Schaum's Outline of Probability and Statistics

Random Variables and
Probability Distributions

Random Variables

Suppose that to each point of a sample space we assign a number. We then have a function defined on the sam-
ple space. This function is called a random variable (or stochastic variable) or more precisely a random func-
tion (stochastic function). It is usually denoted by a capital letter such as X or Y. In general, a random variable
has some specified physical, geometrical, or other significance.

EXAMPLE 2.1 Suppose that a coin is tossed twice so that the sample space is S = {HH, HT, TH, TT}. Let X represent
the number of heads that can come up. With each sample point we can associate a number for X as shown in Table 2-1.
Thus, for example, in the case of HH (i.e., 2 heads), X = 2 while for TH (1 head), X = 1. It follows that X is a random

variable.
Table 2-1
Sample Point HH HT TH T
X 2 1 1 0

It should be noted that many other random variables could also be defined on this sample space, for example, the
square of the number of heads or the number of heads minus the number of tails.

A random variable that takes on a finite or countably infinite number of values (see page 4) is called a dis-
crete random variable while one which takes on a noncountably infinite number of values is called a nondiscrete
random variable.

Discrete Probability Distributions

Let X be a discrete random variable, and suppose that the possible values that it can assume are given by x,, x,,
X3, . . ., arranged in some order. Suppose also that these values are assumed with probabilities given by

PX=x)=fx) k=12 ... (1)

It is convenient to introduce the probability function, also referred to as probability distribution, given by
PX = x) = f(x) (2)

For x = x,, this reduces to (1) while for other values of x, f(x) = 0.
In general, f(x) is a probability function if

1. f)=0
2. D fk) =1

where the sum in 2 is taken over all possible values of x.
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EXAMPLE 2.2 Find the probability function corresponding to the random variable X of Example 2.1. Assuming that

the coin is fair, we have

P(HH) = %

Then

P(X = 0) = P(TT) = i

P(X = 1) = P(HT UTH) = P(HT) + P(TH) = % +

P(HT) = %

P(X = 2) = P(HH) = i

The probability function is thus given by Table 2-2.

P(TH) = % P(TT) = %

ENE
N[ —

Table 2-2
X 0 1 2
fx) 1/4 1/2 1/4

Distribution Functions for Random Variables

The cumulative distribution function, or briefly the distribution function, for a random variable X is defined by

F(x)=PX=x)

where x is any real number, i.e., —o0 < x << o,
The distribution function F(x) has the following properties:

1. F(x) is nondecreasing [i.e., F(x) = F(y)ifx = y].
2. x]_l)rpr(x) = O;l}g}cF(x) = 1.
3. F(x) is continuous from the right [i.e., hlir(1)1+ F(x + h) = F(x) for all x].

Distribution Functions for Discrete Random Variables

3

The distribution function for a discrete random variable X can be obtained from its probability function by noting

that, for all x in (—o0, ),

Fx) = PX =x) = > f(u)

U=x

where the sum is taken over all values u taken on by X for which u = x.

If X takes on only a finite number of values x,, x,, . . .

EXAMPLE 2.3 (a) Find the distribution function for the random variable X of Example 2.2. (b) Obtain its graph.

(a) The distribution function is

0
Sflxp)

Fx) = ) + f(xy)

, X,, then the distribution function is given by

—o < x <X
n=x<ux

Xy, =x < X3

f&x1)+---+f(xn) an)é<00

F(x) =

—_— W=

—o < x <0
0=x<1
1=x<2
2 =x< >

“

&)
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(b) The graph of F(x) is shown in Fig. 2-1.
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Fig. 2-1

The following things about the above distribution function, which are true in general, should be noted.

1. The magnitudes of the jumps at 0, 1, 2 are %, %, i which are precisely the probabilities in Table 2-2. This fact
enables one to obtain the probability function from the distribution function.

2. Because of the appearance of the graph of Fig. 2-1, it is often called a staircase function or step function.
The value of the function at an integer is obtained from the higher step; thus the value at 1 is % and not i. This
is expressed mathematically by stating that the distribution function is continuous from the right at 0, 1, 2.

3. As we proceed from left to right (i.e. going upstairs), the distribution function either remains the same or
increases, taking on values from 0 to 1. Because of this, it is said to be a monotonically increasing function.

It is clear from the above remarks and the properties of distribution functions that the probability function of
a discrete random variable can be obtained from the distribution function by noting that

fx) = F) = lim Fu. (®)

Continuous Random Variables

A nondiscrete random variable X is said to be absolutely continuous, or simply continuous, if its distribution func-
tion may be represented as

Fx) = PX=x) = JX fwydu (=% <x <) (N

where the function f(x) has the properties

1. fx)=0
2. J’Oc f)dx =1

It follows from the above that if X is a continuous random variable, then the probability that X takes on any
one particular value is zero, whereas the interval probability that X lies between two different values, say, a and b,
is given by

b
Pla<X<b) = J fx)dx (8)
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EXAMPLE 2.4 If an individual is selected at random from a large group of adult males, the probability that his height
X is precisely 68 inches (i.e., 68.000 . . . inches) would be zero. However, there is a probability greater than zero than X
is between 67.000 . . . inches and 68.500 . . . inches, for example.

A function f(x) that satisfies the above requirements is called a probability function or probability distribu-
tion for a continuous random variable, but it is more often called a probability density function or simply den-
sity function. Any function f(x) satisfying Properties 1 and 2 above will automatically be a density function, and
required probabilities can then be obtained from (8).

EXAMPLE 2.5 (a) Find the constant ¢ such that the function

100 cx? 0<x<3
x =
0 otherwise

is a density function, and (b) compute P(1 < X < 2).

(a) Since f(x) satisfies Property 1 if ¢ = 0, it must satisfy Property 2 in order to be a density function. Now

£ 3 513
@dx = | ex?dx =S| =9
3
o o 0
and since this must equal 1, we have ¢ = 1/9.
(b) Pl<X<2) = 2lxzdx:xi -8 _ 1 _7
' 9 27, 21 21 27

In case f(x) is continuous, which we shall assume unless otherwise stated, the probability that X is equal
to any particular value is zero. In such case we can replace either or both of the signs < in (8) by =. Thus, in

Example 2.5,

P(1sst):P(lsx<2):P(1<XS2):P(1<X<2)=27—7

EXAMPLE 2.6 (a) Find the distribution function for the random variable of Example 2.5. (b) Use the result of (a) to
find P(1 <x=2).
(a) We have

F(x) = PX < x) = J " fwdu

If x <0, then F(x) = 0. If 0 = x < 3, then

Fo = | fude = | Liaw = 2
x) = | fwdu = 09u u =57

0

If x = 3, then

3 X 3 X
Fx) = Jf(u)du + Jf(u)du = J %uzdu + J Odu = 1
0 3 0

3

Thus the required distribution function is

0 x<0
Fx) = ¢x%/27 0=x<3
1 x=3

Note that F(x) increases monotonically from O to 1 as is required for a distribution function. It should also be noted
that F(x) in this case is continuous.
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(b) We have
Pl<X=2)=PX=2)—PX=1)
=F(2) — F()
_2_ P _ 7
27 27 27

as in Example 2.5.

The probability that X is between x and x + Ax is given by

Px=X=x+ Ax) = JHAXf(u)du ©)]
so that if Ax is small, we have approximately
Px=X=x+Ax) = f(0)Ax (10)
We also see from (7) on differentiating both sides that
dF(x)
o =1 (n

at all points where f(x) is continuous; i.e., the derivative of the distribution function is the density function.
It should be pointed out that random variables exist that are neither discrete nor continuous. It can be shown
that the random variable X with the following distribution function is an example.

0 x<1
F(x) = % l=x<2
1 x=2

In order to obtain (11), we used the basic property
41 fuydn = £ (12)
dx |,

which is one version of the Fundamental Theorem of Calculus.

Graphical Interpretations
If f(x) is the density function for a random variable X, then we can represent y = f(x) graphically by a curve as
in Fig. 2-2. Since f(x) = 0, the curve cannot fall below the x axis. The entire area bounded by the curve and the
x axis must be 1 because of Property 2 on page 36. Geometrically the probability that X is between a and b, i.e.,
P(a < X < b), is then represented by the area shown shaded, in Fig. 2-2.

The distribution function F(x) = P(X = x) is a monotonically increasing function which increases from 0 to
1 and is represented by a curve as in Fig. 2-3.

f(x) F(x)

1T T -

Fig. 2-2 Fig. 2-3
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Joint Distributions

The above ideas are easily generalized to two or more random variables. We consider the typical case of two ran-
dom variables that are either both discrete or both continuous. In cases where one variable is discrete and the other
continuous, appropriate modifications are easily made. Generalizations to more than two variables can also be
made.

1. DISCRETE CASE. If X and Y are two discrete random variables, we define the joint probability func-
tion of X and Y by

PX =x,Y=y) = fx,y) 13)
where 1. f(x,y) =0
2. 22 fley) =1
x oy
i.e., the sum over all values of x and y is 1.
Suppose that X can assume any one of m values x;, X,, . . . , X,, and Y can assume any one of n values y;, y,, . . ., -
Then the probability of the event that X = x; and Y = y, is given by
PX =x, Y =y) = f(x;, ) (14)

A joint probability function for X and Y can be represented by a joint probability table as in Table 2-3. The
probability that X = x; is obtained by adding all entries in the row corresponding to x; and is given by

PIX = x) = fi(x) = 2 f(x; 3 (15)
k=1
Table 2-3
Y

e Totals
X Y1 Y2 Yn l/
X1 Sy Sy, y2) e JCer y) i)
X2 S, y1) J(x y) e JC y) Ji(x)
Xm f('xm’ yl) f(xm’ y2) e f(xm’ yn) fl ('xm)

Totals — L) L) . LW 1 <« Grand Total
Forj=1,2,...,m,these are indicated by the entry totals in the extreme right-hand column or margin of Table 2-3.
Similarly the probability that ¥ = y, is obtained by adding all entries in the column corresponding to y, and is
given by

P(Y = ) = f(00) = 2 f05 ) (16)
j=1
Fork=1,2,...,n, these are indicated by the entry totals in the bottom row or margin of Table 2-3.

Because the probabilities (15) and (16) are obtained from the margins of the table, we often refer to
fi(x)) and f5(y,) [or simply f(x) and f,(y)] as the marginal probability functions of X and Y, respectively.
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It should also be noted that

2R =1 2hHGY=1 (17)
j=1 k=1
which can be written
> kEf(xj, yo =1 (18)
j=1k=1

This is simply the statement that the total probability of all entries is 1. The grand total of 1 is indicated in the
lower right-hand corner of the table.
The joint distribution function of X and Y is defined by

F,y) =PX=x, Y=y = > >fu,v) (19)

U=X V=Y
In Table 2-3, F(x, y) is the sum of all entries for which x; = x and y, = y.

2. CONTINUOUS CASE. The case where both variables are continuous is obtained easily by analogy with
the discrete case on replacing sums by integrals. Thus the joint probability function for the random vari-
ables X and Y (or, as it is more commonly called, the joint density function of X and Y) is defined by

L. f(x,y) =0
2.J J fC, yydxdy = 1

Graphically z = f(x, y) represents a surface, called the probability surface, as indicated in Fig. 2-4. The total vol-
ume bounded by this surface and the xy plane is equal to 1 in accordance with Property 2 above. The probability
that X lies between a and b while Y lies between c and d is given graphically by the shaded volume of Fig. 2-4 and
mathematically by

b (d
Pa<X<bc<Y<d)= J J f(x, y)dxdy (20)

y=c

X=a

i ' |

Fig. 2-4

More generally, if A represents any event, there will be a region %, of the xy plane that corresponds to it. In such
case we can find the probability of A by performing the integration over R, i.e.,

PA) = ”f(x, y)dxdy @1

7,

The joint distribution function of X and Y in this case is defined by

Fx,y) =PX=x,Y=y) = JX ﬁ f(u, v)dudv (22)

u=—-o)p=—ow
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It follows in analogy with (11), page 38, that

9*F
dx dy

=fxy) (23)

i.e., the density function is obtained by differentiating the distribution function with respect to x and y.
From (22) we obtain

PX<x) =Fx) = J Jm f(u, v)dudv (24)
* y
PY=<y) = Fyy) = J _mJ . v)dudy (25)

We call (24) and (25) the marginal distribution functions, or simply the distribution functions, of X and Y, respec-
tively. The derivatives of (24) and (25) with respect to x and y are then called the marginal density functions, or
simply the density functions, of X and Y and are given by

o 0

fx,vydv - fy(y) = J Ju, y)du (26)

u=—oo

fiko) = J

p=—

Independent Random Variables

Suppose that X and Y are discrete random variables. If the events X = x and Y = y are independent events for all
x and y, then we say that X and Y are independent random variables. In such case,

PX=x,Y=y)=PX=xPY =Yy 27)
or equivalently

Jy) = H0AD) (28)

Conversely, if for all x and y the joint probability function f(x, y) can be expressed as the product of a function
of x alone and a function of y alone (which are then the marginal probability functions of X and Y), X and Y are
independent. If, however, f(x, y) cannot be so expressed, then X and Y are dependent.

If X and Y are continuous random variables, we say that they are independent random variables if the events
X = x and Y = y are independent events for all x and y. In such case we can write

PX=x,Y=y)=PX=x)P(Y=Yy) (29)

or equivalently

Fx, y) = Fi(x)Fy(y) (30)

where F(z) and F,(y) are the (marginal) distribution functions of X and Y, respectively. Conversely, X and Y are
independent random variables if for all x and y, their joint distribution function F(x, y) can be expressed as a prod-
uct of a function of x alone and a function of y alone (which are the marginal distributions of X and Y, respec-
tively). If, however, F(x, y) cannot be so expressed, then X and Y are dependent.

For continuous independent random variables, it is also true that the joint density function f(x, y) is the prod-
uct of a function of x alone, f|(x), and a function of y alone, f,(y), and these are the (marginal) density functions
of X and Y, respectively.

Change of Variables

Given the probability distributions of one or more random variables, we are often interested in finding distribu-
tions of other random variables that depend on them in some specified manner. Procedures for obtaining these
distributions are presented in the following theorems for the case of discrete and continuous variables.
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1. DISCRETE VARIABLES

Theorem 2-1 Let X be a discrete random variable whose probability function is f(x). Suppose that a discrete
random variable U is defined in terms of X by U = ¢(X), where to each value of X there corre-
sponds one and only one value of U and conversely, so that X = {s(U). Then the probability func-
tion for U is given by

gw) = flu)] 3D

Theorem 2-2 Let X and Y be discrete random variables having joint probability function f(x, y). Suppose that
two discrete random variables U and V are defined in terms of X and Y by U = ¢(X, Y), V =
&, (X, Y), where to each pair of values of X and Y there corresponds one and only one pair of val-
ues of U and V and conversely, so that X = ,(U, V), Y = {,(U, V). Then the joint probability
function of U and V is given by

g(u, v) = f,(u, v), P,(u, V)] (32)

2. CONTINUOUS VARIABLES
Theorem 2-3 Let X be a continuous random variable with probability density f(x). Let us define U = ¢$(X)
where X = (U) as in Theorem 2-1. Then the probability density of U is given by g(x) where

g(w)ldul = f(x)ldx| (33)
dx
du

or gu) = f(x) = fly )|y’ (34)

Theorem 2-4 Let X and Y be continuous random variables having joint density function f(x, y). Let us define
U=¢,X,Y),V=0¢,X,Y) where X = ,(U, V), Y = (U, V) as in Theorem 2-2. Then the
joint density function of U and V is given by g(u, v) where

g(u, v)ldu dvl = f(x, y)ldx dyl (35)
_ axy) |
or 8w ) = V|G| = 1 v, e, vI|J] (36)

In (36) the Jacobian determinant, or briefly Jacobian, is given by

ax ax

A, y) |ou v

S 0w ) | gy ay (37
0w

Probability Distributions of Functions of Random Variables

Theorems 2-2 and 2-4 specifically involve joint probability functions of two random variables. In practice one
often needs to find the probability distribution of some specified function of several random variables. Either of
the following theorems is often useful for this purpose.

Theorem 2-5 Let X and Y be continuous random variables and let U = ¢,(X, Y), V = X (the second choice is
arbitrary). Then the density function for U is the marginal density obtained from the joint den-
sity of U and V as found in Theorem 2-4. A similar result holds for probability functions of dis-
crete variables.

Theorem 2-6 Let f(x, y) be the joint density function of X and Y. Then the density function g(u) of the
random variable U = ¢ (X, Y) is found by differentiating with respect to u the distribution
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function given by

G(u) = Pl¢,(X,Y) = u] = Hf(x, y)dxdy (38)
%
Where R is the region for which ¢,(x, y) = u.

Convolutions

As a particular consequence of the above theorems, we can show (see Problem 2.23) that the density function of
the sum of two continuous random variables X and Y, i.e., of U = X + Y, having joint density function f(x, y) is
given by

gw) = r SO, u — x)dx (39)

In the special case where X and Y are independent, f(x, ¥) = f; (x)f,(y), and (39) reduces to

g = f 00 o = x)dx (40)

which is called the convolution of f; and f,, abbreviated, f; * f,.
The following are some important properties of the convolution:
L fixh=hHh*f
2 fix a2 f) = (haf)*f
S hxh+R =h*hLt xS

These results show that f}, f, f; obey the commutative, associative, and distributive laws of algebra with respect
to the operation of convolution.

Conditional Distributions
We already know that if P(A) > O,

PBlA) = P(ANB) 11
( | ) - P(A) ( )
If X and Y are discrete random variables and we have the events (A: X = x), (B: Y = y), then (41) becomes
G, y)
PY=y|X= = 42
v =ylx=v="25 42)

where f(x, y) = P(X = x, Y = y) is the joint probability function and f] (x) is the marginal probability function
for X. We define

f(xy)
x) = 43
forln = 7 (43)
and call it the conditional probability function of Y given X. Similarly, the conditional probability function of X
given Yis
Jfx,y)
faly 70 (44)

We shall sometimes denote f(x|y) and f(y|x) by f, (x| y) and £, ( y| x), respectively.
These ideas are easily extended to the case where X, Y are continuous random variables. For example, the con-
ditional density function of Y given X is

fO,y)
i)

fylx) = (45)
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where f(x, y) is the joint density function of X and Y, and f] (x) is the marginal density function of X. Using (45)
we can, for example, find that the probability of Y being between ¢ and d given that x < X < x + dx is

d
Pe<Y<d|x<X<x+dx)= Jf(y|x)dy (46)

Generalizations of these results are also available.

Applications to Geometric Probability

Various problems in probability arise from geometric considerations or have geometric interpretations. For ex-
ample, suppose that we have a target in the form of a plane region of area K and a portion of it with area K|, as
in Fig. 2-5. Then it is reasonable to suppose that the probability of hitting the region of area K| is proportional
to K. We thus define

&

Fig. 25

K
P(hitting region of area K;) = ?1 “47)
where it is assumed that the probability of hitting the target is 1. Other assumptions can of course be made. For
example, there could be less probability of hitting outer areas. The type of assumption used defines the proba-
bility distribution function.

SOLVED PROBLEMS

Discrete random variables and probability distributions

2.1. Suppose that a pair of fair dice are to be tossed, and let the random variable X denote the sum of the points.
Obtain the probability distribution for X.

The sample points for tosses of a pair of dice are given in Fig. 1-9, page 14. The random variable X is the sum of
the coordinates for each point. Thus for (3, 2) we have X = 5. Using the fact that all 36 sample points are equally
probable, so that each sample point has probability 1/36, we obtain Table 2-4. For example, corresponding to X = 5,
we have the sample points (1, 4), (2, 3), (3, 2), (4, 1), so that the associated probability is 4/36.

Table 2-4
x| 2 3 4 5 6 7 8 9 10 11 12
| 1/36 | 2/36 | 3/36 | 4/36 | 5/36 | 6/36 | 5/36 | 4/36 | 3/36 | 2/36 | 1/36
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2.2. Find the probability distribution of boys and girls in families with 3 children, assuming equal probabilities
for boys and girls.

Problem 1.37 treated the case of n mutually independent trials, where each trial had just two possible outcomes,
A and A’, with respective probabilities p and ¢ = 1 — p. It was found that the probability of getting exactly x A’s
in the n trials is ,C, p* g"~*. This result applies to the present problem, under the assumption that successive births
(the “trials”) are independent as far as the sex of the child is concerned. Thus, with A being the event “a boy,” n = 3,
andp = g = %, we have

P(exactlyx boys) = P(X = x) = 3CX(%)X(%>37X = 3@(%)3

where the random variable X represents the number of boys in the family. (Note that X is defined on the
sample space of 3 trials.) The probability function for X,

- (LY
@ =1¢.(3)
is displayed in Table 2-5.

Table 2-5

x 0 1 2 3
oo | 178 | 3/8 | 3/8 | 1/8

Discrete distribution functions

2.3. (a) Find the distribution function F(x) for the random variable X of Problem 2.1, and (b) graph this distri-
bution function.

(a) We have F(x) = P(X = x) = X,=.f(u). Then from the results of Problem 2.1, we find

0 —o < x <2
1/36 2=x<3
3/36 3=x<4
F(x) = €6/36 4 =x<5
35/36 11 = x< 12
1 R==x<owx
(b) See Fig. 2-6.
F(x)

s - —
33/36 |- —
30/36 |- —

27/36 |

24/36 |- !

21/36 | —_—

18/36 |- !

15/36 |- —_—

12136 |- |

9/36 |- —

6/36 - ‘_I

3/36 - ‘_I

2 3 4 5 6 7 8 9 10 11 12 X

Fig. 2-6

2.4. (a) Find the distribution function F(x) for the random variable X of Problem 2.2, and (b) graph this distri-
bution function.
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(a) Using Table 2-5 from Problem 2.2, we obtain

0 -0 < x <0
1/8 0=x<1
Fx) = 1/2 1=x<2
7/8 2=x<3
1 3=x< ®

(b) The graph of the distribution function of (a) is shown in Fig. 2-7.

F(x)
1+ f
|
78 | —_—
|
6/8 |- }
S8 | |
|
48| —_—
|
38| !
28 | i
18 —_—
1 I Il Il
0 1 2 3 X
Fig. 2-7

Continuous random variables and probability distributions

2.5. A random variable X has the density function f(x) = ¢/(x2 + 1), where —o < x < . (a) Find the value of
the constant c. (b) Find the probability that X2 lies between 1/3 and 1.

)]

=X=lor—-1=X= —é. Thus the required probability is

%0

(a) We must havef f)dx = 1,ie.,

T _cdx = ctan 'x
x4+ 1

sothatc = 1/m.

“[%

(b) If % = X? = 1, then either

1[‘ Y +1j‘ dx _2J1 dx
o v - T
o, ¥+ \/3/3x2+1 \/5/3)(2-}—1

7%.|:tan1(1) - tan‘<\§§>:|
_2(m_m)_1
S m™\4 6) 6

2.6. Find the distribution function corresponding to the density function of Problem 2.5.

F(x) = J fwdu = 717J uzdj_t 1 = 7£.|:tan'u|x_oj

[tan 'x — tan "}(—o0)] = 73.|:tan“x + g:|

=

1 -1
+ tan'x

N[ —
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2.7. The distribution function for a random variable X is

F()_{l—e‘zx x=0
* 0 x <0

Find (a) the density function, (b) the probability that X > 2, and (c) the probability that —3 < X < 4.

(a) ()—dF<>—{ZeZX">O

a FO =5 F0 =% <o

(b) PX>2) = J Qe ddu = —e~2|, = e~
2

Another method

By definition, P(X = 2) = F(2) = 1 — e*. Hence,
PX>2)=1—-(1—e 4 =¢4

4 0 4
P(-3 < X=4) = J fwdu = J 0du + J 2e 2 du
(© -3 -3 0
Y =1 - ¢S

— —,2u
¢ 0

Another method
P(3<X=4)=PX=4)—PX=-3)
=F4) — F(—3)
=1—-e®)—-0)=1—¢8

Joint distributions and independent variables

2.8. The joint probability function of two discrete random variables X and Y is given by f(x, y) = ¢(2x + y), where
x and y can assume all integers such that 0 = x = 2,0 =y = 3, and f(x, y) = 0 otherwise.

(a) Find the value of the constant c. (c) FindPX=1,Y=2).
() Find PX=2,Y=1).

(a) The sample points (x, y) for which probabilities are different from zero are indicated in Fig. 2-8. The
probabilities associated with these points, given by ¢(2x + y), are shown in Table 2-6. Since the grand total,
42¢, must equal 1, we have ¢ = 1/42.

Table 2-6
Totals

x Y 0 1 2 3 f

0 0 ¢ 2¢ 3¢ 6¢ g

3 L] [ ]

1 2¢ 3¢ 4c 5¢ 14c¢ ) . °

2 4c 5¢ 6¢ Tc 22¢ 1 ° °
Totals — 6¢ 9¢ 12¢ 15¢ 42¢ 0 i S«

Fig. 2-8

(b) From Table 2-6 we see that

PX=2Y=1 = 5 + =



Schaum's Outline of Probability and Statistics

CHAPTER 2 Random Variables and Probability Distributions

(c) From Table 2-6 we see that

> 2 )

PX=1,Y=2)

x=1y=2
= (2c + 3¢ + 4¢)(4c + 5¢ + 6¢)
_ _24_4
=Ue=pn =7

as indicated by the entries shown shaded in the table.
2.9. Find the marginal probability functions (a) of X and (b) of Y for the random variables of Problem 2.8.

(a) The marginal probability function for X is given by P(X = x) = fi(x) and can be obtained from the margin
totals in the right-hand column of Table 2-6. From these we see that

6¢c = 1/7 x=0

PX =x) =fiix) = {l4c=1/3 x=1

22¢ = 11/21 x=2
1.1 11 _
Check.7-|—3-|—21 1

(b) The marginal probability function for Y is given by P(Y = y) = f,(y) and can be obtained from the margin
totals in the last row of Table 2-6. From these we see that

6c=1/7 y=20
9 =3/14 y =1
P(Y = y) = fly) = 126:2% )
15¢ = 5/14 y =3

1 3 2 5 _
Check.7+ﬁ+7+ﬁ—l

2.10. Show that the random variables X and Y of Problem 2.8 are dependent.
If the random variables X and Y are independent, then we must have, for all x and y,
PX =x,Y =y = PX =xPY =y)

But, as seen from Problems 2.8(b) and 2.9,

_ 1y = 2 — oy - 1l — 1y = 3
PX=2Y=1)=2 PX=2=5 PY¥=1D=g
so that PX=2Y=1) # PX=2PY = 1)

The result also follows from the fact that the joint probability function (2x + y)/42 cannot be expressed as a
function of x alone times a function of y alone.

2.11. The joint density function of two continuous random variables X and Y is

) {cxy 0<x<41<y<5
X, = .

% 0 otherwise
(a) Find the value of the constant c. (¢) Find PX =3,Y =2).

(b) Find P(1 <X <2,2 <Y <3).

(a) We must have the total probability equal to 1, i.e.,

J“’ J“ S, y)dxdy =1
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Using the definition of f(x, y), the integral has the value

4 (5 4 5
J J cxy dxdy = CJ |:J xydy:| dx
x=0Jy=1 x=0 y=1

boxy? r <25x x>
=c dx = ¢ = — = |dx
JZO 2 y=1 x=0 2 2

4

= 96¢

x=0

4
= CJ 12xdx = c(6x?)
0

x=

Then 96¢ = 1 and ¢ = 1/96.

(b) Using the value of ¢ found in (a), we have

2 3 Xy
P(1<X<2,2<Y<3)=j J o dxdy
y=2

x=1

_1P T _1L[P
- 96JX1|:JyZWdy:|dx a 96Jx1 2

3

y=2
_L[* sx, o5 (@) _ 5
= x = =
9% .-, 2 192\ 2 | 128
4 2 xy
(c) PX=3,Y=2)= —~—dxdy
x=3 y:196
1 4 Jz } 1 r xy2 2
= — xydy |dx = — — dx
96J'x—3|: y=1 ye 96 x=3 2 y=1

_ [t T
96,52 128

2.12. Find the marginal distribution functions (a) of X and (b) of Y for Problem 2.11.

(a) The marginal distribution function for X if 0 = x <4 is

ﬂm=P@sm=fx r . v)dudv

u=—m

X 5
uv
= — dudv
L—oL—l 96

1 X 5 dolau = x2
2 o DZIM’U viau = 16

Forx =4, F\(x) = 1; forx <0, F,(x) = 0. Thus

v=—0

0 x<0
Fi(x) =4x¥% 0=x<4
1 x=4

As F, (x) is continuous at x = 0 and x = 4, we could replace < by = in the above expression.
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(b) The marginal distribution function for Yif | =y <S5 is

o Y
Fxy) =P¥ =y = J J f(u, v)dudv

u=—oJo=1
4 [y 2 —1
_ w Y
- JOJ 96 M4V =34

Fory =5, Fy(y) = 1.Fory < 1, F,(y) = 0. Thus

0 y<l1
F(n)=490?—-1/24 1=y<5
1 yZS

As F,(y) is continuous aty = 1 and y = 5, we could replace < by = in the above expression.
2.13. Find the joint distribution function for the random variables X, Y of Problem 2.11.

From Problem 2.11 it is seen that the joint density function for X and Y can be written as the product of a
function of x alone and a function of y alone. In fact, f(x, y) = f;(x)f5(»), where

cx 0 <x<4
0  otherwise

6y 1 <y<S5
0 otherwise

hix) = { Ly = {

and ¢,c, = ¢ = 1/96. It follows that X and Y are independent, so that their joint distribution function is given by
F(x, y) = F,(x)F,(y). The marginal distributions F,(x) and F,(y) were determined in Problem 2.12, and Fig. 2-9
shows the resulting piecewise definition of F(x, y).

2.14. In Problem 2.11 find P(X + Y < 3).

Yy
F(x,»)=0 | Fx,y)= F(x,y)=1
x2
16
y=5
- F(x,y) = e
F(x,»)=0 Fx2(2 - 1) F(x,p) = —57
" (16)(24) y=1
X
F(x,»)=0 F(x,y)=0 F(x,»)=0
x=4
Fig. 2-9

In Fig. 2-10 we have indicated the square region 0 < x < 4, 1 <y < 5 within which the joint density
function of X and Y is different from zero. The required probability is given by

PX +Y <3 = ﬂ fx, y)dxdy
@
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where QR is the part of the square over which x + y < 3, shown shaded in Fig. 2-10. Since f(x, y) = xy/96
over R, this probability is given by

2 3—x
Xy
—dxd
Liﬂ% Y
1 2 3—x
:96J’ o|:j 1xydy:|dx
X= y=

0 N 'l P U 2 _ 1
96L_0 2| &= 192L_0[x(3 Al =g

y=1

Fig. 2-10

Change of variables
2.15. Prove Theorem 2-1, page 42.

The probability function for U is given by
gw) = P(U = u) = P[$p(X) = u] = P[X = )] = flPpw)]
In a similar manner Theorem 2-2, page 42, can be proved.
2.16. Prove Theorem 2-3, page 42.

Consider first the case where u = ¢(x) or x = i(u) is an increasing function, i.e., u increases as x increases
(Fig. 2-11). There, as is clear from the figure, we have

(1 Pu, <U<uy) =Px; <X<ux
or
@ J‘g(u)du = f‘f(x)dx
u
L]
u i u=¢(x)or
x=y(u)
X X, X

Fig. 2-11
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Letting x = ¢s(u) in the integral on the right, (2) can be written

J “gwdu = J P @)1 () du

u

This can hold for all u#, and u, only if the integrands are identical, i.e.,

8Gw) = LY’ (u)

This is a special case of (34), page 42, where ¢'(1) > 0 (i.e., the slope is positive). For the case where
Y'(u) = 0, i.e., uis a decreasing function of x, we can also show that (34) holds (see Problem 2.67). The
theorem can also be proved if '(1) = 0 or () < 0.

2.17. Prove Theorem 2-4, page 42.

We suppose first that as x and y increase, u and v also increase. As in Problem 2.16 we can then show that

Pu, <U<upv, <V<y) =P, <X<xp,y, <Y<y,

or JMZJUZ g(u, v)ydudv = r jyzf(x, y)dxdy

v, J v, xJ oy
Letting x = ¢, (4, v), y = ,(u, v) in the integral on the right, we have, by a theorem of advanced calculus,
J ‘ j g, v)dudv = J f I (s ), Yo, V)1 dudv

_ 0 y)
o, v)

where

is the Jacobian. Thus

g(u, v) = flih,(u, v), Py(u, V)}J
which is (36), page 42, in the case where J > 0. Similarly, we can prove (36) for the case where J < 0.

2.18. The probability function of a random variable X is

2% =1,2,3,...
f(x>={ *

0 otherwise

Find the probability function for the random variable U = X* + 1.

Since U = X* + 1, the relationship between the values u and x of the random variables U and X is given by
u=x*+1lorx = Vu — 1, where u = 2,17, 82, . . . and the real positive root is taken. Then the required
probability function for U is given by

@ {2V" oy =2,17,82,...
u =
& 0 otherwise
using Theorem 2-1, page 42, or Problem 2.15.
2.19. The probability function of a random variable X is given by

x/81 —-3<x<6
0 otherwise

f(X)={

Find the probability density for the random variable U = %(12 - X).
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We have u = %(12 — x) or x = 12 — 3u. Thus to each value of x there is one and only one value of u and
conversely. The values of u corresponding to x = —3 and x = 6 are u = 5 and u = 2, respectively. Since
Y'(u) = dx/du = =3, it follows by Theorem 2-3, page 42, or Problem 2.16 that the density function for U is

(12 = 3u)?/27 2<u<S5
gw) = .
0 otherwise

2= 3w (2= 3upfs

Check: L 77 243

2

2.20. Find the probability density of the random variable U = X2 where X is the random variable of
Problem 2.19.

We have u = x* or x = = Vu. Thus to each value of x there corresponds one and only one value of u, but to
each value of u # 0 there correspond two values of x. The values of x for which —3 < x < 6 correspond to
values of u for which 0 = u < 36 as shown in Fig. 2-12.

As seen in this figure, the interval —3 < x = 3 corresponds to 0 = u = 9 while 3 < x < 6 corresponds to
9 < u < 36. In this case we cannot use Theorem 2-3 directly but can proceed as follows. The distribution
function for U is

G(u) = P(U=u)

Now if 0 = u = 9, we have

G(u)

PU=u=PX=<u)=P(—Vu=X=Vu

Vu
J;\fu fx)dx

Fig. 2-12

Butif 9 < u < 36, we have

“ F(x)dx

Gu) = P(U=u) = P(-3 <X <Vu= J%
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Since the density function g(u) is the derivative of G(u), we have, using (12),

fVu) + f(=Vu

O0=u=9
2Vu !
gw) = S f(Vu)
— 9 <u<36
2Vu !
0 otherwise

Using the given definition of f(x), this becomes

Vu/8l 0=u=9
gw) = { Vu/162 9 <u <36

0 otherwise
Check:
o 36 3/2 |9 3/2 |36
0 9 0 9
If the random variables X and Y have joint density function
x9/96 0<x<4,1<y<5
fly) = { 0 / :
otherwise

(see Problem 2.11), find the density function of U = X + 2Y.

Method 1

Let u = x + 2y, v = x, the second relation being chosen arbitrarily. Then simultaneous solution
yieldsx = v,y = %(u — v). Thus the region 0 < x < 4, 1 <y <5 corresponds to the region 0 < v < 4,
2 < u — v < 10 shown shaded in Fig. 2-13.

v

/

Fig. 2-13
The Jacobian is given by

ox  ax
u Jv
T ey o
du v
0 1
= _1
2 2
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Then by Theorem 2-4 the joint density function of U and V is

vu—0)/384 2<u—-—v<10,0<v<4
0 otherwise

glu,v) = {

The marginal density function of U is given by

“=2p(u — v)

. 384 dv 2 <u<6

&) =

4 _
J Mdv 6<u<1l10
f dv 10<u<14
0

otherwise

as seen by referring to the shaded regions 7, I, III of Fig. 2-13. Carrying out the integrations, we find

(0 — 22 + 4)/2304 2<u<6
Gu — 8)/144 6<u<10

$100 =Y Gagu — w3 — 2128)/2304 10 < u < 14
0 otherwise

A check can be achieved by showing that the integral of g, (u) is equal to 1.

Method 2
The distribution function of the random variable X + 2Y is given by

X
POX +2Y = u) = ﬂ £, y)ydxdy = ﬂ %dxdy
x+2y=u x+2y=u
0<x<4
I<y<5§

For 2 < u < 6, we see by referring to Fig. 2-14, that the last integral equals

u—2 (u—x)/2xy w—2 X(M _ x)z X
[l = [ - g

The derivative of this with respect to u is found to be (u — 2)2(u + 4)/2304. In a similar manner we can obtain
the result of Method 1 for 6 < u < 10, etc.

y v
\ u=v
2
\ <
Tx
SN 2 =64u
\\l{ B
\\\ | %10 i
N~ \15
~ 14
SO w
< 2N
SS -6
! ! ! u
Z/§2 \ X

Fig. 2-14 Fig. 2-15
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2.22. If the random variables X and Y have joint density function

xy/9%6 0<x<4,1<y<5
0 otherwise

flxy) = {

(see Problem 2.11), find the joint density function of U = XY2, V = X2?Y.

Consider u = xy2, v = x2y. Dividing these equations, we obtain y/x = u/v so that y = ux/v. This leads to

the simultaneous solution x = v28 i ~18, y = 28 v ~15. The image of 0 < x <4, 1 <y < 5 in the uv-plane is
given by

0 <vu-13<4 1 < uBo-13<5
which are equivalent to
v2 < 64u v < u?<125v

This region is shown shaded in Fig. 2-15.
The Jacobian is given by

1 2
——02/37,—4/3 =p—1/3;,—1/3
3v/u / 3V Bu—1/

J = = _lufz/sv—z/s
2u—|/3»0—1/3 _1 w2Bp—4/3 3
3 3
Thus the joint density function of U and V is, by Theorem 2-4,

(VY3u—1/3)(u2/3v-1/3)

(%u*2/3v*2/3) 02 < 6du,v < u? < 125v

gu,v) = 96
0 otherwise
u-13p-13/288 2 < 64u, v <u? <1250
or g(u,v) = .
0 otherwise

Convolutions

2.23. Let X and Y be random variables having joint density function f(x, y). Prove that the density function of
U=X+Yis

g) = Jm f,u — v)dv

Method 1
Let U = X + Y, V = X, where we have arbitrarily added the second equation. Corresponding to these we have
u=x+y,v=xorx=v,y=u—v. The Jacobian of the transformation is given by

Ix Ox
Ju v 0 1
J= = = 1
ay oy -
du ov

Thus by Theorem 2-4, page 42, the joint density function of U and V is
8w, v) = f(v,u — v)

It follows from (26), page 41, that the marginal density function of U is

gu) = r f,u —v)dv
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2.24.

2.25.

Method 2
The distribution function of U = X + Y is equal to the double integral of f(x, y) taken over the region defined
byx+y=uie,

Gu) = ﬂ Sx, y)dxdy

xty=u

Since the region is below the line x + y = u, as indicated by the shading in Fig. 2-16, we see that

o= U_mﬂx,y)ddex

y

N\

Fig. 2-16

The density function of U is the derivative of G (1) with respect to « and is given by

gu) = r S u = x)dx

using (12) first on the x integral and then on the y integral.

Work Problem 2.23 if X and Y are independent random variables having density functions f;(x), f,(y),
respectively.

In this case the joint density function is f(x, y) = f,(x) f,(¥), so that by Problem 2.23 the density function
of U=X+7Yis

gw) = Lf](v)fz(u —v)dv = fi%f,

which is the convolution of f, and f,.

If X and Y are independent random variables having density functions
Flo = {262" x=0 A0 = {3e3y y=0
i 0 x<0 2 0 y<0

find the density function of their sum, U = X + Y.

By Problem 2.24 the required density function is the convolution of f; and f, and is given by
g) = fy * f, = J Fi@)fyu = v)dv

In the integrand f, vanishes when v < 0 and f, vanishes when v > u. Hence

g(u) JM(Ze*Zv)@e—z(u—m)dv
0

66*314[ evdv = 6673”(6” — 1) = 6(672" — e3u)
0
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if u=0and g(u) = 0if u < 0.

Check: j gw)du = 6J (72 — e=3uydy = 6(; - ;) =1
— 0
2.26. Prove that f; * f, = f, * f; (Property 1, page 43).
We have
firf= J A~ v)dv
Lettingw = u — v so that v = u — w, dv = —dw, we obtain

%

_ Al = wpw)(—dw) = f S Wfi(u — wydw = fo* f,

w=—00

fl*fZ:J

w

Conditional distributions
2.27. Find (a) f(y | 2),b)PY=1 |X = 2) for the distribution of Problem 2.8.
(a) Using the results in Problems 2.8 and 2.9, we have

[y (2x + y)/42
fOW =50 =

so that with x = 2

@+ 4ty

5
(b) P(Y=1|X=2)=f(]2) = 55
2.28. If X and Y have the joint density function

24xy 0<x<1L0<y<l1
0 otherwise

Sy = {

find (a) f(y]x). (b) P(Y > 3|5 < X < 5 + dx).

(a) For 0 <x <1,

1

3 3 X
= -+ dy =5+ 3
Hh L<4 xy) YT 472

fx, y) 3+ 4y 0<y<l
X, w5
and fiylx) =" Y_ )3+ 2 Y
fi(x)
0 other y
For other values of x, f( y|x) is not defined.
11 1 * i 13+ 2y 9
(b) P(Y >3l <X <3 +do=| firlpdy= i B =1
1/2 1/2

2.29. The joint density function of the random variables X and Y is given by

8xy 0=x=1,0=sy=x

0 otherwise

S y) = {

Find (a) the marginal density of X, (b) the marginal density of Y, (c) the conditional density of X, (d) the
conditional density of Y.

The region over which f(x, y) is different from zero is shown shaded in Fig. 2-17.
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Fig. 2-17

(a) To obtain the marginal density of X, we fix x and integrate with respect to y from O to x as indicated by the
vertical strip in Fig. 2-17. The result is

X

fix) = J 8xydy = 4x3
=0

y

for 0 < x < 1. For all other values of x, f, (x) = 0.

(b) Similarly, the marginal density of Y is obtained by fixing y and integrating with respect to x fromx = ytox = 1,
as indicated by the horizontal strip in Fig. 2-17. The result is, for 0 <y < 1,
1

L) = J: 8xydx = 4y(1 — y?)

x=y
For all other values of y, f, (y) = 0.
(c) The conditional density function of X is, for 0 <y <1,

ey [/ -y y=x=1
il = L) {0 other x

The conditional density function is not defined when f,(y) = 0.
(d) The conditional density function of Y'is, for 0 < x <1,

£01 ):f(x,y) _ {Zy/x2 0=y=x
21E Jitx) 0 othery

The conditional density function is not defined when f;(x) = 0.

1 1 1
Check: J fix)dx = J dx3dx = 1, J Hydy = J 4y(1 — y2)dy = 1
0 0 0 0
1 .
J'yfl(x|y)dx = Ll—iyz dx =1

x ).Zy
LOylndy =| Gdy=1
0 0

2.30. Determine whether the random variables of Problem 2.29 are independent.

In the shaded region of Fig. 2-17, f(x,y) = 8xy, fi(x) = 4x3, f,(y) = 4y (1 — y?). Hence f(x, y) # f,(x) f>(¥),
and thus X and Y are dependent.

It should be noted that it does not follow from f(x, y) = 8xy that f(x, y) can be expressed as a function of x
alone times a function of y alone. This is because the restriction 0 = y = x occurs. If this were replaced by
some restriction on y not depending on x (as in Problem 2.21), such a conclusion would be valid.
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Applications to geometric probability

2.31.

2.32.

A person playing darts finds that the probability of the dart striking between r and r + dr is

Pr=R=r+dr)= c|:l - <2>2Jdr

Here, R is the distance of the hit from the center of the target, c is a constant, and a is the radius of the tar-
get (see Fig. 2-18). Find the probability of hitting the bull’s-eye, which is assumed to have radius b. As-
sume that the target is always hit.

The density function is given by

Since the target is always hit, we have

Fig. 2-18

from which ¢ = 3/2a. Then the probability of hitting the bull’s-eye is

b 3 b )2 _b(3a2—b2)
Lf(r)dr = EJO |:1 - <a> :|dr =

Two points are selected at random in the interval 0 = x = 1. Determine the probability that the sum of their
squares is less than 1.

Let X and Y denote the random variables associated with the given points. Since equal intervals are assumed to
have equal probabilities, the density functions of X and Y are given, respectively, by

1 0=x=1

0  otherwise

1 0=y=1
0  otherwise

L) = {

Then since X and Y are independent, the joint density function is given by

ey hH) = {

1 0=x=1,0=y=1
0 otherwise

2 fy) = [0 L) = {
It follows that the required probability is given by

3) PX2+Y=1) = U dxdy

R
where R is the region defined by x2 + y2 =< 1, x = 0,y = 0, which is a quarter of a circle of radius 1 (Fig. 2-19).
Now since (3) represents the area of R, we see that the required probability is 7 /4.



Schaum's Outline of Probability and Statistics

CHAPTER 2 Random Variahles and Probability Distributions

Fig. 2-19

Miscellaneous problems
2.33. Suppose that the random variables X and Y have a joint density function given by

c2xt+y 2<x<6,0<y<>5
S, y) = .
0 otherwise

Find (a) the constant ¢, (b) the marginal distribution functions for X and Y, (c) the marginal density func-
tions for X and ¥, (d) P3 <X <4,Y > 2),(e) P(X > 3), (f) P(X + Y > 4), (g) the joint distribution func-
tion, (h) whether X and Y are independent.

(a) The total probability is given by

6 (5 6 y2
J J c2x + y)dxdy = J c| 2xy + 5
x=2J)y=0 x=2

For this to equal 1, we must have ¢ = 1/210.

(b) The marginal distribution function for X is

Fi(x)=PX =x) = JX J“’ f(u, v)dudv

¢

J J Odudv = 0 x <2

X 5
2u + v _ 2x2 4+ 5x — 18
= Lzszo 210 dudv = By E— 2=x<6

6 (5
2u + v o
L:zJ' 210 dudv = 1 xX=06

v=0
\

The marginal distribution function for Y is

Fyy) =P = y) = j o j - f(u, v)dudv

X
J Odudv =0 y<0

u=—-»Jv=-8

fjm
6 y 2
B Y 2utw _y2 + 16y
= Ju=0jv=0 310 dudv = 105 0=y<S5
J

IA

6 5
J WA =1 y=5

v=0 210

u=2
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(c) The marginal density function for X is, from part (b),

(4x +5)/84 2<x<6
0 otherwise

ﬁm:%ﬂm:{

The marginal density function for Y is, from part (b),

2y + 16)/105 0<y<>5
Mw=%uw=¥y )/ Y

0 otherwise
L[+ 3
(d PR3 <X<4,Y>2) = mL:3L:z(zx + y)ddy = 55
(e) PX>3) = = *r 2x + y)ddy = 22
210 3,0 Yy Y =28
() PX+Y>4) = ﬂf(x, y)dxdy
R

where R is the shaded region of Fig. 2-20. Although this can be found, it is easier to use the fact that

PX+Y>4)=1-PX+Y=4 =1- ﬂ [, y)dxdy
E}R
where QR is the cross-hatched region of Fig. 2-20. We have

4 4—x
PX+Y=4) = I J j 2x + y)dxdy =
=0

210 ,._,], 35
Thus P(X + Y > 4) = 33/35.
y v
sk
4l
i (x,»)
R dn
> 2
il
| | | |
0 1 2 3 4 5 6 u
6 X
Fig. 2-20 Fig. 2-21

(g) The joint distribution function is

Fx,y) =PX =xY =y = f Jy fu, v)dudv

u=—-xJ)y=—ox

In the uv plane (Fig. 2-21) the region of integration is the intersection of the quarter plane u = x, v = y and
the rectangle 2 < u < 6,0 < v < 5 [over which f(u, v) is nonzero]. For (x, y) located as in the figure, we have

6 f‘ 2u + v 16y + y2

o 210 dudv = "5

u=2

Fx,y) = J
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2.34.

2.35.

When (x, y) lies inside the rectangle, we obtain another expression, etc. The complete results are shown in
Fig. 2-22.

(h) The random variables are dependent since

fy) # [0 L0)
or equivalently, F(x, y) # F(xX)F,(y).
Let X have the density function

x(1 —x) 0<x<1
0 otherwise

fx) = {
Find a function Y = A(X) which has the density function

() = {12y3(1—y2) 0<y<l
£ 0 otherwise

y 1 1
i F(x,y) = i
F(x,»)=0 P22 +5x—18 i F(r,y)=1
| 34 |
777777777777777777777777 | L
F =
- L (x, ») 7}12*16)/
F(x,»)=0 2x%y + xp? — 8y — 292 F(x,p)= 105
i 420
| | X
F(x,)=0 L Fy)=0 Flx,y)=0
| |
Fig. 2-22

We assume that the unknown function /4 is such that the intervals X = xand ¥ = y + h(x) correspond in a
one-one, continuous fashion. Then P(X = x) = P(Y = y), i.e., the distribution functions of X and Y must be
equal. Thus, for 0 <ux,y <1,

X y
J6u(1 —wdu = J 1203(1 — v?)dv
0 0

or 3x2 — 23 = 3yt — 2y6

By inspection, x = y2ory = h(x) = +V/x is a solution, and this solution has the desired properties. Thus

Y = +VX.
Find the density function of U = XY if the joint density function of X and Y is f(x, y).
Method 1

Let U = XY and V = X, corresponding to which 4 = xy, v = x or x = v, y = u/v. Then the Jacobian is given by

ox ax
du ov 0 1 |

J = = = —p-
dy dy vl —yp2

Ju Jv
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Thus the joint density function of U and V is

—

from which the marginal density function of U is obtained as

e N ;
gu) = Jwg(u, v)dv = ffwivl f(v, v>dv
Method 2

The distribution function of U is

Gu) = H S, y)dxdy
xXy=u

For u = 0, the region of integration is shown shaded in Fig. 2-23. We see that

0 o ke u/x
6w = | [ | R y)dy}dx + LU /e y)dy}dx

~ xy=u>0

2.36.

:
|
|

Fig. 2-23 Fig. 2-24

Differentiating with respect to u, we obtain

_ [ (=t u R Y A P L U
gu) = ANES flex Jde + Oxf X,y |dx = » x|fx’xdx

The same result is obtained for # < 0, when the region of integration is bounded by the dashed hyperbola in
Fig. 2-24.

A floor has parallel lines on it at equal distances / from each other. A needle of length a <[ is dropped at
random onto the floor. Find the probability that the needle will intersect a line. (This problem is known as
Buffon’s needle problem.)

Let X be a random variable that gives the distance of the midpoint of the needle to the nearest line (Fig. 2-24). Let O

be a random variable that gives the acute angle between the needle (or its extension) and the line. We denote by
x and 6 any particular values of X and ©. It is seen that X can take on any value between 0 and //2, so that 0 =<

x = 1/2. Also O can take on any value between 0 and 7 /2. It follows that

Pae<X=x+d)=>de PO=0+d)=2do

i.e., the density functions of X and O are given by f,(x) = 2/I, ,(§) = 2/7. As a check, we note that

1/22 /2 2
Jo 7dX—1 Jo Fd@—l
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Since X and O are independent the joint density function is

L2 _ 4
T T

~|DN

fx, 0) =

From Fig. 2-24 it is seen that the needle actually hits a line when X =< (a/2) sin ©. The probability of this

event is given by
7/2 ((a/2)sin 6
4 J J ddy = 22
I Jg—0Jx=0 [

When the above expression is equated to the frequency of hits observed in actual experiments, accurate
values of 7 are obtained. This indicates that the probability model described above is appropriate.

2.37. Two people agree to meet between 2:00 .M. and 3:00 p.M., with the understanding that each will wait no
longer than 15 minutes for the other. What is the probability that they will meet?

Let X and Y be random variables representing the times of arrival, measured in fractions of an hour after
2:00 P.M., of the two people. Assuming that equal intervals of time have equal probabilities of arrival, the
density functions of X and Y are given respectively by

I 0=x=1

0 otherwise

fikx) = {

1 0=sy=1
0 otherwise

Ly = {

Then, since X and Y are independent, the joint density function is

1 0=sx=1,0=y=1

0 otherwise

ey J@y) = [0[HG) = {

Since 15 minutes = i hour, the required probability is

) P<|X -Y| = l) = ﬂdxdy

R

where 5 is the region shown shaded in Fig. 2-25. The right side of (2) is the area of this region, which is equal
tol — (%)(%) = %, since the square has area 1, while the two corner triangles have areas %(%)(%) each. Thus the
required probability is 7/16.

‘%»‘wg.‘

47.Mw4>‘

‘<7§4>

4

Fig. 2-25
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SUPPLEMENTARY PROBLEMS

Discrete random variables and probability distributions

2.38. A coin is tossed three times. If X is a random variable giving the number of heads that arise, construct a table
showing the probability distribution of X.

2.39. Anurn holds 5 white and 3 black marbles. If 2 marbles are to be drawn at random without replacement and X
denotes the number of white marbles, find the probability distribution for X.

2.40. Work Problem 2.39 if the marbles are to be drawn with replacement.

2.41. Let Z be a random variable giving the number of heads minus the number of tails in 2 tosses of a fair coin. Find
the probability distribution of Z. Compare with the results of Examples 2.1 and 2.2.

2.42. Let X be a random variable giving the number of aces in a random draw of 4 cards from an ordinary deck of 52
cards. Construct a table showing the probability distribution of X.

Discrete distribution functions

2.43. The probability function of a random variable X is shown in Table 2-7. Construct a table giving the distribution
function of X.

Table 2-7 Table 2-8
X 1 2 3 X 1 2 3 4
f(x) 1/2 1/3 1/6 F(x) 1/8 3/8 3/4 1

2.44. Obtain the distribution function for (a) Problem 2.38, (b) Problem 2.39, (¢) Problem 2.40.
2.45. Obtain the distribution function for (a) Problem 2.41, (b) Problem 2.42.

2.46. Table 2-8 shows the distribution function of a random variable X. Determine (a) the probability function,

() P(1 = X = 3), (c) P(X = 2), (d) P(X < 3), (e) P(X > 1.4).

Continuous random variables and probability distributions
2.47. A random variable X has density function

ce™3 x>0

f(x):{o x=0

Find (a) the constant ¢, (b) P11 <X < 2),(c) PX=3),(d) PX < 1).

2.48. Find the distribution function for the random variable of Problem 2.47. Graph the density and distribution
functions, describing the relationship between them.

2.49. A random variable X has density function
cx? 1l=x=2
fx)y=qdcx 2<x<3
0 otherwise

Find (a) the constant ¢, (b) P(X > 2), (c) P(1/2 <X < 3/2).
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2.50. Find the distribution function for the random variable X of Problem 2.49.

2.51. The distribution function of a random variable X is given by

cxd 0=x<3
Fx)=+«1 x=3
0 x<0

If P(X = 3) = 0, find (a) the constant c, (b) the density function, (c) P(X > 1), (d) P(1 < X < 2).

2.52. Can the function

F()_{c(l—xz) 0=x=1
* 0 otherwise

be a distribution function? Explain.

2.53. Let X be a random variable having density function

cx 0=x=2

0  otherwise

.
Find (a) the value of the constant ¢, (b) P(% <X < %), (c) P(X > 1), (d) the distribution function.

Joint distributions and independent variables

2.54. The joint probability function of two discrete random variables X and Y is given by f(x,y) = cxyforx = 1,2, 3
and y = 1, 2, 3, and equals zero otherwise. Find (a) the constant ¢, (b) PX =2, Y =3),c) Pl =X =2,Y = 2),
() PX=2),(e) P(Y<2),(F) PX=1),(g) P(Y = 3).

2.55. Find the marginal probability functions of (a) X and (b) Y for the random variables of Problem 2.54.
(c) Determine whether X and Y are independent.

2.56. Let X and Y be continuous random variables having joint density function

cx2+y?) 0=x=1,0=y=1
0 otherwise

in=
Determine (a) the constant ¢, (b) P(X < %, Y > %), (©) P(% <X < %), dPY< %), (e) whether X and Y are

independent.

2.57. Find the marginal distribution functions (a) of X and (b) of Y for the density function of Problem 2.56.

Conditional distributions and density functions
2.58. Find the conditional probability function (a) of X given Y, (b) of ¥ given X, for the distribution of Problem 2.54.

x+y 0=x=1,0=y=1

2.59. Let ,y) = .
¢ S5 {0 otherwise

Find the conditional density function of (a) X given Y, (b) Y given X.

2.60. Find the conditional density of (a) X given Y, (b) Y given X, for the distribution of Problem 2.56.

et x=0,y=0

2.61. Let ,y) = .
¢ ) {0 otherwise

be the joint density function of X and Y. Find the conditional density function of (a) X given Y, (b) Y given X.
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Change of variables

2.62.

2.63.

2.64.

2.65.

2.66.

2.67.

2.68.

2.69.

2.70.

2.71.

2.72.

Let X have density function

ex x>0

f(x):{o x=0

Find the density function of ¥ = X2.

(a) If the density function of X is f(x) find the density function of X3. (b) Illustrate the result in part (a) by

choosing

207 x=0

f(x):{o x<0

and check the answer.

If X has density function f(x) = 2(7)~1/2e~/2, —o0 < x < oo, find the density function of Y = X2.

Verify that the integral of g,(u) in Method 1 of Problem 2.21 is equal to 1.

If the density of X is f(x) = 1/7m(x2 + 1), — < x < oo, find the density of ¥ = tan—! X.
Complete the work needed to find g,(«) in Method 2 of Problem 2.21 and check your answer.
Let the density of X be

12 —-1<x<l1
0 otherwise

f(x)={

Find the density of (a) 3X — 2, (b) X3 + 1.

Check by direct integration the joint density function found in Problem 2.22.
Let X and Y have joint density function
et x =0,y =0
X, y) = .
Fo) {O otherwise

If U= X/Y,V= X+ Y, find the joint density function of U and V.

Use Problem 2.22 to find the density function of (a) U = XY2, (b) V = X2Y.

Let X and Y be random variables having joint density function f(x, y) = 2m)~1e=- %), —o0 < x < o,
—oo <y < oo, If R and O are new random variables such that X = R cos O, Y = R sin O, show that the density

function of R is

o {re*"z/2 r=0
" =
§ 0 F<0
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1 0=sx=10=y=1

2.73. Let ,y) = .
© f@x) {0 otherwise

be the joint density function of X and Y. Find the density function of Z = XY.

Convolutions
2.74. Let X and Y be identically distributed independent random variables with density function

1 0=r=1
f(t)={

0 otherwise

Find the density function of X + Y and check your answer.

2.75. Let X and Y be identically distributed independent random variables with density function

o= {0 =0

0 otherwise

Find the density function of X + Y and check your answer.

2.76. Work Problem 2.21 by first making the transformation 2Y = Z and then using convolutions to find the density
functionof U = X + Z.

2.77. If the independent random variables X, and X, are identically distributed with density function

tet t=0
f(t)_{o 1<0

find the density function of X, + X,.

Applications to geometric probability

2.78. Two points are to be chosen at random on a line segment whose length is @ > 0. Find the probability that the
three line segments thus formed will be the sides of a triangle.

2.79. Itis known that a bus will arrive at random at a certain location sometime between 3:00 p.M. and 3:30 M. A
man decides that he will go at random to this location between these two times and will wait at most 5 minutes
for the bus. If he misses it, he will take the subway. What is the probability that he will take the subway?

2.80. Two line segments, AB and CD, have lengths 8 and 6 units, respectively. Two points P and Q are to be chosen at
random on AB and CD, respectively. Show that the probability that the area of a triangle will have height AP
and that the base CQ will be greater than 12 square units is equal to (1 — In 2)/2.

Miscellaneous problems

2.81. Suppose that f(x) = ¢/3%,x = 1, 2, ..., is the probability function for a random variable X. (a) Determine c.
(b) Find the distribution function. (c) Graph the probability function and the distribution function. (d) Find
P2 = X < 5).(e) Find P(X = 3).

2.82. Suppose that

cxe > x=0

0 otherwise

f(x)={

is the density function for a random variable X. (a) Determine c. (b) Find the distribution function. (c) Graph the
density function and the distribution function. (d) Find P(X = 1). (e) Find P(2 = X < 3).
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2.83. The probability function of a random variable X is given by

2p x=1
_Jp x=2
foo = 49p x=3

0 otherwise

where p is a constant. Find (a) P(0 = X < 3), (b) P(X > 1).

2.84. (a) Prove that for a suitable constant c,

F _{O x=0
D= Ve = e x>0

is the distribution function for a random variable X, and find this c. (b) Determine P(I1 < X < 2).

2.85. A random variable X has density function

o= {f0 - 0=

0 otherwise

Find the density function of the random variable ¥ = X? and check your answer.

2.86. Two independent random variables, X and Y, have respective density functions

_Jee® x>0 _{czyeﬂy y>0
f® {0 r=0 P70 y=0

Find (@) c;and ¢,, D) PX + Y > 1),(0) PA<X <2, Y= 1),(d) P(1 <X <2),(e) P(Y = ).
2.87. In Problem 2.86 what is the relationship between the answers to (c), (d), and (e)? Justify your answer.

2.88. Let X and Y be random variables having joint density function

c2x+y) 0<x<1,0<y<?2
0 otherwise

SCoy) = {

Find (a) the constant ¢, (b) P(X > %, Y < %), (c) the (marginal) density function of X, (d) the (marginal) density
function of Y.

2.89. In Problem 2.88 is P(X > 1, ¥ < 32) = P(X > })P(Y < 3)? Why?
2.90. In Problem 2.86 find the density function (a) of X2, (b) of X + Y.

2.91. Let X and Y have joint density function

I/y 0<x<y0<y<l
0 otherwise

Sl y) = {

(a) Determine whether X and Y are independent, (b) Find P(X > %). (c) Find P(X < %, Y > %). (d) Find
P(X +Y>3).

2.92. Generalize (a) Problem 2.74 and (b) Problem 2.75 to three or more variables.
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2.93. Let X and Y be identically distributed independent random variables having density function
fuw) = 2m)~V2ew/2, —o < y < o, Find the density function of Z = X2 + Y2.

2.94. The joint probability function for the random variables X and Y is given in Table 2-9. (a) Find the marginal
probability functions of X and Y. (b) Find P(1 = X < 3, Y = 1). (c) Determine whether X and Y are

independent.
Table 2-9
Y
x 0 1 2
0 1/18 | 1/9 | 1/6
1 1/9 | 1/18 | 1/9
2 1/6 1/6 [1/18

2.95. Suppose that the joint probability function of random variables X and Y is given by

cxy 0=x=20=y=x

0 otherwise

Sy = {

(a) Determine whether X and Y are independent. (b) Find P(% < X < 1).(c) Find P(Y = 1). (d) Find
PG<X<1Y=1).

2.96. Let X and Y be independent random variables each having density function

up—A
fay = ¢ u=01,2,...

where A > 0. Prove that the density function of X + Yis

(2A\)re—2
glu) = — 7 u=20,1,2,...

2.97. A stick of length L is to be broken into two parts. What is the probability that one part will have a length of
more than double the other? State clearly what assumptions would you have made. Discuss whether you
believe these assumptions are realistic and how you might improve them if they are not.

2.98. A floor is made up of squares of side /. A needle of length a << [ is to be tossed onto the floor. Prove that the
probability of the needle intersecting at least one side is equal to a(4/ — a)/ml2.

2.99. For a needle of given length, what should be the side of a square in Problem 2.98 so that the probability of
intersection is a maximum? Explain your answer.

24xy2 0<x<1,0<y<1,0<z<]1

2.100. Let , V. 2) = .
¢ f&y.2) {0 otherwise

be the joint density function of three random variables X, Y, and Z. Find (a) P(X > %, Y < %, zZ> %),
bYPZ<X+Y).

2.101. A cylindrical stream of particles, of radius a, is directed toward a hemispherical target ABC with center at O as
indicated in Fig. 2-26. Assume that the distribution of particles is given by

lja 0<r<a
f("):{

0 otherwise
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where r is the distance from the axis OB. Show that the distribution of particles along the target is given by

©) = {cosﬂ 0<o<m/2
g 0 otherwise

where 6 is the angle that line OP (from O to any point P on the target) makes with the axis.

A

4—\»‘
)

Q4
=

Fig. 2-26
2.102. In Problem 2.101 find the probability that a particle will hit the target between § = 0 and 6 = 7 /4.

2.103. Suppose that random variables X, Y, and Z have joint density function

l—cosmxcosmycosmz 0<x<1,0<y<1,0<z<1
0 otherwise

fx,y,2) = {

Show that although any two of these random variables are independent, i.e., their marginal density function
factors, all three are not independent.

ANSWERS TO SUPPLEMENTARY PROBLEMS

2.38. 2.39.

x 0 1 2 3 x 0 1 2
fo | 18 | 3/8 | 3/8 | 1/8 f@) | 3/28 | 15/28 | 5/14
240. [ . : 5
f@) | 9/64 | 15/32 | 25/64
2.42.
x 0 1 2 3 4
194,580 | 69,184 6768 192 1
J® 1 370725 | 270725 | 270,725 | 270,725 | 270,725
2.43.
x 0 1 2 3
fe | 18 |12 | 78|
2.46. (a) ®)3/4 (©7/8 (d)3/8 (e)7/8

fo | 1/8 | 1/4 | 3/8 | 1/4
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l—e> x=0

247. (a)3 (b)e3—e % (c)e? (d)1 —e3 248. F(x) =
0 x=0
0 x=1

2x3—=2)/29 1=x=2
(Bx2+2)/29 2=x=3
1 x=3

2.49. (2) 6/29 (b)15/29 (c)19/116  2.50. F(x) =

x99 0=x<3

2.51. () 127 (b) f(x) ={ (©)26/27 (d)7/27

0 otherwise
0 x=0
253. (@1/2 )1/2 (©)3/4 (d)F(x) = (x2/4 0=x=2
1 x=2

254. @) 1/36 (b)1/6 (©1/4 ()5/6 (@) 1/6 (F)1/6 () 1/2

x/6 x=1,2,3
0 other x

y/6 y=12.73

(b)fo(y) = {0 other

2.55. () f,(x) = {

2.56. (a)3/2 (b)1/4 (c)29/64 (d)5/16

0 x=0 0 y=0
257. @F(0) =303 +x0 0=x=1 (BF() =430 +y 0=y=1
1 x=1 1 y=1

2.58. (@) f(x|y) = f,(x) fory = 1, 2, 3 (see Problem 2.55)
(b) f(y|x) = f(y) for x = 1, 2, 3 (see Problem 2.55)

1 < < < <
259, (a) fx]y) = {(x ty/(y+3) 0=sx=10=y=1

0 otherx,0 <y =1
x+y/x+3) 0=sx=10=y=1
b -
() f(y | {0 S

(2+y)/(y2+3 0=x=10=y=1

2.60. =
(@) fx]y) {0 otherx,0 =y =1

(24 3/ +3) 0=x=10=y=l
b =
®) f(y]x) {0 0=<x=1,othery
e x=0,y=0
0 x<0,y=0

e x=0,y=0

) 0] 0) = {0 N

2.61. (@) f(x|y) = {
2.62. ¢e~V»/2V/y fory > 0; 0 otherwise 2.64. 2m)~Y2y-1/2¢=v/2fory > 0; 0 otherwise

2.66. 1/ for —m/2 <y < a/2; 0 otherwise
11— y)3 <y<
s<y<l g —yn O<y<l
B g =ty— D2 1<y<2

1

6

0  otherwise .
0 otherwise

2.68. (a) g(y) = {

2.70. ve=v/(1 + u)2foru = 0, v = 0; 0 otherwise
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—-lnz 0<z<I1 x3ex6 x=0
2.73. 8 = {O otherwise 2.77. 8(x) = {O x<O0
u O=u=1
274. gw) = (2 —u 1=u=2 2.78. 1/4
0 otherwise
et u=0
2.75. = 2.79. 61/72
g(u) {0 W< 0 /
0 x <1
2.81. 2 (b)Fkx) = d) 26/81 1/9
@2 &) Fx {1—3w y=x<y+ Ly=123... @81
1 —e2Q2x + 1 =0
2.82. (4 (b)F(x) = { ezl x )32 (e)5e—t — Tes
0 x<0
2.83. (2)3/7 (b)5/7 284. (a)c=1 (b)e* — 3e2 + 2!
2.86. (a)c; =2,c,=9 (b)9e2— lde3 (c)deS —de 7 (d)e 2 — e 4 () de3
xt+3 0<x<lI {i(y+1) 0<y<2
2.88. 1/4 (b)27/64 = d =
@1/4 ©)27/ © A6 {0 otherwise @A) 0 otherwise
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Mathematical Expectation

Definition of Mathematical Expectation

A very important concept in probability and statistics is that of the mathematical expectation, expected value, or
briefly the expectation, of a random variable. For a discrete random variable X having the possible values x,, . . . , x,,
the expectation of X is defined as

B0 = xP(X = x) + -+ x,PX = x,) = S4PX = x) M
j=1
or equivalently, if P(X = x;) = f(x)),
B0 = mfe) + -+ xfe) = 2f) = Zxfo) @
Jj=

where the last summation is taken over all appropriate values of x. As a special case of (2), where the probabil-
ities are all equal, we have

Xyt x, 00+ x

E(X) = . : 3
which is called the arithmetic mean, or simply the mean, of x, x,, . . ., x,.
If X takes on an infinite number of values x,, x,, . . ., then E(X) = E_;';lxj JSf(x;) provided that the infinite se-

ries converges absolutely.
For a continuous random variable X having density function f(x), the expectation of X is defined as

©

xf(x)dx “4)

E(X)=J

provided that the integral converges absolutely.

The expectation of X is very often called the mean of X and is denoted by uy, or simply u, when the partic-
ular random variable is understood.

The mean, or expectation, of X gives a single value that acts as a representative or average of the values of X,
and for this reason it is often called a measure of central tendency. Other measures are considered on page 83.

EXAMPLE 3.1 Suppose that a game is to be played with a single die assumed fair. In this game a player wins $20 if
a 2 turns up, $40 if a 4 turns up; loses $30 if a 6 turns up; while the player neither wins nor loses if any other face turns
up. Find the expected sum of money to be won.

Let X be the random variable giving the amount of money won on any toss. The possible amounts won when the die
turnsup 1,2, ..., 6 are x,, x,, . . . , X, respectively, while the probabilities of these are f(x,), f(x,), . . ., f(x¢). The prob-
ability function for X is displayed in Table 3-1. Therefore, the expected value or expectation is

an- (g en(g) (3 () o) - ) -
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Table 3-1

X; 0O [(+20| O | +40| O |-30

)

fa) | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6

It follows that the player can expect to win $5. In a fair game, therefore, the player should be expected to pay $5 in order
to play the game.
EXAMPLE 3.2 The density function of a random variable X is given by

X 0<x<2
0  otherwise

J) :{

The expected value of X is then

E —r d—f<1>d—rx2d—x’
X) = wxf(x)x— Ox o Jdx = .2 X =g

Functions of Random Variables

Let X be a discrete random variable with probability function f(x). Then Y = g(X) is also a discrete random vari-
able, and the probability function of Y'is

hy)=PY=y)= 2 PX=x= 2 [

{rler=y} {xlg(n=y}

If X takes on the values x,, x,, . . ., x,, and Y the values y,, y,,...,y, (m = n), then y,h(y,) + y,h(y,) + --- +
YY) = 8Ge)f(x) + 8(0)f0) + -+ - 4 g(x,)f(x,). Therefore,

E[g(X)] = g(x)f(x) + g)f(xy) + -+ + glx)f(x,)

= 2g00)f(x) = 2 g@f) )
j=1
Similarly, if X is a continuous random variable having probability density f(x), then it can be shown that
E[g(X)] = J  gWf(x)dx (6)

Note that (5) and (6) do not involve, respectively, the probability function and the probability density function

of Y = g(X).
Generalizations are easily made to functions of two or more random variables. For example, if X and Y are two
continuous random variables having joint density function f(x, y), then the expectation of g(X, Y) is given by

ElgX, V)] = J_ J_ g, Wf(x, y)dxdy 7N

EXAMPLE 3.3 If X is the random variable of Example 3.2,

* 2
E(3X? — 2X) = J (32 — 20f(¥)dx = J (32 — 2x)<éx>dx _ 1370
o o

Some Theorems on Expectation

Theorem 3-1 1If c is any constant, then

E(cX) = cE(X) ®
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Theorem 3-2 If X and Y are any random variables, then

E(X +Y) = E(X) + E(Y) )
Theorem 3-3 1If X and Y are independent random variables, then
E(XY) = E(X)E(Y) (10)

Generalizations of these theorems are easily made.

The Variance and Standard Deviation

We have already noted on page 75 that the expectation of a random variable X is often called the mean and
is denoted by w. Another quantity of great importance in probability and statistics is called the variance and is
defined by

Var(X) = E[(X — w)’] (In

The variance is a nonnegative number. The positive square root of the variance is called the standard deviation
and is given by

oy = VVar(X) = VE[(X — p)] 12)

Where no confusion can result, the standard deviation is often denoted by ¢ instead of oy, and the variance in
such case is 2.

If X is a discrete random variable taking the values x|, x,, . . . , x, and having probability function f(x), then
the variance is given by

n

0% = E[X — ppl = 205 — wf(x) = 2(x — wPf(x) 13)

j=1

In the special case of (13) where the probabilities are all equal, we have

o =0 —w? + (0 — w2+ (x, — w?l/n (14)
which is the variance for a set of n numbers x,, . . ., x,,.
If X takes on an infinite number of values x;, x,, . .., then o = 3%, (x; — w)*f(x;), provided that the series

converges.
If X is a continuous random variable having density function f(x), then the variance is given by

o

oy = E[(X — w3 = J (x = w?flxdx (15)
provided that the integral converges.

The variance (or the standard deviation) is a measure of the dispersion, or scatter, of the values of the ran-
dom variable about the mean w. If the values tend to be concentrated near the mean, the variance is small; while
if the values tend to be distributed far from the mean, the variance is large. The situation is indicated graphically
in Fig. 3-1 for the case of two continuous distributions having the same mean w.

e Small variance

.~ Large variance

Fig. 31
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EXAMPLE 3.4 Find the variance and standard deviation of the random variable of Example 3.2. As found in Example 3.2,
the mean is u = E(X) = 4/3. Then the variance is given by

o (I RNy (A

C .. 2
and so the standard deviation is o = \/% = %
Note that if X has certain dimensions or units, such as centimeters (cm), then the variance of X has units cm?

while the standard deviation has the same unit as X, i.e., cm. It is for this reason that the standard deviation is
often used.

Some Theorems on Variance

Theorem 3-4 02 = E[(X — w)?] = E(X?) — u2 = EX?) — [E(X)]? (16)
where u = E(X).
Theorem 3-5 If c is any constant,
Var(cX) = ¢2 Var(X) a7
Theorem 3-6 The quantity E[(X — «@)?] is a minimum when a = p = E(X).
Theorem 3-7 If X and Y are independent random variables,
Var(X + Y) = Var(X) + Var(}) or ohy = 0%+ 0% (18)

Var(X — Y) = Var(X) + Var(Y) oo o} ,=0r+ 02 (19)

Generalizations of Theorem 3-7 to more than two independent variables are easily made. In words, the vari-
ance of a sum of independent variables equals the sum of their variances.

Standardized Random Variables

Let X be a random variable with mean w and standard deviation o (o > 0). Then we can define an associated stan-
dardized random variable given by

X—p
g

X* = (20)

An important property of X* is that it has a mean of zero and a variance of 1, which accounts for the name stan-
dardized, i.e.,
EX*) =0, Var(X*) = 1 (21)

The values of a standardized variable are sometimes called standard scores, and X is then said to be expressed
in standard units (i.e., o is taken as the unit in measuring X — ).
Standardized variables are useful for comparing different distributions.

Moments
The rth moment of a random variable X about the mean ., also called the rth central moment, is defined as

M, = E[(X — )] 22)
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where r = 0, 1, 2, . . .. It follows that w, = 1, u, = 0, and u, = 02, i.e., the second central moment or second
moment about the mean is the variance. We have, assuming absolute convergence,

M, = E(x — wf(x) (discrete variable) (23)
M, = J (x — wWfx)dx (continuous variable) (24)
The rth moment of X about the origin, also called the rth raw moment, is defined as
my = E(X7) (25)
where r = 0, 1, 2, . . ., and in this case there are formulas analogous to (23) and (24) in which u = 0.

The relationship between these moments is given by

r | T .
M = @ — <1)MJ1M +oe Tt (—1)f<j>u,f_,-w + o (Do (26)

As special cases we have, using u; = wand u, = 1,

I e

my = 3y = 3usp + 2u (27
My =y — 4pip + 6usu? — 3ut

Moment Generating Functions
The moment generating function of X is defined by

My (1) = E(e™) (28)

that is, assuming convergence,
M) = 2 e™ f(x) (discrete variable) (29)
My (1) = J e* f(x)dx (continuous variable) 30)

We can show that the Taylor series expansion is [Problem 3.15(a)]

P
MX(t)=1+;Lt+u25+"'+prﬁ+"' 31
Since the coefficients in this expansion enable us to find the moments, the reason for the name moment gener-
ating function is apparent. From the expansion we can show that [Problem 3.15(b)]

o d
b= M) 62)

0

i.e., u, is the rth derivative of M (¢) evaluated at t = 0. Where no confusion can result, we often write M() in-
stead of M (?).

Some Theorems on Moment Generating Functions

Theorem 3-8 If M () is the moment generating function of the random variable X and a and b (b # 0) are con-
stants, then the moment generating function of (X + a)/b is

t
My (D) = e"lP My (b) (33)
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Theorem 3-9 1If X and Y are independent random variables having moment generating functions My(f) and
M, (1), respectively, then

My, y(t) = My (1) My(2) (34)

Generalizations of Theorem 3-9 to more than two independent random variables are easily made. In words, the
moment generating function of a sum of independent random variables is equal to the product of their moment
generating functions.

Theorem 3-10 (Uniqueness Theorem) Suppose that X and Y are random variables having moment generat-
ing functions My (f) and M, (¢), respectively. Then X and Y have the same probability distribu-
tion if and only if M, () = M, (¢) identically.

Characteristic Functions

If we let t = iw, where i is the imaginary unit, in the moment generating function we obtain an important func-
tion called the characteristic function. We denote this by

by(w) = My(iw) = E(eX) (35)
It follows that
dy(w) = Eei“”‘ f(x) (discrete variable) 36)
dy(w) = J e f(x) dx (continuous variable) 37
Since |eix| = 1, the series and the integral always converge absolutely.

The corresponding results (31) and (32) become

. , W? W
bxw) = 1+ ipw — ooy + -0 (3%

S
where M, = (=1)i dwfd)x(w) - (39)

When no confusion can result, we often write ¢(w) instead of ¢y (w).
Theorems for characteristic functions corresponding to Theorems 3-8, 3-9, and 3-10 are as follows.

Theorem 3-11 1If ¢,(w) is the characteristic function of the random variable X and a and b (b # 0) are con-
stants, then the characteristic function of (X + a)/b is

¢(x+a)/h(w) = eiv/ hd’x(?))) (40)

Theorem 3-12 If X and Y are independent random variables having characteristic functions ¢y (w) and ¢, (),
respectively, then

Pxry(@) = dy(w) dy(w) (41)
More generally, the characteristic function of a sum of independent random variables is equal to the product

of their characteristic functions.

Theorem 3-13 (Uniqueness Theorem) Suppose that X and Y are random variables having characteristic func-
tions ¢ (w) and ¢, (w), respectively. Then X and Y have the same probability distribution if and
only if ¢y (w) = ¢,(w) identically.
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An important reason for introducing the characteristic function is that (37) represents the Fourier transform
of the density function f(x). From the theory of Fourier transforms, we can easily determine the density function
from the characteristic function. In fact,

o

£ = ;Jwequx(w) do (“2)

which is often called an inversion formula, or inverse Fourier transform. In a similar manner we can show in the
discrete case that the probability function f(x) can be obtained from (36) by use of Fourier series, which is the
analog of the Fourier integral for the discrete case. See Problem 3.39.

Another reason for using the characteristic function is that it always exists whereas the moment generating
function may not exist.

Variance for Joint Distributions. Covariance

The results given above for one variable can be extended to two or more variables. For example, if X and Y are
two continuous random variables having joint density function f(x, y), the means, or expectations, of X and Y are

uy = EX) = J J A yydxdy,  py = E(Y) = j j Y, y)dxdy (43)

—w ) —w —o0 ) —o

and the variances are

0% = E[(X — puy)?] = J J (x = pp?f(x, y)dxdy

—o0 ) —oo

o (44)
o} = EL(Y — uy)?] = J f (v = P fCr, y)dxdy
Note that the marginal density functions of X and Y are not directly involved in (43) and (44).
Another quantity that arises in the case of two variables X and Y is the covariance defined by
Ty = Cov(X, V) = E[(X — p)(Y — )] 45)
In terms of the joint density function f(x, y), we have
Oxy = J J (x = )y = uf(x, y)dxdy (46)
Similar remarks can be made for two discrete random variables. In such cases (43) and (46) are replaced by
py = 2200y py = 2 2f(y) (47)
Xy Xy
Ty = 2200~ m)(y — p)fxy) (48)
x oy

where the sums are taken over all the discrete values of X and Y.
The following are some important theorems on covariance.

Theorem 3-14 oy = EXY) — EXEY) = EXY) — pyty (49)

Theorem 3-15 1f X and Y are independent random variables, then

oyy = Cov(X,Y) =0 (50)
Theorem 3-16 Var(X £ Y) = Var(X) + Var(Y) £ 2Cov(X, Y) (629
or Oiy = 0%+ 0L £ 20y (52)

Theorem 3-17 |oyy| = ox0y (53)
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The converse of Theorem 3-15 is not necessarily true. If X and Y are independent, Theorem 3-16 reduces to
Theorem 3-7.

Correlation Coefficient

If X and Y are independent, then Cov (X, ¥Y) = oy, = 0. On the other hand, if X and Y are completely dependent,
for example, when X = Y, then Cov (X, Y) = oy, = 0y0,. From this we are led to a measure of the dependence
of the variables X and Y given by

p= Oxy
Ox0Oy

(54)

We call p the correlation coefficient, or coefficient of correlation. From Theorem 3-17 we see that —1 = p = 1.
In the case where p = 0 (i.e., the covariance is zero), we call the variables X and Y uncorrelated. In such cases,
however, the variables may or may not be independent. Further discussion of correlation cases will be given in
Chapter 8.

Conditional Expectation, Variance, and Moments

If X and Y have joint density function f(x, y), then as we have seen in Chapter 2, the conditional density function
of Y given X is f(y | x) = f(x, y)/f, (x) where f, (x) is the marginal density function of X. We can define the con-
ditional expectation, or conditional mean, of Y given X by

=]

EY|X =x) = J'wyf(y|X)dy (55)

where “X = x” is to be interpreted as x < X = x + dx in the continuous case. Theorems 3-1 and 3-2 also hold
for conditional expectation.
We note the following properties:

1. E(Y | X = x) = E(Y) when X and Y are independent.

2. E(Y) = J

(]

E(Y|X = x)f,(x)dx.

It is often convenient to calculate expectations by use of Property 2, rather than directly.

EXAMPLE 3.5 The average travel time to a distant city is ¢ hours by car or b hours by bus. A woman cannot decide
whether to drive or take the bus, so she tosses a coin. What is her expected travel time?

Here we are dealing with the joint distribution of the outcome of the toss, X, and the travel time, Y, where Y = Y, if
X =0andY =Y,, if X = 1. Presumably, both Y_,. and Y, are independent of X, so that by Property 1 above

EY|X=0=EY,|X=0=EY,)=c

car car.

and EY|X=1)=E{Y, |X=1)=EY,)=>b

Then Property 2 (with the integral replaced by a sum) gives, for a fair coin,

EY)=EY|X=0PX=0)+EY|X=1DPX=1=F¢ er b
In a similar manner we can define the conditional variance of Y given X as
E[(Y — w*|X = x] = J v — m)*(y[x)dy (56)

where u, = E(Y|X = x). Also we can define the rth conditional moment of Y about any value a given X as

E[(Y —ay|X =x] = Jm(y — ayf(y|xdy (57)

The usual theorems for variance and moments extend to conditional variance and moments.
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Chebyshev’s Inequality

An important theorem in probability and statistics that reveals a general property of discrete or continuous ran-
dom variables having finite mean and variance is known under the name of Chebyshev’s inequality.

Theorem 3-18 (Chebyshev’s Inequality) Suppose that X is a random variable (discrete or continuous) having
mean p and variance o2, which are finite. Then if € is any positive number,

PIX —pl=e =T (58)
or, with € = ko,
1
p(|x—p,|zkcr)sﬁ (59)

EXAMPLE 3.6 Letting k = 2 in Chebyshev’s inequality (59), we see that
P(X—pu|=20)=025 or P(|X — p|<20)=0.75

In words, the probability of X differing from its mean by more than 2 standard deviations is less than or equal to 0.25;
equivalently, the probability that X will lie within 2 standard deviations of its mean is greater than or equal to 0.75. This
is quite remarkable in view of the fact that we have not even specified the probability distribution of X.

Law of Large Numbers
The following theorem, called the law of large numbers, is an interesting consequence of Chebyshev’s inequality.

Theorem 3-19 (Law of Large Numbers): Let X|, X,, . . ., X, be mutually independent random variables (dis-
crete or continuous), each having finite mean w and variance o2 Thenif S, = X, + X, + --- +
X,mn=172,...),

, Sy
limP| |5 —ul =€) =0 (60)
Since S,/n is the arithmetic mean of X, . . ., X,, this theorem states that the probability of the arithmetic

mean S,/n differing from its expected value u by more than e approaches zero as n — . A stronger result,
which we might expect to be true, is that lim S, /n = u, but this is actually false. However, we can prove that
lgloc S,/n = w with probability one. This result is often called the strong law of large numbers, and, by contrast,
that of Theorem 3-19 is called the weak law of large numbers. When the “law of large numbers” is referred to
without qualification, the weak law is implied.

Other Measures of Central Tendency

As we have already seen, the mean, or expectation, of a random variable X provides a measure of central ten-
dency for the values of a distribution. Although the mean is used most, two other measures of central tendency
are also employed. These are the mode and the median.

1. MODE. The mode of a discrete random variable is that value which occurs most often or, in other words,
has the greatest probability of occurring. Sometimes we have two, three, or more values that have relatively
large probabilities of occurrence. In such cases, we say that the distribution is bimodal, trimodal, or multi-
modal, respectively. The mode of a continuous random variable X is the value (or values) of X where the
probability density function has a relative maximum.

2. MEDIAN. The median is that value x for which P(X < x) = % and P(X > x) = % In the case of a con-

1

tinuous distribution we have P(X < x) = 5 = P(X > x), and the median separates the density curve into

two parts having equal areas of 1/2 each. In the case of a discrete distribution a unique median may not
exist (see Problem 3.34).
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Percentiles

It is often convenient to subdivide the area under a density curve by use of ordinates so that the area to the left
of the ordinate is some percentage of the total unit area. The values corresponding to such areas are called per-
centile values, or briefly percentiles. Thus, for example, the area to the left of the ordinate at x, in Fig. 3-2 is a.
For instance, the area to the left of x,,,, would be 0.10, or 10%, and x, ;, would be called the 10th percentile
(also called the first decile). The median would be the 50th percentile (or fifth decile).

Area
/ ¢

Fig. 3-2

Other Measures of Dispersion

Just as there are various measures of central tendency besides the mean, there are various measures of disper-
sion or scatter of a random variable besides the variance or standard deviation. Some of the most common are
the following.

1. SEMI-INTERQUARTILE RANGE. If x, ,5 and x, ;5 represent the 25th and 75th percentile values, the
difference x,, ;5 — X5 is called the interquartile range and %(}CO'75 — Xyps) 1s the semi-interquartile range.

2. MEAN DEVIATION. The mean deviation (M.D.) of a random variable X is defined as the expectation

of |X — |, i.e., assuming convergence,
M.D.(X) = E[|X — u|] = E|x — ulfx) (discrete variable) 61)
MD.(X) = E[|X — u|]] = J |x — u|f(x)dx (continuous variable) (62)

Skewness and Kurtosis

1. SKEWNESS. Often a distribution is not symmetric about any value but instead has one of its tails longer
than the other. If the longer tail occurs to the right, as in Fig. 3-3, the distribution is said to be skewed fo the right,
while if the longer tail occurs to the left, as in Fig. 3-4, it is said to be skewed fo the left. Measures describing
this asymmetry are called coefficients of skewness, or briefly skewness. One such measure is given by

_EX -l o

; ; (©3)

as

g (o

The measure o will be positive or negative according to whether the distribution is skewed to the right or left,
respectively. For a symmetric distribution, o = 0.

Skewed to Skewed to
the right the left
Fig. 3-3 Fig. 3-4 Fig. 3-5

2. KURTOSIS. In some cases a distribution may have its values concentrated near the mean so that the dis-
tribution has a large peak as indicated by the solid curve of Fig. 3-5. In other cases the distribution may be
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relatively flat as in the dashed curve of Fig. 3-5. Measures of the degree of peakedness of a distribution are
called coefficients of kurtosis, or briefly kurtosis. A measure often used is given by

_EX - wt s

o Lt
4 e P

(64)

This is usually compared with the normal curve (see Chapter 4), which has a coefficient of kurtosis equal to 3.
See also Problem 3.41.

SOLVED PROBLEMS

Expectation of random variables

3.1.

3.2

3.3.

In a lottery there are 200 prizes of $5, 20 prizes of $25, and 5 prizes of $100. Assuming that 10,000 tickets
are to be issued and sold, what is a fair price to pay for a ticket?

Let X be a random variable denoting the amount of money to be won on a ticket. The various values of X together
with their probabilities are shown in Table 3-2. For example, the probability of getting one of the 20 tickets
giving a $25 prize is 20/10,000 = 0.002. The expectation of X in dollars is thus

E(X) = (5)(0.02) + (25)(0.002) + (100)(0.0005) + (0)(0.9775) = 0.2

or 20 cents. Thus the fair price to pay for a ticket is 20 cents. However, since a lottery is usually designed to raise
money, the price per ticket would be higher.

Table 3-2

x (dollars) 5 25 100 0

PX=x) |0.02 | 0.002 | 0.0005 | 0.9775

Find the expectation of the sum of points in tossing a pair of fair dice.

Let X and Y be the points showing on the two dice. We have
_ (1 LI y_7
E(X)—E(Y)—1<6>+2<6>+ +6<6>—2

EX+Y)=EX) +EY) =17

Find the expectation of a discrete random variable X whose probability function is given by

Then, by Theorem 3-2,

fe) = @) (x=1,2,3,..)

‘We have

To find this sum, let S = % + 2<‘11> + 3<

lo_ 1 1 1
Then ZS_ 4 +2<8>+3<16>+

Subtracting,

Therefore, S = 2.
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3.4. A continuous random variable X has probability density given by

27 x>0
f(x)_{o x =0

Find (a) E(X), (b) E(X?).

(a) EX) = J” x(x)dx = me(Ze‘z")dx = mexe‘zxdx
- 0 0
_ Lol N B I
“fl(5)- ()] -2
(b) EX?) = J* Xf(x)dx = 2waze’2"dx
- 0
—2x —2x —2x *
(%) eofs) el )]] -
3.5. The joint density function of two random variables X and Y is given by
xy/96 0<x<41<y<5
flx,y) =
otherwise
Find (a) E(X), (b) E(Y), (c) E(XY), (d) EQX + 3Y).
3 ) 4 5 8
EX) = dxdy = dxd
(a) X J’fmfﬂoxf(x’ y) y JxZOJ)' | <96> xay = 3
(b) w0 = || e = | J <>w@—§
I 248
(©) EXY) = J_J_m(xy)f(x, y)dxdy = J J (xy)<96>dxdy 27
(d) EQ2X + 3Y) = r r 2x + 3y)f(x, y)dxdy = f J 2x + 3y)< >dxdy = 4?7
S =0 y=1
Another method
(c) Since X and Y are independent, we have, using parts (a) and (b),
E(XY) = EQOE(Y) = ()(ﬁ)zzﬁf

(d) By Theorems 3-1 and 3-2, pages 76-77, together with (a) and (b),
EQ2X + 3Y) = 2E(X) + 3E(Y) = 2(2) + 3(391> = 4?7

3.6. Prove Theorem 3-2, page 77.

Let f(x, y) be the joint probability function of X and Y, assumed discrete. Then
EX +Y) = X2 + )fx.y)
Xy
= 2 2006 y) + 2 20f(x,y)
x oy x oy

= EX) + E(Y)

If either variable is continuous, the proof goes through as before, with the appropriate summations replaced by
integrations. Note that the theorem is true whether or not X and Y are independent.
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3.7. Prove Theorem 3-3, page 77.

Let f(x, y) be the joint probability function of X and Y, assumed discrete. If the variables X and Y are independent,
we have f(x, y) = f,(x) f,(»). Therefore,

EQXY) = 2 20/, y) = 2 2x,050)
X y

y X

= E[Xfl(x) Eyﬁ(y)}
X y

= DU EW)]

= EQOE(Y)

If either variable is continuous, the proof goes through as before, with the appropriate summations replaced by
integrations. Note that the validity of this theorem hinges on whether f(x, y) can be expressed as a function of x
multiplied by a function of y, for all x and y, i.e., on whether X and Y are independent. For dependent variables it
is not true in general.

Variance and standard deviation

3.8. Find (a) the variance, (b) the standard deviation of the sum obtained in tossing a pair of fair dice.

(a) Referring to Problem 3.2, we have E(X) = E(Y) = 1/2. Moreover,

oo i0) () o)

Then, by Theorem 3-4,

2
Var(X) = Var(¥) = 5 — (;) =3

and, since X and Y are independent, Theorem 3-7 gives

Var(X + Y) = Var(X) + Var(Y) = %
(b) Oxiy = VVar(X + Y) = \/%

3.9. Find (a) the variance, (b) the standard deviation for the random variable of Problem 3.4.

(a) Asin Problem 3.4, the mean of Xis u = E(X) = % Then the variance is

2 " 2
Var(X) = E[(X — pn)*] = E|:<X - ;) :| = f <x - ;) fx)dx
x 2
= JO (x — ;) e ) dx = i

Another method
By Theorem 3-4,

2
Var(X) = EI(X — pf] = E) — [EXF = 5 — (;) =1

(b) o= \/Var(X)=\/%=%
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3.10. Prove Theorem 3-4, page 78.
We have
E[(X — wy] = EX* = 2uX + p?) = E(XC) — 2uEX) + p?
= EX) — 27 + p? = EX?) — w?
= EX*) — [EX)P

3.11. Prove Theorem 3-6, page 78.
E[(X —ay] = E{X = w) + (. — a)}’]
= E[X —w? +2X — wp —a) + (u — ay’]
= E[X = w’l + 2(n — @EX — ) + (u — )
= E[X =l + (u—a)
since E(X — w) = E(X) — n = 0. From this we see that the minimum value of E[(X — a@)?] occurs when
(w— a2 =0,ie,whena = pu.
3.12. If X* = (X — w)/o is a standardized random variable, prove that (a) E(X*) = 0, (b) Var(X*) = 1.

(XY 1 _ 1 _
(@) Eaﬂ—E<0.>—gwa—Mn—gmm—nyw
since E(X) = .
_ X—w)_1 _
(b) Var (X*) = Var< vea > = ;E[(X —w? =1

using Theorem 3-5, page 78, and the fact that E[(X — w)?2] = o2,
3.13. Prove Theorem 3-7, page 78.
Var(X + Y) = E{(X + Y) = (uy + uy)}?]
= E{(X = p) + (¥ = pp}i
= E[(X — py)?* + 20X — )Y — py) + (¥ = puy)’]
= E[(X = p?] + 2E[(X — p(Y — py)] + E[(Y — py)’]

= Var(X) + Var(Y)

using the fact that

E[(X — p)(Y — pup)] = EXX — u)EQY — py) =0

since X and Y, and therefore X — uy and Y — u,, are independent. The proof of (/9), page 78, follows on
replacing Y by —Y and using Theorem 3-5.

Moments and moment generating functions
3.14. Prove the result (26), page 79.

p, = E[(X — p]

r [ r S
= E[X’ - <1>X"_',u + 0+ (—1).1<j>Xr—/M_/

+ .o+ (_])rl< r )Xurl + (_1)rur}
r—1
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= E(X) - <:>E<Xf-l>u +o (—DJ‘(J’.)E(X'-W

+ o 4 (_l)r—l<r_r 1>E(X),Lbr_l + (—I)V,u’

e <;>M£1M to At (= 1)f< >M, Yy

4+ ... 4+ (_1)r*1r“)" + (_])*er

where the last two terms can be combined to give (—1)~1(r — 1)w".
3.15. Prove (a) result (31), (b) result (32), page 79.
(a) Using the power series expansion for e (3., Appendix A), we have

M () = E(e) = <1 + X + % + % 4. )

=1+ tEX) + E(XZ) + E(W) + -
P P
:1+[.L[+,u,2§+[1,3§+"'

(b) This follows immediately from the fact known from calculus that if the Taylor series of f(#) about t = a is

f(t) = Eocna - ay

then Cn = I’l' dtnf()

=a

3.16. Prove Theorem 3-9, page 80.
Since X and Y are independent, any function of X and any function of Y are independent. Hence,

My (1) = E[eXD] = E(eel) = E(eX)E(e") = My(HMy(1)

3.17. The random variable X can assume the values 1 and — 1 with probability % each. Find (a) the moment gen-
erating function, (b) the first four moments about the origin.

1 1 1
Xy = ) L -nf =) = = -
(a) E(e™X) = " (2> + e <2> 2(6’ + e
—_— — t4 ...
(b) We have el = 1+t+2|+3'+4 +
S I I I
el =1ttty
Then (1 —f+ R R A
en() (6 e )_ 21 41
_ , P B 1
But (2) MX(I)—1+/.L[+M22!+/.L33!+,U,44!+

Then, comparing (1) and (2), we have

um =0, wh =1, ni =0, =1, ..

The odd moments are all zero, and the even moments are all one.
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3.18. A random variable X has density function given by

) {Zez’f x=0
X) =
0 x<0

Find (a) the moment generating function, (b) the first four moments about the origin.

(a) M(t) = E(eX) = J e f(x) dx

= J e"(2e Xy dx = ZJ el=Dxdx

0 0

2elt-2x|” 2 .
== = 5——, assuming? <2
t=2|, 2-1t
(b) If 171 < 2 we have
LS TS S SR S
R A ey S R S T
L 1
But M(t)=l+y,t+,u,2§+p,3§+,u,4ﬂ+'-'

. _ 1 y 1 ;) 3 r 3
Therefore, on comparing terms, w = 5, Wy = 3, U3 = 73, hy = 3.

3.19. Find the first four moments (a) about the origin, (b) about the mean, for a random variable X having den-
sity function

o = {4x(9 —x)/81 0=x=3

0 otherwise
[ — — 4 ’ 2 2 — 8 —
(@) m = EX) =57 | O —x)dx=c=p
81, 5
4 (3
ph=EX?) = 57| ¥*O — x)dx =3
81/,
. 4. 216
ph = EX®) = 81Jox“(9 x2)dx = 35
, 4 27
ny = EX*Y = 87[())@(9 — x¥)dx = 5

(b) Using the result (27), page 79, we have

=0

2
8\ _ 11
“2:3_<5> =5
_216 (8 8y _ 32
3= 35 3(3)<5> +2<5> R 7E

_ 7 (216\(s sV (8 _ 369
He= 5 - <35 )<5>+6(3)<5> 3(5) = 8750

3.20. Find the characteristic function of the random variable X of Problem 3.17.

Characteristic functions

The characteristic function is given by

E(ein) - eiw(l)(é) + eiw(l)(é) = %(eiw + e*iw) = CcOoSw



Schaum's Outline of Probability and Statistics

CHAPTER 3 Mathematical Expectation

using Euler’s formulas,
e = cosf + isinf e = cosf — isin@
with & = w. The result can also be obtained from Problem 3.17(a) on putting ¢ = ic.
3.21. Find the characteristic function of the random variable X having density function given by

) = {1/2a x| <a

0 otherwise

The characteristic function is given by

o a
) ) 1 )
E(ei®X) = e f(x)dx = - | e“*dx
e 2a]_,
_ Leiwx a _ eiaw _ e*iuw _ sinaw
2a iw | 2iaw aw

using Euler’s formulas (see Problem 3.20) with § = aw.

3.22. Find the characteristic function of the random variable X having density function f(x) = ce-aM,
—oo < x < %, where a > 0, and c is a suitable constant.

Since f(x) is a density function, we must have

Jw fdx =1

o 0 o
cj eahldy = c|:f e "Iy + f e“‘x)dx:|
o o 0

—o0

so that

Then ¢ = a/2. The characteristic function is therefore given by

E(eiX) = J e f(x)dx

0

0 0
|: j eiwxe*a(*x) dx + f ei(wcea(x)dx:|
—w 0

\STESY

0 %
= §|:J e(aJria))xdx + J’ e(aiw)xdx:|
— % 0
a e(a+ia))x 0 n e—(a—im)x *
=5 T a T
2a+ zou|7oc —(a — iw)|,
a a a?

“2atio) 20 —iw) 2+ o

Covariance and correlation coefficient
3.23. Prove Theorem 3-14, page 81.

By definition the covariance of X and Y is
axy = Cov(X, ¥) = E[(X — p)(Y — )l
= E[XY — py¥ — pyX + pxuy]
= EXY) — mE(Y) — wyEX) + E(ugsy)
= E(XY) — pxpy — Mydx t Mxtty
= EXY) — pypty
= EXY) — EX)E(Y)
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If X and Y are independent, then E(XY) = E(X)E(Y). Therefore, by Problem 3.23,
oy = Cov(X,Y) = EXXY) — EX)E(Y) = 0
3.25. Find (2) E(X), (b) E(Y), (¢) E(XY), (d) E(X?), (e) E(Y?), (f) Var (X), (g) Var (Y), (h) Cov (X, Y), (i) p, if the
random variables X and Y are defined as in Problem 2.8, pages 47-48.

(a) EX) = 2 2xf(x,y) = Ex[Eﬂx, y)}
Xy x y

58 29

= (0)(6c) + (1)(14c) + (2)(22¢) = 58¢c = 5

(b) E(Y) = X2 2yf(x,y) = Zy[Zf(x, y)}

42 21

78 _ 13

= (0)(6c) + (1)9c) + 2)(12¢) + (3)(15¢) = T8¢ = 7 = =

© EXY) = 2 D xyf(x,y)

42 -7

= (0)(0)(0) + (O)1)(e) + (0)(2)(2c) + (0)3)(3c)
+ (DO0)(2c) + (HMDBe) + (D(2)(4c) + (1H(3)(5¢c)
T @0)4c) + D(D(G5e) + (2)(2)(6¢) + (2)(3)(Tc)

=102e =12 =1
() EX) = ;)Exzf(x, » = ;xz[gﬂx, y)}
= (0)%(6c) + (1)%(14c) + (2)2(22¢) = 102¢ = % = 17—7
© E(Y?) = §§y2f<x, y = §y2[§f<x, y)}
= (0)2%(6c) + (1)2(9¢) + (2)%(12¢) + (3)*(15¢) = 192¢ = % = 37—2
() 0% = Var(X) = E®) — [EX)P = 5 — (%?)2 -2
) o} = Var(y) = E) — [EDF = 2 - (173)2 -2
(h) 0y = Cov(X, Y) = EXY) — EX)E(Y) = 17—7 - (2?><173> - _%
Txy —20/147 —20

® = =

b= _ - -
TxXTY\/230/441\/55/49  \/230\V/55

—0.2103 approx.

3.26. Work Problem 3.25 if the random variables X and Y are defined as in Problem 2.33, pages 61-63.

Using ¢ = 1/210, we have:

1 6 3
(a) EX) = mJ :2,[

1 6
(b) EY) = mJ:J

1 6
(C) E(XY) = mJ

x=2

(x)2x + y)dxdy = 80
=0

268

X)2x + y)dxdy = 3
170

WM@x + y)dxdy =~

7
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L F 1220
d EX?) = =~ f J 2)2x + y)dxdy = =22
( ) ( ) 210 2 y:O(x )( X )’) X y 63
© B(r) = o1 J 6 f (D@x + y)dxdy = 1113
210, ), 126
2
1220 (268 5036
2 _ - - 2z 222l (200 DU00
) 0% = Var(X) = E0®) — [BXOP = 123 ( > > e
1175 170 \> 16,225
2 — _ 2 = -2 _ ()] ==
(@ oy = Var(Y) = E(¥) = [EX)P = T5¢ < 63 ) 7938
N 3 B 80 (268\(170) _ 200
(h) oyy = Cov(X, Y) = E(XY) — EX)E(Y) = 7 ( 63 >< 63 ) ~ 73069
) Oyy —200/3969 —200
() p= = = = —0.03129 approx.
TXTy - 7\/5036/3969V/16,225/7938  \/2518\/16,225

Conditional expectation, variance, and moments
3.27. Find the conditional expectation of Y given X = 2 in Problem 2.8, pages 47—48.

As in Problem 2.27, page 58, the conditional probability function of Y given X = 2 is

4+
f()’|2)27y

Then the conditional expectation of Y given X = 2 is
4 +y
EY|X=2) = %:Y<22>
where the sum is taken over all y corresponding to X = 2. This is given by

EY|X =2) = <0><242) + 1(252) + 2(262> + 3<272> -2

3.28. Find the conditional expectation of (a) Y given X, (b) X given Y in Problem 2.29, pages 58-59.

% . /9
@ EY|X = X)J yh( [x)dy = J y(f)dy = %
% 0 X
_ _ | _ ! 2x
(b) EX|Y=y) = . xfi(x|y)dx = Az © dx
_2(1—y3)_2(1+y+y2)
30 -y 3+

3.29. Find the conditional variance of Y given X for Problem 2.29, pages 58-59.

The required variance (second moment about the mean) is given by

- * 2x 22y x?
EY - wr|X=x=| (- wlhOlody=|(y=-F )3 |d=1g
where we have used the fact that u, = E(Y|X = x) = 2x/3 from Problem 3.28(a).

Chebyshev’s inequality
3.30. Prove Chebyshev’s inequality.

We shall present the proof for continuous random variables. A proof for discrete variables is similar if integrals
are replaced by sums. If f(x) is the density function of X, then

o

o’ = E[(X — w’l = J, (@ = w¥(x)dx
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Since the integrand is nonnegative, the value of the integral can only decrease when the range of integration is
diminished. Therefore,

o= L ‘ x — W) dx = J ef(x)dx = Ezj\ I f(x)dx
X—pul =€

‘X*[J.‘ZE x—ul =€

But the last integral is equal to P(|X — w| = €). Hence,
o2
P(|X — ] ==

3.31. For the random variable of Problem 3.18, (a) find P(|X — w| > 1). (b) Use Chebyshev’s inequality to ob-
tain an upper bound on P(| X — u| > 1) and compare with the result in (a).

(a) From Problem 3.18, u = 1/2. Then

_ _1 —pl 1 3
P(|X—,LL|<1)—P(‘X 2‘<1>—P< 2<x<2>

3/2
= J 2e%dx =1 —e73
0

Therefore P(‘X — ;‘ = 1> =1—(1—e3) =e3=0.04979
(b) From Problem 3.18, 02 = uj — u? = 1/4. Chebyshev’s inequality with € = 1 then gives

P(|X—pu|l =1)=02=025

Comparing with (a), we see that the bound furnished by Chebyshev’s inequality is here quite crude. In practice,
Chebyshev’s inequality is used to provide estimates when it is inconvenient or impossible to obtain exact values.

Law of large numbers
3.32. Prove the law of large numbers stated in Theorem 3-19, page 83.

We have EX) = EX) = -+ = EX,) = p
Var(X,) = Var(X,) = --- = Var(X,) = o2
S, X + -+ X, 1 1
Then E\yw | =E\——5 | = 5lEX) + - + EX)] = 7(nu) = p
Var(S,) = Var(X;, + -+ + X)) = Var(X)) + - + Var(X,) = no?
N 2
so that Var (,{‘) = #Var(Sn) =

where we have used Theorem 3-5 and an extension of Theorem 3-7.
Therefore, by Chebyshev’s inequality with X = S, /n, we have

Taking the limit as n — o, this becomes, as required,

. SV!
EEI;P T M =€ | =0

Other measures of central tendency

3.33. The density function of a continuous random variable X is

4x9 — x?)/81 0=x=3
0 otherwise

fx) = {

(a) Find the mode. (b) Find the median. (¢) Compare mode, median, and mean.
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(a) The mode is obtained by finding where the density f(x) has a relative maximum. The relative maxima of
f(x) occur where the derivative is zero, i.e.,

d[4x(9 - xz)} _ 36— 1222

dx| 8l g1 0

Then x = V3 = 1.73 approx., which is the required mode. Note that this does give the maximum since
the second derivative, —24x/81, is negative for x = V3.

(b) The median is that value a for which P(X =< a) = 1/2. Now, for 0 < a < 3,

a 2 4
P(X = a) = ;—lfox@ — R)dx = 841<9§ - j)

Setting this equal to 1/2, we find that
2a* — 36a2 + 81 =0

from which

= VG6E = 228D 36« \/6as
36 (36) 2)@B1) 36 + 68:9tg\/§

2(2) B 4 2

a? =

Therefore, the required median, which must lie between 0 and 3, is given by

at = —%\/E

from which a = 1.62 approx.

3
= 1.60
0

4 x>

3
© E(X) = g¢ f 29 — ) dx = 231<3x3 - 5)
0

which is practically equal to the median. The mode, median, and mean are shown in Fig. 3-6.

J &)

Median = 1.62
A Mean = 1.60— Mode =3
| |
1 2 3 X
Fig. 3-6

3.34. A discrete random variable has probability function f(x) = 1/2x where x = 1, 2, . .. . Find (a) the mode,
(b) the median, and (c) compare them with the mean.

(a) The mode is the value x having largest associated probability. In this case it is x = 1, for which the
probability is 1/2.

(b) If x is any value between 1 and 2, P(X < x) = %and PX >x) = % Therefore, any number between 1 and
2 could represent the median. For convenience, we choose the midpoint of the interval, i.e., 3/2.

(c) As found in Problem 3.3, u = 2. Therefore, the ordering of the three measures is just the reverse of that in
Problem 3.33.
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Percentiles
3.35. Determine the (a) 10th, (b) 25th, (c) 75th percentile values for the distribution of Problem 3.33.

From Problem 3.33(b) we have

2 4 2 _ 4
o= = (- ) - e

(a) The 10th percentile is the value of @ for which P(X =< a) = 0.10, i.e., the solution of (1842 — a*)/81 = 0.10.
Using the method of Problem 3.33, we find a = 0.68 approx.

(b) The 25th percentile is the value of @ such that (1842 — a#)/81 = 0.25, and we find a = 1.098 approx.
(c) The 75th percentile is the value of a such that (1842 — a*)/81 = 0.75, and we find a = 2.121 approx.

Other measures of dispersion
3.36. Determine, (a) the semi-interquartile range, (b) the mean deviation for the distribution of Problem 3.33.
(a) By Problem 3.35 the 25th and 75th percentile values are 1.098 and 2.121, respectively. Therefore,

Semi-interquartile range = w = 0.51 approx.

(b) From Problem 3.33 the meanis u = 1.60 = 8/5. Then

0

Mean deviation = M.D.=E(|X — u|) = J |x — p|f(x)dx

B I }
jox 5’[81(9 x?) |dx
8/5 3
= L <§ — x>[gf(9 — xz):|dx - L/5<x — g)[gf@ — xz):|dx

= 0.555 approx.

Skewness and kurtosis
3.37. Find the coefficient of (a) skewness, (b) kurtosis for the distribution of Problem 3.19.

From Problem 3.19(b) we have

, 11 3R 3693

7" 725 M7 Tg7s M T R750

M3
3

(a) Coefficient of skewness = a; = P —0.1253

My

(b) Coefficient of kurtosis = a, = o =2.172

It follows that there is a moderate skewness to the left, as is indicated in Fig. 3-6. Also the distribution is
somewhat less peaked than the normal distribution, which has a kurtosis of 3.

Miscellaneous problems

3.38. If M(¢) is the moment generating function for a random variable X, prove that the mean is u = M'(0) and
the variance is 02 = M"(0) — [M'(0)]2.

From (32), page 79, we have on letting » = 1 and r = 2,
po=MO) = MO
Then from (27)

w=M©O)  p,=0>=M0) — [MO)]
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3.39.

3.40.

341.

Let X be a random variable that takes on the values x, = k with probabilities p, where k = =1, ..., * n.
(a) Find the characteristic function ¢(w) of X, (b) obtain p, in terms of ¢(w).

(a) The characteristic function is

7 123
blw) = K@) = X eonp = 3 et

k=—n k=—n

(b) Multiply both sides of the expression in (a) by e~¥* and integrate with respect to w from 0 to 27r. Then

2 n 2
J e~ iop(w)dw = 2 ka elk=Dody = 27p;
w=0 0

- il P
piltk—jo |27
since JZ# elb-pody = { k=P |y~ 0 k#J
0=0 2 k=j
| -
Therefore, P=50 f wzoe"f“’qﬁ(w)dw

or, replacing j by k,

1 2w i
Pk =52 J L dyde

We often call 3}__, p,e* (where n can theoretically be infinite) the Fourier series of ¢(w) and p, the
Fourier coefficients. For a continuous random variable, the Fourier series is replaced by the Fourier integral
(see page 81).

Use Problem 3.39 to obtain the probability distribution of a random variable X whose characteristic func-
tion is ¢(w) = cosw.

From Problem 3.39

2
Dy = e~ cos wdw
w=0

2m . v 4 p—io
j e—lkﬂ) |:€2€:| dow
w=0

2 2
= 1 J ei1=ko Jo, + LJ

41 | =0 41 | w=o

o
5[~

)
ol

e~ i1+00 g

Ifk=1,wefind p, = %; ifk=—1,wefindp_, = % For all other values of k, we have p, = 0. Therefore, the
random variable is given by
X = { !
-1

Find the coefficient of (a) skewness, (b) kurtosis of the distribution defined by the normal curve, having
density

probability 1/2
probability 1/2

As a check, see Problem 3.20.

1 e,XZ/Z
w

—o < x < ®©

f) =

(a) The distribution has the appearance of Fig. 3-7. By symmetry, u; =
coefficient of skewness is zero.

p = 0and p} = 0. Therefore the
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Jx)
X
Fig. 3-7
(b) We have
uh, = EX?) = L r x2e 12 dx = erzeﬁz/z dx
V2 )= \/2777 0
2 f T
=——| v'2e"dv
Valo

2 3 2 11
Ve \2) TV 22
where we have made the transformation x2/2 = v and used properties of the gamma function given in (2) and
(5) of Appendix A. Similarly we obtain

wy = E(XY = 712 J Xte ™ dx = 722 Jox“e*"z/z dx
V 2T J) —* V 4T
4 r 32
= ——| v¥2e?dv
Vo
__4 S5y 4 3 1-(1)_
w?r@‘v; 2 2F<2)‘3

Now

o = EI(X — pPl = EQX)? = py = 1
ps = EIX — w*] = E(X9)

Il
=
s

Il

w

Thus the coefficient of kurtosis is

3.42. Prove that —1 = p = 1 (see page 82).
For any real constant c, we have
E[{Y —py—cX—w)}1=0
Now the left side can be written

E[(Y — up)?] + E[(X — py)?l — 2cE[(X — p)(Y — py)] = 03 + 2oy — 2coyy

2co
— 2 2 2 XY
oy, + O'X(C —

Oy
2 2
g g
XY XY
=0+ o3l ——55 ) ——=F
Y X 0.2 0.2
X X
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In order for this last quantity to be greater than or equal to zero for every value of ¢, we must have
2

o
ool — 0% =0 or 2):;2 =1
X7y
which is equivalentto p> = lor —1 = p = 1.

SUPPLEMENTARY PROBLEMS
Expectation of random variables

—2 prob. 1/3
3.43. A random variable X is defined by X = 3 prob. 1/2. Find (a) E(X), (b) EQX + 5), (c) E(X?).

1 prob.1/6

3.44.

3.45.

3.46.

3.47.

3.48.

3.49.

3.50.

3.51.

3.52.

32 0=x=1

Let X be a random variable defined by the density function f(x) = { L.
0 otherwise

Find (a) E(X), (b) EG3X — 2), (c) E(X?).

e x=0

The density function of a random variable X is f(x) = { .
0 otherwise

Find (a) E(X), (b) E(X?), (c) E[(X — 1)2].

What is the expected number of points that will come up in 3 successive tosses of a fair die? Does your answer
seem reasonable? Explain.

Y=o
¢ =" Find E(e23).

A random variable X has the density function f(x) = {
0 x <0

Let X and Y be independent random variables each having density function

27 3y =0

0 otherwise

J(w) :{

Find (a) E(X + Y), (b) E(X2 + Y?), (c) E(XY).
Does (a) EXX + Y) = E(X) + E(Y), (b) E(XY) = E(X)E(Y), in Problem 3.48? Explain.

Let X and Y be random variables having joint density function

Ixx+y) 0=x=10=y=2
0 otherwise

fxy) ={

Find (a) E(X), (b) E(Y), (c) E(X + Y), (d) E(XY).
Does (a) E(X + Y) = E(X) + E(Y), (b) E(XY) = E(X)E(Y), in Problem 3.50? Explain.

Let X and Y be random variables having joint density

dxy 0=x=1,0=y =1

0 otherwise

fey) = {

Find (a) E(X), (b) E(Y), (c) E(X + Y), (d) E(XY).
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3.53.

3.54.

3.55.

3.56.

CHAPTER 3 Mathematical Expectation

Does (a) E(X + Y) = E(X) + E(Y), (b) E(XY) = E(X)E(Y), in Problem 3.52? Explain.

2x+y) 0=x=10=y=2

. . Find (a) E(X), (b) E(Y), (¢) E(X?), (d) E(Y?),
0 otherwise

Letf(x,y) = {

(e) EX +7Y), (f) EXY).

Let X and Y be independent random variables such that

X_{l prob. 1/3 _{ 2 prob.3/4
0 prob.2/3 —3  prob. 1/4

Find (a) EG3X + 2Y), (b) E2X2 — Y2), (c) E(XY), (d) E(X2Y).

Let X,, X, . . ., X, be n random variables which are identically distributed such that
1 prob. 1/2
X, = 2 prob. 1/3
—1 prob. 1/6

Find (@) EX, + X, + - + X,), ®) EX} + X5 + -+ + X2).

Variance and standard deviation

3.57.

3.58.

3.59.

3.60.

3.61.

3.62.

Find (a) the variance, (b) the standard deviation of the number of points that will come up on a single toss of a
fair die.

Let X be a random variable having density function

1/4 -2=x=2
0 otherwise

0=

Find (a) Var(X), (b) oy
Let X be a random variable having density function

e x=0
f(x)={

0 otherwise

Find (a) Var(X), (b) oy.
Find the variance and standard deviation for the random variable X of (a) Problem 3.43, (b) Problem 3.44.
A random variable X has E(X) = 2, E(X?) = 8. Find (a) Var(X), (b) ay.

If a random variable X is such that E[(X — 1)2] = 10, E[(X — 2)?] = 6 find (a) E(X), (b) Var(X), (c) 0.

Moments and moment generating functions

3.63.

Find (a) the moment generating function of the random variable

_{ 1/2  prob.1/2
—1/2  prob. 1/2

and (b) the first four moments about the origin.
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3.64. (a) Find the moment generating function of a random variable X having density function

f(x):{x/z 0=x=2

0 otherwise

(b) Use the generating function of (a) to find the first four moments about the origin.
3.65. Find the first four moments about the mean in (a) Problem 3.43, (b) Problem 3.44.

3.66. (a) Find the moment generating function of a random variable having density function
et x=0
0 otherwise

fo) = {

and (b) determine the first four moments about the origin.
3.67. In Problem 3.66 find the first four moments about the mean.

1/b—a) a=x=

b
. . Find the kth moment about (a) the origin,
0 otherwise

3.68. Let X have density function f(x) = {

(b) the mean.

3.69. If M(¢) is the moment generating function of the random variable X, prove that the 3rd and 4th moments about
the mean are given by
uy = M"(0) — 3M"(0O)M'(0) + 2[M'(0)]?
My = MMO) — 4M"(0)M'(0) + 6M"(0)[M'(0)]* — 3[M'(0)]*

Characteristic functions
a prob.p

3.70. Find the characteristic function of the random variable X = { .
b prob.g=1-—-p

3.71. Find the characteristic function of a random variable X that has density function

1/2a |x|=a
0 otherwise

Jfx) ={

3.72. Find the characteristic function of a random variable with density function

x/2 0=x=2
0 otherwise

o=

1 prob. 1/2
—1 prob. 1/2
function of the random variable

3.73. Let X, = { be independent random variables (k = 1, 2, . . ., n). Prove that the characteristic

X, +X + 0 +X

= n

is [cos (w/ V)]

3.74. Prove that as n — o the characteristic function of Problem 3.73 approaches e~“"/2, (Hint: Take the logarithm of
the characteristic function and use L’Hospital’s rule.)
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Covariance and correlation coefficient

3.75. Let X and Y be random variables having joint density function

xt+ty 0=x=1,0=y=1
0 otherwise

fox,y) = {

Find (a) Var(X), (b) Var(Y), (c) oy, (d) oy, (€) oyys (F) p.

et x=0,y=0

3.76. Work Problem 3.75 if the joint density function is f(x, y) = { ;
0 otherwise

3.77. Find (a) Var(X), (b) Var(Y), (c) oy, (d) gy, (€) ayy, (f) p, for the random variables of Problem 2.56.
3.78. Work Problem 3.77 for the random variables of Problem 2.94.

3.79. Find (a) the covariance, (b) the correlation coefficient of two random variables X and Y if E(X) = 2, E(Y) = 3,
EXY) = 10, E(X2) = 9, E(Y?) = 16.

3.80. The correlation coefficient of two random variables X and Y is —; while their variances are 3 and 5. Find the
covariance.

Conditional expectation, variance, and moments
3.81. Let X and Y have joint density function

x+y 0=x=1,0=y=1
0 otherwise

feoy) = {

Find the conditional expectation of (a) Y given X, (b) X given Y.

2e 0 x =0,y =0

3.82. Work Problem 3.81 if f(x, y) = { .
0 otherwise

3.83. Let X and Y have the joint probability function given in Table 2-9, page 71. Find the conditional expectation of
(a) Y given X, (b) X given Y.

3.84. Find the conditional variance of (a) Y given X, (b) X given Y for the distribution of Problem 3.81.
3.85. Work Problem 3.84 for the distribution of Problem 3.82.
3.86. Work Problem 3.84 for the distribution of Problem 2.94.

Chebyshev’s inequality

3.87. A random variable X has mean 3 and variance 2. Use Chebyshev’s inequality to obtain an upper bound for
@P(|X-3|=2),b)P(|X—-3|=1).

3.88. Prove Chebyshev’s inequality for a discrete variable X. (Hint: See Problem 3.30.)

3.89. A random variable X has the density function f(x) = je ¥, —0 < x < . (a) Find P(| X — u| > 2). (b) Use
Chebyshev’s inequality to obtain an upper bound on P(|X — u| > 2) and compare with the result in (a).



Schaum's Outline of Probability and Statistics
CHAPTER 3 Mathematical Expectation

Law of large numbers

3.90. Show that the (weak) law of large numbers can be stated as

. S,
}LHD’QIP ok <e]=1

and interpret.

391. Let X, (k=1,...,n)benindependent random variables such that

1 prob. p
X, = o
0 prob.g=1-p

(a) If we interpret X, to be the number of heads on the kth toss of a coin, what interpretation can be given to
S, =X+ tX?

(b) Show that the law of large numbers in this case reduces to

. Sy
’!LIL}P 7 —pl=e]=0

and interpret this result.

Other measures of central tendency

3.92. Find (a) the mode, (b) the median of a random variable X having density function

e x=0

0 otherwise

f(x)={

and (c) compare with the mean.

3.93. Work Problem 3.100 if the density function is

) {4x(1 -x) 0=x=1
X) =
0 otherwise
3.94. Find (a) the median, (b) the mode for a random variable X defined by
2 b. 1/3
o { prob. 1/

—1 prob.2/3
and (c) compare with the mean.

3.95. Find (a) the median, (b) the mode of the set of numbers 1, 3, 2, 1, 5, 6, 3, 3, and (c) compare with the mean.

Percentiles
3.96. Find the (a) 25th, (b) 75th percentile values for the random variable having density function

20 —x) 0=x=1
0 otherwise

fx) = {

3.97. Find the (a) 10th, (b) 25th, (c) 75th, (d) 90th percentile values for the random variable having density function

cx—x) 0<x<l1
0 otherwise

J) ={

where ¢ is an appropriate constant.

Other measures of dispersion

3.98. Find (a) the semi-interquartile range, (b) the mean deviation for the random variable of Problem 3.96.

3.99. Work Problem 3.98 for the random variable of Problem 3.97.
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3.100. Find the mean deviation of the random variable X in each of the following cases.

e x=0 (b)f(x)=; o< x< ®

(@ fx) = { w(l + x2)’

0 otherwise

3.101. Obtain the probability that the random variable X differs from its mean by more than the semi-interquartile
range in the case of (a) Problem 3.96, (b) Problem 3.100(a).

Skewness and kurtosis
3.102. Find the coefficient of (a) skewness, (b) kurtosis for the distribution of Problem 3.100(a).

3.103. If

) = C<1_%) =

0 |x| >a

where c is an appropriate constant, is the density function of X, find the coefficient of (a) skewness,
(b) kurtosis.

3.104. Find the coefficient of (a) skewness, (b) kurtosis, for the distribution with density function

) {)\e‘k‘ x=0
X =
0 x <0

Miscellaneous problems

3.105. Let X be a random variable that can take on the values 2, 1, and 3 with respective probabilities 1/3, 1/6, and
1/2. Find (a) the mean, (b) the variance, (c) the moment generating function, (d) the characteristic function,
(e) the third moment about the mean.

3.106. Work Problem 3.105 if X has density function
cl—x) 0<x<1
o=

0 otherwise

where c is an appropriate constant.
3.107. Three dice, assumed fair, are tossed successively. Find (a) the mean, (b) the variance of the sum.

3.108. Let X be a random variable having density function

cx 0=x=2

0  otherwise

Jfx) ={

where c is an appropriate constant. Find (a) the mean, (b) the variance, (c) the moment generating function,
(d) the characteristic function, (e) the coefficient of skewness, (f) the coefficient of kurtosis.

3.109. Let X and Y have joint density function

cxy 0<x<1,0<y<l1
0 otherwise

fx,y) = {
Find (a) EQX + Y2), (b) ECVXE + Y2).

3.110. Work Problem 3.109 if X and Y are independent identically distributed random variables having density
function f(u) = 2m)~ V2 /2, —00 < y < oo,
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3.111. Let X be a random variable having density function

I —1<x<i1
0 otherwise

o=

and let Y = X2. Find (a) E(X), (b) E(Y), (c) E(XY).

ANSWERS TO SUPPLEMENTARY PROBLEMS

343. @)1 ()7 (©6 3.44. (@)3/4 (b)1/4 (c)3/5

345. @)1 ()2 ()1  3.46. 105 347.3

348. @)1 (b)1 (c)1/4

3.50. (a)7/10 (b)6/5 (c)19/10 (d)5/6

3.52. (0)2/3 (b)2/3 (c)4/3 (d)4/9

354. (2)7/12 (b)7/6 (©)5/12 (d)5/3 (e)7/4 (f)2/3

3.55. (a)5/2 (b)-55/12 (c)1/4 (d)1/4

3.56. (@n (b)2n  3.57. (a)35/12 (b) V35/12

3.58. (2)4/3 (b) V4/3  3.59. ()1 (b)l

3.60. (a) Var(X)=5,0 = V5 (b) Var(X) =3/80, oy = V1520

361. (4 ()2  3.62. (7/2 (b)15/4 (c) V15/2

3.63. (a)3(e’? + e"?) = cosh(1/2) () =0,p) = Ly =0,u, =1
3.64. (a) (1 + e — ) /22 (b) = 4/3, uh = 2, uy = 16/5, }, = 16/3
3.65. (), =0,y =5 uy= =5, =35 (b)u, =0, =3/80, uy = —121/160, 1, = 2307/8960
3.66. () 1/(1 —0,111<1 (byp =1,y =2, u} =6, =24

3.67. =0,y = 1,y = 2,y = 33

3.68. (a) (b1 —ak+))/(k + 1)(b — a) (b) [1 + (—1F(b — a)/2k+1(k + 1)

3.70. pei“r + geit 3.71. (sinaw)/aw 3.72. (e¥@ — 2iwe?® — 1)/2w?
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3.75.

3.76.

3.71.

3.78.

3.79.

3.81.

3.82.

3.83.

3.84.

3.85.

3.86.

3.87.

3.92.

3.94.

3.96.

3.97.

3.98.

3.99.

CHAPTER 3 Mathematical Expectation

(@) 11/144 (b) 11/144 (c) V11/12 (d) V11/12 (e)-1/144 (f)-1/11

@1 M1 @©1 @1 0 0

(a) 73/960 (b) 73/960 (c) V73/960 (d) V73/960 (e)-1/64 (f)-15/73
(a)233/324 (b)233/324 (c) V233/18 (d) V233/18 (e)-91/324 (f)-91/233
(@4 (b)4/V35  3.80. —V15/4

(@) Bx +2)/(6x +3)for0=x=1 (b)3y+2)/(6y+3)for0=y=1

(@1/2forx=0 (b)lfory=0

(a) " 0 1 5 (b) Y 0 ] ;
EY[X) | 4/3 | 1 |5/7 EX|Y) | 4/3 |1/6 | 1)2
6x> + 6x +1 6y2 + 6y +1
(a) 182x + 1) for 0=<x=<1 (b) 1802y + 17 for 0=y=1
@1/9 ()1

@y o |1 | 2 Oy 0 1 2
Var(Y|X) | 5/9 |4/5 |24/49 Var(X|Y) | 5/9 | 29/36 | 7/12
(a) 1/2  (b) 2 (useless) 3.89. (a)e2 (b)0.5

@+0 Mh2 ©1 39 @1/vV3 b V1-(1/VD) (©8/15
(a) does notexist (b)-1 ()0  3.95. ()3 (b)3 (c)3

@1 —3V3 (b)1/2

@ V1-6/VID) ®V1-0V32) @VIZ @Vi-1/Vi
@1 (V3 -1)/4 (c)16/81

(@1 (b)0.17 (c)0.051 3.100. (a) 1 — 2¢-! (b) does not exist

3.101. () (5 — 2V3)/3 (b) 3 — 2¢7'V/3)/3

3102. (2 ()9  3.103. (2)0 (b)24/5¢  3.104. (a)2 (b)9
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3.105. (2)7/3 (b)5/9 (c) (et + 2ex + 3e3)/6  (d) (e + 2% + 3¢3) /6 (e) —7/27
3.106. ) 1/3 () 1/18 (©2e—1—0/e () -2 — 1 — iw)/e? (e)1/135
3.107. ()21/2 (b)35/4

3.108. (@)4/3 (0)2/9 (c) (1 + 2te? — e2)/22 (d) —(1 + 2iwe*® — %) [2w?
(e) —2V18/15 () 12/5

3.109. ()1 (b)82V2 — 1)/15
3.110. ()2 (b) V27/2

3.111. (0 (b)1/3 (c)0





