1(r � 1) r.

3.15. Prove (a) result (31), (b) result (32), page 79.

(a) Using the power series expansion for eu (3., Appendix A), we have

(b) This follows immediately from the fact known from calculus that if the Taylor series of f (t) about t � a is

then

3.16. Prove Theorem 3-9, page 80.

Since X and Y are independent, any function of X and any function of Y are independent. Hence,

3.17. The random variable X can assume the values 1 and �1 with probability each. Find (a) the moment gen-
erating function, (b) the first four moments about the origin.

(a)

(b) We have

Then (1)

But (2)

Then, comparing (1) and (2), we have

The odd moments are all zero, and the even moments are all one.

m � 0,  mr2 � 1,   mr3 � 0,   mr4 � 1,c

MX(t) � 1 � mt � mr2  
t2

2! � mr3  
t3

3! � mr4  
t4

4! � c

1
2  (et � e�t) � 1 �

t2

2! �
t4

4! � c

e�t � 1 � t �
t2

2! �
t3

3! �
t4

4! � c

et � 1 � t �
t2

2! �
t3

3! �
t4

4! � c

E(etX) � et(1)¢1
2 ≤ � et(�1)¢ 1

2 ≤ �
1
2  (et � e�t)

1
2

MX�Y (t) � E[et(X�Y )] � E(etXetY ) � E(etX )E(etY ) � MX(t)MY (t)

cn �
1
n!

dn

dtn   f (t) 2
t�a

f (t) � a
`

n�0
 cn(t � a)n

� 1 � mt � mr2 
t2

2! � mr3 
t3

3! � c

� 1 � tE(X ) �
t2

2!  E(X2) �
t3

3!  E(X3) � c

MX(t) � E(etX) � E ¢1 � tX �
t2X2

2! �
t3X3

3! � c≤
m

� c� (�1)r�1rmr � (�1)�rmr

� mrr � ¢ r

1
≤mrr�1m � c� (�1) j¢r

j
≤mrr�j m   

j

� c� (�1)r�1¢ r

r � 1
≤E(X )mr�1 � (�1)rmr

� E(Xr) � ¢ r

1
≤E(Xr�1)m � c� (�1) j ¢r

j
≤E(Xr�j)m j
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3.18. A random variable X has density function given by

Find (a) the moment generating function, (b) the first four moments about the origin.

(a)

(b) If | t | � 2 we have

But

Therefore, on comparing terms,

3.19. Find the first four moments (a) about the origin, (b) about the mean, for a random variable X having den-
sity function

(a)

(b) Using the result (27), page 79, we have

Characteristic functions
3.20. Find the characteristic function of the random variable X of Problem 3.17.

The characteristic function is given by

E(eivX ) � eiv(1)¢1
2 ≤ � eiv(�1)¢ 1

2 ≤ �
1
2  (eiv � e�iv) � cosv

m4 �
27
2 � 4¢216

35 ≤ ¢ 8
5 ≤ � 6(3)¢ 8

5 ≤ 2

� 3¢ 8
5 ≤ 4

�
3693
8750

m3 �
216
35 � 3(3)¢ 8

5 ≤ � 2¢ 8
5 ≤ 3

� �
32

875

m2 � 3 � ¢8
5 ≤ 2

�
11
25 � s2

m1 � 0

mr4 � E(X4) �
4

813
3

0 

x5(9 � x2) dx �
27
2

mr3 � E(X3) �
4

813
3

0 

x4(9 � x2) dx �
216
35

mr2 � E(X2) �
4

813
3

0 

x3(9 � x2) dx � 3

mr1 � E(X) �
4

813
3

0 

x2(9 � x2) dx �
8
5 � m

f (x) � e4x(9 � x2)>81 0 � x �  3

0 otherwise

m �
1
2, mr2 �

1
2, mr3 �

3
4, mr4 �

3
2.

M(t) � 1 � mt � mr2  
t2

2! � mr3  
t3

3! � mr4  
t4

4! � c

2
2 � t �

1
1 � t>2 � 1 �

t
2 �

t2

4 �
t3

8 �
t4

16 � c

�
2e(t�2)x

t � 2  2 `
0

�
2

2 � t,  assuming t � 2

� 3
`

0
etx(2e�2x) dx � 23

`

0
e(t�2)x dx

M(t) � E(etX ) � 3
`

�`
etx f (x) dx

f (x) � e2e�2x x � 0

0 x � 0
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using Euler’s formulas,

with . The result can also be obtained from Problem 3.17(a) on putting t � i .

3.21. Find the characteristic function of the random variable X having density function given by

The characteristic function is given by

using Euler’s formulas (see Problem 3.20) with .

3.22. Find the characteristic function of the random variable X having density function f (x) � ce–a|x|,
, where a � 0, and c is a suitable constant.

Since f (x) is a density function, we must have

so that

Then c � a 2. The characteristic function is therefore given by

Covariance and correlation coefficient
3.23. Prove Theorem 3-14, page 81.

By definition the covariance of X and Y is

� E(XY ) � E(X )E(Y )

� E(XY ) � mXmY

� E(XY ) � mXmY � mYmX � mXmY

� E(XY ) � mXE(Y ) � mYE(X ) � E(mXmY)

� E[XY � mXY � mYX � mXmY]

sXY � Cov (X, Y ) � E[(X � mX)(Y � mY)]

�
a

2(a � iv) �
a

2(a � iv) �
a2

a2 � v2

�
a
2

e(a�iv)x

a � iv
2 0
�`

� a 
e�(a�iv)x

�(a � iv)  2 `
0

�
a
2  B 30

�`
e(a�iv)x dx � 3

`

0
e�(a�iv)x dxR�

a
2  B 30

�`
eivxe�a(�x) dx � 3

`

0
eivxe�a(x) dxRE(eivX) � 3

`

�`
eivx  f (x) dx

>
� c 

eax

a  2 0
�`

� c 
e�ax

�a  2 `
0

�
2c
a � 1

c3
`

�`
e�aZxZ dx � c B 30

�`
e�a(�x) dx � 3

`

0
e�a(x) dxR

3
`

�`
 f (x) dx � 1

�` � x � `

u � av

�
1

2a
eivx

iv  2 a
�a

�
eiav � e�iav

2iav �
sin av

av

E(eivX) � 3
`

�`
eivx f (x) dx �

1
2a3

a

�a
eivx dx

f (x) � e1>2a Z x Z � a

0 otherwise

vu � v

eiu � cos u � i sin u  e�iu � cos u � i sin u
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3.24. Prove Theorem 3-15, page 81.

If X and Y are independent, then E(XY) � E(X )E(Y). Therefore, by Problem 3.23,

3.25. Find (a) E(X), (b) E(Y), (c) E(XY), (d) E(X2), (e) E(Y2), (f ) Var (X), (g) Var (Y), (h) Cov (X, Y), (i) , if the
random variables X and Y are defined as in Problem 2.8, pages 47–48.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

3.26. Work Problem 3.25 if the random variables X and Y are defined as in Problem 2.33, pages 61–63.

Using c � 1 210, we have:

(a)

(b)

(c) E(XY ) �
1

2103
6

x�2
3

5

y�0
(xy)(2x � y) dx dy �

80
7

E(Y ) �
1

2103
6

x�2
3

5

y�0
(y)(2x � y) dx dy �

170
63

E(X ) �
1

2103
6

x�2
3

5

y�0
(x)(2x � y) dx dy �

268
63

>

r �
sXY

sXsY
�

�20>147

2230>441255>49
�

�20

2230255
� �0.2103 approx.

sXY � Cov (X, Y ) � E(XY ) � E(X )E(Y ) �
17
7 � ¢ 29

21 ≤ ¢ 13
7 ≤ � �

20
147

s2
Y � Var (Y ) � E(Y2) � [E(Y )]2 �

32
7 � ¢ 13

7 ≤ 2

�
55
49

s2
X � Var (X) � E(X2) � [E(X)]2 �

17
7 � ¢ 29

21 ≤ 2

�
230
441

� (0)2(6c) � (1)2(9c) � (2)2(12c) � (3)2(15c) � 192c �
192
42 �

32
7

E(Y2) � a
x
a
y

 y2 f (x, y) � a
y

y2Ba
x

 f (x, y)R� (0)2(6c) � (1)2(14c) � (2)2(22c) � 102c �
102
42 �

17
7

E(X2) � a
x
a
y

 x2 f(x, y) � a
x

 x2Ba
y

  f (x, y)R� 102c �
102
42 �

17
7

� (2)(0)(4c) � (2)(1)(5c) � (2)(2)(6c) � (2)(3)(7c)

� (1)(0)(2c) � (1)(1)(3c) � (1)(2)(4c) � (1)(3)(5c)

� (0)(0)(0) � (0)(1)(c) � (0)(2)(2c) � (0)(3)(3c)

E(XY ) � a
x
a
y

 xy f (x, y)

� (0)(6c) � (1)(9c) � (2)(12c) � (3)(15c) � 78c �
78
42 �

13
7

E(Y ) � a
x
a
y

 yf (x, y) � a
y

 yBa
x

  f (x, y)R� (0)(6c) � (1)(14c) � (2)(22c) � 58c �
58
42 �

29
21

E(X ) � a
x
a
y

xf (x, y) � a
x

xBa
y

  f (x, y)R r

sXY � Cov (X, Y ) � E(XY ) � E(X )E(Y ) � 0
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(d)

(e)

(f)

(g)

(h)

(i)

Conditional expectation, variance, and moments
3.27. Find the conditional expectation of Y given X � 2 in Problem 2.8, pages 47–48.

As in Problem 2.27, page 58, the conditional probability function of Y given X � 2 is

Then the conditional expectation of Y given X � 2 is

where the sum is taken over all y corresponding to X � 2. This is given by

3.28. Find the conditional expectation of (a) Y given X, (b) X given Y in Problem 2.29, pages 58–59.

(a)

(b)

3.29. Find the conditional variance of Y given X for Problem 2.29, pages 58–59.

The required variance (second moment about the mean) is given by

where we have used the fact that from Problem 3.28(a).

Chebyshev’s inequality
3.30. Prove Chebyshev’s inequality.

We shall present the proof for continuous random variables. A proof for discrete variables is similar if integrals
are replaced by sums. If f(x) is the density function of X, then

s2 � E[(X � m)2] � 3
`

�`
(x � m)2f (x) dx

m2 � E(Y uX � x) � 2x>3
E[(Y � m2)2 uX � x] � 3

`

�`
(y � m2)2f2(y u x)dy � 3

x

0 

¢y �
2x
3 ≤ 2¢ 2y

x2 ≤  dy �
x2

18

�
2(1 � y3)

3(1 � y2)
�

2(1 � y � y2)
3(1 � y)

E(X uY � y) � 3
`

�`
xf1(x u y) dx � 3

1

y 

x¢ 2x
1 � y2 ≤  dx

E(Y uX � x)3
`

�`
 yf2(y u x) dy � 3

x

0  

y¢ 2y

x2 ≤  dy �
2x
3

E(Y uX � 2) � (0)¢ 4
22 ≤ � 1¢ 5

22 ≤ � 2¢ 6
22 ≤ � 3¢ 7

22 ≤ �
19
11

E(Y uX � 2) � a
y

 y¢ 4 � y
22 ≤

f (y u2) �
4 � y

22

r �
sXY

sXsY
�

�200>3969

25036>3969216,225>7938
�

�200

22518216,225
� �0.03129 approx.

sXY � Cov(X, Y ) � E(XY ) � E(X )E(Y) �
80
7 � ¢ 268

63 ≤ ¢170
63 ≤ � �

200
3969

s2
Y � Var (Y) � E(Y2) � [E(Y )]2 �

1175
126 � ¢ 170

63 ≤ 2

�
16,225
7938

s2
X � Var (X ) � E(X2) � [E(X )]2 �

1220
63 � ¢ 268

63 ≤ 2

�
5036
3969

E(Y2) �
1

2103
6

x�2
3

5

y�0
(y2)(2x � y) dx dy �

1175
126

E(X2) �
1

2103
6

x�2
3

5

y�0
(x2)(2x � y) dx dy �

1220
63
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Since the integrand is nonnegative, the value of the integral can only decrease when the range of integration is
diminished. Therefore,

But the last integral is equal to . Hence,

3.31. For the random variable of Problem 3.18, (a) find . (b) Use Chebyshev’s inequality to ob-
tain an upper bound on and compare with the result in (a).

(a) From Problem 3.18, � 1 2. Then

Therefore

(b) From Problem 3.18, . Chebyshev’s inequality with P � 1 then gives

Comparing with (a), we see that the bound furnished by Chebyshev’s inequality is here quite crude. In practice,
Chebyshev’s inequality is used to provide estimates when it is inconvenient or impossible to obtain exact values.

Law of large numbers
3.32. Prove the law of large numbers stated in Theorem 3-19, page 83.

We have

Then

so that

where we have used Theorem 3-5 and an extension of Theorem 3-7.
Therefore, by Chebyshev’s inequality with X � Sn n, we have

Taking the limit as , this becomes, as required,

Other measures of central tendency
3.33. The density function of a continuous random variable X is

(a) Find the mode. (b) Find the median. (c) Compare mode, median, and mean.

f (x) � e4x(9 � x2)>81 0 �  x � 3

0 otherwise

lim
nS`  P¢ 2  Sn

n � m 2 � P ≤ � 0

n S `

P¢ 2  Sn

n � m 2 � P≤  �
s2

nP 2

>

Var ¢ Sn

n ≤ �
1
n2   Var (Sn) �

s2

n

Var (Sn) � Var (X1 � c� Xn) � Var (X1) � c� Var (Xn) � ns2

E ¢Sn

n ≤ � E ¢X1 � c� Xn

n ≤ �
1
n  [E(X1) � c� E(Xn)] �

1
n  (nm) � m

Var (X1) � Var (X2) � c � Var (Xn) � s2

E(X1) � E(X2) � c � E(Xn) � m

P( uX � m u � 1) � s2 � 0.25

s2 � mr2 � m2 � 1>4
P¢ 2  X �

1
2  2 � 1≤ � 1 � (1 � e�3) � e�3 � 0.04979

� 3
3>2
0

2e�2x dx � 1 � e�3

P( uX � m u � 1) � P¢ 2  X �
1
2  2 � 1≤ � P¢�

1
2 � X �

3
2 ≤>m

P( uX � m u � 1)
P( uX � m u � 1)

P( uX � m u � P) �  
s2

P2

P( uX � m u � P)

s2 � 3
ux�mu �P

(x � m)2f (x) dx � 3
ux�mu �P

P2f (x) dx � P23
ux�mu �P

f (x) dx
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(a) The mode is obtained by finding where the density f (x) has a relative maximum. The relative maxima of
f (x) occur where the derivative is zero, i.e.,

Then approx., which is the required mode. Note that this does give the maximum since
the second derivative, �24x 81, is negative for 

(b) The median is that value a for which . Now, for ,

Setting this equal to 1 2, we find that

2a4 � 36a2 � 81 � 0

from which

Therefore, the required median, which must lie between 0 and 3, is given by

from which a � 1.62 approx.

(c)

which is practically equal to the median. The mode, median, and mean are shown in Fig. 3-6.

E(X ) �
4

813
3

0
x2(9 � x2) dx �

4
81  ¢3x3 �

x5

5 ≤ 2
0

3

� 1.60

a2 � 9 �
9
222

a2 �
36 
 2(36)2 � 4(2)(81)

2(2) �
36 
 2648

4 � 9 

9
222

>

P(X � a) �
4

813
a

0 

x(9 � x2) dx �
4

81  ¢ 9a2

2 �
a4

4 ≤0 � a � 3P(X � a) � 1>2
x � !3.>

x � !3 � 1.73

d
dx  B4x(9 � x2)

81 R �
36 � 12x2

81 � 0
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Fig. 3-6

3.34. A discrete random variable has probability function f(x) � 1 2x where x � 1, 2, . . . . Find (a) the mode,
(b) the median, and (c) compare them with the mean.

(a) The mode is the value x having largest associated probability. In this case it is x � 1, for which the
probability is 1 2.

(b) If x is any value between 1 and 2, and Therefore, any number between 1 and
2 could represent the median. For convenience, we choose the midpoint of the interval, i.e., 3 2.

(c) As found in Problem 3.3, � 2. Therefore, the ordering of the three measures is just the reverse of that in
Problem 3.33.

m

>
P(X � x) �

1
2.P(X � x) �

1
2

>

>
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Percentiles
3.35. Determine the (a) 10th, (b) 25th, (c) 75th percentile values for the distribution of Problem 3.33.

From Problem 3.33(b) we have

(a) The 10th percentile is the value of a for which P(X a) � 0.10, i.e., the solution of (18a2 � a4) 81 � 0.10.
Using the method of Problem 3.33, we find a � 0.68 approx.

(b) The 25th percentile is the value of a such that (18a2 � a4) 81 � 0.25, and we find a � 1.098 approx.

(c) The 75th percentile is the value of a such that (18a2 � a4) 81 � 0.75, and we find a � 2.121 approx.

Other measures of dispersion
3.36. Determine, (a) the semi-interquartile range, (b) the mean deviation for the distribution of Problem 3.33.

(a) By Problem 3.35 the 25th and 75th percentile values are 1.098 and 2.121, respectively. Therefore,

(b) From Problem 3.33 the mean is . Then

Skewness and kurtosis
3.37. Find the coefficient of (a) skewness, (b) kurtosis for the distribution of Problem 3.19.

From Problem 3.19(b) we have

(a) Coefficient of skewness 

(b) Coefficient of kurtosis 

It follows that there is a moderate skewness to the left, as is indicated in Fig. 3-6. Also the distribution is
somewhat less peaked than the normal distribution, which has a kurtosis of 3.

Miscellaneous problems
3.38. If M(t) is the moment generating function for a random variable X, prove that the mean is � M (0) and

the variance is 2 � M (0) � [M (0)]2.

From (32), page 79, we have on letting r � 1 and r � 2,

Then from (27)

m2 � s2 � Ms(0) � [Mr(0)]2m � Mr(0)

mr2 � Ms(0)mr1 � Mr(0)

rss

rm

� a4 �
m4

s4 � 2.172

� a3 �
m3

s3 � �0.1253

m4 �
3693
8750m3 � �

32
875s2 �

11
25

� 0.555 approx.

� 3
8>5
0
¢8

5 � x≤ B 4x
81  (9 � x2)R  dx � 3

3

8>5¢x �
8
5 ≤ B 4x

81  (9 � x2)R  dx

� 3
3

0 

2  x �
8
5   2 B 4x

81  (9 � x2)R  dx

Mean deviation � M.D.5E(uX � m u) � 3
`

�`
u x � mu f (x) dx

m � 1.60 � 8>5
Semi-interquartile range �

2.121 � 1.098
2 � 0.51 approx.

>
>

>�

P(X � a) �
4

81  ¢ 9a2

2 �
a4

4 ≤ �
18a2 � a4

81
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3.39. Let X be a random variable that takes on the values xk � k with probabilities pk where k � 
1, . . . , 
 n.
(a) Find the characteristic function ( ) of X, (b) obtain pk in terms of ( ).

(a) The characteristic function is

(b) Multiply both sides of the expression in (a) by and integrate with respect to from 0 to 2 . Then

since

Therefore,

or, replacing j by k,

We often call (where n can theoretically be infinite) the Fourier series of ( ) and pk the
Fourier coefficients. For a continuous random variable, the Fourier series is replaced by the Fourier integral
(see page 81).

3.40. Use Problem 3.39 to obtain the probability distribution of a random variable X whose characteristic func-
tion is .

From Problem 3.39

If k � 1, we find if k � �1, we find For all other values of k, we have pk � 0. Therefore, the
random variable is given by

As a check, see Problem 3.20.

3.41. Find the coefficient of (a) skewness, (b) kurtosis of the distribution defined by the normal curve, having
density

(a) The distribution has the appearance of Fig. 3-7. By symmetry, and . Therefore the
coefficient of skewness is zero.

mr3 � 0mr1 � m � 0

f (x) �
1

22p
 e�x2>2  �` � x � `

X � e 1 probability 1>2
�1 probability 1>2

p�1 �
1
2.p1 �

1
2;

�
1

4p3
2p

v�0
ei(1�k)v dv �

1
4p3

2p

v�0 

e�i(1�k)v dv

�
1

2p3
2p

v�0
e�ikv B eiv � e�iv

2 R  dv

pk �
1

2p3
2p

v�0
e�ikv cosv dv

f(v) � cos v

vfgn
k��n  pkeikv

pk �
1

2p3
2p

v�0
e�ikvf(v) dv

pj �
1

2p3
2p

v�0
e�ijvf(v) dv

3
2p

v�0
ei(k�j)v dv � •

ei(k�j)v

i(k � j)  2 2p
0

� 0 k 2 j

2p k � j

3
2p

v�0
e�ijvf(v) dv � a

n

k��n
 pk3

2p

v�0 

ei(k�j)v dv � 2ppj

pve�ijv

f(v) � E(eivX) � a
n

k��n
eivxk pk � a

n

k��n
pkeikv

vfvf
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(b) We have

where we have made the transformation x2 2 � v and used properties of the gamma function given in (2) and
(5) of Appendix A. Similarly we obtain

Now

Thus the coefficient of kurtosis is

3.42. Prove that �1 1 (see page 82).

For any real constant c, we have

E[{Y � Y � c(X � )}2] 0

Now the left side can be written

�
s2

Xs
2
Y � s2

XY

s2
X

� s2
X¢c �

sXY

s2
X

≤ 2

� s2
Y � s2

X¢c2 �
sXY

s2
X

≤ 2

�
s2

XY

s2
X

� s2
Y � s2

X¢c2 �
2csXY

s2
X

≤E[(Y � mY)2] � c2E[(X � mX)2] � 2cE[(X � mX)(Y � mY)] � s2
Y � c2s2

X � 2csXY

�mm

�r�

m4

s4 � 3

m4 � E[(X � m)4] � E(X4) � mr4 � 3

s2 � E[(X � m)2] � E(X )2 � mr2 � 1

�
4

2p
 � ¢ 5

2 ≤ �
4

2p
?

3
2 ?

1
2  � ¢ 1

2 ≤ � 3

�
4

2p
3
`

0
v3>2e�v  dv

mr4 � E(X4) �
1

22p
3
`

�`
x4e�x2>2  dx �

2

22p
3
`

0
x4e�x2>2  dx

>
�

2

2p
 �¢ 3

2 ≤ �
2

2p
?

1
2  �¢ 1

2 ≤ � 1

�
2

2p
3
`

0
v1>2e�v  dv

mr2 � E(X2) �
1

22p
3
`

�`
x2e�x2>2  dx �

2

22p
3
`

0
x2e�x2>2  dx

CHAPTER 3 Mathematical Expectation98

Fig. 3-7



   Schaum's Outline of Probability and Statistics

In order for this last quantity to be greater than or equal to zero for every value of c, we must have

which is equivalent to or .

SUPPLEMENTARY PROBLEMS

Expectation of random variables

3.43. A random variable X is defined by 

3.44. Let X be a random variable defined by the density function 

Find (a) E(X ), (b) E(3X � 2), (c) E(X2).

3.45. The density function of a random variable X is

Find (a) E(X ), (b) E(X2), (c) E[(X � 1)2].

3.46. What is the expected number of points that will come up in 3 successive tosses of a fair die? Does your answer
seem reasonable? Explain.

3.47. A random variable X has the density function . Find E(e2X 3).

3.48. Let X and Y be independent random variables each having density function

Find (a) E(X � Y ), (b) E(X2 � Y2), (c) E(XY ).

3.49. Does (a) E(X � Y ) � E(X ) � E(Y), (b) E(XY ) � E(X)E(Y), in Problem 3.48? Explain.

3.50. Let X and Y be random variables having joint density function

Find (a) E(X), (b) E(Y ), (c) E(X � Y ), (d) E(XY ).

3.51. Does (a) E(X � Y ) � E(X ) � E(Y), (b) E(XY ) � E(X)E(Y), in Problem 3.50? Explain.

3.52. Let X and Y be random variables having joint density

Find (a) E(X), (b) E(Y ), (c) E(X � Y ), (d) E(XY ).

f (x, y) � e4xy 0 � x � 1, 0 � y � 1

0 otherwise

f (x, y) � e 3
5 x(x � y) 0 � x � 1, 0 � y � 2

0 otherwise

f (u) � e2e�2u u � 0

0 otherwise

>f (x) � e e�x x � 0

0 x � 0

f (x) � e e�x x � 0

0 otherwise
.

f (x) � e3x2 0 � x � 1

0 otherwise
.

X � •
�2 prob. 1>3
 3 prob. 1>2. Find (a) E(X ), (b) E(2X � 5), (c) E(X2).

1 prob. 1>6

�1 � r � 1r2 � 1

s2
Xs

2
Y � s2

XY � 0 or 
s2

XY

s2
X s

2
Y

 � 1
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3.53. Does (a) E(X � Y ) � E(X ) � E(Y), (b) E(XY ) � E(X )E(Y ), in Problem 3.52? Explain.

3.54. Let . Find (a) E(X ), (b) E(Y ), (c) E(X2), (d) E(Y2),

(e) E(X � Y ), (f ) E(XY).

3.55. Let X and Y be independent random variables such that

Find (a) E(3X � 2Y ), (b) E(2X2 � Y2), (c) E(XY ), (d) E(X2Y ).

3.56. Let X1, X2, . . . , Xn be n random variables which are identically distributed such that

Find (a) E(Xl � X2 � � Xn), (b) 

Variance and standard deviation
3.57. Find (a) the variance, (b) the standard deviation of the number of points that will come up on a single toss of a

fair die.

3.58. Let X be a random variable having density function

Find (a) Var(X ), (b) X.

3.59. Let X be a random variable having density function

Find (a) Var(X ), (b) X.

3.60. Find the variance and standard deviation for the random variable X of (a) Problem 3.43, (b) Problem 3.44.

3.61. A random variable X has E(X ) � 2, E(X2) � 8. Find (a) Var(X ), (b) X.

3.62. If a random variable X is such that E[(X � 1)2] � 10, E[(X � 2)2] � 6 find (a) E(X ), (b) Var(X ), (c) X.

Moments and moment generating functions
3.63. Find (a) the moment generating function of the random variable

and (b) the first four moments about the origin.

X � e 1>2 prob. 1>2
�1>2 prob. 1>2

s

s

s

f (x) � e e�x x � 0

0 otherwise

s

f (x) � e1>4 �2 � x � 2

0 otherwise

E(X2
1 � X2

2 � c� X2
n).c

Xk � •
1 prob. 1>2
2 prob. 1>3

�1 prob. 1>6

X � e1 prob. 1>3
0 prob. 2>3  Y � e 2 prob. 3>4

�3 prob. 1>4

f (x, y) � e 1
4  (2x � y) 0 �  x � 1, 0 � y � 2

0 otherwise
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3.64. (a) Find the moment generating function of a random variable X having density function

(b) Use the generating function of (a) to find the first four moments about the origin.

3.65. Find the first four moments about the mean in (a) Problem 3.43, (b) Problem 3.44.

3.66. (a) Find the moment generating function of a random variable having density function

and (b) determine the first four moments about the origin.

3.67. In Problem 3.66 find the first four moments about the mean.

3.68. Let X have density function . Find the kth moment about (a) the origin,

(b) the mean.

3.69. If M(t) is the moment generating function of the random variable X, prove that the 3rd and 4th moments about
the mean are given by

Characteristic functions

3.70. Find the characteristic function of the random variable .

3.71. Find the characteristic function of a random variable X that has density function

3.72. Find the characteristic function of a random variable with density function

3.73. Let be independent random variables (k � 1, 2, . . . , n). Prove that the characteristic

function of the random variable

is

3.74. Prove that as the characteristic function of Problem 3.73 approaches (Hint: Take the logarithm of
the characteristic function and use L’Hospital’s rule.)

e�v2>2.n S `

[cos (v>!n)]n.

X1 � X2 � c � Xn

2n

Xk � e 1 prob. 1>2
�1 prob. 1>2

f (x) � e x>2 0 � x � 2

0 otherwise

f (x) � e1>2a u x u �  a

0 otherwise

X � ea prob. p

b prob. q � 1 � p

m3 � M-(0) � 3Ms(0)Mr(0) � 2[Mr(0)]3

m4 � M(iv)(0) � 4M-(0)Mr(0) � 6Ms(0)[Mr(0)]2 � 3[Mr(0)]4

f (x) � e1>(b � a) a � x �  b

0 otherwise

f (x) � e e�x x � 0

0 otherwise

f (x) � e x>2 0 �  x � 2

0 otherwise
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Covariance and correlation coefficient
3.75. Let X and Y be random variables having joint density function

Find (a) Var(X ), (b) Var(Y ), (c) X, (d) Y, (e) XY, (f ) .

3.76. Work Problem 3.75 if the joint density function is .

3.77. Find (a) Var(X), (b) Var(Y ), (c) X, (d) Y, (e) XY, (f ) , for the random variables of Problem 2.56.

3.78. Work Problem 3.77 for the random variables of Problem 2.94.

3.79. Find (a) the covariance, (b) the correlation coefficient of two random variables X and Y if E(X ) � 2, E(Y ) � 3,
E(XY) � 10, E(X2) � 9, E(Y2) � 16.

3.80. The correlation coefficient of two random variables X and Y is while their variances are 3 and 5. Find the
covariance.

Conditional expectation, variance, and moments
3.81. Let X and Y have joint density function

Find the conditional expectation of (a) Y given X, (b) X given Y.

3.82. Work Problem 3.81 if 

3.83. Let X and Y have the joint probability function given in Table 2-9, page 71. Find the conditional expectation of
(a) Y given X, (b) X given Y.

3.84. Find the conditional variance of (a) Y given X, (b) X given Y for the distribution of Problem 3.81.

3.85. Work Problem 3.84 for the distribution of Problem 3.82.

3.86. Work Problem 3.84 for the distribution of Problem 2.94.

Chebyshev’s inequality
3.87. A random variable X has mean 3 and variance 2. Use Chebyshev’s inequality to obtain an upper bound for 

(a) P( X �3 2), (b) P( X � 3 1).

3.88. Prove Chebyshev’s inequality for a discrete variable X. (Hint: See Problem 3.30.)

3.89. A random variable X has the density function (a) Find P( X � � 2). (b) Useumuf (x) �
1
2  e�|x|, �` � x � `.

�uu�uu

f (x, y) � e2e�(x�2y) x � 0, y �  0

0 otherwise

f (x, y) � e x � y 0 � x � 1,  0 �  y � 1

0 otherwise

�
1
4

rsss

f (x, y) � e e�(x�y) x � 0, y �  0

0 otherwise

rsss

f (x, y) � e x � y 0 � x � 1,  0 � y �  1

0 otherwise
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Law of large numbers
3.90. Show that the (weak) law of large numbers can be stated as

and interpret.

3.91. Let Xk (k = 1, . . . , n) be n independent random variables such that

(a) If we interpret Xk to be the number of heads on the kth toss of a coin, what interpretation can be given to 
Sn � X1 � � Xn?

(b) Show that the law of large numbers in this case reduces to

and interpret this result.

Other measures of central tendency
3.92. Find (a) the mode, (b) the median of a random variable X having density function

and (c) compare with the mean.

3.93. Work Problem 3.100 if the density function is

3.94. Find (a) the median, (b) the mode for a random variable X defined by

and (c) compare with the mean.

3.95. Find (a) the median, (b) the mode of the set of numbers 1, 3, 2, 1, 5, 6, 3, 3, and (c) compare with the mean.

Percentiles
3.96. Find the (a) 25th, (b) 75th percentile values for the random variable having density function

3.97. Find the (a) 10th, (b) 25th, (c) 75th, (d) 90th percentile values for the random variable having density function

where c is an appropriate constant.

Other measures of dispersion
3.98. Find (a) the semi-interquartile range, (b) the mean deviation for the random variable of Problem 3.96.

3.99. Work Problem 3.98 for the random variable of Problem 3.97.

f (x) � e c(x � x3) 0 � x � 1

0 otherwise

f (x) � e2(1 � x) 0 � x � 1

0 otherwise

X � e 2 prob. 1>3
�1 prob. 2>3

f (x) � e4x(1 � x2) 0 � x � 1

0 otherwise

f (x) � e e�x x � 0

0 otherwise

lim
nS`

 P¢ 2  Sn

n � p 2  � P≤ � 0

c

Xk � e1 prob. p

0 prob. q � 1 � p

lim
nS`

P¢ 2  Sn

n � m 2 �  P≤ � 1
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3.100. Find the mean deviation of the random variable X in each of the following cases.

(a) (b) 

3.101. Obtain the probability that the random variable X differs from its mean by more than the semi-interquartile
range in the case of (a) Problem 3.96, (b) Problem 3.100(a).

Skewness and kurtosis
3.102. Find the coefficient of (a) skewness, (b) kurtosis for the distribution of Problem 3.100(a).

3.103. If

where c is an appropriate constant, is the density function of X, find the coefficient of (a) skewness,
(b) kurtosis.

3.104. Find the coefficient of (a) skewness, (b) kurtosis, for the distribution with density function

Miscellaneous problems
3.105. Let X be a random variable that can take on the values 2, 1, and 3 with respective probabilities 1 3, 1 6, and

1 2. Find (a) the mean, (b) the variance, (c) the moment generating function, (d) the characteristic function,
(e) the third moment about the mean.

3.106. Work Problem 3.105 if X has density function

where c is an appropriate constant.

3.107. Three dice, assumed fair, are tossed successively. Find (a) the mean, (b) the variance of the sum.

3.108. Let X be a random variable having density function

where c is an appropriate constant. Find (a) the mean, (b) the variance, (c) the moment generating function,
(d) the characteristic function, (e) the coefficient of skewness, (f ) the coefficient of kurtosis.

3.109. Let X and Y have joint density function

Find (a) E(X2 � Y2), (b) 

3.110. Work Problem 3.109 if X and Y are independent identically distributed random variables having density
function f (u) � (2p)�1>2e�u2>2, �` � u � `.

E(!X2 � Y2).

f (x, y) � e cxy 0 � x � 1, 0 � y � 1

0 otherwise

f (x) � e cx 0 � x �  2

0 otherwise

f (x) � e c(1 � x) 0 � x � 1

0 otherwise

>
>>

f (x) � e  le� lx x � 0

0 x � 0

f (x) � • c Q1 �
ux u
a R ux u  � a

0 ux u � a

f (x) �
1

p(1 � x2)
, �` � x � `.f (x) � e e�x x � 0

0 otherwise
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3.111. Let X be a random variable having density function

and let Y � X2. Find (a) E(X), (b) E(Y), (c) E(XY).

ANSWERS TO SUPPLEMENTARY PROBLEMS

3.43. (a) 1 (b) 7 (c) 6 3.44. (a) 3 4 (b) 1 4 (c) 3 5

3.45. (a) 1 (b) 2 (c) 1 3.46. 10.5 3.47. 3

3.48. (a) 1 (b) 1 (c) 1 4

3.50. (a) 7 10 (b) 6 5 (c) 19 10 (d) 5 6

3.52. (a) 2 3 (b) 2 3 (c) 4 3 (d) 4 9

3.54. (a) 7 12 (b) 7 6 (c) 5 12 (d) 5 3 (e) 7 4 (f) 2 3

3.55. (a) 5 2 (b) –55 12 (c) 1 4 (d) 1 4

3.56. (a) n (b) 2n 3.57. (a) 35 12 (b) 

3.58. (a) 4 3 (b) 3.59. (a) 1 (b) 1

3.60. (a) Var(X) = 5, (b) Var(X) = 3 80,

3.61. (a) 4 (b) 2 3.62. (a) 7 2 (b) 15 4 (c) 

3.63. (a) (b) 

3.64. (a) (1 � 2te2t – e2t) 2t2 (b)

3.65. (a) 1 � 0, 2 � 5, 3 � �5, 4 � 35 (b) 1 � 0, 2 � 3 80, 3 � �121 160, 4 � 2307 8960

3.66. (a) 1 (1 � t), | t | � 1 (b) 

3.67.

3.68. (a) (bk�1 – ak�1) (k � 1)(b � a) (b) [1 � (�1)k](b � a)k 2k � 1(k � 1)

3.70. 3.71. 3.72. (e2iv � 2ive2iv � 1)>2v2( sin av)>avpeiva � qeivb

>>

m1 � 0, m2 � 1, m3 � 2, m4 � 33

m � 1, mr2 � 2, mr3 � 6, mr4 � 24>

>m>m>mmmmmm

m � 4>3, mr2 � 2, mr3 � 16>5, mr4 � 16>3>

m � 0, mr2 � 1, mr3 � 0, mr4 � 11
2(e

t>2 � e�t>2) � cosh(t>2)

!15>2>>

sX � 215>20>sX � !5

!4>3>

!35>12>

>>>>

>>>>>>

>>>>

>>>>

>

>>>

f (x) � e 1
2 �1 � x � 1

0 otherwise
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3.75. (a) 11 144 (b) 11 144 (c) (d) (e) –1 144 (f) –1 11

3.76. (a) 1 (b) 1 (c) 1 (d) 1 (e) 0 (f) 0

3.77. (a) 73 960 (b) 73 960 (c) (d) (e) –1 64 (f) –15 73

3.78. (a) 233 324 (b) 233 324 (c) (d) (e) –91 324 (f) –91 233

3.79. (a) 4 (b) 3.80.

3.81. (a) (3x � 2) (6x � 3) for 0 x 1 (b) (3y � 2) (6y � 3) for 0 y 1

3.82. (a) 1 2 for x 0 (b) 1 for y 0

3.83. (a) (b)

��>

��>��>

�!15>44>!35

>>!233>18!233>18>>

>>!73>960!73>960>>

>>!11>12!11>12>>
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X 0 1 2

E(Y X) 4 3 1 5 7>>u

Y 0 1 2

E(X Y) 4 3 7 6 1 2>>>u

3.84. (a) for 0 x 1 (b) for 0 y 1

3.85. (a) 1 9 (b) 1

3.86. (a) (b)

>

��
6y2 � 6y �1

18(2y � 1)2��
6x2 � 6x � 1
18(2x � 1)2

X 0 1 2

Var(Y X) 5 9 4 5 24 49>>>u

Y 0 1 2

Var(X Y) 5 9 29 36 7 12>>>u

3.87. (a) 1 2 (b) 2 (useless) 3.89. (a) e–2 (b) 0.5

3.92. (a) � 0 (b) ln 2 (c) 1 3.93. (a) (b) (c) 8 15

3.94. (a) does not exist (b) –1 (c) 0 3.95. (a) 3 (b) 3 (c) 3

3.96. (a) (b) 1 2

3.97. (a) (b) (c) (d) 

3.98. (a) 1 (b) (c) 16 81

3.99. (a) 1 (b) 0.17 (c) 0.051 3.100. (a) 1 � 2e–1 (b) does not exist

3.101. (a) (b) 

3.102. (a) 2 (b) 9 3.103. (a) 0 (b) 24 5a 3.104. (a) 2 (b) 9>

(3 � 2e�1!3)>3(5 � 2!3)>3

>(!3 � 1)>4

#1 � (1>!10)!1>2#1 � (23>2)#1 � (3>!10)

>1 �
1
2!3

>#1 � (1>!2)1>!3

>
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3.105. (a) 7 3 (b) 5 9 (c) (et � 2e2t � 3e3t) 6 (d) (e) �7 27

3.106. (a) 1 3 (b) 1 18 (c) 2(et � 1 � t) t2 (d) (e) 1 135

3.107. (a) 21 2 (b) 35 4

3.108. (a) 4 3 (b) 2 9 (c) (1 � 2te2t � e2t) 2t2 (d)
(e) (f ) 12 5

3.109. (a) 1 (b) 

3.110. (a) 2 (b) 

3.111. (a) 0 (b) 1 3 (c) 0>

!2p>2

8(2!2 � 1)>15

>�2!18>15
�(1 � 2ive2iv � e2iv)>2v2>>>

>>

>�2(eiv � 1 � iv)>v2>>>

>(eiv � 2e2iv � 3e3iv)>6>>>
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