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SUMMARY

We consider how many components to retain in principal component analysis when the dimen-
sion is much higher than the number of observations. To estimate the number of components, we
propose to sequentially test skewness of the squared lengths of residual scores that are obtained
by removing leading principal components. The residual lengths are asymptotically left-skewed
if all principal components with diverging variances are removed, and right-skewed otherwise.
The proposed estimator is shown to be consistent, performs well in high-dimensional simulation
studies, and provides reasonable estimates in examples.

Some key words: High-dimensional data; Principal component analysis; Skewness test.

1. INTRODUCTION

Principal component analysis is widely used and has proven to be effective in dimension
reduction of high-dimensional data. Let X = (Xi,...,X,)" be an n x d data matrix, where each
vector X; has zero mean and covariance matrix X; = Z?Zl )»l-uiu,.T, and (u;, ;) denotes the ith
principal component direction and variance. The classical estimates (i;, A;) are obtained by the
eigendecomposition of the sample covariance matrix. Determining the number of components to
retain is crucial in applications.

A number of strategies have been proposed to tackle this problem when the sample size is large
and the dimension is relatively low, i.e., d <« n. These include graphical methods based on the
scree plot of eigenvalues, model-based tests, and computer-intensive tools (Jolliffe, 2002; Josse
& Husson, 2012). However, modern data challenges often involve high-dimension, low-sample-
size data with d >> n, for which those methods may be infeasible, computationally prohibitive,
or chosen subjectively. In this article, we propose a novel estimator of the number of components
when d > n.
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The true number of components is defined in terms of eigenvalues A; of X;. A popular approach
is to assume that the first m eigenvalues are larger than a threshold 2 and the rest equal 72. This
spike model (Johnstone, 2001; Paul, 2007) has been used in many different contexts (Baik &
Silverstein, 2006; Kritchman & Nadler, 2009; Leek, 2011). For a diverging dimension d with
limited sample size, the spike size should be increasing at least as fast as d in order to have
nontrivial eigenvector estimators (Lee, 2012), so we assume the eigenvalues of X ; to be

k,-:al-zd (i=1,...,m)), 012>--->0,%,>0, (D)

and the rest of the eigenvalues, Ayi1,. .., Aq, to be equal to T2 or to form a slowly decreasing
sequence.

Hellton & Thoresen (2017) have shown that under the m-component model (1), even though
the classical estimates of (A;,u;) are inconsistent as d — oo, the first m estimated principal
component scores contain useful information on the true scores. We further show in § 5 that
the remaining estimated scores are mostly accumulated noise, which implies that the number of
spikes m in (1) can be considered to be the number of asymptotically meaningful components.

To determine m from a sample X', we propose to sequentially test the null hypothesis Hy, :
m = k against the alternative hypothesis H,; : m > k, for increasing values of &, and to
estimate m by the smallest £ for which Hy, is not rejected. To this end, we show that the squared
lengths of residuals that are obtained by removing the first £ leading principal components
are asymptotically left-skewed under the null hypothesis, or right-skewed under the alternative
hypothesis. This motivates us to consider test statistics based on the empirical distribution of the
residual lengths. We adopt well-known tests for skewness (Randles et al., 1980; D’ Agostino &
Pearson, 1973). The resulting estimator is consistent under a mild condition.

2. SEQUENTIAL TESTS TO DETERMINE m
2-1. Motivation

We propose to sequentially test the null hypotheses Hy, ..., Hys for some M < n, against
one-sided alternatives:

Hi:m=k versus H,;:m>k, 2)

where m is the number of components with fast-diverging variances in (1). These null hypotheses
do not overlap; if Hy is true, then H is not true for all £ 3+ k. However, Hy is nested within all
lower-order alternatives; if Hj, is true, then H, ¢ is true for all £ < k. These observations suggest
testing of Hy, only if Hy is rejected for all £ < k. The number of effective components, m, is then
determined by the smallest & for which Hy is not rejected at a given level.

To test these hypotheses, we first note that the squared lengths of the data vectors
HX] H; (j = 1,...,n) have different empirical distributions depending on which hypothesis
is true. For example, let us assume that the global null hypothesis Hy is true, ¥; = 721;, and
that the data are normal. Then, the squared length HXJ H; is normally distributed for large d: as
d — o0,

d'2 (a7t x5 - 2?) > N2t 3)
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in distribution. On the other hand, when m > 1in (1), the squared length decomposes into a sum
of two independent random variables: if m = 1, d~! ”X] ”2 = Z + Y, where approximately

Z ~N(@%2t%)d), Yo} ~ xi. 4)

In the limit d — oo, Z degenerates to 2, so d ! H)g”; converges in distribution to a shifted-
and-scaled chi-squared random variable, which is right-skewed.

This example suggests considering test statistics based on the normality or the skewness of the
empirical distribution of the squared lengths. We will show in § 3 that general asymptotic null
and alternative distributions of the squared lengths are similar to those in (3) and (4), even under
non-Gaussian assumptions.

2.2. Test statistics

In testing the global null hypothesis, the asymptotic normality, shown in (3) under Hy, can be
used. Let pf)v =pV (X ||% S 1 X ||%) be a p-value for testing the normality of HX] H; Intuitively,
if a principal component with large variance is present, p{)V tends to be small, since the empirical
distribution becomes right-skewed, as in (4).

For testing higher-order hypotheses Hj for k > 1, we propose to remove the first k& estimated
principal components from the data. We use the classwal estimates (u,, A ) obtalned by the eigen-
decomposition of the sample covariance matrix S; = n~'XTX = UAU". Denote the scaled
squared length of the kth residual for the jth observation by

2

Ri(k) = (j=1,....,m k=0,...,M). )

2

The normality test may be adopted in computing p-values for testing Hy. We will show in § 3-2
that if &z; is a consistent estimator of i; in the d-limit for i/ < k, then the asymptotic null distribution
of R;(k) is Gaussian under Hy, thus leading to a uniform null distribution of the p-value.

The situations under which #; is consistent are rare. In fact, under the fast-diverging eigenvalue
assumption (1) and in the high-dimension, low-sample-size asymptotic scenario, the sample
principal component directions are inconsistent (Jung et al., 2012b; Lee, 2012). Moreover, the
true principal component variance A; is often overestimated by i for i < m. Since the sum
of squared scores equals the variance, i.e., n -1 Z 1 (u )2 = ii, this overestimation affects
(5) in such a way that R;(k) becomes smaller than de51red and asymptotically left-skewed. We
will revisit this phenomenon in §3-3.

To incorporate the left-skewed R;(k), our first choice of the test statistic is from a test for
skewness. For observations y; = R;(k) (j = 1,...,n), suppose that the distribution of y; is
continuous with an unknown median 6. Randles et al. (1980) proposed a nonparametric test for
symmetry about 6 based on a U-statistic with kernel

f* iy, vk) = sign(yi +y; — 2vk) + sign(yi + v — 2y)) + sign(y; + v — 201,

called the triples test for symmetry. The triples test is an asymptotic test for large », and Randles
et al. (1980) recommended the use of its asymptotic normality when n > 20. A one-sided test for
left- or right-skewed alternatives is also possible (Hollander et al., 2013, § 3.9). For our purpose,
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the p-value is obtained by the asymptotic normality of the one-sided triples statistic with the
alternative of right-skewed distributions, and is denoted by

PR =pRR1(K), ..., Ry(b)). (6)

Our second choice of test statistic is obtained from a test for normality that is sensitive to
skewed alternatives, based on the sample skewness coefficient by = m3/(m)>/?, where m, = n!
Zj'.'zl (i —»)". D’Agostino (1970) suggested a transformation of by, defining Z = 6 log[b1 /A +

{(b1/ k)z +1}1/2], where 8 and A are functions of the theoretical moments of b in samples of size
n from the normal distribution. Under normal assumptions, the distribution of the transformed Z
is well-approximated by the standard normal, even for a small sample size n > 8 (D’ Agostino,
1970; D’ Agostino & Pearson, 1973). Positive b1 and Z indicate right-skewness, while negative
values indicate left-skewness. The p-value of the skewness test is defined by

PP =pPRi(k), ..., Ry(k)} =1 — ®(2), (7)

where @ is the standard normal distribution function.

Both p-values in (6) and (7) have an approximately uniform distribution if the null distribution
of R;(k) is normal. They are sensitive to right-skewed alternatives, as they tend to be close to zero
under such cases. On the other hand, if the null distribution of R;(k) is left-skewed, the p-values
are close to 1. Other tests of symmetry (e.g., Farrell & Rogers-Stewart, 2006) can be used in
place of (6) and (7).

2-3. Example

Before proceeding with theoretical results, we demonstrate the proposed procedures on a
microarray study (Bhattacharjee et al., 2001), which contains d = 2530 genes from n = 56
patients in four different lung cancer subtypes. An inspection of the principal component scores
plot (Jung & Marron, 2009, Fig. 1) suggests that the four subtypes are visually separated by using
the first few sample principal components, and there are no outliers.

We applied the tests discussed in § 2:2 to obtain sequences of p-values for testing (2). As a
visual tool to determine the number of components, we plot pff and pf against k, as shown in
Fig. 1(a). Graphical methods based on the scree plot, shown in Fig. 1(b), lead to either 7 = 2
when locating an elbow, or m = 17 when using a heuristic cut-off based on the cumulative
percentage of variance explained, say 80%. In contrast, our estimate, using either of the two test
statistics, is m = 9, based on

m = min{k : p; > a}, ®)

where ¢ = 0-1 in this example. While @« = 0-1 may be used as a default value in practice, we
recommend inspecting the p-value sequence such as in Fig. 1.
The empirical distribution of R;(0) in Fig. 1(c) is clearly right-skewed, strong evidence

against Hy : m=0. The components with large variances contained in R;(0) = d -1 HX] H; yield
a heavy-tailed distribution skewed towards large values. On the other hand, noise-accumulated
components are excessively subtracted in computing R;(15), leading to the left-skewed distribu-
tion of squared residual lengths, as shown in Fig. 1(d). In this example, p-values in the sequences
are small for the first few tests, then rapidly increase. This pattern was also found in many real
and simulated datasets.
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Fig. 1. Plots for determining the number of components for the data from Bhattacharjee et al. (2001). (a) sequences

of p-values, pf (circles, solid) and pf (asterisks, dashed); (b) scree plot, where the bars indicate the proportion of the

principal component variance, and the curve plots the cumulative proportion of variance; (c) and (d) show jitter plots
of R;(0) and R;(15) and kernel density estimates.

3. ASYMPTOTIC NULL AND ALTERNATIVE DISTRIBUTIONS
3-1. Models

We suppose that the variances of the first m components are diverging at rate d, while the
rest are much smaller. For a fixed m, the m-component model is defined for increasing d in
Conditions 1-4:

Condition 1. \; = aizd (i=1,...,m)with 012 > .. > a,%l > 0;
Condition 2. Zf‘lzm“ ri/d — 1% € (0, 00), Z?:mH kf/d — U?) € (0,00) as d — oo, and
there exists § € (0, 1] such that Z?:mH )LI.ZJ“S = o(d119/2),

By decomposing each observation into the first m principal components and the remaining
term, we write X; = ) ", 2172

d 172 . . .
m, Jwizi ) i A uizig (j = 1,...,n), where z;; is the normalized
principal component score.

Condition 3. For each j, Z; = (zy,22;,...) is a sequence of mutually independent random
variables such that for any 7, E(z;;) = 0, var(z;;) = 1, and the second and third moments of zii.
are uniformly bounded below and above. The sequences Z1, 2, . . . are mutually independent.

Conditions 1 and 2 are quite general and encompass the spike models of Leek (2011) and
Hellton & Thoresen (2017). In particular, they include equal, polynomially decreasing, and slowly
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diverging eigenvalues. Condition 2 is stronger than the conditions of Ahn et al. (2007), which are
used in showing the high-dimension, low-sample-size geometric representation: modulo rotation,
the data converge to a regular simplex (Hall et al., 2005). This stronger condition and the moment
conditions in Condition 3 are needed for introducing a d-asymptotic normality in Theorem 1
and also in describing asymptotic behaviours of sample scores in Theorem 4. Conditions 1 and 2
imply a low effective rank assumption in the random matrix literature; see Koltchinskii & Lounici
(2016, 2017).

A special case of our model is the high-dimensional approximate factor model with pervasive
factors, defined below, which has recently gained popularity as it is believed to be more realistic
than other models (Hellton & Thoresen, 2017). Let X = Z;": | 9izi + € be an m-factor model,
where z; are standardized factor scores and € = (¢1,...,€4)" is a zero-mean independent noise
vector with uniformly bounded variances. The orthogonal factor loadings, ¢; € R¢, are pervasive;
that is, the proportion of nonzero entries of ¢; is nonvanishing as d increases (Fan et al., 2013;
Hellton & Thoresen, 2017). For example, ¢; is pervasive if for » € (0, 1) the first |rd | entries of
gi are 1, while the rest are zero for all d. The loading vector ¢; is then expressed as ¢; = )\3 / zui,
where |lu;|l, = 1 and limg_, oo A;/d = 01.2. Condition 1 makes the first m components pervasive.
Intuitively, when more variables are added into the analysis, i.e., when the dimension d increases,
these added variables are not simply noise terms but are correlated with the pervasive factors.

The following assumption on the pervasive factors plays a crucial role in our test procedures
proposed in § 2-2.

Condition 4. The third central moment ole% (i=1,...,m;j=1,...,n)is positive.

Simply put, we require that Zl-2j be right-skewed. Condition 4 holds for many distributions,
including #,, distributions with v > 6, the beta distributions with parameters (o, ) where o« > 0-5,
the gamma distributions, and a normal mixture £ X1 + (1 —&)X>, where X7 and X; are independent
normal random variables with a common variance and & follows a Bernoulli distribution.

3.2. Known principal component directions

We first investigate an ideal case where the principal component directions are known, to
better understand the high-dimensional asymptotic behaviour of the residual lengths. Define the
kth true residual length of the jth observation by

f 2
T
Xj — § uitt] X
i=1

d
=d™' ) w, ©)
2

i=k+1

Ri(k) =d™!

where wy; = u} X; = k; / 22,-j is the population principal component score.

The asymptotic behaviour of (9) can be understood by using a scaled Gram matrix Sp = d~!
X X7, whose (j,k)th element is sj; = d_lXjTXk (j,k =1,...,n). An immediate connection is
that the jth diagonal element of Sp is R /(0). Under the assumption of m fast-diverging components,
we denote the n x m matrix of the first m scaled components by WlT =d V2X(uy,... up),
where the (i, j)th element of W7 is d -1/ 2w,-j. It is known that Sp has a limiting expression (Jung
etal., 2012b): asd — oo,

Sp — Wiwy + 121, (10)

in probability, conditional on W7. This result is now strengthened to provide a rate of convergence
of S D.
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THEOREM 1. Assume the m-component model under Conditions 1-3. Let m > 0 be fixed. Con-
ditioned on W1, (10) holds. Moreover, each element of Sp has a d-asymptotic normal distribution:
forj+k asd — oo,

m
d'/? (sjj — Zafzfj - ‘E2) — N(0,vp),
i=1

m
d'’? <sjk —~ Zofz,_-,-z,»k> — N(0,v3)

i=1

in distribution, where 2 = limy_, o Z?:mﬂ Ai/d, v% = limy_ oo Zf:m_i_l klgvar(zl.zj)/d and

U = limg oo 20,01 A2/d.
Theorem 1 provides the null and alternative distributions of 1~i’j (k).

COROLLARY 1. Assume the m-component model under Conditions 1-4. Let n > m = 0 be
fixed. Then foranyj=1,...,nandk =0,...,n— 1, for large d:

) ifk =>m, I:2j (k) is asymptotically normal;
(i1) ifk < m, R;(k) is asymptotically right-skewed.

Intuitively, if all of the pervasive factors are removed from the residual, i.e., £ > m, then the
factors in the residual can be thought of as accumulated noise, and by Theorem 1, the residual
length has a limiting normal distribution. On the other hand, if one or more pervasive factors
remain in the residual, i.e., k& < m, then the sum of squared factors appears in the residual length.
Condition 4 ensures that the squared factors are right-skewed.

3-3. Estimated principal component directions

When the estimated principal component directions #; are used, the residual lengths R; (k)
have different limiting distributions from those of kj(k). We characterize the full family of
asymptotic distributions of R;(k) under the null and alternative hypotheses. For this, we consider
an asymptotic scenario where the limits d — oo and » — oo are taken progressively. This
resembles the case where the dimension increases at a much faster rate than the sample size does,
such as d/n — oo, but is not identical to it (Lee et al., 2014). Asymptotic null distributions of
R; (k) for fixed n are discussed in the Supplementary Material.

Let w;; = i1;.X; denote the sample projection score. The following decomposition is useful in
explaining the limiting distribution of R;(k):

k
i 1
Ri(k) = Rj(k) 4 a;(k), aj(k) = EZ(W'% —W). (11)
i=1

First consider the asymptotic null distribution of R;(k) under Hy : m = k. The overestimation
of A; i = 1,...,m) by )A\l- means that vAvg tends to be larger than wg., which is shown in the
Supplementary Material. Thus one can expect that a;(m), the difference between the squared
true score and squared sample score, is negative. It turns out that a;(m), and subsequently R;(m),
are left-skewed in the limit, as shown in Theorem 2. Describing the alternative distribution of
R;(k) for k < m seems more challenging, because the two dependent variables in (11) exhibit
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different skewness: the first term R (k) is asymptotically right-skewed, and the second term a; (k)
is asymptotically left-skewed. Below we also show that a; (k) is in fact asymptotically negligible.

THEOREM 2. Assume the m-component model under Conditions 1-4. Let m > 0 be fixed.
Suppose that the limits d — 0o and n — oo are taken successively.

(1) Ifm =0, then in the limit, R;(0) is normally distributed.

i) If m > 1, then Jor each j, n{R;(m) — %) — A;j(m) in probability, where A;(m) =
—72 Zl 125 2 Moreover, Aijm) (j =1,2,...) are zdentzcally distributed, left—skewed and
mutually mdependent

(i) If m > k = 0, then for each j, Rj(k) — Bj(k,m) in probability, where Bj(k,m) =
Z;":k_H al-zzl-zj + 2. Moreover: Bi(k,m) (j = 1,2,...) are identically distributed, right-
skewed and mutually independent.

Theorem 2 provides a theoretical justification for the test procedures based on the skewness
in § 2-2. The test statistics in (6) and (7) tend to be large under the nontrivial null hypothesis and
small under the alternative. Theorem 2 also implies that the sharp transition of p-values from low
to high, as shown in Fig. 1, is bound to happen for large enough d and n.

Our next result shows that our estimator (8) consistently estimates the true number of principal
components. For this, we require that the test involved be consistent and the function p; be
continuous for each n. These hold if pf is used. Although pf does not satisfy the continuity
condition, the estimator of m using the triples test appears to be consistent in our empirical
results.

THEOREM 3. Assume the m-component model under Conditions 1-4. Let m(«) be the estimator
of m defined in (8), where py. is computed using (7). Then for any a € (0, 1),
lim hm pr{m(a) = m} = 1.
n—00 d—
Theorem 3 not only shows consistency but also suggests that for large enough dimension and

sample size, the estimator 7 should be nearly invariant with respect to the choice of «. This
robustness against varying « is empirically confirmed in § 4-4.

4. NUMERICAL STUDIES
4-1. Existing methods

There are a number of existing methods for determining the number of components. Ford « n,
we refer to Jolliffe (2002) for discussion of heuristic and model-based methods.

Bai & Ng (2002) considered determining the number of principal components, 7, when both
the dimension and the sample size diverge. They proposed several information criteria-type
estimators, but we found that using these estimators directly yields unsatisfactory results, so
we use a modified estimator based on their information criteria, defined in the Supplementary
Material. Simulation-based methods such as parallel analysis (Horn, 1965) have evolved into
eigenvalue-based estimation of m, using an asymptotic random matrix theory for large d and
n. Kritchman & Nadler (2008, 2009) and Passemier & Yao (2012, 2014) developed estimators
of m using the Tracy—Widom distribution (Johnstone, 2001). Leek (2011) also proposed an
eigenvalue-based estimator of m by choosing a stable threshold for the sample eigenvalues.

Our estimators obtained by (8) will be denoted by 7r and mip, when using the p-value sequences
of (6) and (7), respectively. For simplicity, we used « = 0-1 for all numerical results. Our methods
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Table 1. Estimated number of principal components for example datasets
Dataset (d, n) }’;’lR I;ZD ?;ZL I’;’lKN }’;’lpy ﬁ’lBN
Lymphoma (7129, 77) 11 11 31 65 65 10
Prostate (2135, 102) 22 22 14 52 25 14
NCI60 cDNA (2267, 60) 5 5 2 31 9 2
NCI60 Afty (2267, 60) 10 10 23 44 31 4
NCI60 combined (2267, 120) 11 11 65 86 80 4
Leukemia (3051, 38) 1 9 9 25 22 3
Lung (2530, 56) 9 9 55 41 31 7
Lobular freeze (16615,817) 118 92 20 481 171 29
Hippocampi (336, 51) 11 11 14 27 24 3
Liver (12813, 500) 71 151 171 416 290 137

mg, our estimator using (6); mp, our estimator using (7); mr, Leek (2011)’s method; mgy, Kritchman & Nadler
(2008)’s method; mpy, Passemier & Yao (2014)’s method; mpn, Bai & Ng (2002)’s method.

are robust with respect to the choice of &, as discussed in § 4-4. In the numerical studies below,
our estimators are compared with the methods of Kritchman & Nadler (2008), Passemier & Yao
(2014), Leek (2011) and Bai & Ng (2002).

4.2. Real data examples

We report the estimated number of components for eight real datasets. The first six are
from gene expression studies, which usually produce high-dimensional data with limited sam-
ple size. The latter two are different types of images. These datasets are described below;
see Table 1.

The microarray datasets we tested include diffuse large B-cell lymphoma data (Shipp et al.,
2002), prostate cancer data (Singh et al., 2002), and each of the two different platforms of the
NCI60 cell line data (Shoemaker, 2006). We also tested the training set of leukemia data (Golub
et al., 1999) and lung cancer data (Bhattacharjee et al., 2001). The lobular freeze dataset is a set
of breast cancer gene expression data, measured by RNA sequencing (Ciriello et al., 2015).

The hippocampi dataset (Pizer et al., 2013) consists of skeletal representations, three-
dimensional models of human organs parameterized by spatial locations, lengths and directions
of skeletal spokes. Pizer et al. (2013) proposed a nonclassical principal component analysis based
on Jung et al. (2012a). This data example is chosen to show that our method can be applied to
nonclassical principal component analysis through the scores matrix, since the residual lengths
can be computed from the scores; see (11). The last dataset consists of cell nucleus greyscale
images from human liver tissues (Wang etal., 2011). We chose d = 12 813 variables with standard
deviation greater than 0-01 from the original 36 864 pixels.

Table 1 shows that our estimates g and mp are usually close to each other. Our estimates are
generally larger than those of Bai & Ng (2002), but smaller than those of Kritchman & Nadler
(2008) and Passemier & Yao (2014). Through a simulation study in § 4-3, we have come to
believe that the method of Bai & Ng tends to underestimate, while those of Kritchman & Nadler
and Passemier & Yao overestimate, for finite d and n. In particular, the estimates m = 25 and
22 from the methods of Kritchman & Nadler and Passemier & Yao for the leukemia data seem
unsuitably large considering the sample size n = 38. Our estimates, especially 7p, exhibit a
balance between the two extremes. The seemingly biased other estimates are in part caused by
the violation of distributional assumptions such as normality and equal tail-eigenvalues, which
might be the case for real datasets. Our estimators do not need such assumptions.
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Fig.2. Average estimates of the number of components for simulated data, computed by mg (circles, solid),

mp (asterisks, dashed), Kritchman & Nadler (2008)’s method (grey +, dashed), Passemier & Yao (2014)’s method

(grey diamonds, solid) and Bai & Ng (2002)’s method (grey x, dashed): (a) m = 3 model; (b) m = 10 model.

The estimates of Leek (2011) were similar to those of Bai & Ng (2002) and thus omitted. The largest standard error
for all results is 0-25.

4.3. Simulation

To better understand the empirical performance of the estimators, we conducted a simula-
tion study. The eigenvalues of X; are modelled with s > 0 representing a signal strength,
0 < B < 1/2 representing a decay rate of variances in noise components, and g > 0 controlling
the gap between leading eigenvalues, by

N ofd, o} =sHl+gm—1i} (G=1,...,m),
N K7 (i=m+1,...,d),

(12)
where 15 = {Z?:m—l—l i=P/(d —m)}~! is used to ensure that the average of A; (i = m+1,...,d)
is 1. The eigenvectors of ¥ ; are randomly chosen from the uniform distribution on the orthogonal
group of dimension d.

We present simulation results for four different cases.

Case I. The standard normal distribution is used to sample the standardized scores z;;. The
eigenvalues of the population covariance matrix are defined by (12) with (s, g, 8) = (0-2,1,0).

Case II. The standard normal model with (s, g, 8) = (0-2,1,0-3).

Case III. The #3 model with (s, g, 8) = (0-2,1,0-3).

Case IV. The #3 model with (s, g, 8) = (0-1,0-5,0-3).

We set the true number of components m = 3,10 for each of the cases and collected the
estimated results for (d,n) = (10000, 100) based on 100 simulation runs. Figure 2 shows that
our estimators /mp and mg perform as well as or better than the competing estimators.

Case I is an ideal situation for all methods considered. In particular, the variances of noise
components are equal to each other, i.e., ; = 1 (i = m+1,...,d), and the normal assumption is
satisfied. All methods perform similarly. In Case II, the methods of Kritchman & Nadler (2008)
and Passemier & Yao (2014) tend to overestimate. This is because, for 8 > 0, the equal tail-
eigenvalue assumption for the estimators of Kritchman & Nadler and Passemier & Yao to be
consistent is not satisfied. The assumptions for consistency of our estimators are satisfied under
Case II.

In Cases III and IV, a scaled #3 distribution is used to sample the standardized scores z;;.
The coefficient of skewness in Condition 4 is not defined for this heavy-tailed distribution.
Nevertheless, our estimators are less affected by the violation of the assumption than the more
biased estimators of Kritchman & Nadler and Passemier & Yao, because the heavy-tailed scores
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Fig.3. Invariance of estimates for Shipp et al. (2002)’s data: (a) estimates as functions of «, computed by
mpg (circles, solid), mp (asterisks, dashed), Kritchman & Nadler (2008)’s method (grey plus signs, dashed) and
Passemier & Yao (2014)’s method (grey diamonds, solid); (b) estimates as a function of the variance threshold.

exhibit more drastic distinctions of the left- and right-skewness than for the normal distribution.
In Case IV, the leading m eigenvalues are smaller than in Case III. In this weak-signal setting,
the estimators of Leek (2011) and Bai & Ng (2002) severely underestimate.

More simulation results are reported in the Supplementary Material.

4.4. Empirical robustness against varying o

The asymptotic invariance of m against varying « € (0, 1), shown in Theorem 3, suggests
some invariance for moderately large d and ». In fact, for most real and simulated data examples
we considered, the values of 7 are stable against various values of «.

For the data of Shipp et al. (2002), introduced in § 4-2, our estimates g (o) and mp(«) are
stable for a wide range of «; see Fig. 3. As a comparison, we also experimented on the eigenvalue-
based estimators of Kritchman & Nadler (2008) and Passemier & Yao (2014) by changing their
threshold value, which is parameterized by the 1 — « quantiles of the Tracy—Widom distribution.
These estimates change their values substantially. The methods of Leek (2011) and Bai & Ng
(2002) are not subject to arbitrary choices of threshold, and they were excluded from this study. We
further compare with a heuristic method using the cumulative percentage of variance explained.
As shown in Fig. 3(b), changing the threshold, say from 80% to 90%, would drastically change
the estimates.

The robustness of our estimators against varying « is also confirmed in simulated data. In Fig. 4,
the estimates with varying « are plotted for data generated by Case Il in § 4-3. Our estimates are
stable, except for « < 0-1. The estimator of Kritchman & Nadler is also stable for larger values
of «, but the estimates are clearly biased.

5. PRINCIPAL COMPONENT SCORES IN HIGH DIMENSIONS

We conclude with a formal statement on the usefulness of the sample principal component
scores in high dimensions.

Recall that W1 = (0yz;);; is the m x n matrix of the scaled true scores, and Wi W] is
proportional to the m x m sample covariance matrix of the first m scores. Similarly, we define
WIT =d 2X (1, ..., 1) Let {A;(S), vi(S)} denote the ith largest eigenvalue-eigenvector pair
of a nonnegative-definite matrix S and let v;;(S) denote the jth loading of the vector v;(S).
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Fig. 4. Invariance of estimates for simulated data with the true values of m = 3 and 10, shown in (a) and (b), respectively.

Average estimates, from 100 simulation runs, of 7z (black circles, solid), mp (black asterisks, dashed), Kritchman &

Nadler (2008)’s method (grey plus signs, dashed) and Passemier & Yao (2014)’s method (grey diamonds, solid) are
shown with error bars representing the standard errors.

THEOREM 4. Assume the m-component model under Conditions 1-4 and let n > m > 0 be
Jixed. In addition, we assume that the scores wy; are absolutely continuous.

(1) If k < m, then the ratio of the sample score to the true score of X; for the kth component
is asymptotically decomposed into a common factor, not depending on j, and an error specific to
each data point. Specifically, forj =1,...,n,

Wi
W—Z = v (W) + 43 + Op(d ™1/,

where py = {1 + rz/)»k(WlWlT)}l/2 and ey = pi Zi:hm’m#koizij(akzlg-)_lvk,-(WlWlT).
Moreover,

WT = WIRS + 0p(d~ /%), (13)

where R = {(vi(W1W]),...,vn(W1W )} is an m x m orthogonal matrix and S is the m x m
diagonal matrix whose kth diagonal element is py.

(i) If k > m, then the ratio diverges with the rate d\=YO/2, for v satisfying A =< d*.
Specifically, Wyj/wiy = Optd1=70/2} and d~! Z}’Zl 1711]%] — 12 in probability as d — <.

The asymptotic relation (13) tells us that for large d, the first m sample scores in W) converge
to the true scores in W1, uniformly rotated and scaled for all data points. It is thus valid to use the
first m sample principal scores for exploration of important data structure, to reduce the dimension
of the data space from d to m in the high-dimension, low-sample-size context.
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