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General Information

e Course Webpage:
http://www.stat.pitt.edu/sungkyu/course/2221Spring15/
e Prerequisite: None (officially), but

e probability and inference theory
o linear algebra
e R, SAS or Matlab programing.

)
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What is multivariate analysis?

@ First course of statistics: numbers—random variables

® Second course of statistics: vectors of numbers—random
vectors

e Basis for analysis of more complex objects, e.g. functions,
matrices, tensors, images, networks.

© Data Exploration: visualization of relationships between
observations.

@ Discovering and modeling patterns from dataset:
Visualization, Clustering, Multivariate distributions.

® Confirming patterns: Inference.
® Dimension Reduction: PCA, CCA, SVD.

@ Predictions: Regression, Classification.



What is a multivariate dataset?

Multivariate statistical analysis concerns multivariate data where
each observation consisting of many measurements on the same
subject. We suppose the dataset X = {Xj,...,X,} has n
observations (Here, n is called the sample size), and each
observation X; = (X1, ..., Xjp) is a vector in RP (Here, p is called
the dimension). These are often recorded in a p x n matrix:

x:(xl7'”7xn):
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Data Exploration - Visualization

1D example — Hidalgo Stamp Data

e n = 485 observed values of thickness for Mexico stamps
e over > 70 years
During 1980s

e Stamp papers produced in several factories?

e No records. Can we guess by looking at the data?

Izenman and Sommer (1988), here we use data “stamp” in R
package BSDA.



Histograms
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Data Exploration - 1D Hidalgo Stamp

with different bin widths. How many factories?
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Histograms

Frequency

Frequency

Data Exploration - 1D Hidalgo Stamp
with different bin locations. (Fixed bin width 0.012)
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Data Exploration - Kernel density estimate

Histograms are dependent on binwidth and bin location.
Smaller binwidth preferred for exploration.

Different bin locations can obscure important underlying
patterns; A solution is to average out the effect on different
bin location “Averaged histogram”

A more elegant solution is kernel density estimate.

For X1,..., X, ~ i.i.d. f(x) (continuous pdf), a kernel density
estimator of f is obtained as

. 1=l /[x—X
R()=-Y 2K
=305 ( " )

where the kernel K(-) is a function satisfying [ K(x)dx = 1.




Kernel density estimate - illustration

o Toy data: x; = 3,5,9,11,12, 14.

e Consider a kernel density estimate with Gaussian kernel

1
e—t2/2’

K(t) = N

with bandwidth h = 1.

e For each i,
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Kernel density estimate - illustration
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e Toy data: x; =3,5,9,11,12, 14,
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Kernel density estimate - illustration

aaaaaa
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e overlaid is, for h =1,

X—X- 2
EK <XX1> = 1 e_(2h21) .
h h V2mh?
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Kernel density estimate - illustration

nnnnnnnnnn

1 (X — X,') 1 7(X*Xi)2
-K = e 2n2
h h V27 h?
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Kernel density estimate - illustration

oy ata
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e Kernel Density Estimate (KDE) of the pdf:

fh(x)=,1,;,f!<(x‘hx"),
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KDE for Hidalgo Stamp

T
0.04 0.08 0.12 0.
N =485 Bandwidth = 0.01

KDE

KDE
o
132
2
2 {1
[
[a]
o |
-
o4
T T T T
16 0.06 0.10 0.14
N =485 Bandwidth = 0.005
KDE
o |
©
2 o |
o <
c
s 4
[s]
o |
~N
o4

T
0.06 0.08 0.10 0.12 0.14
N =485 Bandwidth = 0.0025

T T T T T
0.06 0.08 0.10 0.12

N =485 Bandwidth = 0.001

14 /30



KDE for Hidalgo Stamp

e Small bandwidth leads undersmooth; Large bandwidth leads
oversmooth

e Is it unimodal? Bi-modal? Or several modes? Which modes
are really there?

e Choice of bandwidth

e |mportant in practice.

e Controversial issue.

e Many recommendations (Silverman’s rule of thumb,
Sheather-Jones Plug-In.)

e The consensus is that there is never a consensus.

15/30



KDE for Hidalgo Stamp

Bandwidth, by Silverman'’s rule-of-thumb, is (sample size)~1/°x
90% of minimum of two population standard deviation estimates:
i) the sample standard deviation, ii) IQR/1.34

KDE
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Data Exploration - Multivariate data

Dimension p = 6 example — Swiss bank notes

e n =200 Swiss bank notes (See Fig. 1.1, Hardle and Simar)

Each note (obs.) has p = 6 measurements (variables).

Additional information: first half are genuine; the other half
are counterfeit.

Visualization of 6-dim’l data?

Can use 6 KDEs overlaided with jitterplot for each
measurements (variables)
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Swiss bank notes - Marginal KDEs
Marginal KDEs overlaided with jitterplot for each of 6 variables.
e Informative, realistic when p is small
e No information about association between variables.

145
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Swiss bank notes - Scatterplot

e Pairs of variables are best visualized by scatterplot, e.g. X4 vs
Xe below.

e Understood as point clouds (representing the empirical
distributions)

6 :
* |, ) many pairs to choose from.
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Swiss bank notes - Scatterplot

Scatters of three variables can also be informative, if software
allows to rotate the axes.

Otherwise, the 3D scatterplot is a scatterplot of linear
combinations of the three variables.

Swiss bank notes: blue o = genuine, green x = fake
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Swiss bank notes - scatterplot matrix

A traditional, yet powerful, tool is to construct a matrix of
scatterplots. - Too busy with p = 6.

-101 -202 -32101 202

e A 20 < i
—0.90.5
6
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Swiss bank notes - scatterplot matrix

e Better to visualize with principal component scores.
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e With principal component scores, we can focus on fewer
combinations; Dimension Reduction

Direction 2

Direction 3

Swiss bank notes - scatterplot matrix
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Swiss bank notes - related methods

@ If obtaining succint representation of data is of interest, then
using the first two principal component scores appeared in the
first 2 x 2 block of the scatterplot matrix would do the job
(Principal Component Analysis)

® Parametric modeling: Are distributions of Swiss bank note
measurements normal (Gaussian)? (Multivariate Normal
Distribution)

© Without the information on genuine and counterfeit notes,
can we classify n = 200 notes into two distinct groups?
(Clustering)

O With the information on genuine and counterfeit notes,

e Are the means and covariances of genuine and counterfeit
notes different? (Statistical inference)

e When there is a new bank note, how to predict whether the
new note is genuine? (Classification)
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Modern challenges

High dimensional data

@ Gene expression data in Golub et al. (1999)

@® p = 7129 gene expression levels (numeric) for n; = 47
subjects with acute lymphoblastic leukemia (ALL) and
ny = 25 subjects with acute myeloid leukemia (AML).

© Scientific task is to identify new cancer class and/or to assign
tumors to known classes (ALL or AML).

REPORTS
Molecular Classification of
Cancer: Class Discovery and
Class Prediction by Gene
Expression Monitoring

T. R. Golub,2* D. K. Slonim, 't P. Tamayo," C. Huard,'
M. Gaasenbeek,” J. P. Mesirov,” H. Coller,” M. L. Loh,?
J. R. Downing,® M. A. Caligiuri,* C. D. Bloomfield,*

E. S. Lander5*
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Golub data

Taking a subgroup of data with 27 ALLs and 11 AMLs.
A visualization of the matrix Xpx,. Is it helpful?

subject index: 1-27 = ALL, 28-37 = AML
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Golub data

Scatterplot matrix for the first three genes (variables).
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Golub data

Scatterplot matrix using the first three Principal Component
Scores. A pattern there?
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Golub data

Scatterplot matrix using the a liniear combination of all variables
(that leads a good separation of two groups) and two Principal
Component Scores. Better pattern?
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Next: review on matrix algebra.
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