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a b s t r a c t

Dimension reduction of multivariate data supervised by auxiliary information is con-
sidered. A series of basis for dimension reduction is obtained as minimizers of a novel
criterion. The proposed method is akin to continuum regression, and the resulting basis is
called continuum directions. With a presence of binary supervision data, these directions
continuously bridge the principal component, mean difference and linear discriminant
directions, thus ranging from unsupervised to fully supervised dimension reduction. High-
dimensional asymptotic studies of continuum directions for binary supervision reveal
several interesting facts. The conditions under which the sample continuum directions are
inconsistent, but their classification performance is good, are specified.While the proposed
method can be directly used for binary andmulti-category classification, its generalizations
to incorporate any form of auxiliary data are also presented. The proposed method enjoys
fast computation, and the performance is better or on par with more computer-intensive
alternatives.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In modern complex data, it becomes increasingly common that multiple data sets are available. We consider the data
situation where a supervised dimension reduction is naturally considered. Two types of data are collected on a same set
of subjects: a data set of primary interest X and an auxiliary data set Y . The goal of supervised dimension reduction is to
delineate major signals in X , dependent to Y . Relevant application areas include genomics (genetic studies collect both gene
expression and SNP data—Li et al., 2016), finance data (stocks as X in relation to characteristics Y of each stock: size, value,
momentum and volatility—Connor et al., 2012), and batch effect adjustments (Lee et al., 2014).

There has been a number of work in dealing with the multi-source data situation. Lock et al. (2013) developed JIVE
to separate joint variation from individual variations. Large-scale correlation studies can identify millions of pairwise
associations between two data sets viamultiple canonical correlation analysis (Witten and Tibshirani, 2009). Thesemethods,
however, do not provide supervised dimension reduction of a particular data set X , since all data sets assume an equal role.

In contrast, reduced-rank regression (RRR, Izenman, 1975; Tso, 1981) and envelop models (Cook et al., 2010) provide
sufficient dimension reduction (Cook and Ni, 2005) for regression problems. See Cook et al. (2013) for connections between
envelops and partial least square regression. Variants of principal component analysis (PCA) have been proposed to
incorporate auxiliary information; see Fan et al. (2016) and references therein. Recently, Li et al. (2016) proposed SupSVD, a
supervised PCA that encompasses regular PCA to RRR. Our goal is similar to that of SupSVD, which extends RRR and envelop
models, in that the primary and auxiliary data sets play different roles. We consider a basis (or subspace) recovery to extract
the part of main data set which is relevant to the auxiliary data set. Unlike SupSVD, which provides a fully supervised
dimension reduction, we seek a unified framework that covers a wide spectrum from fully-supervised to unsupervised
dimension reduction.
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A potential drawback of fully supervised dimension reduction as a preprocessing for further application of predictive
modeling is a double-dipping problem: The same signal is considered both at dimension reduction and at classifiers. In high
dimensional data situations, small signals can sway the whole analysis, often leading to a spurious finding that cannot be
replicated in subsequent studies. A regularized semi-supervised dimension reduction has a potential tomitigate the double-
dipping problem.

We propose a semi-supervised basis learning for the primary data that covers a wide range of spectrum from supervised
to unsupervised dimension reduction. A meta-parameter γ ∈ [0, ∞) is introduced to control the degrees of supervision.
The spectrum of dimension reduction given by different γ is best understood when there exists a single binary supervision.
In such a special case, the directional vectors of the basis continuously bridge the principal component direction, mean
difference and Fisher’s linear discriminant directions.

The proposedmethodwasmotivated by the continuum regression (Stone and Brooks, 1990), regressors ranging from the
ordinary least square to the principal component regression. In the context of regression, our primary data set is predictors
while the auxiliary data are the response. The new basis proposed in this work, called continuum directions, can be used with
multivariate supervision data, consisting of either categorical or continuous variables.

We also pay a close attention to the high-dimension, low-sample-size situations (or the p ≫ n case), and give a new
insight on the maximum data piling (MDP) direction wMDP , proposed as a discriminant direction for binary classification
by Ahn and Marron (2010). In particular, we show that wMDP is a special case of the proposed continuum direction, and
if p ≫ n, MDP is preferable to linear discriminant directions in terms of Fisher’s original criterion for linear discriminant
analysis (LDA, Fisher, 1936). We further show, under the high-dimension, low-sample-size asymptotic scenario (Hall et al.,
2005), although the empirical continuum directions are inconsistent with their population counterparts, the classification
performance using the empirical continuum directions can be good, if the signal strength is large enough.

As an application of the continuum directions, we endeavor to use the continuum directions in classification problems.
Recently, numerous efforts to improve classifications for the p ≫ n situation have been made. Linear classifiers such
as LDA, the support vector machine (Vapnik, 2013) or distance weighted discrimination (Marron et al., 2007; Qiao et al.,
2010) often yield better classification than nonlinear methods, in high dimensional data analysis. A recent trend is sparse
estimations. Bickel and Levina (2004) studied the independence rule, ignoring off-diagonal entries of SW . Additionally
assuming sparsity of the populationmean difference, Fan and Fan (2008) proposed the features annealed independence rule
(FAIR). Wu et al. (2009) and Shao et al. (2011) proposed sparse LDA estimations, and Clemmensen et al. (2011) proposed
sparse discriminant analysis (SDA) to learn sparse basis for multi-category classification. Cai and Liu (2011) proposed the
linear programming discriminant rule (LPD) for sparse estimation of the discriminant direction vector. The sparse LDA,
SDA and LPD are designed to work well if their sparsity assumptions are satisfied. Sophisticated methods such as those
of Wu et al. (2009) and Cai and Liu (2011) usually suffer from heavy computational cost. Our method, when applied to the
binary classification problem, leads to analytic solutions, and the computation times are scalable. We show via simulation
studies that classification performance using the continuum directions is among the best when the true signal is not sparse
and the variables are highly correlated.

The rest of the paper is organized as follows. In Section 2, we introduce continuum directions and discuss its relation
to continuum regression. In the same section, we provide some insights for continuum directions in high dimensions. In
Section 3, we show numerical procedures that are efficient for high-dimensional data. Simulation studies for classification
performance in high dimensions can be found in Section 4. We further show advantages of our method by a few real data
examples in Section 5. We conclude with a discussion. Proofs are contained in Appendix.

2. Continuum directions

2.1. Motivation

Tomotivate the proposed framework for dimension reduction, we first analyze a special case where the supervision data
consist of a binary variable. We discuss a few meaningful directions for such situations, viewed in terms of a two-group
classification problem. These directions are special cases of the continuum directions, defined later in (6).

Let n1 and n2 be the numbers of observations in each group and n = n1 + n2. Denote {x11, . . . , x1n1} and {x21, . . . , x2n2}
for the p-dimensional observations of the first and second group, respectively. In our study it is sufficient to keep the sample
variance–covariances. Denote SW =

1
n (

∑n1
i=1(x1i − x̄1·)(x1i − x̄1·)T +

∑n2
i=1(x2i − x̄2·)(x2i − x̄2·)T ) for the within-group variance

matrix, i.e. the estimated (pooled) common covariance, and SB =
n1n2

(n1+n2)2
(x̄1·− x̄2·)(x̄1·− x̄2·)T for the between-group variance

matrix. The total variance matrix is ST =
1
n (

∑n1
i=1(x1i − µ̂)(x1i − µ̂)T +

∑n2
i=1(x2i − µ̂)(x2i − µ̂)T ) with the common mean

µ̂ = (n1x̄1· + n2x̄2·)/n, and ST = SW + SB.
Fisher’s criterion for discriminant directions is to find a direction vector w such that, when data are projected onto w,

the between-variance wT SBw is maximized while the within-variance wT SWw is minimized. That is, one wishes to find a
maximum of

T (w) =
wT SBw
wT SWw

. (1)
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If SW is non-singular, i.e. the data are not collinear and p ≤ n − 2, the solution is given by wLDA ∝ S−1
W d, where d = x̄1· − x̄2·.

It has been a common practice to extend the solution to the case p > n − 2 using a generalized inverse, i.e.,

wLDA ∝ S−

Wd,

where A− stands for the Moore–Penrose pseudoinverse of square matrix A.
In retrospect, when rank(SW ) < p, Fisher’s criterion is ill-posed since there are infinitelymanyw’s satisfyingwT SWw = 0.

Any such w, which also satisfies wT SBw > 0, leads to T (w) = ∞. In fact, in such a situation, wLDA is not a maximizer of T but
merely a critical point of T . Ahn andMarron (2010) proposed a maximal data piling (MDP) direction wMDP which maximizes
the between-group variance wT SBw subject to wT SWw = 0, and is

wMDP ∝ S−

T d.

Note that wMDP also maximizes a criterion

TMDP (w) =
wT SBw
wT STw

. (2)

In the conventional case where n ≥ p, the criteria (1) and (2) are equivalent up to a constant, and wMDP = wLDA. We discuss
further in Section 2.5 that MDP is more preferable than LDA in the high-dimensional situations.

A widely used modification to Fisher’s criterion is to shrink SW toward a diagonal matrix, leading to

Tα(w) =
wT SBw

wT (SW + αI)w
, for some α ≥ 0. (3)

This approach has been understood in a similar flavor to ridge regression (Hastie et al., 2009). The solution of the above
criterion is simply given by wR

α ∝ (SW + αI)−1d. A special case is in the limit α → ∞, where the solution wR
∞

becomes the
direction of mean difference (MD) wMD ∝ d, which maximizes

TMD(w) = wT SBw, (4)

with a conventional constraint wTw = 1.
In high dimensional data situations, utilizing the principal components is a natural and nonparametric way to filter

out redundant noise. Principal component analysis (PCA) reduces the dimension p to some low number p0 so that the
subspace formed by the first p0 principal component directions contains maximal variation of the data among all other
p0-dimensional subspaces. In particular, the first principal component direction wPC1 maximizes the criterion for the first
principal component direction,

TPCA(w) =
wT STw
wTw

. (5)

The important three directions of MDP, MD and PCA differ only in criteria maximized. With the constraint wTw = 1,
the criteria (2)–(5) are functions of total-variance wT STw and between-variance wT SBw. For the binary supervision case, a
generalized criterion that embraces all three methods is

Tγ (w) = (wT SBw)(wT STw)γ−1 subject to wTw = 1, (6)

where γ takes some value in [0, ∞). The special cases areMDP as γ → 0,MD at γ = 1, and PCAwhen γ → ∞. The direction
vector wγ that maximizes Tγ is called the continuum direction for γ .

2.2. General continuum directions

The continuumdirection (6) defined for the binary supervision is now generalized to incorporate any form of supervision.
Denote X = [x1, . . . , xn] for the p × n primary data matrix and Y for the r × n matrix with secondary information. The

matrix Y contains the supervision information that can be binary, categorical, and continuous. For example if the supervision
information is a binary indicator for two-group classification with group sizes n1 and n2, as in Section 2.1, then the matrix Y
can be coded as the 2 × n matrix Y T

= [n1(e1 − jn); n2(e2 − jn)] where jn = n−1(1, 1, . . . , 1)T = n−11n and ek is the length-
n vector, whose ith element is n−1

k if the ith subject is in the kth group, and zero otherwise. Similarly, if the supervision
information is multicategory with K groups, then Y is the K ×nmatrix whose kth row is nk(ek − jn)T , where nk is the number
of observations belonging to category k. If the supervision is continuous and multivariate, such as responses in multivariate
regression, then the matrix Y would collect centered measurements of response variables.

Assuming for simplicity that X is centered, we write the total variance–covariance matrix of X by ST = n−1XXT , and the
Y -relevant variance–covariance matrix of X by SB = n−1(XY T )(XY T )T . A completely unsupervised dimension reduction can
be obtained by eigendecomposition of ST . On the contrary, a fully-supervised approach is to focus on the column space of
SB, corresponding to the mean difference direction when Y is binary. An extreme approach that nullifies the variation in
X to maximize the signals in Y can be obtained by eigendecomposition of S−

T SB. When Y is categorical, this reduces to the
reduced-rank LDA.
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Fig. 1. Spectrums of supervised dimension reduction for the data set of Bhattacharjee et al. (2001). Shown are the projection scores to the first two
continuum directions, for various values of γ .

Generalizing (6), the following approach encompasses the whole spectrum from the supervised to unsupervised
dimension reduction. A meta-parameter γ ∈ [0, ∞) controls the degree of supervision. For each γ , we obtain a basis
{w(1), . . . , w(κ)} for dimension reduction of X in a sequential fashion. In particular, givenw(1), . . . , w(k), the (k+1)th direction
is defined by w maximizing

Tγ (w) = (wT SBw)(wT STw)γ−1, (7)

subject to wTw = 1 and wT STw(ℓ) = 0, ℓ = 1, . . . , k.

The sequence of directions {w(ℓ) : ℓ = 1, . . . , κ} for a given value of γ is then ST -orthonormal to each other: wT
(ℓ)w(ℓ) =

1, wT
(ℓ)STw(l) = 0 for ℓ ̸= l. An advantage of requiring ST -orthogonality is that the resulting scores zℓ,i = xTi w(ℓ) are

uncorrelated with zl,i for ℓ ̸= l. This is desirable if these scores are used for further analysis, such as a classification based on
these scores.

In sequentially solving (7), choosing large γ provides nearly unsupervised solutions while γ ≈ 0 yields an extremely
supervised dimension reduction. The spectrum from unsupervised to supervised dimension reduction is illustrated in a real
data example shown in Example 1.

Example 1. We demonstrate the proposed method of dimension reduction for a real data set from a microarray study. This
data set, described in detail in Bhattacharjee et al. (2001), contains p = 2530 genes (primary data) from n = 56 patients
while the patients are labeled by four different lung cancer subtypes (supervision data). The primary data set X is the p × n
matrix of normalized gene expressions, while the supervision data is the 4× nmatrix Y , coded to use the categorical cancer
subtypes as the supervision.

The continuum directions can provide basis of dimension reduction, ranging from the unsupervised (γ ≈ ∞) to the fully
supervised (γ ≈ 0). In Fig. 1, the projected scores of the original data are plotted for four choices of γ .

A dimension reduction by PCA has been useful for this data set, since the four subtypes are visually separated by using
the first few sample principal components. The principal component scores are similar to those plotted in the first panel
of Fig. 1 when γ is large enough. On the other hand, a fully supervised dimension reduction given by the MDP directions,
plotted in the bottom right panel, nullifies any variation in the primary data set. Specifically, all observations corresponding
to the same subtype project to a single point, a feature due to the high dimensionality. Thus the projected scores for γ = 0
contain information only relevant to the supervision.

The continuum direction as a function of γ is continuous (shown later in Proposition 2), thus the projected scores are
also continuous with respect to γ . The continuous transition of the scores from large γ to small γ in Fig. 1 is thus expected.
The question of which value of γ to use in final dimension reduction depends on the purpose of analysis. For exploratory
analysis, several values of γ may be used to examine the data from a variety of viewpoints. If the dimension reduction is
performed for regression or classification, a cross-validation can be used, which is discussed in Section 2.3.
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2.3. Continuum directions for classification

When the supervision data is binary or categorical, it is natural to seek an application of continuum directions for the
basis of classification. In particular, for the binary supervision case, as shown in Section 2.1, the continuum direction wγ can
be thought of as the normal direction to the separating hyperplane.

In the general K -group situation, for each γ > 0, the sequence of directions {w(ℓ) : ℓ = 1, . . . , κ} are used to obtain
dimension-reduced scores zℓ,i = xTi w(ℓ), ℓ = 1, . . . , κ , for secondary discriminant analysis. In particular,we choose κ = K−1
and use [z1,i, . . . , zκ,n], i = 1, . . . , n, in training the ordinary LDA. For a new observation x∗, the scores z(ℓ,∗) = xT

∗
w(ℓ) are

used for the prediction by the trained LDA. This classification rule is called continuum discriminant analysis (CDA).
The CDA depends on the choice of γ . A 10-fold cross-validation to minimize the expected risk with the 0–1 loss can be

used to tune γ . We use a cross-validation index CV (γ ) that counts the number of misclassified observations for each given
γ , divided by the total number of training sample. As exemplified with real data examples in Section 5, the index CV (γ )
is typically U-shaped. This is because that the two ends of the spectrum are quite extreme. Choosing γ = 0 results in the
unmodified LDA or MDP, while choosing γ ≈ ∞ results in using PC1 direction for classification. In our real data examples,
the minimizer of CV (γ ) is found in the interval [0.2, 2.19].

2.4. Relation to continuum regression

A special case of the proposed method, specifically (6) for the binary supervision, can be viewed as a special case of
continuum regression (Stone and Brooks, 1990). The continuum regression leads to a series of regressors that bridges
ordinary least squares, partial least squares and principal component regressions. In connection with the continuum
directions for binary classification, ordinary least squares regression corresponds to LDA (or MDP in (2)), and partial least
squares corresponds to mean difference. In particular, in the traditional case where n > p, it is well known that wLDA is
identical to the vector of coefficients of least squares regression, up to some constant. Some related work has shed light
on the relationship between continuum regression and ridge regression (Sundberg, 1993; de Jong and Farebrother, 1994;
Bjorkstrom and Sundberg, 1999). A similar relationship can be established for our casewhen SB is of rank 1. For simplicity, we
assume that the column space of SB is spanned by the vector d. (In the binary classification case, d = x̄1· − x̄2·, as discussed
in Section 2.1.) To find the continuum direction wγ that maximizes Tγ (w) in (6), differentiating the Lagrangian function
log Tγ (w) − λ(wTw − 1) with respect to w leads to the equation

SBw
wT SBw

+ (γ − 1)
STw

wT STw
− λw = 0. (8)

Left multiplication of wT leads to λ = γ . A critical point of the preceding equation system gives the maximum of Tγ . Since
SBw

wT SBw
=

ddTw

wT ddTw
=

1
dTw

d, one can further simplify the equation for a critical point

w ∝ (ST +
γ

1 − γ

wT STw
wTw

Ip)−d = (ST + αIp)−d := wR
α. (9)

For each γ ∈ [0, 1), there exists an α = α(γ ) ≥ 0 such that the continuum discriminant direction wγ is given by the ridge
estimator wR

α . This parallels the observation made by Sundberg (1993) in regression context. We allow negative α, so that
the relation to ridge estimators is extended for γ > 1.

Theorem 1. If d is not orthogonal to all eigenvectors corresponding to the largest eigenvalue λ1 of ST , then for each γ > 0 there
exists a number α ∈ (−∞, −λ1) ∪ [0, ∞) such that wγ ∝ (ST + αI)−d, including the limiting cases α → 0, α → ±∞ and
α → −λ1.

The above theorem can be shown by an application of Proposition 2.1 of Bjorkstrom and Sundberg (1999) who showed
that, in our notation, the solution of maxwTγ (w) is of the ridge form. See Appendix for a proof of the theorem.

The relation betweenα and γ is nonlinear and depends on ST . A typical formof relation is plotted in Fig. 2, and is explained
in the following example.

Example 2. From Fisher’s iris data, we chose ‘versicolor’ and ‘virginica’ as two groups each with 50 samples. For
presentational purpose, we use the first two principal component scores of the data. For a dense set of γ ∈ [0, ∞), the
corresponding α is plotted (in the left panel of Fig. 2), which exhibits the typical relationship between γ and α. The MDP at
γ = 0 corresponds to the ridge solution with α = 0. As γ approaches 1, the corresponding ridge solution is obtained with
α → ±∞. For γ > 1, α is negative and approaches −λ1 as γ → ∞. The continuum directions {wγ : γ ∈ [0, ∞)} range
from wLDA (which is the same as wMDP since n > p) to wPCA as illustrated in the right panel of Fig. 2.

The ridge solution may not give a global maximum of Tγ when the assumption in Theorem 1 does not hold. An analytic
solution for such a case is also provided in Proposition 7 in Appendix.
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Fig. 2. (left) Relation between γ and α, illustrated for the iris data. (right) Continuum directionswγ are overlaid on the scatter plot of the first two principal
components. Different symbols represent different groups.

Fig. 3. Fisher’s T (w) for directions discriminating two groups (n1 = 20, n2 = 17) in a microarray data set with p = 2530 (Bhattacharjee et al., 2001). The
three horizontal axes represent discriminant direction w along the edges of the triangle formed by wLDA, wMD , and wMDP . LDA is not maximizing Fisher’s
criterion and is inferior to the mean difference, while T (wMDP ) = ∞.

2.5. Continuum directions in high dimensions

In high-dimensional situations where the dimension p of the primary data is much higher than the sample size n, the
continuum directions are still well-defined. We return to discuss that, if p > n, MDP has more preferable properties than
LDA for binary classification. The ridge solution plays an important role in the following discussion.

In the conventional case where p ≤ n − 2, It is easy to see that the ridge criterion (3) and its solution wR
α (9) bridge LDA

and MD. However, if p > n and thus SW is rank deficient, one extreme of the ridge criterion is connected to MDP but not
to LDA. The following proposition shows that wR

α ranges from MD to MDP, giving a reason to favor MDP over LDA in high
dimensions.

Proposition 2. For α > 0, wR
α ∝ (ST + αI)−1d. Moreover wR

α is continuous with respect to α ∈ (0, ∞). The boundaries meet
MDP and MD directions, that is, limα→0w

R
α = wMDP and limα→∞wR

α = wMD.

WhilewMDP is a limit of ridge solutions,wLDA does not meet withwR
α . When p > n,wMDP is orthogonal towLDA if the mean

difference d is not in the range of SW , i.e., rank(SW ) < rank(ST ) (Ahn and Marron, 2010). This fact and Proposition 2 give
limα→0angle(wLDA, w

R
α) = 90◦.

Algebraically, the discontinuity of the ridge direction to wLDA comes from the discontinuity of the pseudoinverse.
Heuristically, the discontinuity comes from the fact that d does not completely lie in the column space of SW . In such a
case, there is a direction vector w0 orthogonal to the column space of SW containing information about d (i.e., dTw0 ̸= 0).
Using S−

W in LDA ignores such information. On the other hand, MDP uses S−

T , which preserves all information contained in
the special direction w0.

The values of Fisher’s criterion for various choices ofw in Fig. 3 exemplify thatwMDP should be used as Fisher discriminant
direction rather than wLDA in high dimensions. In our experiments on classification (in Sections 4 and 5), we check that the
empirical performance of LDA is among the worst.

Our discussion so far assumes that the covariancematrices ST , SW , SB are the sample covariancematrices. It iswell-known
that these matrices are inconsistent estimators of the population covariance matrices when p ≫ n, as n → ∞. Only with
strong assumptions on the covariance and mean difference (such as sparsity), it is possible to devise consistent estimators.
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In such situation, the sufficient statistics ST and SB can be replaced by consistent estimators Σ̂T and Σ̂B, in the evaluation of
the continuum directions (7). This approach has a potential to provide an estimator ofwγ , consistent with a suitably defined
population continuum directions, when p/n → ∞. In the next section, we present a high-dimensional asymptotic study
when ST and SB are used in computing the empirical continuum directions.

2.6. HDLSS asymptotic study of continuum directions

We employ the high-dimension, low-sample-size (HDLSS) asymptotics, that is, the asymptotic study of p → ∞while the
sample size n is held fixed, to understand the high-dimensional behaviors of the true and sample continuum directions. The
HDLSS asymptotics has been successfully used in revealing the properties of conventional multivariate methods in high
dimensions, such as classification (Hall et al., 2005; Qiao et al., 2010), PCA (Jung and Marron, 2009; Yata and Aoshima,
2009; Zhou and Marron, 2015), and clustering (Ahn et al., 2012), to name a few. For a review of recent developments, see
Aoshima et al., (2018).

To set up, suppose that x11, . . . , x1n1 are i.i.d. Np(µ1, Σ1) and x21, . . . , x2n2 are i.i.d. Np(µ2, Σ2). The empirical continuum
directions wγ are given by (6) where SB and ST as defined in Section 2.1. By Theorem 1, the elements in the set of true
continuum directions {wγ : γ > 0} can also be parameterized by

α(γ , ST ) =
γ

1 − γ

ωT
γ STωγ

ωT
γ ωγ

, (10)

which leads to wγ ∝ (ST + α(γ , ST )Ip)−1d. For each fixed γ , if the dimension p of ST increases, then the total variance of
ST also increases, which in turn leads that α(γ , ST ) in (10) be increasing. To lessen the technical difficulty in the exposition
for this section, we use the ridge parameterization by α for the continuum directions. In particular, we parameterize the
continuum directions by αp := αp, which is an increasing function of the dimension p. For each p, we consider the set of
sample continuum directions, denoted by ŵα ∝ (ST + αpIp)−1d, for α ̸= 0.

The population counterpart of the sample continuum directions is defined similarly. For µ = µ1 − µ2, ΣB = µµT ,
ΣW = (Σ1 + Σ2)/2, and ΣT = Σ + ΣB, the population continuum directions are parameterized by α, and are denoted by
ωα ∝ (ΣT + αpIp)−1µ. Assume the following:

C1. There exists a constant δ2 ≥ 0 such that p−1
∥µ∥

2
→ δ2 as p → ∞.

C2. p−1tr(Σ1) → σ 2
1 , p

−1tr(Σ2) → σ 2
2 as p → ∞.

C3. The eigenvalues of Σ1 (and Σ2) are sufficiently concentrated, in the sense that [tr(Σ2
i )]

2/[tr(Σi)]2 → 0 as p → ∞,
for i = 1, 2.

The condition C1 has also appeared in, e.g., Hall et al. (2005), Qiao et al. (2010) and Ahn et al. (2012), and requires that the
true mean difference grows as the dimension increases. The conditions C2 and C3 include the covariance matrix models for
both independent variables and mildly-spiked cases (i.e., few eigenvalues are moderately larger than the others), and were
first appeared in Ahn et al. (2007). These conditions can be generalized and the Gaussian assumption can be relaxed, as done
in, e.g., Jung andMarron (2009) and Jung et al. (2012), to produce the equivalent results shown below. We keep it simple for
brevity.

The asymptotic behavior of the sample continuum directions ŵα , when p → ∞, is investigated in two ways. We first
show that ŵα is inconsistent, and has a non-negligible constant angular bias when compared to its population counterpart
ωα . Despite the bias, the CDA, the classification rule discussed in Section 2.3, can perfectly classify new observations under
certain conditions.

Theorem 3. Under the setting in this section, including the conditions C1–C3, the following hold.
(i) The sample continuum directions are inconsistent with its population counterparts. In particular, for any α ̸= 0,

Angle(ωα, ŵα) → cos−1
(

δ2

δ2 + σ 2
1 /n1 + σ 2

2 /n2

)1/2

,

in probability as p → ∞.
(ii) The probability that CDA classifies a new observation correctly tends to 1 as p → ∞ if δ2 >

⏐⏐σ 2
1 /n1 − σ 2

2 /n2
⏐⏐.

Both results in Theorem 3 depend on the quantity δ2 in the condition C1, which may be interpreted as a signal strength.
When δ2 is large, the sample continuum direction is less biased, and Angle(ωα, ŵα) is small. On the other hand, if δ = 0, then
ŵα is strongly inconsistent with ωα , and ŵα is asymptotically orthogonal to ωα . The performance of CDA also depends on δ2.
Consider the case where σ1 = σ2 and n1 = n2. Then CDA classification is perfect whenever δ2 is positive. On the other hand,
if δ = 0, then the classification is only as good as random guess. These observations are consistent with Hall et al. (2005)
and Qiao et al. (2010), in which HDLSS asymptotic behaviors of the centroid rule, SVM and DWD are studied.

We conjecture that if the within-covariance matrix ΣW has a large first eigenvalue (that is, a large variance of the first
principal component), then the sample continuum direction is less biased than in Theorem 3, even under smaller size of
signal δ2. This conjecture seems to be true, as shown in the simulation studies in Section 4, but rigorously proving this
conjecture has been challenging.
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3. Computations

3.1. Numerical algorithm for the binary supervision case

When SB is of rank 1, or when the supervision is binary, Theorem 1 can be used to compute a discrete sequence of the
first continuum directions. In particular, there is a corresponding γ for each ridge parameter α ∈ (−∞, −λ1] ∪ [0, ∞). Let
M > 0 be a maximum value for evaluating α. In our experience it is sufficient to chooseM = 10λ1, ten times larger than the
largest eigenvalue of ST . Define α(k) =

k
K M and α(k)

= −(1 + ϵ)λ1 −
K−k
K M for k = 0, . . . , K for some number K . The small

number ϵ > 0 keeps the matrix ST + α(k)Ip invertible and was chosen to 0.01 for numerical stability. For each α = α(k) or
α(k), we get wγ (α) = (ST + αIp)−1d, where d satisfies SB = ddT and

γ (α) =
α

wT
γ (α)STwγ (α) + α

.

The sequence {wγ (α) : α = α(k), α
(k), k = 0, . . . , K } is augmented by the two extremes wMD(∝ d) and wPCA.

If d is orthogonal to all eigenvectors corresponding to λ1, then γ does not tend to infinity even though α has reached−λ1.
In such a case, the remaining sequence of directions is analytically computed using Proposition 7 in Appendix.

3.2. Numerical algorithm for the general case

In general cases where rank(SB) > 1, the connection to generalized ridge solutions in Theorem 1 does not hold. Even
with binary supervision, when a sequence of continuum directions {w(1), . . . , w(κ)} is desirable, the ridge parameter α(γ )
is different for different k in w(k), even when γ is held fixed. Here, we propose a gradient descent algorithm to sequentially
solve (7) for a given γ .

We first discuss a gradient descent algorithm for w(1). Since the only constraint is that the vector w is of unit size,
the unit sphere Sp−1

= {w ∈ Rp
: wTw = 1} is the feasible space. To make the iterate confined in the feasible space

we update a candidate w0 with w1 = (w0 + c∇w0 )/∥w0 + c∇w0∥, for a step size c > 0, where the gradient vector is
∇w =

SBw

wT SBw
+ (γ − 1) STw

wT STw
. To expedite convergence, c is initially chosen to be large so that w1 ≈ ∇w0/∥∇w0∥. If this

choice of c overshoots, i.e., Tγ (w1) < Tγ (w0), then we immediately reduce c to unity, so that the convergence to maximum
is guaranteed, sacrificing fast rate of convergence. The iteration is stopped if 1 − |wT

1w0| < ε or |Tγ (w1) − Tγ (w0)| < ε for a
needed precision ε > 0. The step size c can be reduced if needed, but setting c ≥ 1 has ensured convergencewith a precision
level ε = 10−10 in our experience.

For the second and subsequent directions, suppose we have w(1), . . . , w(k) and are in search for w(k+1). The ST -
orthogonality and the unit size condition lead to the feasible space S = {w ∈ Sp−1

: wT STw(ℓ) = 0, ℓ = 1, . . . , k}. Since
any w ∈ S is orthogonal to z(ℓ) := STw(ℓ), ℓ = 1, . . . , k, the solution lies in the nullspace of Zk = [z(1), . . . , z(k)]. We use
orthogonal projectionmatrix Pk = I−Zk(ZT

k Zk)
−1Zk to project the variance–covariancematrices ST and SB onto the nullspace

of Zk, and obtain S(k)T = PkSTPk and S(k)B = PkSBPk. The gradient descent algorithm discussed above for w(1) is now applied
with S(k)B and S(k)T to update candidates of w(k+1), without the ST -orthogonality constraint.

The following lemma justifies this iterative algorithm converges to the solution w(k+1).

Lemma 4.

(i) Let x∗

i = Pkxi be the projection of xi onto the nullspace of Zk. Write X∗
= [x∗

1, . . . , x
∗
n]. Then S(k)T = n−1X∗(X∗)T and

S(k)B = n−1(X∗Y T )(X∗Y T )T .
(ii) For w ∈ S , Tγ (w) = (wT S(k)B w)(wT S(k)T w)γ−1

:= T (k)
γ (w).

(iii) The solution w(k+1) of the unconstrained optimization problem maxwT (k)
γ satisfies wT

(k+1)STwℓ = 0 for ℓ = 1, . . . , k.

It can be seen from Lemma 4 that the optimization is performed with the part of data that is ST -orthogonal to Zk. While
making the optimization simpler, we do not lose generality because the original criterion Tγ has the same value as T (k)

γ for
candidate w in the feasible region (Lemma 4(ii)). This with the last result (iii) shows that our optimization procedure leads
to (at least) a local maximum in the feasible region.

Note that the sequence {w(1), . . . , w(κ)} depends on the choice of γ . To obtain a spectrum of continuum directions, one
needs to repeat the iterative algorithm for several choices of γ > 0.

3.3. Efficient computation when p ≫ n

For large p, directlyworkingwith p×pmatrices ST and SB needs to be avoided. For such cases, utilizing the eigendecompo-
sition of ST (or, equivalently, the singular value decomposition of X) provides efficient and fast computation for continuum
directions. Write ST = UΛUT , where U = [u1, . . . , um] spans the column space of ST , for m = min(n − 1, p). Then the
algorithms discussed in the previous sections can be applied to S̃T = UT STU = Λ and S̃B = UT SBU , in place of ST and SB, to
obtain w̃(ℓ) ∈ Rm. The continuum directions are then w(ℓ) = Uw̃(ℓ). If m ≪ p, this requires much less computing time than
working with ST and SB directly. The next lemma ensures that our solution is the maximizer of the criterion (7).
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Table 1
Performance of binary classification. Compound Symmetry model with high dimension, low sample size data: Mean misclassification error (in percent)
with standard deviation in parentheses.

Sparse model with s = 10

ρ p CDA LDA FAIR DWD SDA

0
200 14.32 (3.45) 29.59 (5.31) 8.90 (3.10) 13.88 (3.33) 8.17 (2.92)
400 19.70 (4.07) 34.76 (5.33) 9.02 (3.23) 19.28 (4.10) 8.57 (2.65)
800 24.90 (4.78) 39.80 (4.97) 9.80 (3.46) 24.14 (4.36) 9.64 (5.76)

0.1
200 11.27 (3.56) 20.37 (4.65) 48.25 (7.09) 36.99 (7.07) 4.90 (2.31)
400 9.87 (3.30) 26.97 (6.04) 49.39 (5.09) 45.11 (5.11) 5.12 (2.30)
800 12.94 (3.79) 36.24 (5.72) 50.32 (4.19) 48.65 (4.69) 5.82 (5.05)

0.25
200 5.90 (2.72) 13.38 (4.16) 48.98 (5.30) 42.37 (5.58) 1.86 (1.34)
400 3.88 (2.15) 19.93 (4.61) 50.55 (5.20) 47.61 (5.20) 1.71 (1.22)
800 5.67 (2.62) 31.14 (5.32) 49.05 (4.71) 48.03 (4.74) 2.39 (5.32)

0.5
200 0.61 (0.94) 4.77 (2.51) 49.76 (5.19) 46.03 (4.73) 0.10 (0.30)
400 0.27 (0.49) 9.21 (3.73) 48.90 (4.66) 47.18 (4.52) 0.09 (0.32)
800 0.47 (0.73) 19.82 (5.13) 50.22 (4.83) 49.40 (4.83) 0.16 (0.75)

Non-sparse model with s = p/2

ρ p CDA LDA FAIR DWD SDA

0
200 14.66 (4.42) 29.30 (5.34) 14.40 (4.26) 13.60 (4.05) 22.05 (4.15)
400 19.36 (4.29) 34.83 (5.44) 19.51 (4.67) 18.64 (4.41) 30.80 (3.83)
800 24.71 (3.95) 40.38 (5.36) 25.40 (4.91) 24.05 (4.16) 36.78 (4.44)

0.1
200 6.45 (2.90) 20.91 (5.02) 47.65 (5.87) 36.49 (5.89) 20.19 (4.03)
400 9.47 (3.70) 27.82 (4.94) 48.82 (5.29) 44.33 (5.29) 29.79 (4.93)
800 13.11 (3.60) 36.42 (5.76) 50.21 (5.07) 48.29 (4.97) 35.12 (4.52)

0.25
200 2.25 (1.92) 13.36 (4.31) 48.94 (5.18) 42.01 (5.37) 15.83 (4.10)
400 2.95 (1.75) 20.61 (5.17) 50.47 (5.74) 47.23 (5.38) 24.65 (4.43)
800 5.34 (2.75) 30.43 (5.85) 50.24 (4.98) 49.03 (5.11) 31.68 (4.06)

0.5
200 0.56 (0.82) 5.60 (3.07) 49.91 (5.48) 45.69 (5.60) 7.31 (3.04)
400 0.24 (0.45) 9.68 (3.83) 49.45 (5.49) 47.32 (5.33) 16.69 (3.96)
800 0.39 (0.57) 20.93 (5.39) 49.84 (5.59) 49.05 (5.22) 26.02 (4.36)

Lemma 5. Any maximizer w of (7) lies in the column space of ST .

In the case of binary supervision, one needs to avoid the inversion of large p×pmatrix ST +αIp. The continuum directions
are obtained via only involving the inversion ofm×mmatrices: (ST +αIp)−d = U(Λ+αIp)−1UTd. In all of our experiments,
involvingmoderately large data sets, wheremax(p, n) is tens of thousands andmin(p, n) is hundreds, the computation takes
only a few seconds at most, compared to several minutes needed for the method of Clemmensen et al. (2011).

4. Simulation studies

We present two simulation studies to empirically reveal the underlying model under which the continuum directions
are useful. We numerically compare the performance of CDA, the linear classification followed by continuum dimension
reduction, with several other classification methods, in binary or multi-category classification.

4.1. Binary classification

For binary classification, our method is compared with LDA (using the pseudoinverse), the features annealed indepen-
dence rule (FAIR) by Fan and Fan (2008), the distance weighted discrimination (DWD) byMarron et al. (2007) and the sparse
discriminant analysis (SDA) by Clemmensen et al. (2011).

The setup for the simulation study is as follows. We assume two groups with mean µ1 = 0 and µ2 = c0(1s, 0p−s)T for
some constant c0, where 1s is the vector (1, . . . , 1)T of length s,and 0p−s = (0, . . . , 0)T . We choose s = 10 or p/2, to examine
both sparse and non-sparse models. The common covariance matrix is Σρ = (1 − ρ)Ip + ρ1p1T

p for ρ ∈ {0, 0.1, 0.25, 0.5}.
This so-called compound symmetry model allows examination from independent to highly correlated settings. The scalar
c0 = 3(1T

s Σ
−1
ρ 1s)−1/2 varies for different (p, ρ) to keep the Mahalanobis distance between µ1 and µ2 equal to 3.

Training and testing data of size n1 = n2 = 50 are generated from normal distribution of dimension p = 200, 400 and
800. The parameter γ of CDA is chosen by the 10-fold cross-validation. The number of features for FAIR, as well as the tuning
parameters for SDA, were also chosen by 10-fold cross-validation. The mean and standard deviation of the misclassification
rates, based on 100 replications, are listed in Table 1.

Our results show that CDA performs much better than other methods when the variables are strongly correlated (ρ =

0.1, 0.25, 0.5), for non-sparse models. In the independent setting (ρ = 0), the performance of CDA is comparable to DWD.
FAIR is significantly better than CDA under sparse model with independent variables, because the crucial assumption of
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Table 2
Performance of multi-category classification. Compound Symmetry model with high dimension, low sample size data: Mean misclassification error (in
percent) with standard deviation in parentheses.

Sparse model with s = 10

p CDA Reduced-rank LDA SDA

ρ = 0
200 20.82 (4.61) 31.72 (5.71) 13.99 (3.92)
400 28.16 (4.96) 34.42 (5.22) 15.62 (5.90)
800 34.86 (5.31) 39.24 (5.35) 15.94 (5.77)

ρ = 0.1
200 14.01 (4.05) 22.94 (8.06) 9.06 (2.83)
400 20.93 (5.85) 28.77 (12.03) 10.37 (4.76)
800 30.69 (9.01) 36.52 (12.61) 11.36 (5.78)

ρ = 0.25
200 6.38 (2.79) 15.39 (7.51) 3.71 (2.13)
400 12.60 (4.90) 25.62 (15.40) 4.06 (2.37)
800 20.80 (8.45) 30.06 (13.09) 3.88 (2.76)

ρ = 0.5
200 0.89 (0.93) 13.67 (13.57) 0.28 (0.56)
400 1.21 (1.52) 4.42 (6.41) 0.34 (0.68)
800 4.54 (3.52) 8.87 (6.81) 0.33 (0.64)

Non-sparse model with s = p/2

p CDA Reduced-rank LDA SDA

ρ = 0
200 21.31 (4.40) 32.50 (5.45) 37.84 (4.91)
400 28.24 (4.73) 34.47 (5.15) 47.17 (5.18)
800 34.10 (5.41) 38.47 (5.51) 53.73 (4.48)

ρ = 0.1
200 5.27 (2.26) 47.37 (9.28) 30.87 (5.25)
400 9.83 (3.02) 52.58 (10.86) 38.43 (5.16)
800 23.70 (4.89) 38.79 (8.76) 44.66 (4.86)

ρ = 0.25
200 1.40 (1.45) 54.88 (10.55) 23.34 (5.47)
400 2.86 (1.71) 37.03 (9.61) 31.96 (5.12)
800 9.17 (3.04) 48.41 (13.27) 39.79 (5.04)

ρ = 0.5
200 0.06 (0.24) 34.19 (8.78) 11.07 (4.58)
400 0.10 (0.36) 45.28 (11.03) 21.79 (5.80)
800 0.51 (0.83) 30.81 (7.94) 32.86 (5.61)

FAIR that the non-zero coordinates of µ1 − µ0 are sparse is also satisfied. However, FAIR severely suffers from the violation
of the independence assumption, in which case their classification rates are close to 50%. DWD also suffers from the highly
correlated structure. SDAperformswell for all settings under the sparsemodel, as expected. However, for non-sparsemodels,
CDA performs significantly better than SDA.

Another observation is that the performance of LDA is better for a larger ρ. A possible explanation is that the underlying
distribution N(µi, Σ) becomes degenerate as ρ increases. The true covariance matrix has a very large first eigenvalue
λ1 = pρ + (1 − ρ) compared to the rest of eigenvalues λj = 1 − ρ, 2 ≤ j ≤ p. As conjectured in Section 2.6, both
LDA and CDA benefit from extensively incorporating the covariance structure, in spite of the poor estimation of Σρ when
p ≫ n. Note that in terms of the conditions C1–C3 in Section 2.6, all of these models have signal strength δ2 = 0 and the
condition C3 is violated when ρ > 0.

Poor performance of FAIR for the strongly correlated case is also reported in Fan et al. (2012), where they proposed the
regularized optimal affine discriminant (ROAD), which is computed by a coordinate descent algorithm. Due to the heavy
computational cost, we excluded the ROAD as well as the linear programming discriminant rule (LPD) by Cai and Liu (2011).
We exclude results from Wu et al. (2009) since the performance of SDA (Clemmensen et al., 2011) were uniformly better
than the method of Wu et al. These methods aim to select few features as well as to classify, based on assumptions of sparse
signals. CDA does not require such assumptions.

4.2. Multi-category classification

For multi-category classification, CDA is compared with the reduced-rank LDA (cf. Hastie et al., 2009) and SDA (Clem-
mensen et al., 2011).

The setup in the simulation study is as follows. We assume K = 3 groups with means µ1 = 0, µ2 = c0(1s, 0p−s)T and
µ3 = c0(0s, 1s, 0p−2s)T , for either s = 10 or s = p/2. The common covariance matrix Σρ is the compound symmetry model,
parameterized by ρ ∈ {0, 0.1, 0.25, 0.5}, and the scalar c0 is set as explained in Section 4.1.

Training and testing data of size n1 = n2 = n3 = 50 are generated from normal distribution of dimension p = 200, 400
and 800. The classification performances of CDA, reduced-rank LDA and SDA for these models are estimated by 100
replications, and are summarized in Table 2.

The simulation results for multi-category classification provide a similar insight obtained from the binary classification
study. CDA performs better when the correlation between variables is strong for both sparse and non-sparse models. Our
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Fig. 4. Left: Cross validatory errors for γ ∈ [0, 3] evaluated for Leukemia data. The γ̂ = 0.279 (located at the vertical dotted line) is the smallest γ that
minimizes CV (γ ). Right: Classification error rates of training and testing set for different γ s.

Table 3
Classification error of Leukemia data.

CDA LDA IR DWD SVM FAIR LPD SLDA SDA

Training error 0/38 1/38 1/38 0/38 0/38 1/38 0/38 0/38 0/38
Testing error 1/34 6/34 6/34 2/34 5/34 1/34 1/34 3/34 2/34

method is outperformed by SDA for the sparse model, but has significantly smaller misclassification rates for non-sparse
models.

In summary, when the true mean difference is non-sparse and the variables are highly correlated, the proposed
method performs better than competitors under high-dimension, low-sample-size situations for both binary and multi-
category classification problems. When the variables are uncorrelated, we also checked that larger values of c0 ensure good
performance of the proposed method, as shown in Theorem 3. Our method requires only a split second for computation,
while SDA takes tens of seconds for the data in this study.

5. Real data examples

In this section, we provide three real data examples, where the supervision information is categorical with two or more
categories.

5.1. Leukemia data

We first use the well-known data set of Golub et al. (1999), which consists of expression levels of 7129 genes from 72
acute leukemia patients. The data are prepared as done in Cai and Liu (2011). In particular, 140 geneswith extreme variances,
i.e., either larger than 107 or smaller than 103 are filtered out. Then genes with the 3000 largest absolute t-statistics were
chosen. The data set included 38 training cases (27 AMLs and 11 ALLs) and 34 testing cases (20 AMLs and 14 ALLs).

With binary classification in mind, we obtain wγ for a discrete set of 0 ≤ γ < ∞, using the computational procedure
discussed in Section 3.1. A 10-fold cross-validation leads to γ̂ = 0.279. As shown in Fig. 4, the smallest cross validatory
misclassification rate is CV (γ̂ ) = 2/38. (We chose to use the smallest γ among all minimizers of CV (γ ).) Fig. 4 also shows
the classification errors of training and testing data for different γ . For smaller γ values, including γ = 0 (corresponding
to MDP) and γ̂ , the classification errors are 1 out of 34 for the test set, and 0 out of 38 for the training set. In comparison,
LDA, IR, DWD and SVM result in 2–6 testing errors. From the work of Fan and Fan (2008) and Cai and Liu (2011), FAIR and
LPD make only 1/34 testing error. Sparse LDA methods, SLDA of Wu et al. (2009) and SDA of Clemmensen et al. (2011), also
performed quite well. The results are summarized in Table 3.

5.2. Liver cell nuclei shapes

In a biomedical study, it is of interest to quantify the difference between normal and cancerous cell nuclei, based on the
shape of cells. We analyze discretized cell outlines, aligned to each other to extract shape information (Wang et al., 2011b).
The data consist of outlines from n1 = 250 normal liver tissues and n2 = 250 hepatoblastoma tissues. Each outline is
represented by 90 planar landmarks, leading to p = 180.

In the context of discriminating the disease based on the cell shapes, we compare our method with LDA, DWD, FAIR, and
a quadratic discriminant analysis (QDA). As explained in Section 4, the threshold value of FAIR is chosen by cross validation.
The QDA is modified to have smaller variability by using a ridge-type covariance estimator.
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Table 4
Misclassification rate (in percent) of liver nuclei outlines data. Mean and standard deviation of ten repetitions are reported.

CDA LDA DWD FAIR QDA

Train 33.3 (0.79) 13.9 (1.03) 30.7 (0.78) 32.6 (0.84) 6.7 (2.85)
Test 33.7 (6.38) 37.4 (6.48) 33.6 (6.33) 33.3 (6.17) 34.4 (6.85)

Fig. 5. Left: Classification error rates of training and testing set for different γ s. Right: A jitter plot with a density estimate for values of γ̂ chosen by the
cross validation.

Fig. 6. ILC data projected onto the first two continuum directions, for different choices of γ . Different colors represent different subtypes of ILC. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

For the comparison, we randomly assign 50 cases as a testing data set, and each classifier is calculatedwith the remaining
450 cases. The empirical misclassification rates of classifiers are computed based on the training data set and on the testing
data set. This is repeated for 100 times to observe the variation of the misclassification rates. For the continuum directions
with varying γ , we observe that themisclassification rates become stable as γ increases, as shown in Fig. 5. Both the training
and testing error rates become close to 1/3 as wγ moves closer to MD and to PCA. This is because, for this data set, wMD and
wPCA are close to each other with angle(wMD, wPCA) = 6.67◦, and both exhibit good classification performances, with error
rate close to 1/3. For each training data set, γ̂ is chosen by the cross validation. Many chosen γ̂ s have values between
(0.1, 0.5), but a few of those are as large as γ = 3, as shown in Fig. 5. The performance of CDA with cross-validated γ is
compared with other methods in Table 4. Based on the testing error rate, CDA performs comparable to more sophisticated
methods such as FAIR and DWD. Both LDA and QDA tend to overfit and result in larger misclassification rates than other
methods.

5.3. Invasive lobular breast cancer data

Invasive lobular carcinoma (ILC) is the second most prevalent subtype of invasive breast cancer. We use the protein
expression data of n = 817 breast tumors, measured by RNA sequencing (Ciriello et al., 2015), to demonstrate the use
of continuum directions when the supervision information is categorical with 5 possible values. The data set consists of
p = 16, 615 genes of n = 817 breast tumor samples, categorized into five subtypes – luminal A, basal-like, luminal B,
HER2-enriched, and normal-like – by a pathology committee. Despite the large size of the data, computing the continuum
directions is fast (few seconds, using a standard personal computer). Fig. 6 displays the spectrum of continuum dimension
reduction, parameterized by the meta-parameter γ > 0.

To compare the performance of themulticategory classificationwith the reduced-rank LDA and SDA of Clemmensen et al.
(2011), we keep only the 500 genes with the largest standard deviations, and formed a training set of 409 samples and a
testing set of 408 samples. For each of the classifiers, the training set is used to train the classification rule, while the testing
set is used to estimate the misclassification error. We randomly permute the memberships to the training and testing sets,
for 10 times.

The result of experiment is summarized in Table 5. Our method exhibits the lowest misclassification error rates. Poor
performance of SDA may indicate that the true signal in the data is not sparse. As expected, the reduced-rank LDA severely
overfits.
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Table 5
Misclassification rates (in percent) of invasive lobular breast cancer data.
Mean and standard deviation of ten repetitions are reported.

CDA Reduced-rank LDA SDA

Train 10.9 (3.42) 0 (0) 9.58 (7.63)
Test 14.5 (1.64) 26.0 (1.91) 28.6 (18.8)

6. Discussion

We proposed a criterion evaluating useful multivariate direction vectors, called continuum directions, while the degrees
of supervision from an auxiliary data set are controlled by a meta-parameter γ . An application of the proposed dimension
reduction to classification was also discussed. Numerical properties of the proposed classifier have demonstrated good
performance for high dimensional situation. In particular, ourmethod outperforms several othermethodswhen the variance
of the first principal component is much larger than the rest.

The proposed method is akin to the continuum regression and connects several well-known approaches, LDA, MDP, MD,
ridge estimators and PCA, thus providing a simple but unified framework in understanding the aforementioned methods.
There are several other criteria that also give a transition between LDA (or MDP) and PCA. A slightly modified criterion from
(6), Fα(w) = (wT SBw)2/|wT (ST + αIp)w| with the constraint wTw = 1, gives the ridge solution w̃α = (ST + αI)−d with the
same α ∈ (−∞, λ1)∪[0, ∞). This criterion is first introduced in a regression problem (Bjorkstrom and Sundberg, 1999), but
has not been adopted into classification framework. Wang et al. (2011a) proposed a modified Fisher’s criterion

τδ(w) =
wT STw

wT (SW + δI)w
, (11)

that bridges between LDA and PCA. For δ = 0, the criterion (11) becomes identical to Eq. (1) up to the constant 1, thus
equivalent to LDA. In the limit of δ → ∞, δτδ(w) converges to the criterion for wPC1. The maximizer of τδ is a solution of a
generalized eigenvalue problem. We leave further investigation of these criteria as future research directions.

Lee et al. (2013) also discussed discrimination methods that bridge MDP and MD, in high dimensions. The method of Lee
et al. (2013) is in fact equivalent to a part of continuum directions, restricted for γ ∈ [0, 1]. In this paper, the continuum
between MDP to PCA is completed by also considering γ > 1, the method is extended for supervised dimension reduction,
and a connection to continuum regression is made clear.

The study for HDLSS asymptotic behavior of the continuum directions has a room for more investigation. We conjecture
that the magnitude of large eigenvalues, in fast-diverging eigenvalue models, is a key parameter for successful dimension
reduction, which may be shown using HDLSS asymptotic investigation similar to Jung et al. (2012).
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Appendix. Technical details

A.1. Proof of Theorem 1

In a multivariate linear regression problem, with the n × p design matrix X and the n vector y of responses, denote a
regressor bywT x a linear combination of p variables. Both X and y are assumed centered. Let V (w) = w′XTXw be the sample
variance of the regressor. Let K (w) = yTXw be the sample covariance between the regressor and y and R(w) be the sample
correlation, which is proportional to K/

√
V . The following theorem is from Bjorkstrom and Sundberg (1999).

Theorem 6 (Proposition 2.1 of Bjorkstrom and Sundberg (1999)). If a regressor wf is defined according to the rule

wf = arg max
∥w∥=1

f (K 2(w), V (w)),

where f (K 2, V ) is increasing in K 2 (or R2) for constant V , and increasing in V for constant R2, and if XTy is not orthogonal to
all eigenvectors corresponding to the largest eigenvalue λ1 of XTX, then there exists a number α such that wf ∝ (XTX + αI)−1,
including the limiting cases α ↓ 0, α ↑ ∞ and δ ↑ −λ1.

A two-group classification problem is understood as a special case of regression. In particular, let y be +1 if the ith
observation is in the first group or −1 if it is in the second group. Then the total variance matrix ST ∝ XTX and the mean
difference d = XTy. The criterion (6) is K 2(w)V γ−1(w), which satisfies the assumptions of Theorem 6. Theorem 1 is thus a
special case of Theorem 6.
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A.2. Analytic solution for the rare case

The ridge solution may not give a global maximum of Tγ when the assumption in Theorem 1 does not hold. We give
an analytic solution for such a case. It is convenient to write w in the canonical coordinates of ST . Let ST = UΛUT be
the eigen-decomposition of ST with Λ = diag(λ1, . . . , λm), U = [u1, . . . , um] for m = min(n − 1, p), with convention
λi ≥ λi+1. To incorporate any duplicity of the first eigenvalue let ι represent the number of eigenvalues having the same
value as λ1, that is, λ1 = · · · = λι. Denote Λ1 = diag(λ1, . . . , λι) = λ1Iι and Λ2 = diag(λι+1, . . . , λm). Let z = UTw and
δ = (δ1, . . . , δm)T = UTd.

Proposition 7. Suppose d is orthogonal to all eigenvectors corresponding to λ1 and is not orthogonal to all eigenvectors
corresponding to λι+1. Let

zα =
(Λ2 + αI)−1δ2√
δT2 (Λ2 + αI)−2δ2

for α ∈ (−∞, −λ1] ∪ [0, ∞).

(i) If zT
−λ1

(λ1I − Λ2)z−λ1 ≤ λ1/γ , then wγ = Uz̃, z̃T = [0T
ι , z

T
α ] for some α ∈ (−∞, −λ1] ∪ [0, ∞).

(ii) If zT
−λ1

(λ1I − Λ2)z−λ1 > λ1/γ , then there exist multiple solutions wγ = Uẑ, ẑT = (ẑT1 , ẑT2 ), of (6) satisfying

ẑ1 ∈ {z1 ∈ Rι
: zT1 z1 = 1 − λ1/(γ zT

−λ1
(λ1I − Λ2)z−λ1 )}

and

ẑ2 =

√
λ1

γ

(Λ2 − λ1I)−1δ2√
δT2 (λ1I − Λ2)−1δ2

.

Proof of Proposition 7. Recall z = UTw and δ = (δ1, . . . , δm)T = UTd. Grouping z and δ into the first ι elements and the
rest, write zT = (zT1 , zT2 ), δ

T
= (δT1 , δT2 ). If d is orthogonal to all eigenvectors corresponding to λ1, then δ1 = 0. Rewriting

Eq. (8) in the eigen-coordinates gives two systems of equations

0 + (γ − 1)
Λ1z1

zT1Λ1z1 + zT2Λ2z2
− γ z1 = 0, (A.1)

δ2

zT2 δ2
+ (γ − 1)

Λ2z2
zT1Λ1z1 + zT2Λ2z2

− γ z2 = 0. (A.2)

If ∥z1∥ > 0, then we have from (A.1)

λ1∥z1∥2
= zT1Λ1z1 =

γ − 1
γ

λ1 − zT2Λ2z2. (A.3)

Eqs. (A.2) and (A.3) lead to

z2 = cγ (Λ2 − λ1I)−1δ2,

where cγ satisfies c2γ = −λ1/(γ δT2 (Λ2 − λ1I)−1δ2), which is obtained from the constraint ∥z1∥2
+ ∥z2∥2

= 1. Finally, we
check that such a solution exists if zT2 z2 ≤ 1, that is,∑m

i=ι+1 λ1δ
2
i /(λ1 − λi)2∑m

i=ι+1 δ2i /(λ1 − λi)
≤ γ . (A.4)

The criterion Tγ in the canonical coordinate is proportional to

Tγ (z) = (zT2 δ2)2(λ1zT1 z1 + zT2Λ2z2)γ−1.

Thus Tγ is maximized by ẑT = (ẑT1 , ẑT1 ) for any ẑ2 = ±z2 and any ẑ1 that satisfies (A.3). This proves (ii).
If (A.4) does not hold, then by contradiction we have ∥z1∥ = 0. Thus z̃ is of the form (0ι, z2) for z2 satisfying (A.2). Since

the first coordinate of δ2 is nonzero, an application of Theorem 1 leads that there exists α ∈ (−∞, −λι+1)∪[0, ∞) such that
z2 ∝ (Λ2 + αI)−δ2.

To conclude (i), we need to rule out the possibility of α having values in (−λ1, −λι+1). LetMk = Mk(a) = δT2 (aI −Λ2)−kδ2
for k = 1, 2, . . .. The derivative of Mk with respect to a is M ′

k = −kMk+1. We have Mk(a) > 0 for a ∈ (λι+1, λ1]. The
assumption of (i) is written as γ ≤ λ1M2(λ1)/M1(λ1). It can be shown that aM2(a)/M1(a) is a decreasing function of a > λι+1.
This leads to

γ ≤ aM2/M1, for any a ∈ (λι+1, λ1]. (A.5)
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For zα = (Λ2 + αI)−δ2/∥(Λ2 + αI)−δ2∥, Tγ ((0ι, z−a)) = M2
1/M2(a − M1/M2)γ−1, and the derivative of log(Tγ )

2(M2
2 − M1M3)

M1M2(M2a − M1)
(γM1 − M2a) ≥ 0 for any a ∈ (λι+1, λ1].

We have used (A.5) and the Cauchy–Schwarz inequality. Since Tγ is increasing in a, any zα with α ∈ (−λ1, −λι+1) cannot be
a maximizer of Tγ for any γ , which completes the proof. □

A.3. Proofs of Proposition 2 and Lemmas 4–5

Proof of Proposition 2. We first show that (ST + αI)−1d ∝ (SW + αI)−1d. Let Ω = SW + αI , whose inverse exists for α > 0.
Then ST + αI = Ω + c0ddT for c0 =

n1n2
n2

. By Woodbury’s formula, (ST + αI)−1
= Ω−1

− c1Ω−1ddTΩ−1 for some constant
c1. Therefore, (ST + αI)−1d = Ω−1d − c1Ω−1ddTΩ−1d = c2Ω−1d ∝ (SW + αI)−1d.

The ridge solutionwR
α lies in the range of ST , as shown in Lemma 5 in the Appendix.WritingwR

α in the eigen-coordinates of
ST makes the proof simple. Let ST = UΛUT be the eigen-decomposition of ST with Λ = diag(λ1, . . . , λm), U = [u1, . . . , um]

for m = min(n − 1, p). Then for zRα = UTwR
α and δ = (δ1, . . . , δm)T = UTd, we have zRα ∝ ( δ1

λ1+α
, . . . , δm

λm+α
)T , which leads to

the continuity of wR
α = UzRα with respect to α ∈ [0, ∞). It is now easy to see that wR

α → wMDP ∝ UΛ−1δ as α → 0. For the
last argument, zRα ∝ α( δ1

λ1+α
, . . . , δm

λm+α
)T → δ as α → ∞. □

Proof of Lemma 4. Part (i) is trivial. For part (ii), note that for all w ∈ S , Pkw = w. Replacing w by Pkw in Tγ (w) gives the
result. For part (iii), we use Lemma 5 in the Appendix which shows that the solution w of maximizing T (k)

γ lies in the column
space of PkSTPk. Thus, the solution w(k+1) satisfies the constraint wT

(k+1)STwℓ = 0 for ℓ = 1, . . . , k. □

Proof of Lemma 5. Denote the column space of ST by RT . Let rank(ST ) = m ≤ min(n − 1, p). Then for any w ∈ Rp with
∥w∥ = 1, let wP be the orthogonal projection of w onto RT . Then ∥wP∥ ≤ 1 where the equality holds if and only if w ∈ RT .
Let w̃ = wP/∥wP∥. Then since wT STw = wT

P STwP and wT SBw = wT
P SBwP , we have for γ ≥ 0,

Tγ (w) = (w̃T SBw̃)(w̃T SBw̃)γ−1
∥wP∥

2γ
≤ Tγ (w̃).

Thus the maximizer of Tγ (w) always lies in RT . □

A.4. Proof of Theorem 3

We first show that the true continuum direction is asymptotically parallel to the mean difference direction. Assume
without loss of generality that the true pooled covariance matrix ΣW is a diagonal matrix, for every p.

Lemma 8. Assume conditions C1–C3. For each α ̸= 0, Angle(ωα, µ) → 0 as p → ∞.

Proof of Lemma 8. Let Ap denote the p×p diagonalmatrix with diagonal values λi+αp where λi is the ith largest eigenvalue
of ΣW . Using Woodbury’s formula, we get

ωα ∝ [Ap + µµT
]
−1µ = A−1

p µ −
A−1
p µ(µTA−1

p µ)

1 + µTA−1
p µ

∝ A−1
p µ.

Then Angle(ωα, µ) = Angle(A−1
p µ, µ) = cos−1

[µTA−1
p µ/(∥A−1

p µ∥∥µ∥)]. We then have µTA−1
p µ ≤ (λp + αp)−1∑n

i=1µ
2
i =

(λpp−1
+α)−1

∥µ∥
2/p → δ2/α, p1/2∥A−1

p µ∥ ≥ (λ1p−2
+α)−1p−1/2

∥µ∥ → δ/α, as p → ∞. This, together with the condition
C1, leads that Angle(A−1

p µ, µ) → 0 as p → ∞. □

We utilize a few relevant results in literature. Recall that d = x̄1 − x̄2 and µ = µ1 − µ2 are the sample and population
mean difference vectors. The notation Angle(x,RW ), for x ∈ ℜ

p, and a subspace RW ⊂ ℜ
p, stands for the canonical angle,

i.e. Angle(x,RW ) = miny∈RW ,y̸=0Angle(x, y).

Lemma 9. Assume the condition of Theorem 3.

(i) (Qiao et al., 2010 Theorem 3.) p−1
∥d∥2

→ δ2 + σ 2
1 /n1 + σ 2

2 /n2.

(ii) (Qiao et al., 2010 Theorem 6.) cos[Angle(d, µ)] →

(
δ2

δ2+σ2
1 /n1+σ2

2 /n2

)1/2
in probability as p → ∞.

(iii) (Hall et al., 2005 Theorem 1.) If δ2 > |σ 2
1 /n1 − σ 2

2 /n2|, then the probability that a new datum from either N(µ1, Σ1) or
N(µ2, Σ2) population is correctly classified by the centroid discrimination rule converges to 1 as p → ∞. Here, the centroid
discrimination rule classifies a new observation x to the first group, if ∥x − x̄1∥ < ∥x − x̄2∥.

(iv) (Jung and Marron, 2009 Theorem 1.) Each of n1 + n2 − 2 nonzero eigenvalues of p−1SW converges to either σ 2
1 or σ 2

2 in
probability as p → ∞.
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(v) Angle(d, range(SW )) → π/2 in probability as p → ∞.

Proof of Lemma 9. The statements (i)-(iv) are modified from the original statements of the referenced theorems, and easily
justified.

A proof of (v) is obtained by the following two facts. First, the column space of SW is spanned by {xij − x̄i}. Second, for
each (i, j), Angle(d, xij − x̄i) → 0 in probability as p → ∞. The second result is obtained from the facts p−1

∥x11 − x̄1∥2
→

σ 2
1 (n − 1)/n, and p−1dT (x11 − x̄1) → 0 in probability as p → ∞, as well as Lemma 9(ii). □

Write the eigendecomposition of SW by SW = Û1Λ̂W ÛT
1 , where Û1 collects the (n1 + n2 − 2)-dimensional eigenspace,

corresponding to nonzero eigenvalues. Let Û2 denote the orthogonal basis matrix for the nullspace of SW . Then Û = [Û1, Û2]

is the p × p orthogonal matrix, satisfying ÛÛT
= ÛT Û = Ip. Write d1 = ÛT

1 d, d2 = ÛT
2 d and N = n1 + n2 − 2. Then, we can

write

ŵR
α ∝ Û1(Λ̂W + αpIN )−1d1 + α−1

p Û2d2 := bα. (A.6)

The following intermediate result concerning (A.6) will be handy.

Lemma 10. Assume the condition of Theorem 3.
(i) p−1

∥d1∥2
→ 0, and p−1

∥d2∥2
→ δ2 + σ 2

1 /n1 + σ 2
2 /n2 in probability as p → ∞

(ii) Angle(bα, d) → 0 in probability as p → ∞.

Proof of Lemma 10. In this proof, every convergence is a convergence in probability as p → ∞.
For a proof of (i), by Lemma 9(i), showing p−1

∥d1∥2
→ 0 is enough. From Lemma 9(v), we have ∥Û ′

1d∥/∥d∥ =

cos(Angle(d, range(SW ))) → 0. Then p−1/2
∥d1∥ = p−1/2

∥Û ′

1d∥ = p−1/2
∥d∥(∥Û ′

1d∥/∥d∥), which converges to 0 since p−1/2
∥d∥

is stochastically bounded.
For (ii), we will show that |dTbα|/∥bα∥∥d∥ → 1. From (A.6), we have

p∥bα∥
2

= ∥(p−1Λ̂W + αIN )−1 d1
√
p
∥
2
+

∥d2∥2

α2p
. (A.7)

By Lemma 9(iv), each element in the N × N matrix (p−1Λ̂W + αIN ) converges to either σ 2
1 + α or σ 2

2 + α. This fact and the
part (i) shown above lead that the first term of (A.7) converges to 0. Therefore we have

p1/2∥bα∥ → α−1(δ2 + σ 2/n1 + τ 2/n2)1/2. (A.8)

Similarly, using the decomposition (A.6), and Lemma 9(iv) and the part (i) of Lemma 10, we have

|dTbα| = p−1dT1(p
−1Λ̂W + αIN )−1d1 + α−1p−1

∥d2∥2
→ α−1(δ2 + σ 2/n1 + τ 2/n2). (A.9)

Combining (A.8), (A.9) and Lemma 9(i), we get

|dTbα|

∥bα∥∥d∥
=

|dTbα|

(p1/2∥bα∥)(p−1/2∥d∥)
→ 1,

as desired. □

We are now ready to prove Theorem 3.

Proof of Theorem 3. To show (i), it is enough to combine the results from Lemmas 8, 9(ii) and 10(ii), which describes the
asymptotic angles between the pairs (ωα, µ), (µ, d), and (d, ŵα), respectively.

The statement (ii) is obtained by Lemmas 10(ii) and 9(iii). □
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