Lecture 0. Useful matrix theory

Basic definitions

A $p \times 1$ vector **a** is a column vector of real (or complex) numbers a_1, \ldots, a_p ,

$$\mathbf{a} = \begin{pmatrix} a_1 \\ \vdots \\ a_p \end{pmatrix}$$

By default, a vector is understood as a column vector. The collection of such column vectors is called the vector space of dimension p and is denoted by \mathbb{R}^p (or \mathbb{C}^p). An $1 \times p$ row vector is obtained by the transpose of the column vector and is

$$\mathbf{a}' = (a_1, \ldots, a_p).$$

A $p \times q$ matrix **A** is a rectangular array of real (or complex) numbers $a_{11}, a_{12}, \ldots, a_{pq}$ written as

$$\mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1q} \\ \vdots & & \vdots \\ a_{p1} & \cdots & a_{pq} \end{bmatrix} = (a_{ij})_{(p \times q)},$$

so that a_{ij} is the element in the *i*th row and *j*th column of **A**. The following definitions are basic:

- 1. A is a square matrix if p = q.
- 2. $\mathbf{A} = \mathbf{0}$ is a zero matrix if $a_{ij} = 0$ for all i, j.
- 3. $\mathbf{A} = \mathbb{I} = \mathbb{I}_p$ is the identity matrix of order p if \mathbf{A} is a square matrix of order p and $a_{ij} = 0$ for $i \neq j$ and $a_{ij} = 1$ for i = j.
- 4. The transpose of a $p \times q$ matrix **A**, denoted by \mathbf{A}' or \mathbf{A}^T , is the $q \times p$ matrix by interchanging the rows and columns of \mathbf{A} , $\mathbf{A}' = (a_{ji})$. Note that $(\mathbf{AB})' = \mathbf{B}'\mathbf{A}'$ and $(\mathbf{A}')' = \mathbf{A}$.
- 5. A square matrix **A** is called symmetric if $\mathbf{A} = \mathbf{A}'$.
- 6. A square matrix **A** is called skew-symmetric if $\mathbf{A} = -\mathbf{A}'$.
- 7. A square matrix **A** is called diagonal if $a_{ij} = 0$ for all $i \neq j$ and is denoted by $\operatorname{diag}(a_{11}, \ldots, a_{pp})$.
- 8. A $p \times q$ matrix **A** is sometimes written as $\mathbf{A}_{(p \times q)}$ to emphasize its size.
- 9. For $\mathbf{A}_{(p \times q)}$ and $\mathbf{B}_{(q \times m)}$,

$$\mathbf{C} = \mathbf{A}\mathbf{B} = (c_{ij})_{(p \times m)},$$

where $c_{ij} = \sum_{k=1}^{q} a_{ik} b_{kj}$ is the inner product between the *i*th row of **A** and the *j*th column of **B**.

- 10. A square matrix **A** is called orthogonal if $\mathbf{A}\mathbf{A}' = \mathbf{A}'\mathbf{A} = \mathbb{I}$.
- 11. A square matrix **A** is called idempotent if $\mathbf{A}^2 = \mathbf{A}$.

Example 1. The following matrices appear frequently in multivariate statistical analysis.

- A rotation matrix $\mathbf{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$ is orthogonal.
- The centering matrix $\mathbf{C} = \mathbb{I}_n \frac{1}{n} \mathbf{1}_n \mathbf{1}'_n$ and the projection matrix $\mathbf{P}_{\mathbf{A}} = \mathbf{A} (\mathbf{A}' \mathbf{A})^{-1} \mathbf{A}'$ are idempotent and symmetric.
- The householder matrix $H = \mathbb{I} 2\mathbf{u}\mathbf{u}'$, where $\|\mathbf{u}\| = 1$, is orthogonal and symmetric.

Determinant and inverse matrix

The determinant of a square matrix \mathbf{A} is denoted by $|\mathbf{A}|$ or det (\mathbf{A}) .

- 1. For a 2 × 2 square matrix $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, $|\mathbf{A}| = ad bc$.
- 2. For $\mathbf{A}_{(p \times p)}$, $|\alpha \mathbf{A}| = \alpha^p |\mathbf{A}|$.
- 3. For $\mathbf{A}_{(p \times p)}$, $\mathbf{B}_{(p \times p)}$, $\det(\mathbf{AB}) = \det(\mathbf{A})\det(\mathbf{B})$.
- 4. For $\mathbf{A}_{(p \times q)}$, $\mathbf{B}_{(q \times p)}$, $\det(\mathbb{I}_p + \mathbf{AB}) = \det(\mathbb{I}_q + \mathbf{BA})$.
- 5. If **A** is orthogonal, then $det(\mathbf{A}) = \pm 1$.
- 6. A square matrix **A** is called nonsingular if $det(\mathbf{A}) \neq 0$.

If **A** is nonsingular then there exists the inverse matrix of **A**, denoted by \mathbf{A}^{-1} , which satisfies $\mathbf{A}\mathbf{A}^{-1} = \mathbb{I}$. Some basic results include:

1. $\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbb{I}.$

2.
$$(\mathbf{A}^{-1})' = (\mathbf{A}')^{-1}$$
.

- 3. If **A** and **B** are nonsingular, $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$.
- 4. If **A** is an orthogonal matrix, $\mathbf{A}^{-1} = \mathbf{A}'$.

Lemma 1 (Woodbury's formula). Suppose $\mathbf{A}_{(m \times m)}$ is nonsingular. For $\mathbf{U}_{(m \times n)}$ and $\mathbf{V}_{(m \times n)}$ where m > n, the inverse of $\mathbf{A} + \mathbf{UV'}$ is

$$(\mathbf{A} + \mathbf{U}\mathbf{V}')^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}(\mathbb{I}_n + \mathbf{V}'\mathbf{A}^{-1}\mathbf{U})^{-1}\mathbf{V}'\mathbf{A}^{-1}$$

Trace of a matrix

The trace of a square matrix $\mathbf{A}_{(p \times p)}$ is the sum of all diagonal elements and is

trace(**A**) =
$$\sum_{i=1}^{p} a_{ii}$$
.

Several properties of trace that are worth mentioning include:

- 1. Trace is a linear map, i.e., for $\mathbf{A}_{(p \times p)}, \mathbf{B}_{(p \times p)}$ and $\alpha, \beta \in \mathbb{R}$, $\operatorname{trace}(\alpha \mathbf{A} + \beta \mathbf{B}) = \alpha \operatorname{trace}(\mathbf{A}) + \beta \operatorname{trace}(\mathbf{B})$.
- 2. trace(\mathbf{A}) = trace(\mathbf{A}')
- 3. For $\mathbf{A}_{(p \times m)}$, $\mathbf{B}_{(p \times m)}$, trace $(\mathbf{AB'}) = \text{trace}(\mathbf{B'A})$

Eigenvalues and eigenvectors

A square matrix $\mathbf{A}_{(p \times p)}$ has the characteristic equation given by $q_{\mathbf{A}}(\lambda) = \det(\mathbf{A} - \lambda \mathbb{I}_p)$, which is the *p*th order polynomial function of λ . The roots of $q_{\mathbf{A}}(\lambda)$ are called latent roots (or eigenvalues) of \mathbf{A} . Each eigenvalue λ_i has its corresponding non-zero vector \mathbf{u}_i , called an eigenvector, satisfying

$$\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i.$$

Properties include:

- 1. det(**A**) = $\prod_{i=1}^{p} \lambda_i$.
- 2. trace(**A**) = $\sum_{i=1}^{p} \lambda_i$.
- 3. If **A** is symmetric, then its eigenvalues are all real.

The eigen-decomposition of a symmetric matrix $\mathbf{A}_{(p \times p)}$ leads to at most p distinct eigenvalues $\lambda_1, \ldots, \lambda_p$ and their corresponding eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_p$, and is denoted by

$$\mathbf{A} = \mathbf{U} \Lambda \mathbf{U}',$$

where $\mathbf{U} = [\mathbf{u}_1, \ldots, \mathbf{u}_p]$ is the orthogonal matrix whose *j*th column is the *j*th eigenvector, and $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_p)$ is the diagonal matrix whose *j*th diagonal element is the *j*th eigenvalue. This decomposition is also called the spectral decomposition.

Definition 1. A symmetric matrix **A** is

- non-negative definite $(\mathbf{A} \ge 0)$ if $\mathbf{x}' \mathbf{A} \mathbf{x} = \sum_{i=1}^{p} \sum_{j=1}^{p} x_{i} a_{ij} x_{j} \ge 0$ for all $\mathbf{x} \ne 0$.
- positive definite $(\mathbf{A} > 0)$ if $\mathbf{x}' \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \neq 0$.

For a non-negative definite matrix \mathbf{A} we can uniquely define $\mathbf{A}^{\frac{1}{2}}$ so that $\mathbf{A}^{\frac{1}{2}}\mathbf{A}^{\frac{1}{2}} = \mathbf{A}$. Using the spectral decomposition $\mathbf{A} = \mathbf{U}\Lambda\mathbf{U}'$, we have

$$\mathbf{A}^{\frac{1}{2}} = \mathbf{U}\Lambda^{\frac{1}{2}}\mathbf{U}',$$

where $\Lambda^{\frac{1}{2}} = \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_p}).$

Lemma 2. *i.* If **A** is positive definite then **A** is nonsignular, \mathbf{A}^{-1} exists and $\mathbf{A}^{-1} > 0$.

- ii. A is positive definite (non-negative definite) if and only if the eigenvalues of \mathbf{A} are all positive (non-negative).
- iii. If A is positive definite and has its eigen-decomposition $A = U\Lambda U'$ then

$$\mathbf{A}^{-1} = \mathbf{U} \Lambda^{-1} \mathbf{U}',$$

where $\Lambda^{-1} = diag(\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_p}).$