Lecture 0 . Useful matrix theory

Basic definitions

A $p \times 1$ vector a is a column vector of real (or complex) numbers a_{1}, \ldots, a_{p},

$$
\mathbf{a}=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{p}
\end{array}\right)
$$

By default, a vector is understood as a column vector. The collection of such column vectors is called the vector space of dimension p and is denoted by \mathbb{R}^{p} (or \mathbb{C}^{p}). An $1 \times p$ row vector is obtained by the transpose of the column vector and is

$$
\mathbf{a}^{\prime}=\left(a_{1}, \ldots, a_{p}\right)
$$

A $p \times q$ matrix \mathbf{A} is a rectangular array of real (or complex) numbers $a_{11}, a_{12}, \ldots, a_{p q}$ written as

$$
\mathbf{A}=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 q} \\
\vdots & & \vdots \\
a_{p 1} & \cdots & a_{p q}
\end{array}\right]=\left(a_{i j}\right)_{(p \times q)},
$$

so that $a_{i j}$ is the element in the i th row and j th column of \mathbf{A}. The following definitions are basic:

1. \mathbf{A} is a square matrix if $p=q$.
2. $\mathbf{A}=\mathbf{0}$ is a zero matrix if $a_{i j}=0$ for all i, j.
3. $\mathbf{A}=\mathbb{I}=\mathbb{I}_{p}$ is the identity matrix of order p if \mathbf{A} is a square matrix of order p and $a_{i j}=0$ for $i \neq j$ and $a_{i j}=1$ for $i=j$.
4. The transpose of a $p \times q$ matrix \mathbf{A}, denoted by \mathbf{A}^{\prime} or \mathbf{A}^{T}, is the $q \times p$ matrix by interchanging the rows and columns of $\mathbf{A}, \mathbf{A}^{\prime}=\left(a_{j i}\right)$. Note that $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$ and $\left(\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{A}$.
5. A square matrix \mathbf{A} is called symmetric if $\mathbf{A}=\mathbf{A}^{\prime}$.
6. A square matrix \mathbf{A} is called skew-symmetric if $\mathbf{A}=-\mathbf{A}^{\prime}$.
7. A square matrix \mathbf{A} is called diagonal if $a_{i j}=0$ for all $i \neq j$ and is denoted by $\operatorname{diag}\left(a_{11}, \ldots, a_{p p}\right)$.
8. A $p \times q$ matrix \mathbf{A} is sometimes written as $\mathbf{A}_{(p \times q)}$ to emphasize its size.
9. For $\mathbf{A}_{(p \times q)}$ and $\mathbf{B}_{(q \times m)}$,

$$
\mathbf{C}=\mathbf{A B}=\left(c_{i j}\right)_{(p \times m)},
$$

where $c_{i j}=\sum_{k=1}^{q} a_{i k} b_{k j}$ is the inner product between the i th row of \mathbf{A} and the j th column of \mathbf{B}.
10. A square matrix \mathbf{A} is called orthogonal if $\mathbf{A A}^{\prime}=\mathbf{A}^{\prime} \mathbf{A}=\mathbb{I}$.
11. A square matrix \mathbf{A} is called idempotent if $\mathbf{A}^{2}=\mathbf{A}$.

Example 1. The following matrices appear frequently in multivariate statistical analysis.

- A rotation matrix $\mathbf{R}=\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$ is orthogonal.
- The centering matrix $\mathbf{C}=\mathbb{I}_{n}-\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\prime}$ and the projection matrix $\mathbf{P}_{\mathbf{A}}=\mathbf{A}\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1} \mathbf{A}^{\prime}$ are idempotent and symmetric.
- The householder matrix $H=\mathbb{I}-2 \mathbf{u} \mathbf{u}^{\prime}$, where $\|\mathbf{u}\|=1$, is orthogonal and symmetric.

Determinant and inverse matrix

The determinant of a square matrix \mathbf{A} is denoted by $|\mathbf{A}|$ or $\operatorname{det}(\mathbf{A})$.

1. For a 2×2 square matrix $\mathbf{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right],|\mathbf{A}|=a d-b c$.
2. For $\mathbf{A}_{(p \times p)},|\alpha \mathbf{A}|=\alpha^{p}|\mathbf{A}|$.
3. For $\mathbf{A}_{(p \times p)}, \mathbf{B}_{(p \times p)}, \operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$.
4. For $\mathbf{A}_{(p \times q)}, \mathbf{B}_{(q \times p)}, \operatorname{det}\left(\mathbb{I}_{p}+\mathbf{A B}\right)=\operatorname{det}\left(\mathbb{I}_{q}+\mathbf{B A}\right)$.
5. If \mathbf{A} is orthogonal, then $\operatorname{det}(\mathbf{A})= \pm 1$.
6. A square matrix \mathbf{A} is called nonsingular if $\operatorname{det}(\mathbf{A}) \neq 0$.

If \mathbf{A} is nonsingular then there exists the inverse matrix of \mathbf{A}, denoted by \mathbf{A}^{-1}, which satisfies $\mathbf{A A}^{-1}=\mathbb{I}$. Some basic results include:

1. $\mathbf{A A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbb{I}$.
2. $\left(\mathbf{A}^{-1}\right)^{\prime}=\left(\mathbf{A}^{\prime}\right)^{-1}$.
3. If \mathbf{A} and \mathbf{B} are nonsingular, $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$.
4. If \mathbf{A} is an orthogonal matrix, $\mathbf{A}^{-1}=\mathbf{A}^{\prime}$.

Lemma 1 (Woodbury's formula). Suppose $\mathbf{A}_{(m \times m)}$ is nonsingular. For $\mathbf{U}_{(m \times n)}$ and $\mathbf{V}_{(m \times n)}$ where $m>n$, the inverse of $\mathbf{A}+\mathbf{U V} \mathbf{V}^{\prime}$ is

$$
\left(\mathbf{A}+\mathbf{U} \mathbf{V}^{\prime}\right)^{-1}=\mathbf{A}^{-1}-\mathbf{A}^{-1} \mathbf{U}\left(\mathbb{I}_{n}+\mathbf{V}^{\prime} \mathbf{A}^{-1} \mathbf{U}\right)^{-1} \mathbf{V}^{\prime} \mathbf{A}^{-1}
$$

Trace of a matrix

The trace of a square matrix $\mathbf{A}_{(p \times p)}$ is the sum of all diagonal elements and is

$$
\operatorname{trace}(\mathbf{A})=\sum_{i=1}^{p} a_{i i}
$$

Several properties of trace that are worth mentioning include:

1. Trace is a linear map, i.e., for $\mathbf{A}_{(p \times p)}, \mathbf{B}_{(p \times p)}$ and $\alpha, \beta \in \mathbb{R}$, $\operatorname{trace}(\alpha \mathbf{A}+\beta \mathbf{B})=$ $\alpha \operatorname{trace}(\mathbf{A})+\beta$ trace (\mathbf{B}).
2. $\operatorname{trace}(\mathbf{A})=\operatorname{trace}\left(\mathbf{A}^{\prime}\right)$
3. For $\mathbf{A}_{(p \times m)}, \mathbf{B}_{(p \times m)}$, $\operatorname{trace}\left(\mathbf{A B}^{\prime}\right)=\operatorname{trace}\left(\mathbf{B}^{\prime} \mathbf{A}\right)$

Eigenvalues and eigenvectors

A square matrix $\mathbf{A}_{(p \times p)}$ has the characteristic equation given by $q_{\mathbf{A}}(\lambda)=\operatorname{det}\left(\mathbf{A}-\lambda \mathbb{I}_{p}\right)$, which is the p th order polynomial function of λ. The roots of $q_{\mathbf{A}}(\lambda)$ are called latent roots (or eigenvalues) of \mathbf{A}. Each eigenvalue λ_{i} has its corresponding non-zero vector \mathbf{u}_{i}, called an eigenvector, satisfying

$$
\mathbf{A} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i} .
$$

Properties include:

1. $\operatorname{det}(\mathbf{A})=\prod_{i=1}^{p} \lambda_{i}$.
2. $\operatorname{trace}(\mathbf{A})=\sum_{i=1}^{p} \lambda_{i}$.
3. If \mathbf{A} is symmetric, then its eigenvalues are all real.

The eigen-decomposition of a symmetric matrix $\mathbf{A}_{(p \times p)}$ leads to at most p distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$ and their corresponding eigenvectors $\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}$, and is denoted by

$$
\mathbf{A}=\mathbf{U} \Lambda \mathbf{U}^{\prime}
$$

where $\mathbf{U}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right]$ is the orthogonal matrix whose j th column is the j th eigenvector, and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ is the diagonal matrix whose j th diagonal element is the j th eigenvalue. This decomposition is also called the spectral decomposition.

Definition 1. A symmetric matrix \mathbf{A} is

- non-negative definite $(\mathbf{A} \geq 0)$ if $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}=\sum_{i=1}^{p} \sum_{j=1}^{p} x_{i} a_{i j} x_{j} \geq 0$ for all $\mathbf{x} \neq 0$.
- positive definite $(\mathbf{A}>0)$ if $\mathbf{x}^{\prime} \mathbf{A x}>0$ for all $\mathbf{x} \neq 0$.

For a non-negative definite matrix \mathbf{A} we can uniquely define $\mathbf{A}^{\frac{1}{2}}$ so that $\mathbf{A}^{\frac{1}{2}} \mathbf{A}^{\frac{1}{2}}=\mathbf{A}$. Using the spectral decomposition $\mathbf{A}=\mathbf{U} \Lambda \mathbf{U}^{\prime}$, we have

$$
\mathbf{A}^{\frac{1}{2}}=\mathbf{U} \Lambda^{\frac{1}{2}} \mathbf{U}^{\prime}
$$

where $\Lambda^{\frac{1}{2}}=\operatorname{diag}\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{p}}\right)$.
Lemma 2. i. If \mathbf{A} is positive definite then \mathbf{A} is nonsignular, \mathbf{A}^{-1} exists and $\mathbf{A}^{-1}>0$.
ii. A is positive definite (non-negative definite) if and only if the eigenvalues of \mathbf{A} are all positive (non-negative).
iii. If \mathbf{A} is positive definite and has its eigen-decomposition $\mathbf{A}=\mathbf{U} \Lambda \mathbf{U}^{\prime}$ then

$$
\mathbf{A}^{-1}=\mathbf{U} \Lambda^{-1} \mathbf{U}^{\prime}
$$

where $\Lambda^{-1}=\operatorname{diag}\left(\frac{1}{\lambda_{1}}, \ldots, \frac{1}{\lambda_{p}}\right)$.

