Lecture 8: Multidimensional scaling
Advanced Applied Multivariate Analysis
STAT 2221, Fall 2013

Sungkyu Jung
Department of Statistics
University of Pittsburgh

E-mail: sungkyu@pitt.edu
http://www.stat.pitt.edu/sungkyu/AAMA/
Multidimensional scaling

Goal of Multidimensional scaling (MDS): Given pairwise dissimilarities, reconstruct a map that preserves distances.

- From any dissimilarity (no need to be a metric)
- Reconstructed map has coordinates $\mathbf{x}_i = (x_{i1}, x_{i2})$ and the natural distance \(\| \mathbf{x}_i - \mathbf{x}_j \|_2 \)
Multidimensional scaling

- MDS is a family of different algorithms, each designed to arrive at optimal low-dimensional configuration ($p = 2$ or 3)
- MDS methods include
 1. Classical MDS
 2. Metric MDS
 3. Non-metric MDS
Perception of Color in human vision

- To study the perceptions of color in human vision (Ekman, 1954, Izenman 13.2.1)
- 14 colors differing only in their hue (i.e., wavelengths from 434 µm to 674 µm)
- 31 people to rate on a five-point scale from 0 (no similarity at all) to 4 (identical) for each of $\binom{14}{2}$ pairs of colors.
- Average of 31 ratings for each pair (representing similarity) is then scaled and subtracted from 1 to represent dissimilarities
Perception of Color in human vision

The resulting 14×14 dissimilarity matrix is symmetric, and contains zeros in the diagonal. MDS seeks a 2D configuration to represent these colors.

\[
\begin{array}{cccccccccccccc}
434 & 445 & 465 & 472 & 490 & 504 & 537 & 555 & 584 & 600 & 610 & 628 & 651 \\
445 & 0.14 & & & & & & & & & & & \\
465 & 0.58 & 0.50 & & & & & & & & & & & \\
472 & 0.58 & 0.56 & 0.19 & & & & & & & & & & \\
490 & 0.82 & 0.78 & 0.53 & 0.46 & & & & & & & & & \\
504 & 0.94 & 0.91 & 0.83 & 0.75 & 0.39 & & & & & & & & \\
537 & 0.93 & 0.93 & 0.90 & 0.90 & 0.69 & 0.38 & & & & & & & \\
555 & 0.96 & 0.93 & 0.92 & 0.91 & 0.74 & 0.55 & 0.27 & & & & & & \\
584 & 0.98 & 0.98 & 0.98 & 0.98 & 0.93 & 0.86 & 0.78 & 0.67 & & & & & \\
600 & 0.93 & 0.96 & 0.99 & 0.99 & 0.98 & 0.92 & 0.86 & 0.81 & 0.42 & & & & \\
610 & 0.91 & 0.93 & 0.98 & 1.00 & 0.98 & 0.98 & 0.95 & 0.96 & 0.63 & 0.26 & & & \\
628 & 0.88 & 0.89 & 0.99 & 0.99 & 0.99 & 0.98 & 0.97 & 0.73 & 0.50 & 0.24 & & & \\
651 & 0.87 & 0.87 & 0.95 & 0.98 & 0.98 & 0.98 & 0.98 & 0.80 & 0.59 & 0.38 & 0.15 & & \\
674 & 0.84 & 0.86 & 0.97 & 0.96 & 1.00 & 0.99 & 1.00 & 0.98 & 0.77 & 0.72 & 0.45 & 0.32 & 0.24 \\
\end{array}
\]
Perception of Color in human vision

MDS reproduces the well-known two-dimensional color circle.
Distance, dissimilarity and similarity (or proximity) are defined for any pair of objects in any space. In mathematics, a distance function (that gives a distance between two objects) is also called metric, satisfying

1. \(d(x, y) \geq 0, \)
2. \(d(x, y) = 0 \) if and only if \(x = y, \)
3. \(d(x, y) = d(y, x), \)
4. \(d(x, z) \leq d(x, y) + d(y, z). \)

Given a set of dissimilarities, one can ask whether these values are distances and, moreover, whether they can even be interpreted as Euclidean distances.
Euclidean and non-Euclidean distance

Given a dissimilarity (distance) matrix $D = (d_{ij})$, MDS seeks to find $x_1, \ldots, x_n \in \mathbb{R}^p$ so that

$$d_{ij} \approx \| x_i - x_j \|_2$$

as close as possible.

Oftentimes, for some large p, there exists a configuration x_1, \ldots, x_n with exact distance match $d_{ij} \equiv \| x_i - x_j \|_2$. In such a case the distance d involved is called a Euclidean distance.

There are, however, cases where the dissimilarity is distance, but there exists no configuration in any p with perfect match

$$d_{ij} \neq \| x_i - x_j \|_2, \text{ for some } i, j.$$

Such a distance is called non-Euclidean distance.
non-Euclidean distance

- Radian distance function on a circle is a metric.
- Cannot be embedded in \(\mathbb{R} \). (Not for any \(\mathbb{R}^p \), not shown here)

Nevertheless, MDS seeks to find an optimal configuration \(\mathbf{x}_i \) that gives
\[d_{ij} \approx \| \mathbf{x}_i - \mathbf{x}_j \|_2 \] as close as possible.
Suppose for now we have Euclidean distance matrix $D = (d_{ij})$.

The objective of classical Multidimensional Scaling (cMDS) is to find $X = [x_1, \ldots, x_n]$ so that $\|x_i - x_j\| = d_{ij}$. Such a solution is not unique, because if X is the solution, then $X^* = X + c$, $c \in \mathbb{R}^q$ also satisfies $\|x_i^* - x_j^*\| = \|(x_i + c) - (x_j + c)\| = \|x_i - x_j\| = d_{ij}$. Any location c can be used, but the assumption of centered configuration, i.e.,

$$\sum_{i=1}^{n} x_{ik} = 0, \text{ for all } k,$$

serves well for the purpose of dimension reduction.
classical Multidimensional Scaling–theory

In short, the cMDS finds the centered configuration $\mathbf{x}_1, \ldots, \mathbf{x}_n \in \mathbb{R}^q$ for some $q \geq n - 1$ so that their pairwise distances are the same as those corresponding distances in D.

We may find the $n \times n$ Gram matrix $B = \mathbf{X}'\mathbf{X}$, rather than \mathbf{X}. The Gram matrix is the inner product matrix since \mathbf{X} is assumed to be centered. We have

$$d_{ij}^2 = b_{ii} + b_{jj} - 2b_{ij} \quad (2)$$

from $\|\mathbf{x}_i - \mathbf{x}_j\|^2 = \mathbf{x}_i'\mathbf{x}_i + \mathbf{x}_j'\mathbf{x}_j - 2\mathbf{x}_i'\mathbf{x}_j$.

classical Multidimensional Scaling–theory

The constraints (1) leads to

\[
\sum_{i=1}^{n} b_{ij} = \sum_{i=1}^{n} \sum_{k=1}^{q} x_{ik}x_{jk} = \sum_{k=1}^{q} x_{jk} \sum_{i=1}^{n} x_{ik} = 0,
\]

for \(j = 1, \ldots, n \).

With a notation \(T = \text{trace}(B) = \sum_{i=1}^{n} b_{ii} \), we have

\[
\sum_{i=1}^{n} d_{ij}^2 = T + nb_{jj}, \quad \sum_{j=1}^{n} d_{ij}^2 = T + nb_{ii}, \quad \sum_{j=1}^{n} \sum_{i=1}^{n} d_{ij}^2 = 2nT. \quad (3)
\]
Combining (2) and (3), the solution is unique:

\[b_{ij} = -1/2(d_{ij}^2 - d_{.j}^2 - d_{i.}^2 + d_{..}^2) \]

or

\[B = -1/2 CD_2 C. \]

A solution \(X \) is then given by the eigen-decomposition of \(B \). That is, for \(B = V \Lambda V' \),

\[X = \Lambda^{1/2} V'. \] (4)
classical Multidimensional Scaling–theory

The space which X lies is the eigenspace where the first coordinate contains the largest variation, and is identified with \mathbb{R}^q.

If we wish to reduce the dimension to $p \leq q$, then the first p rows of $X_{(p)}$ best preserves the distances d_{ij} among all other linear dimension reduction of X (to p). Then

$$X_{(p)} = \Lambda_p^{1/2} V'_p,$$

where Λ_p is the first $p \times p$ sub matrix of Λ, V_p is collected through the first p columns of V.

classical Multidimensional Scaling

- cMDS gives configurations $X_{(p)}$ in \mathbb{R}^p for any dimension $p = 1, 2, \ldots, q$.
- Configuration is centered.
- The coordinates are given by the principal order of largest-to-smallest variances.
- Dimension reduction from $X = X_{(q)}$ to $X_{(p)}$ ($p < q$) is same as PCA.
- Leads exact solution for Euclidean distances
- *Can be used for non-Euclidean distances, in fact, for any dissimilarities.*
cMDS examples

- Consider two worked examples: one with Euclidean geometry (tetrahedron–edge length 1), the other from the circular geometry, shown below.

- And the airline distances example (Izenman 13.1.1)
cMDS examples: tetrahedron

Pairwise distance matrix for tetrahedron (with distance 1)

$$D = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix},$$

leading to the gram matrix $B_{(4 \times 4)}$ with eigenvalues (.5, .5, .5, 0).

Using dimension $p = 3$, we have perfectly retrieved the tetrahedron.
cMDS examples: circular distances

Pairwise distance matrix

<table>
<thead>
<tr>
<th>Point</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.0000</td>
<td>3.1416</td>
<td>0.7854</td>
<td>1.5708</td>
</tr>
<tr>
<td>b</td>
<td>3.1416</td>
<td>0.0000</td>
<td>2.3562</td>
<td>1.5708</td>
</tr>
<tr>
<td>c</td>
<td>0.7854</td>
<td>2.3562</td>
<td>0.0000</td>
<td>2.3562</td>
</tr>
<tr>
<td>d</td>
<td>1.5708</td>
<td>1.5708</td>
<td>2.3562</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

leading to the gram matrix $B_{(4 \times 4)}$ with eigenvalues

$$\text{diag}(\Lambda) = (5.6117, -1.2039, -0.0000, 2.2234)$$

In retrieving the coordinate matrix X, we cannot take a squareroot of Λ since it gives complex numbers.

Remedy: Keep only positive eigenvalues and corresponding coordinates. In this case, take coordinates 1 and 4. This is the price we pay in approximating non-Euclidean geometry by Euclidean geometry.
cMDS examples: circular distances

Using dimension $p = 2$ (cannot use $p > 2$), configuration $X_{(2)}$ is

\[
\begin{pmatrix}
0 & 3.1416 & 0.7854 & 1.5708 \\
3.1416 & 0 & 2.3562 & 1.5708 \\
0.7854 & 2.3562 & 0 & 2.3562 \\
1.5708 & 1.5708 & 2.3562 & 0
\end{pmatrix}, \quad \hat{D} = \begin{pmatrix}
0 & 3.1489 & 1.4218 & 1.9784 \\
3.1489 & 0 & 2.5482 & 1.8557 \\
1.4218 & 2.5482 & 0 & 2.3563 \\
1.9784 & 1.8557 & 2.3563 & 0
\end{pmatrix}
\]

Compare the original distance matrix D and approximated distance matrix $\hat{D} = \|x_i - x_j\|_2$:
cMDS examples: Airline distances

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cape Town</td>
<td></td>
<td>12947</td>
<td></td>
</tr>
<tr>
<td>Hong Kong</td>
<td>1972</td>
<td></td>
<td>11867</td>
<td></td>
</tr>
<tr>
<td>Honolulu</td>
<td>8171</td>
<td>18562</td>
<td></td>
<td>8945</td>
<td></td>
</tr>
<tr>
<td>London</td>
<td>8160</td>
<td>9635</td>
<td>9646</td>
<td>11653</td>
<td></td>
</tr>
<tr>
<td>Melbourne</td>
<td>9093</td>
<td>10338</td>
<td>7392</td>
<td>8862</td>
<td>16902</td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>12478</td>
<td>13703</td>
<td>14155</td>
<td>6098</td>
<td>8947</td>
<td>13557</td>
<td></td>
</tr>
<tr>
<td>Montreal</td>
<td>10490</td>
<td>12744</td>
<td>12462</td>
<td>7915</td>
<td>5240</td>
<td>16730</td>
<td></td>
</tr>
<tr>
<td>Moscow</td>
<td>5809</td>
<td>10101</td>
<td>7158</td>
<td>11342</td>
<td>2506</td>
<td>14418</td>
<td></td>
</tr>
<tr>
<td>New Delhi</td>
<td>3788</td>
<td>9284</td>
<td>3770</td>
<td>11930</td>
<td>6724</td>
<td>10192</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>11012</td>
<td>12551</td>
<td>12984</td>
<td>7996</td>
<td>5586</td>
<td>16671</td>
<td></td>
</tr>
<tr>
<td>Paris</td>
<td>8236</td>
<td>9307</td>
<td>9650</td>
<td>11988</td>
<td>341</td>
<td>16793</td>
<td></td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>17325</td>
<td>6075</td>
<td>17710</td>
<td>13343</td>
<td>9254</td>
<td>13227</td>
<td></td>
</tr>
<tr>
<td>Rome</td>
<td>8144</td>
<td>8417</td>
<td>9300</td>
<td>12936</td>
<td>1434</td>
<td>15987</td>
<td></td>
</tr>
<tr>
<td>San Francisco</td>
<td>9524</td>
<td>16487</td>
<td>11121</td>
<td>3857</td>
<td>8640</td>
<td>12644</td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>4465</td>
<td>9671</td>
<td>2575</td>
<td>10824</td>
<td>10860</td>
<td>6050</td>
<td></td>
</tr>
<tr>
<td>Stockholm</td>
<td>6725</td>
<td>10334</td>
<td>8243</td>
<td>11059</td>
<td>1436</td>
<td>15593</td>
<td></td>
</tr>
<tr>
<td>Tokyo</td>
<td>2104</td>
<td>14737</td>
<td>2893</td>
<td>6208</td>
<td>9585</td>
<td>8159</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mexico</th>
<th>Montreal</th>
<th>Moscow</th>
<th>New Delhi</th>
<th>New York</th>
<th>Paris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montreal</td>
<td>3728</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moscow</td>
<td>10740</td>
<td>7077</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Delhi</td>
<td>14679</td>
<td>11286</td>
<td>4349</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>3362</td>
<td>533</td>
<td>7530</td>
<td>11779</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paris</td>
<td>9213</td>
<td>5522</td>
<td>2492</td>
<td>6601</td>
<td>5851</td>
<td>5845</td>
</tr>
</tbody>
</table>

20 / 41
cMDS examples: Airline distances

TABLE 13.6. Eigenvalues of B and the eigenvectors corresponding to the first three largest eigenvalues (in red) for the airline distances example.

<table>
<thead>
<tr>
<th>Eigenvalues</th>
<th>Eigenvectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>471582511</td>
</tr>
<tr>
<td>2</td>
<td>316824787</td>
</tr>
<tr>
<td>3</td>
<td>253943687</td>
</tr>
<tr>
<td>4</td>
<td>-98466163</td>
</tr>
<tr>
<td>5</td>
<td>-74912121</td>
</tr>
<tr>
<td>6</td>
<td>-47505097</td>
</tr>
<tr>
<td>7</td>
<td>31736348</td>
</tr>
<tr>
<td>8</td>
<td>-7508328</td>
</tr>
<tr>
<td>9</td>
<td>4338497</td>
</tr>
<tr>
<td>10</td>
<td>1747583</td>
</tr>
<tr>
<td>11</td>
<td>-1498641</td>
</tr>
<tr>
<td>12</td>
<td>145113</td>
</tr>
<tr>
<td>13</td>
<td>-102966</td>
</tr>
<tr>
<td>14</td>
<td>60477</td>
</tr>
<tr>
<td>15</td>
<td>-6334</td>
</tr>
<tr>
<td>16</td>
<td>-1362</td>
</tr>
<tr>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>

- Airline distance is non-Euclidean
- Take the first 3 largest eigenvalues (inspection of scree plot)
FIGURE 13.1. Two-dimensional map of 18 world cities using the classical scaling algorithm on airline distances between those cities. The colors reflect the different continents: Asia (purple), North America (red), South America (orange), Europe (blue), and Australia (green).
cMDS examples: Airline distances

FIGURE 13.2. Three-dimensional map of 18 world cities using the classical scaling algorithm on airline distances between those cities. The colors reflect the different continents: Asia (purple), North America (red), South America (yellow), Europe (blue), Africa (brown), and Australasia (green).
Distance Scaling

classical MDS
seeks to find an optimal configuration x_i that gives
$$d_{ij} \approx \hat{d}_{ij} = \|x_i - x_j\|_2$$
as close as possible.

Distance Scaling

- Relaxing $d_{ij} \approx \hat{d}_{ij}$ from cMDS by allowing

 $$\hat{d}_{ij} \approx f(d_{ij}), \text{ for some monotone function } f.$$

- Called **metric MDS** if dissimilarities d_{ij} are quantitative
- Called **non-metric MDS** if dissimilarities d_{ij} are qualitative (e.g. ordinal).
- Unlike cMDS, distance scaling is an optimization process minimizing stress function, and is solved by iterative algorithms.
Metric MDS

The (usual) metric MDS

Given a (low) dimension p and a monotone function f, metric MDS seeks to find an optimal configuration $\mathbf{X} \subset \mathbb{R}^p$ that gives $f(d_{ij}) \approx \hat{d}_{ij} = \| \mathbf{x}_i - \mathbf{x}_j \|_2$ as close as possible.

- The function f can be taken to be a parametric monotonic function, such as $f(d_{ij}) = \alpha + \beta d_{ij}$.
- ‘As close as possible’ is now explicitly stated by square loss

\[
\text{stress} = \mathcal{L}(\hat{d}_{ij}) = \left(\sum_{i<j} (\hat{d}_{ij} - f(d_{ij}))^2 / \sum d_{ij}^2 \right)^{\frac{1}{2}},
\]

and the metric MDS minimizes $\mathcal{L}(\hat{d}_{ij})$ over all \hat{d}_{ij} and α, β.

- The usual metric MDS is the special case $f(d_{ij}) = d_{ij}$; The usual metric MDS solution (from optimization) \neq that of classical MDS.
Sammon mapping

- Sammon mapping is a generalization of the usual metric MDS.
- Sammon’s stress (to be minimized) is

\[
\text{Sammon’s stress}(\hat{d}_{ij}) = \frac{1}{\sum_{\ell<k} d_{\ell k} \sum_{i<j} \frac{(\hat{d}_{ij} - d_{ij})^2}{d_{ij}}}
\]

- This weighting system normalizes the squared-errors in pairwise distances by using the distance in the original space. As a result, Sammon mapping preserves the small \(d_{ij}\), giving them a greater degree of importance in the fitting procedure than for larger values of \(d_{ij}\).
- Optimal solution is found by numerical computation (initial value by cMDS).
Izenman Figure 13.9 (lower panel)

Results of cMDS and Sammon mapping for $p = 2$: Sammon mapping better preserves inter-distances for smaller dissimilarities, while proportionally squeezes the inter-distances for larger dissimilarities.
Non-metric MDS

In many applications of MDS, dissimilarities are known only by their rank order, and the spacing between successively ranked dissimilarities is of no interest or is unavailable.

Non-metric MDS

Given a (low) dimension p, non-metric MDS seeks to find an optimal configuration $\mathbf{X} \subset \mathbb{R}^p$ that gives $f(d_{ij}) \approx \hat{d}_{ij} = \|\mathbf{x}_i - \mathbf{x}_j\|_2$ as close as possible.

- Unlike metric MDS, here f is much general and is only implicitly defined.
- $f(d_{ij}) = d_{ij}^*$ are called disparities, which only preserve the order of d_{ij}, i.e.,

$$d_{ij} < d_{k\ell} \iff f(d_{ij}) \leq f(d_{k\ell}) \iff d_{ij}^* \leq d_{k\ell}^*$$
Kruskal’s non-metric MDS

- Kruskal’s non-metric MDS minimizes the stress-1

\[
\text{stress-1}(\hat{d}_{ij}, d^*_{ij}) = \left(\frac{\sum_{i<j} (\hat{d}_{ij} - d^*_{ij})^2}{\sum \hat{d}_{ij}^2} \right)^{\frac{1}{2}}.
\]

- Note that the original dissimilarities are only used in checking (5). In fact only the order \(d_{ij} < d_{k\ell} < \ldots < d_{mf}\) among dissimilarities is needed.

- The function \(f\) works as if it were a regression curve (approximated dissimilarities \(\hat{d}_{ij}\) as \(y\), disparities \(d^*_{ij}\) as \(\hat{y}\), and the order of dissimilarities as explanatory).

FIGURE 13.10. Shepard diagram for the artificial example. Left panel: Isotonic regression. Right panel: Monotone spline. Horizontal axis is rank order. For the red points, the vertical axis is the dissimilarity \(d_{ij}\), whereas for the fitted blue points, the vertical axis is the disparity \(\hat{d}_{ij}\).
Example: Letter recognition

Wolford and Hollingsworth (1974) were interested in the confusions made when a person attempts to identify letters of the alphabet viewed for some milliseconds only. A confusion matrix was constructed that shows the frequency with which each stimulus letter was mistakenly called something else. A section of this matrix is shown in the table below.

<table>
<thead>
<tr>
<th>Letter</th>
<th>C</th>
<th>D</th>
<th>G</th>
<th>H</th>
<th>M</th>
<th>N</th>
<th>Q</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

Is this a dissimilarity matrix?
Example: Letter recognition

• How to deduce dissimilarities from a similarity matrix?
 From similarities δ_{ij}, choose a maximum similarity $c \geq \max \delta_{ij}$, so that $d_{ij} = c - \delta_{ij}$, if $i \neq j$, 0 if $i = j$.

• Which method is more appropriate?
 Because we have deduced dissimilarities from similarities, the absolute dissimilarities d_{ij} depend on the value of personally chosen c. This is the case where the non-metric MDS makes most sense.
 However, we will also see that metric scalings (cMDS and Sammon mapping) do the job as well.

• How many dimension?
 By inspection of eigenvalues from the cMDS solution.
Letter recognition

- First choose $c = 21 = \max \delta_{ij} + 1$.
- Compare MDS with $p = 2$, from cMDS, Sammon mapping, and non-metric scaling (stress1):
Letter recognition:

- First choose $c = 21 = \max \delta_{ij} + 1$.
- Compare MDS with $p = 3$, from cMDS, Sammon mapping, and non-metric scaling (stress1):
Letter recognition:

- Do you see any clusters?
- With $c = 21 = \max \delta_{ij} + 1$, the eigenvalues of the Gram-matrix B in the calculation of cMDS are:

 - 508.5707
 - 236.0530
 - 124.8229
 - 56.0627
 - 39.7347
 - -0.0000
 - -35.5449
 - -97.1992

- The choice of $p = 2$ or $p = 3$ seems reasonable.
Letter recognition

- Second choice of $c = 210 = \max \delta_{ij} + 190$.
- Compare MDS with $p = 2$, from cMDS, Sammon mapping, and non-metric scaling (stress1):
Letter recognition:

- Second choice of $c = 210 = \max \delta_{ij} + 190$.
- Compare MDS with $p = 3$, from cMDS, Sammon mapping, and non-metric scaling (stress1):
Letter recognition:

- With $c = 210$, the eigenvalues of the Gram-matrix B in the calculation of cMDS are:

 \begin{align*}
 1.0e+04 \times \\
 2.7210 \\
 2.2978 \\
 2.1084 \\
 1.9623 \\
 1.9133 \\
 1.7696 \\
 1.6842 \\
 0.0000
 \end{align*}

- May need more than $p > 3$ dimensions.
Letter recognition: Summary

- The structure of the data appropriate for non-metric MDS.
- Kruskal’s non-metric scaling:
 1. Appropriate for non-metric dissimilarities (only when their orders are preserved)
 2. Optimization: susceptible to local minima (leading to different configurations);
 3. Time-consuming
- cMDS fast, overall good.
- Sammon mapping fails when $c = 210$.
Letter recognition: Summary

- Clusters \((C, G), (D, Q), (H, M, N, W)\) are confirmed by a cluster analysis for either choice of \(c\).

Use agglomerative hierarchical clustering with average linkage:
library(MASS)

compute dissimilarity matrix from a dataset
d <- dist(swiss)
d is (n x n-1) lower triangle matrix

cmdsclae(d, k =2) # classical MDS
sammon(d,k=1) # Sammon Mapping
isoMDS(d,k=2) # Kruskal’s Non-metric MDS
Application: Stringing

Basic idea: Multivariate data to functional data

- Compute $p \times p$ dissimilarity matrix for p variables.
- Use MDS to retrieve 1-dimensional configuration consisting of the p points.
- String variables by the order of variables given by MDS configuration.

Many thanks to K. Chen for sharing the next few slides.
Idea of Stringing

\[X_1 \ldots X_j \ldots X_p \]

\[0 < \ldots S_p \ldots < \ldots S_1 \ldots < \ldots S_j \ldots < 1 \]

\[\ldots Z(S_p) \ldots Z(S_1) \ldots Z(S_j) \ldots \]
Why Stringing?

- Methods and results from low dimensional data cannot be directly applied to large p problems.
- Large p is not a problem for FDA, we have \sqrt{n} consistency for covariance, leading eigenvalues and eigenfunctions.
- Smooth structure: $G(s, t) = \sum_{k=1}^{\infty} \lambda_k \phi_k(s) \phi_k(t)$, with $\sum_{k=1}^{\infty} \lambda_k < \infty$.
- Neighbors defined over a continuum: Smoothing techniques for noisy, irregular or missing data.
How to Perform Stringing

- Define a distance between p predictors and estimate the $p \times p$ distance matrix D.
- Assign a location $s_j \in [0, 1]$ to each predictor variable X_j to minimize stress function

$$S_D(s_1, \ldots, s_p) = \sum_{j<k} (|s_j - s_k| - D_{jk})^2.$$

- Computational similar but conceptually different form MDS.
 1. Preserve the dissimilarity between p variables not n samples.
 2. The goal is not dimension reduction. The coordinate s_i is an auxiliary location to define random functions.
Two key assumptions essential for current Lasso type methodology:

- **Sparsity**: Only very few predictors matter
- **Uncorrelatedness**: Correlations between predictors are small

What if predictors are highly correlated and effects are not sparse?

Stringing:

\[E(Y|X) = g^{-1}(X\beta) \]

\[\Rightarrow E(Y|Z) = g^{-1}(\mu_Y + \int Z(s)\beta(s)ds) \]
Simulation Settings

\[Y = X\beta + \epsilon \]

- \(\text{cov}(X_i, X_j) = \sigma(i,j) = \mathcal{U}(0, 1) \), chosen as i.i.d. uniform random numbers, projected to non-negative definite matrix space
- Varying sparsity of regression coefficients, generated as \(\beta_j \sim \mathcal{U}(0, 1), j = 1, \ldots, p \), where the fraction of nonzero coefficients is controlled at 100%, 50%, 10%.
- Varying \(p, n \), test sets of size 50 and 200 simulations
Functional Regression Versus LASSO

100%

50%

10%

n/p=0.3

n/p=1.2
Stringing Gene Expressions

Stringing

-6 -4 -2 0 2 4 6