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Abstract

In High Dimension, Low Sample Size (HDLSS) data situations, where the
dimension d is much larger than the sample size n, principal component
analysis (PCA) plays an important role in statistical analysis. Under which
conditions does the sample PCA well reflect the population covariance struc-
ture? We answer this question in a relevant asymptotic context where d
grows and n is fixed, under a generalized spiked covariance model. Specif-
ically, we assume the largest population eigenvalues to be of the order dα,
where α <, =, or > 1. Earlier results show the conditions for consistency
and strong inconsistency of eigenvectors of the sample covariance matrix.
In the boundary case, α = 1, where the sample PC directions are neither
consistent nor strongly inconsistent, we show that eigenvalues and eigenvec-
tors do not degenerate but have limiting distributions. The result smoothly
bridges the phase transition represented by the other two cases, and thus
gives a spectrum of limits for the sample PCA in the HDLSS asymptotics.
While the results hold under a general situation, the limiting distributions
under Gaussian assumption are illustrated in greater detail. In addition, the
geometric representation of HDLSS data is extended to give three different
representations, that depend on the magnitude of variances in the first few
principal components.
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1. Introduction

The study of the covariance matrix and its usual estimator, the sample
covariance matrix, is an important issue in multivariate statistics. In par-
ticular, the sample covariance matrix provides the conventional estimator
of principal component analysis (PCA) through the eigenvalue-eigenvector
decomposition. PCA plays an important role in dimension reduction and
visualization of important data structure. The High Dimension, Low Sample
Size (HDLSS) data situation, where the dimension d of the sample space is
much larger than the sample size n, occurs in many areas of modern science,
and thus the dimension reduction through PCA is becoming more important
for analysis of such data. The sample PCA (through the eigen-decomposition
of the sample covariance matrix) is still well-defined when d > n, and thus
frequently used in practice. Even when the dimension is much higher than
the sample size, the PCA has shown to be successful such as in microarray
studies [1]. What is the underlying mechanism which leads to the success of
PCA in the HDLSS situation? This is the question we answer in this paper.

A central question is whether the sample principal components reflect
true underlying distributional structure in the HDLSS context. This has
been investigated by comparing the sample eigenvalues and eigenvectors with
their population counterparts, in a relevant asymptotic context where the
dimension d grows while the sample size n is fixed ([2], [3], [4], [5]). The
asymptotic direction of d growing and n fixed is also studied in different
contexts; see for instance, [6], [7] and Chapter 4.5 of [8]. While we focus on
this asymptotic context in this paper, we also point out that there has been
a different approach for the problem where the limits are taken along the
direction where d and n grow at the same rate, i.e. d/n → c ∈ (0,∞) as
d → ∞. For the result of this type, we refer to [9], [10], [11], [12], [13] and
references therein.

In both investigations, the majority of results are well described in a
spiked covariance model, proposed by [9]. An exception we point out is a work
by [14], which proposes to estimate the spectral distribution of eigenvalues
without assuming a spike model.
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A spiked covariance model assumes that the first few eigenvalues are
distinctively larger than the others. We use a generalized version of the
spike model, as described in Section 3, which is different from that of [9] and
[11]. Let Σ(d) denote the population covariance matrix and S(d) denote the
sample covariance matrix. The eigen-decomposition of Σ(d) is Σ(d) = UdΛdU

′
d,

where Λd is a diagonal matrix of eigenvalues λ1,d ≥ λ2,d ≥ · · · ≥ λd,d in
non-increasing order, Ud is a matrix of corresponding eigenvectors so that
Ud = [u1,d, . . . , ud,d], and

′ denotes the transpose of the preceding matrix. The

eigen-decomposition of S(d) is similarly defined as S(d) = ÛdΛ̂dÛ
′
d. As a simple

example of the spiked model, consider λ1,d = σ2dα, λ2,d = · · · = λd,d = τ 2, for
α, σ2, τ 2 > 0 fixed. The first eigenvector of S(d) corresponding to the largest
eigenvalue is of interest, as it contains the most important variation of the
data. The first sample eigenvector û1,d is assessed with the angle formed
by itself and its population counterpart u1,d. The direction û1,d is said to
be consistent with u1,d if Angle(û1,d, u1,d) → 0 as d → ∞. However in the
HDLSS context, a perhaps counter-intuitive phenomenon frequently occurs,
where the two directions tend to be as far away as possible. We say the
direction û1,d is strongly inconsistent with u1,d if Angle(û1,d, u1,d) → π

2
as

d → ∞. In the one spike model above, the order of magnitude α of the first
eigenvalue is the key condition for these two limiting phenomena. [3] have
shown that

Angle(û1,d, u1,d) →
{

0, α > 1;
π
2
, α < 1,

(1)

in probability under some conditions. Although the gap between consistency
and strong inconsistency is relatively thin, the case α = 1 has not been
investigated, and is a main focus of this paper.

It is natural to conjecture from (1) that when α = 1, the angle does
not degenerate but converges to a random quantity in (0, π/2). This claim
is established in the simple one spike model in the next section, where we
describe a range of limits for the eigenvalues and eigenvectors, depending
on the order of magnitude α of λ1,d. In Section 3, the claim is generalized
for multiple spike cases, and is proved in a much more general distributional
setting.

The parameter α gives a sharp mathematical boundary for the set of
HDLSS situations where the estimated PC direction converges to the popu-
lation direction. In the boundary, α = 1, it will be shown that the estimated
PC direction is affected by the true PC directions, but not as strong as the
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α > 1 case. The success of PCA in the HDLSS situation is understood as an
example of the α ≥ 1 cases, as otherwise the estimated principal components
are meaningless as shown in (1).

In a multiple spike model with m > 1 spikes, where the first m princi-
pal components contain the important signal of the distribution, the sam-
ple PCA can be assessed by simultaneously comparing the first m principal
components. In particular, we investigate the limits of distance between
two subspaces: the subspace generated by the first m sample PC directions
û1,d, . . . , ûm,d and the subspace by the first m population PC directions. The
distance is usefully measured by canonical angles and metrics between sub-
spaces, the limiting distributions of which will be investigated for the α = 1
case, as well as the cases α ̸= 1, in Section 3.3. The probability density
functions of the limiting distributions for α = 1 are also derived and illus-
trated under a Gaussian assumption, to show the effect of parameters in the
distributions.

The HDLSS data set has an interesting geometric representation in the
limit d → ∞, as shown in [15]. In Section 4, we extend the result and show
that there are three different geometric representations, which coincide with
the range of limits depending on α.

2. Range of limits in the single spike model

Suppose we have a data matrix X(d) = [X1,d, . . . , Xn,d], with d > n,
where the d dimensional random vectors Xi,d are independent and identically
distributed. We assume for now that Xi,d is normally distributed with mean
zero and covariance matrix Σ(d), but the Gaussian assumption will be relaxed
in the next section. The population covariance matrixΣ(d) is assumed to have
one spike, that is, the eigenvalues of Σ(d) are λ1,d = σ2dα, λ2,d = · · · = λd,d =
τ 2. The corresponding eigenvectors of Σ(d) are denoted by ui,d. The sample
covariance matrix is defined as S(d) =

1
n
X(d)X

′
(d) with its ith eigenvalue and

eigenvector denoted by λ̂i,d and ûi,d, respectively.
The following theorem summarizes the spectrum of the limiting distribu-

tions of the eigenvalues and eigenvectors of S(d), depending on the different
order α of λ1,d. Note that the angle between the two vectors u, û is rep-
resented by the inner product through Angle(u, û) = cos−1(u′û). For the
eigenvectors with common eigenvalues, there are of course an infinite num-
ber of choices. The argument in the following theorem assumes that we
choose a set of population eigenvectors uj,d before obtaining ûj,d.
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Theorem 1. Under the Gaussian assumption and the one spike case above,
(i) the limit of the first eigenvalue depends on α:

λ̂1,d

max(dα, d)
=⇒


σ2 χ

2
n

n
, α > 1;

σ2 χ
2
n

n
+ τ2

n
, α = 1;

τ2

n
, α < 1,

as d → ∞, where =⇒ denotes the convergence in distribution, and χ2
n denotes

a random variable with the χ2 distribution with degrees of freedom n. The
rest of the eigenvalues converge to the same quantity when scaled, that is for
any α ∈ [0,∞), j = 2, . . . , n,

λ̂j,d

d
→ τ 2

n
, as d → ∞,

in probability.
(ii) The limit of the first eigenvector depends on α:

u′
1,dû1,d =⇒


1 α > 1;(
1 + τ2

σ2χ2
n

)− 1
2

α = 1;

0, α < 1,

as d → ∞. The rest of the eigenvectors are strongly inconsistent with their
population counterpart, for any α ∈ [0,∞), j = 2, . . . , n,

u′
j,dûj,d → 0, as d → ∞,

in probability.

The case α = 1 bridges the other two cases. In particular, the ratio of
the sample and population eigenvalue λ̂1,d/λ1,d is asymptotically unbiased to
1 when α > 1. It is asymptotically biased when α = 1, and becomes com-
pletely deterministic in the case α < 1, where the effect of σ2 on λ̂1,d becomes
negligible. Moreover, the angle Angle(u1,d, û1,d) to the optimal direction con-
verges to a random quantity which is defined on (0, π/2) and depends on
σ2, τ 2, and n. The effect of those parameters on the limiting distribution of
Angle(u1,d, û1,d) is illustrated in Fig. 1. The ratio σ2/τ 2 can be understood as
a signal to noise ratio. A high value of σ2/τ 2 means that the major variation
along the first PC direction is strong. Therefore, for larger values of σ2/τ 2,
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Figure 1: Angle densities for the one spike case. The top panel shows an overlay of the
densities with different σ2, with other parameters fixed. The bottom panel shows an
overlay of the densities with different degrees of freedom n of the χ2 distribution. For a

larger signal to noise ratio σ2

τ2 , and for a larger n, the angle to optimal is smaller.

Angle(u1,d, û1,d) should be closer to zero than smaller values of the ratio, as
depicted in the upper panel of Fig. 1. Moreover, the sample PCA with larger
sample size n should perform better than with smaller sample size. The sam-
ple size n becomes the degrees of freedom of the χ2 distribution in the limit,
and the bottom panel of Fig. 1 shows that the ûi,d is closer to ui,d for larger
values of n.

The Gaussian assumption in the previous theorem appears as a driver of
the limiting χ2 distributions. Under the general non-Gaussian assumption
we state in the next section, the χ2 will be replaced by a distribution that
depends heavily on the distribution of the population principal component
scores, which may not be Gaussian.

Remark 1. The results in Theorem 1 can be used to estimate the parameters
σ2 and τ 2 in the model with α = 1. As a simple example, one can set

τ̂ 2 = n
n−1

∑n
j=2

λ̂j,d

d
and σ̂2 = λ̂1,d/d− τ̂ 2/n. Then τ̂ 2 → τ 2 and σ̂2 =⇒ σ2 χ

2
n

n
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as d → ∞ by Theorem 1 and Slutsky’s theorem. The estimator σ̂2 is not
consistent but can evidently be used to construct a confidence interval for
σ2:

P

{
nσ̂2

χ2
n,1−(a/2)

≤ σ2 ≤ nσ̂2

χ2
n,a/2

}
→ (1− a) as d → ∞.

This can be extended to provide asymptotic confidence intervals for principal
component scores. A similar estimation scheme can be found in a related
but different setting where d, n → ∞ together; see for example [11] and [13].
These papers do not discuss eigenvector estimation. The sample eigenvector,
û1,d is difficult to improve upon mainly because the direction of deviation û1,d

from u1,d is quite random unless a more restrictive assumption (e.g. sparsity)
is made.

3. Limits under generalized spiked covariance model

The results in the previous section will be generalized to much broader
situations, including a generalized spiked covariance model and a relaxation
of the Gaussian assumption. We focus on the α = 1 case, and describe the
limiting distributions for eigenvalues and eigenvectors.

3.1. Eigenvalues and eigenvectors

In the following, all the quantities depend on the dimension d, but the
subscript d is omitted when it does not cause any confusion. We first describe
some elementary facts from matrix algebra, that are useful throughout the
paper. The dimension of the sample covariance matrix S increases as d grows,
so it is challenging to deal with S directly. A useful approach is to use the
dual of S, defined as the n× n symmetric matrix

SD =
1

n
X ′X,

by switching the role of rows and columns of X. The (i, j)th element of
SD is 1

n
X ′

iXj. An advantage of working with SD is that for large d, the
finite dimensional matrix SD is positive definite with probability one, and its
n eigenvalues are the same as the non-zero eigenvalues of S. Moreover, the
sample eigenvectors ûi are related to the eigen-decomposition of SD, as shown
next. Let SD = V̂nΛ̂nV̂n, where Λ̂n = diag(λ̂1, . . . , λ̂n) and V̂n is the n × n
orthogonal matrix of eigenvectors v̂i corresponding to λ̂i. Recall S = Û Λ̂Û ′.
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Since S is at most rank n, we can write S = ÛnΛ̂nÛ
′
n, where Ûn = [û1, . . . , ûn]

consists of the first n columns of Û . The singular value decomposition of X
is given by

X = ÛnΛ̂nV̂
′
n =

n∑
i=1

(nλ̂i)
− 1

2 ûiv̂
′
i.

Then the kth sample principal component direction ûk for k ≤ n is propor-
tional to Xv̂k,

ûk = (nλ̂k)
− 1

2Xv̂k. (2)

Therefore the asymptotic properties of the eigen-decomposition of S, as d →
∞, can be studied via those of the finite dimensional matrix SD.

It is also useful to represent SD in terms of the population principal
components. Let Z(d) be the standardized principal components ofX, defined
by

Z(d) =

 Z ′
1
...
Z ′

d

 = Λ
−1/2
d U ′

dX,

where Z ′
i = (Zi1, . . . , Zin) is the ith row of Z(d), so that

Z ′
i = λ

− 1
2

i u′
iX. (3)

Under the Gaussian assumption of the previous section, each element of
Z(d) is independently distributed as the standard normal distribution. By
X = UdΛ

1/2Z(d),

SD =
1

n
X ′X =

1

n
Z ′

(d)ΛZ(d) =
1

n

d∑
i=1

λiZiZ
′
i.

The Gaussian assumption on X is relaxed as follows. We assume that
each column Xi of X follows a d dimensional multivariate distribution with
mean zero and covariance matrix Σ. Each entry of the standardized principal
components, or the sphered variables Z(d) is assumed to have finite fourth
moments, and is uncorrelated but in general dependent with each other. We
regulate the dependency of the principal components by a ρ-mixing condition
(see [16], [17]). We briefly describe a version of ρ-mixing for our purpose.
For −∞ ≤ J ≤ L ≤ ∞, let FL

J denote the σ-field of events generated by the
random variables Zi, J ≤ i ≤ L. For any σ-field A, let L2(A) denote the
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space of square-integrable, A measurable real-valued random variables. For
each m ≥ 1, define the maximal correlation coefficient

ρ(m) := sup |corr(f, g)|, f ∈ L2(F j
−∞), g ∈ L2(F∞

j+m),

where sup is over all f , g and j ∈ Z. The sequence {Zi} is said to be ρ-mixing
if ρ(m) → 0 as m → ∞.

While the concept of ρ-mixing is useful as a mild condition for the de-
velopment of laws of large numbers, its formulation is critically dependent
on the ordering of variables. Therefore we assume that there is some per-
mutation of the data which is ρ-mixing. In particular, let {Zij,(d)}di=1 be the
components of the jth column vector of Z(d). We assume that for each d,
there exists a permutation πd : {1, . . . , d} 7−→ {1, . . . , d} so that the sequence
{Zπd(i)j,(d) : i = 1, . . . , d} is ρ-mixing. This assumption makes the results in-
variant under a permutation of the variables. We denote these distributional
assumptions as (c1).

We then define a generalized spiked covariance model. Recall that a
simple one spike model was defined on the eigenvalues of the population co-
variance matrix Σ, for example, λ1 = σ2dα, λ2 = · · · = λd = τ 2. This is
generalized by allowing multiple spikes, and by relaxing the uniform eigen-
value assumption in the tail to a decreasing sequence. The tail eigenvalues
are regulated by a measure of sphericity ϵk in the limit d → ∞. The measure
of sphericity ϵk, k = 1, 2, . . ., is defined for {λk, . . . , λd} as

ϵk(d) ≡
(
∑d

i=k λi)
2

d
∑d

i=k λ
2
i

,

which is away from 0 and close to 1 when {λk, . . . , λd} are close to each other.
Then we shall assume that the tail eigenvalues do not decrease too fast. In
particular, we say the ϵk-condition is satisfied when ϵk(d) decreases at a rate
slower than d−1, i.e.

(dϵk)
−1 =

∑d
i=k λ

2
i

(
∑d

i=k λi)2
→ 0 as d → ∞.

The ϵk condition holds for quite general settings ([3], Sec. 2). As an example,

a polynomially decreasing sequence i−
1
2 of eigenvalues satisfies the condition

ϵk with k = 1. In the generalized spiked model, the eigenvalues are assumed
to be of the form λ1 = σ2

1d
α, . . . , λm = σ2

md
α, for σ2

1 ≥ · · · ≥ σ2
m > 0 for some
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m ≥ 1, and the ϵm+1 condition holds for λm+1, . . . , λd. Also assume that
1
d

∑d
i=m+1 λi → τ 2 as d → ∞. These conditions for spike models are denoted

by (c2).
The following theorem gives the limits of the sample eigenvalues and

eigenvectors under the general assumptions in this section. We use the fol-
lowing notations. Let φ(A) be a vector of eigenvalues of a real symmetric
matrix A arranged in non-increasing order and let φi(A) be the ith largest
eigenvalue of A. Let vi(A) denote the ith eigenvector of the matrix A cor-
responding to the eigenvalue φi(A) and vij(A) be the jth loading of vi(A).
Also note that there are many choices of eigenvectors of S including the sign
changes. We use the convention that the sign of ûi will be chosen so that
û′
iui ≥ 0. Recall that the vector of the ith standardized principal component

scores is Zi = (Z1i, . . . , Zni)
′. Denote the n×m matrix of the first m princi-

pal component scores as W = [σ1Z1, · · · , σmZm]. The limiting distributions
heavily depend on the finite dimensional random matrix W.

Theorem 2. Under the assumptions (c1) and (c2) with fixed n ≥ m ≥ 1, if
α = 1, then (i) the sample eigenvalues

d−1nλ̂i,d =⇒
{

φi(W
′W) + τ 2, i = 1, . . . ,m;

τ 2, i = m+ 1, . . . , n,

as d → ∞ jointly for all i.
(ii) The inner products between the sample and population eigenvectors

have limiting distributions:

û′
i,duj,d =⇒

vij(W
′W)√

1 + τ 2/φi(W′W)
as d → ∞ jointly for i, j = 1, . . . ,m.

The rest of eigenvectors are strongly inconsistent with their population coun-
terpart, i.e.

û′
i,dui,d → 0 as d → ∞ for i = m+ 1, . . . , n,

in probability.

The theorem shows that the first m eigenvectors are neither consistent
nor strongly inconsistent to the population counterparts. The limiting dis-
tributions of angles Angle(ûi,d, ui,d) to optimal directions are supported on
(0, π/2) and depend on the magnitude of the noise τ 2 and the distribution of
W′W. Note that the m×m symmetric matrix W′W is the scaled covariance
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matrix of the principal component scores in the first m directions. When the
underlying distribution of X is assumed to be Gaussian, then W′W is the
Wishart matrix Wm (n,Λm), where Λm = diag(σ2

1, . . . , σ
2
m). If m = 1, the

matrix becomes a scalar random variable W′W = φ1(W
′W), and is χ2

n

under the Gaussian assumption, which leads to Theorem 1.
In general, the distribution of φi(W

′W) is not simply described. We refer
to [18, Ch. 9] for the Gaussian case, and [19] for the case m → ∞.

The limiting distributions of the cases α ̸= 1 can be found in a similar
manner, which we only state the result for the case α > 1 and for the first
m components. We refer to [3] for more general results. For i, j = 1, . . . ,m,
the eigenvalues d−αnλ̂i,d =⇒ ϕi(W

′W) and the inner products û′
i,duj,d =⇒

vij(W
′W) as d → ∞. In comparison to the α = 1 case, if we set τ 2 to be

zero, the result becomes identical for all α ≥ 1.

Remark 2. When the sample size n also grows, consistency of sample eigen-
values and eigenvectors can be achieved. In particular, for i = 1, . . . ,m, we
have as d grows

λ̂i,d

λi,d

=
d

n

d−1nλ̂i,d

σ2
i d

=⇒ φi(W
′W/n)

σ2
i

+
τ 2

nσ2
i

by Theorem 2. Since W′W/n → diag(σ2
1, . . . , σ

2
m) by a law of large num-

bers, we get the consistency of eigenvalues, i.e. λ̂i,d/λi,d → 1 as d, n → ∞,
where the limits are applied successively. For the sample eigenvectors, from
Theorem 2(ii) and because vij(W

TW) → 1 if i = j, 0 otherwise as n → ∞
and φi(W

′W) = O(n), we get û′
i,duj,d → 1 if i = j, 0 otherwise as d, n → ∞.

Therefore, the sample PC directions are consistent to the corresponding pop-
ulation PC directions, i.e. Angle(ûi,d, ui,d) → 0 as d, n → ∞ (applied succes-
sively), for i ≤ m. Therefore it is conjectured that when d, n grow together
with d ≫ n, a similar conclusion to Theorem 2 can be drawn.

Proof of Theorem 2. The following lemma (Theorem 1 of [3]) shows a version
of the law of large numbers for matrices, that is useful in the proof. Recall
that Z ′

i ≡ (Z1i, . . . , Zni) is the ith row of Z(d).

Lemma 1. If the assumption (c1) and the ϵk-condition holds, then

c−1
d

d∑
i=k

λi,dZiZ
′
i → In, as d → ∞
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in probability, where cd = n−1
∑d

i=1 λi,d and In denotes the n × n identity

matrix. In particular, if d−1
∑d

i=k λi,d → τ 2, then

1

d

d∑
i=k

λi,dZiZ
′
i → τ 2In, as d → ∞

in probability.

This lemma is used to show that the spectral decomposition of d−1nSD,

d−1nSD =
m∑
i=1

σ2
iZiZ

′
i + d−1

d∑
i=m+1

λiZiZ
′
i,

can be divided into two parts, and the latter converges to a deterministic
part. Applying Lemma 1, we have d−1nSD =⇒ S0 as d → ∞, where

S0 = WW′ + τ 2In.

Then since the eigenvalues of a symmetric matrix A are a continuous function
of elements of A, we have

φ(d−1nSD) =⇒ φ(S0),

as d → ∞. Noticing that for i = 1, . . . ,m,

φi(S0) = φi(WW′) + τ 2 = φi(W
′W) + τ 2,

and for i = m+ 1, . . . , n, φi(S0) = τ 2 gives the result.
For the eigenvectors, note that the eigenvectors v̂i of d−1nSD can be

chosen so that they are continuous ([20]). Therefore, we also have that v̂i =
vi(d

−1nSD) =⇒ vi(S0) as d → ∞, for all i. Also note that vi(S0) = vi(WW′)
for i ≤ m.

Similar to the dual approach for covariance matrices, the eigenvectors of
the n × n matrix WW′ can be evaluated from the dual of the matrix. In
particular, let W = UwΛwV

′
w =

∑m
i=1 λiwuiwv

′
iw, where λ2

iw = φi(W
′W) and

viw = vi(W
′W). Then

v1(S0) = uiw =
Wviw
λiw

=
Wvi(W

′W)√
φi(W′W)

.
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Now from (2),(3) and the previous equation, for 1 ≤ i, j ≤ m,

u′
jûi = u′

j

Xv̂i√
nλ̂i

=
u′
jXv̂i√
nλ̂i

=

√
σ2
jdZ

′
j v̂i√

nλ̂i

=
σjZ

′
j v̂i√

d−1nλ̂i

=⇒
σjZ

′
jWvi(W

′W)√
φi(W′W) + τ 2

√
φi(W′W)

. (4)

Note that σjZ
′
jW = [σjσ1Z

′
jZ1 · · ·σjσmZ

′
jZm] is the jth row of W′W and

W′Wvi(W
′W) = φi(W

′W)vi(W
′W). Therefore, the limiting form (4) be-

comes
φi(W

′W)vij(W
′W)√

φi(W′W) + τ 2
√

φi(W′W)
.

For i = m+ 1, . . . , n, again from (2) and (3), we get

u′
iûi =

√
λiZ

′
iv̂i√

nλ̂i

= d−
1
2

τZ ′
iv̂i√

nλ̂i/d
= Op(d

− 1
2 ).

3.2. Asymptotic results for centered data matrix

In practice, the sample covariance matrix is usually derived from the cen-
tered data matrix. In such a case, we obtain a weaker result than Theorem 2.
Let S̃(d) = n−1(Xd − X̄)(Xd − X̄)′, where X̄ = n−1

∑n
i=1 Xi,d1

′
n is a d × n

matrix consisting of n columns of the sample mean vector.
For a general mean vector µ, the representation of X in terms of stan-

dardized principal components Z(d) is

X = µ1′n + UdΛ
1
2Z(d)

and thus
X − X̄ = UdΛ

1
2 (Z(d) − Z̄),

where the ith row of Z̄ is z̄′i = n−1
∑n

j=1 Zij1
′
n = n−1Z ′

iJn. The symbol Jn
represents the n× n matrix consisting entirely of ones.

The dual covariance matrix of S̃(d) is then S̃D = n−1
∑d

i=1 λi(Zi− z̄i)(Zi−
z̄i)

′ = n−1(In−n−1Jn)
∑d

i=1 λiZiZ
′
i(In−n−1Jn)

′. Then we have the following
result.
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Proposition 1. Let λ̃i,d be the ith largest eigenvalue of S̃(d). Under the
assumptions (c1) and (c2) with fixed n > m ≥ 1, if α = 1, then for any
ϵ > 0,

lim
d→∞

P

[
m∩
i=1

{n
d
λ̃i,d ∈ [φi(W̃

′W̃), φi(W̃
′W̃) + τ 2]}

n−1∩
i=m+1

{n
d
λ̃i,d ∈ (τ 2 − ϵ, τ 2 + ϵ)}

]
= 1,

where the n × m matrix of the first m principal component scores is W̃ =
[σ1(Z1 − z̄1), · · · , σm(Zm − z̄m)].

Proof of Proposition 1. Note that λ̃i,d = φi(S̃(d)) = φi(S̃D) for i = 1, . . . , n−
1. Similar to the proof of Theorem 2, the spectral decomposition of d−1nS̃D

is divided into two parts,

d−1nS̃D =
m∑
i=1

σ2
i (Zi− z̄i)(Zi− z̄i)

′+(In−n−1Jn)
1

d

d∑
i=m+1

λiZiZ
′
i(In−n−1Jn)

′,

and using Lemma 1, d−1nS̃D converges in distribution to S̃0 = W̃W̃′ +
τ 2(In − n−1Jn). Then the eigenvalues of d−1nS̃D jointly converges to the
eigenvalues of S̃0.

For i = 1, . . . ,m, Weyl’s inequality ([3, p. 4121], [21]) yields that

φi(W̃W̃′)+φn{τ 2(In−n−1Jn)} ≤ φi(S̃0) ≤ φi(W̃W̃′)+φ1{τ 2(In−n−1Jn)},

where φj{τ 2(In − n−1Jn)} = τ 2 for j = 1, . . . , n − 1 and 0 for j = n, and
φi(W̃W̃′) = φi(W̃

′W̃).
For i = m+ 1, . . . , n− 1, also applying Weyl’s inequality gives

φn(W̃W̃′)+φi{τ 2(In−n−1Jn)} ≤ φi(S̃0) ≤ φi(W̃W̃′)+φ1{τ 2(In−n−1Jn)},

and because the rank of W̃W̃′ is at most m, φi(W̃W̃′) = 0 for i > m. Thus,
φi(S̃0) = τ 2, which leads to d−1nλ̃i,d → τ 2 in probability as d → ∞. The
result is derived by combining the cases i = 1, . . . , n− 1.

When the centered data matrix X − X̄ is used, the scaled eigenvalue
estimate no longer converges in distribution to φi(W̃

′W̃)+ τ 2. However, the
difference becomes smaller for larger n, since the centering matrix In−n−1Jn
is close to In for large n. For the rest of the paper, we assume that the mean
is known and zero for the sake of clear presentation.
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3.3. Angles between principal component spaces

Under the generalized spiked covariance model with m > 1, the first m
population principal directions provide a basis of the most important vari-
ation. Therefore, it would be more informative to investigate the devia-
tion of each ûi from the subspace Lm

1 (d) spanned by {u1,d, . . . , um,d}. Also,
denote the subspace spanned by the first m sample principal directions as
L̂m

1 (d) ≡ span{û1,d, . . . , ûm,d}. When performing dimension reduction, it is

critical for the sample PC space L̂m
1 to be close to the population PC space

Lm
1 . The closeness of two subspaces can be measured in terms of canonical

angles.
We briefly introduce the notion of canonical angles and metrics between

subspaces, detailed discussions of which can be found in [22] and [23]. As a
simple case, the canonical angle between a 1-dimensional subspace and an
m-dimensional subspace is defined as follows. Let L̂i be the 1-dimensional
linear space with basis ûi. Infinitely many angles can be formed between
L̂i and Lm

1 with m > 1. The canonical angle, denoted by Angle(L̂i,Lm
1 ),

is defined by the smallest angle formed, that is the angle between ûi and
its projection ûP

i onto Lm
1 . This angle is represented in terms of an inner

product as

Angle(L̂i,Lm
1 ) = cos−1

(
û′
iû

P
i

∥ûP
i ∥ ∥ûi∥

)
= min

y∈Lm
1

Angle(ûi,y) for ∥y∥ > 0. (5)

When two multi-dimensional subspaces are considered, multiple canonical
angles are defined. Among angles between L̂m

1 and Lm
1 , the first canonical

angle is geometrically defined as

θ1(L̂m
1 ,Lm

1 ) = max
x∈L̂m

1

min
y∈Lm

1

Angle(x,y) for ∥x∥ , ∥y∥ > 0, (6)

where Angle(x,y) is the angle formed by the two vectors x, y. One can show
that the second canonical angle is defined by the same geometric relation as
above with L̂−x and L−y for x, y from (6), where L̂−x is the orthogonal

complement of x in L̂m
1 . In practice, the canonical angles are found by the

singular value decomposition of a matrix. Let Ûm and Um be orthonormal
bases for L̂m

1 , Lm
1 and γi’s be the singular values of Û

′
mUm. Then the canonical

angles are
θi(L̂m

1 ,Lm
1 ) = cos−1(γi)

in descending order.
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Distances between two subspaces can be defined using the canonical an-
gles. We point out two metrics from Chapter II.4 of [22]:

1. gap metric ρg(L̂m
1 ,Lm

1 ) = sin(θ1),

2. Euclidean sine metric ρs(L̂m
1 ,Lm

1 ) = {
∑m

i=1 sin
2(θi)}

1
2 .

The gap metric is simple and only involves the largest canonical angle. The
Euclidean sine metric makes use of all canonical angles and thus gives a more
comprehensive understanding of the closeness between the two subspaces. We
will use both metrics in the following discussion.

At first, we examine the limiting distribution of the angle between the
sample PC direction ûi and Lm

1 .

Theorem 3. Under the assumptions (c1) and (c2) with fixed n ≥ m ≥ 1, if
α = 1, then for i = 1, . . . ,m, the canonical angle converges in distribution:

cos
(
Angle(L̂i,Lm

1 )
)
=⇒ 1√

1 + τ 2/φi(W′W)
as d → ∞.

Proof. Since ûP
i =

∑m
j=1(û

′
iuj)uj,

û′
iû

P
i

∥ûP
i ∥ ∥ûi∥

=
∥∥ûP

i

∥∥ =
√
(û′

iu1)2 + · · ·+ (û′
ium)2.

The result follows from (5), Theorem 2(ii) and the fact that
∑m

j=1 (vij(W
′W))2 =

∥vi(W′W)∥2 = 1.

We then investigate the limiting behavior of the distances between L̂m
1

and Lm
1 , in terms of either the canonical angles or the distances. From the

fact that Ûm = [û1, . . . , ûm] and Um = [u1, . . . , um] are orthonormal bases
of L̂m

1 and Lm
1 respectively, cosines of the canonical angles are the singular

values of Û ′
mUm. Since the (i, j)th element of Û ′

mUm is û′
iuj, Theorem 2 leads

to

Û ′
mUm =⇒ [v1(W

′W) · · · vm(W′W)]


(
1 + τ2

φ1(W′W)

)− 1
2

0

. . .

0
(
1 + τ2

φm(W′W)

)− 1
2

 ,
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as d → ∞. Therefore the canonical angles (θ1, . . . , θm) between L̂m
1 and Lm

1

converge to the arccosines of

(
(
1 + τ 2/φm(W

′W)
)− 1

2 , . . . ,
(
1 + τ 2/φ1(W

′W)
)− 1

2 ), (7)

as d → ∞. Notice that these canonical angles between subspaces converge
to the same limit as in Theorem 3, except that the order is reversed. In
particular, the limiting distribution of the largest canonical angle θ1 is the
same as that of the angle between ûm and Lm

1 , and the smallest canonical
angle θm corresponds to the angle between the first sample PC direction û1

and the population PC space Lm
1 .

The limiting distributions of the distances between two subspaces are
readily derived by the discussions so far. When using the gap metric,

ρg(L̂m
1 ,Lm

1 ) =⇒
(
1 + φm(W

′W)/τ 2
)− 1

2 as d → ∞.

And by using the Euclidean sine metric,

ρs(L̂m
1 ,Lm

1 ) =⇒

(
m∑
i=1

1

1 + φi(W′W)/τ 2

) 1
2

as d → ∞. (8)

Remark 3. The convergence of the canonical angles for the case α > 1 has
been shown earlier. [3] introduced a notion of subspace consistency, where
the direction ûi may not be consistent to ui but will tend to lie in Lm

1 , i.e.
Angle(L̂i,Lm

1 ) → 0 as d → ∞, for i ≤ m. In this case, the canonical angles
between L̂m

i and Lm
1 and the distances will converge to 0 as d grows. In

that sense, the empirical PC space L̂m
i is consistent to Lm

1 . On the other
hand, when α < 1, all directions ûi tend to behave as if they were from the
eigen-decomposition of the identity matrix. Therefore, all angles tend to be
π/2 and the distances will converge to their largest possible values, leading
to the strong inconsistency.

We now focus back on the α = 1 case, and illustrate the limiting distri-
butions of the canonical angles and the Euclidean sine distance, to see the
effect of parameters in the distribution. For simplicity and clear presenta-
tion, the results corresponding to m = 2 are presented under the Gaussian
assumption. Note that the limiting distributions depend on the marginal dis-
tributions of the first few principal component scores. Therefore no common
distribution is evaluated in the limit.
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Let σ2 (= σ2
1 + σ2

2) denote the (scaled) total variance of the first two
principal components. The ratio σ2

τ2
is understood as a signal to noise ratio,

similar to the single spike case. Since the ratio of σ2
1 and σ2

2 affects the limiting
distributions, we use (λ1, λ2) with λ1 + λ2 = 1 so that σ2(λ1, λ2) = (σ2

1, σ
2
2).

Note that for W′W ∼ W2(n, diag(σ
2
1, σ

2
2)), φ(W

′W) has the same law as
σ2φ(W2(n, diag(λ1, λ2)).

The joint limiting distribution of the two canonical angles in (7), also in
Theorem 3, is illustrated in Fig. 2, with various values of (σ2/τ 2, λ1/λ2) and
fixed n. Note that for large d, the first canonical angle θ1 ≈ Angle(û2,d,Lm

1 )
and θ2 ≈ Angle(û1,d,Lm

1 ), and that θ1 ≥ θ2.

• The diagonal shift of the joint densities in Fig. 2 is driven by different
σ2s with other parameters fixed. Both θ1 and θ2 are smaller for larger
signal to noise ratios.

• For fixed σ2/τ 2, several values of the ratio between the first and second
variances (λ1/λ2) are considered, and the overlay of densities according
to different λ1/λ2 is illustrated as the vertical shift in Fig. 2. When
the variation along the first PC direction is much stronger than that
along the second, i.e. when λ1/λ2 is large, θ2 becomes smaller but θ1
tends to be much larger. In other words, û1 is a reasonable estimate of
u1, but û2 becomes a poor estimate of u2.

See (A.4) in the appendix for the probability density function of the canonical
angles.

The limiting distribution of the Euclidean sine distance between L̂m
1 and

Lm
1 is also depicted in Fig. 3, again with various values of (σ2, λ1, λ2). It

can be checked from the top panel of Fig. 3 that the distance to the optimal
subspace is smaller when the signal to noise ratio is larger. The bottom panel
illustrates the densities corresponding to different ratios of λ1/λ2. The effect
of λ1/λ2 is relatively small compared to the effect of different σ2s, unless λ2

is too small.

4. Geometric representation of the HDLSS data

[15] first showed that the HDLSS data has an interesting geometric rep-
resentation in the limit d → ∞. In particular, for large d, the data tend to
appear at vertices of a regular simplex and the variability is contained only
in the random rotation of the simplex. In the spike model we consider, this
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Figure 2: Overlay of contours of densities of canonical angles for the m = 2 case, cor-
responding to different (σ2/τ2, λ1/λ2). Larger signal to noise ratios σ2/τ2 lead to the
diagonal shift of the density function, and both canonical angles will have smaller values.
For a fixed σ2/τ2, the ratio λ1/λ2 between the first and second PC variances is a driver
for different distributions, depicted as the vertical shift of the density function.

geometric representation of the HDLSS data holds when α < 1, as shown
earlier in [3]. The representation in mathematical terms is

∥Xi∥ = τ
√
d+ op(

√
d), ∥Xi −Xj∥ = τ

√
2d+ op(

√
d), (9)

for d dimensional Xi, i = 1, . . . , n. This simplified representation has been
used to show some high dimensional limit theory for discriminant analysis,
see [2], [24] and [25].

Similar types of representation can be derived in the α ≥ 1 case. When
α > 1, where consistency of PC directions happens, we have

∥Xi∥ /dα/2 =⇒ ∥Yi∥ , ∥Xi −Xj∥ /dα/2 =⇒ ∥Yi − Yj∥ (10)

where Yi = (σ1Z1i, . . . σmZmi)
′s are m-dimensional independent random vec-

tors with mean zero and covariance matrix diag(σ2
1, . . . , σ

2
m). To understand
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Figure 3: Overlay of densities of the distance between the sample and population PC
spaces, measured by ρs for the m = 2 case. The top panel shows a transition of the density
function corresponding to different signal to noise ratios. The bottom panel illustrates the
effect of the ratio λ1/λ2 between the first two eigenvalues. For a larger signal to noise
ratio σ2/τ2, and for a smaller value of λ1/λ2, the Euclidean sine distance is smaller.

Yi, let XP
i be the projection of Xi onto the true PC space Lm

1 . It can be
checked from d−1/2XP

i =
∑m

j=1(σjZji)uj that Yi is the vector of loadings of

the scaled XP
i in the first m principal component coordinates. When α = 1,

a deterministic term is added:

∥Xi∥2 /d1 =⇒ ∥Yi∥2 + τ 2, ∥Xi −Xj∥2 /d =⇒ ∥Yi − Yj∥2 + 2τ 2, (11)

These results can be understood geometrically, as summarized and discussed
in the following;

α > 1: The variability of samples is restricted to the true PC space Lm
1 for

large d, which coincides with the notion of subspace consistency dis-
cussed in Remark 3. The d-dimensional probability distribution degen-
erates to the m-dimensional subspace Lm

1 .
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α = 1: (11) is understood with a help of Pythagorean theorem, that is, the
norm of Xi is asymptotically decomposed into orthogonal random and
deterministic parts. Thus, data tend to be τ

√
d away from Lm

1 , and Xis
projected on Lm⊥

1 = span{um+1, . . . , ud}, the orthogonal complement
of Lm

1 , will follow the representation similar to the α < 1 case.

α < 1: The geometric representation (9) holds.

Note that the case α = 1 smoothly bridges the others.
An example elucidating these ideas is shown in Fig. 4. Each panel shows

3d scatterplots of 10 different samples (shown as different symbols) of n = 3
Gaussian random vectors in dimensions d = 3, 30, 3000 (shown in respective
columns of Fig. 4. In the spiked model, we take σ = τ = 1 and m = 1
for simplicity and investigate three different orders of magnitude α = 1

2
, 1, 2

of the first eigenvalue λ1 = dα. For each pair of (d, α), each sample Xi is
projected onto the first true PC direction u1, shown as the vertical axis. In
the orthogonal d − 1 dimensional subspace, the 2-dimensional hyperplane
that is generated by the data is found, and the data are projected onto that.
Within the hyperplane, variation due to rotation is removed by optimally
rotating the data onto edges of a regular triangle by a Procrustes method,
to give the horizontal axes in each part of Fig. 4. These axes are scaled by
dividing by max(dα, d) and the 10 samples give an impression of the various
types of convergence as a function of d, for each α.

The asymptotic geometric representations summarized above are con-
firmed by the figure. For α = 1

2
, it is expected from (9) that the data are

close to the vertices of the regular triangle, with edge length
√
2d. The ver-

tices of the triangle (in the horizontal plane) with vertical rays (representing
u1, the first PC direction) are shown as the dashed lines in the first two rows
of Fig. 4. Note that for d = 3, in the top row, the points appear to be quite
random, but for d = 30, there already is reasonable convergence to the ver-
tices with notable variation along u1. The case d = 3000 shows more rigid
representation with much less variation along u1. On the other hand, for the
case α = 2 in the last row of Fig. 4, most of the variation in the data is found
along u1, shown as the vertical dotted line, and the variation perpendicular
to u1 becomes negligible as d grows, which confirms the degeneracy to L1

1 in
(10). From these examples, conditions for consistency and strong inconsis-
tency can be checked heuristically. The sample eigenvector û1 is consistent
with u1 when α > 1, since the variation along u1 is so strong that û1 should
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Figure 4: Gaussian toy example, showing the geometric representations of HDLSS data,
with n = 3, for three different choices of α = 1/2, 1, 2 of the spiked model and increasing
dimensions d = 3, 30, 3000. For α ̸= 1, data converge to vertices of a regular 3-simplex
(case α < 1) or to the first PC direction (case α > 1). When α = 1, data are decomposed
into the deterministic part on the horizontal axes and the random part along the vertical
axis.

be close to that. û1 is inconsistent with u1 when α < 1, since the variation
along u1 becomes negligible so that û1 will not be near u1.

For the α = 1 case, in the middle row of Fig. 4, it is expected from (11)
that each data point will be asymptotically decomposed into a random and
a deterministic part. This is confirmed by the scatterplots, where the order
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of variance along u1 remains comparable to that of horizontal components,
as d grows. The convergence to the vertices is noticeable even for d = 30,
which becomes stronger for larger d, while the randomness along u1 remains
for large d. Also observe that the distance from each Xi to the space spanned
by u1 becomes deterministic for large d, supporting the first part of (11).

Appendix A. Derivation of the density functions

The probability density functions of the limiting distributions in (7) and
(8) will be derived for the case m = 2, under the normal assumption. The
argument is readily generalized to all m, but when non-normal distribution
is assumed, such derivation is much challenging.

We first recall some necessary notions for treating the Wishart matrix
W′W and eigen-decompositions. Most of the results are adopted from [18].
Let A ∼ Wm(n,Σm) and denote its eigen-decomposition as A = HLH ′ with
L = diag(l1, . . . , lm). Assume Σm is positive definite and n ≥ m so that l1 >
l2 > · · · > lm > 0 with probability 1. Denote O(m) = {Hm×m : H ′H = Im}
for the set of orthonormal m ×m matrices and (dH) for H ∈ O(m) as the
differential form representing the uniform probability measure on O(m). The
multivariate gamma function is defined as

Γm(a) = πm(m−1)/4

m∏
i=1

Γ

(
a− 1

2
(i− 1)

)
,

where Γ(·) is the usual gamma function. For H ≡ [h1, . . . ,hm] ∈ O(m),

(dH) ≡ 1

Vol(O(m))
(H ′dH) =

Γm(
m
2
)

2mπm2/2
(H ′dH), (A.1)

where (H ′dH) ≡
∏m

i>j h
′
idhj.

We are now ready to state the density function of φ(W′W) for m = 2.
Note that under the Gaussian assumption W′W is the 2×2 Wishart matrix
with degree of freedom n and covariance matrix ΣW = diag(σ2

1, σ
2
2). For

simplicity, write (L1, L2) = φ(W′W), and L = diag(L1, L2). Then the joint
density function of L1 and L2 is given by e.g. Theorem 3.2.18 of [18] with
m = 2, and

fL(l1, l2) =
π2−n(σ2

1σ
2
2)

−n
2

Γ2(
n
2
)

(l1l2)
n−3
2 (l1−l2)

∫
O(2)

exp

(
trace

(
−1

2
Σ−1

W HLH ′
))

(dH).

(A.2)
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The integral can not be solved analytically but can be simplified by using
the special orthogonal group SO(2) = {H ∈ O(2) : detH = 1}. We can
parameterize H ∈ SO(2) as

H =

(
cos θ − sin θ
sin θ cos θ

)
= [h1,h2] (0 < θ ≤ 2π).

Then (H ′dH) = h′
2dh1 = dθ. Moreover the integral in (A.2) over O(2) is

twice as large as the integral over SO(2). This fact and the definition (A.1)
together with the parametrization above give

∫
O(2)

exp
(
trace

(
−1

2
Σ−1

W HLH ′)) (dH)

= 1
2π

∫
SO(2)

exp
(
trace

(
−1

2
Σ−1

W HLH ′)) (H ′dH)

= 1
2π

∫ 2π

0
exp

(
−1

2

[
A cos2 θ +B sin2 θ

])
dθ

= 1
2π
e−

A+B
4

∫ 2π

0
exp

(
1
4
(B − A) cos t

)
dt,

= e−
A+B

4 I0
(
1
4
(B − A)

)
where A = l1

σ2
1
+ l2

σ2
2
, B = l2

σ2
1
+ l1

σ2
2
and

I0(x) =
1

2π

∫ 2π

0

exp (x cos t) dt

is the modified Bessel function of the first kind. Note that the integral can
also be represented by the hypergeometric function of matrix arguments (see
Section 7.3 of [18]). We chose to use I0(x) since it is numerically more stable
than the hypergeometric function. Then (A.2) becomes

fL(l1, l2) =
π2−n(σ2

1σ
2
2)

−n
2

Γ2(
n
2
)

(l1l2)
n−3
2 (l1 − l2)e

−A+B
4 I0

(
1

4
(B − A)

)
. (A.3)

Now the distribution of the canonical angles (in (7) and Theorem 3) is ob-
tained by applying the change of variable on the density (A.3). Let Y1, Y2

be the two canonical angles, in the reverse order. Then from

(Y1, Y2) =
(
cos−1{(1 + τ 2/L1)

−1/2}, cos−1{(1 + τ 2/L2)
−1/2}

)
=

(
tan−1(

√
τ 2/L1), tan

−1(
√

τ 2/L2)
)
,
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the joint density function of Y1, Y2 becomes

fY1,Y2(y1, y2) = fL(τ
2 cot2 y1, τ

2 cot2 y2) · (2τ 2)2
cos y1
sin3 y1

cos y2
sin3 y2

(A.4)

on 0 < y1 < y2 <
π
2
.

The limiting distribution of the distances between the empirical and popu-
lation principal subspace, measured by the Euclidean sine metric, ρs(L̂m

1 ,Lm
1 )

in (8) is obtained as follows. Let

Z1 =

√
τ 2

τ 2 + L1

+
τ 2

τ 2 + L2

, Z2 =
τ 2

τ 2 + L2

so that

L1 =
τ 2

Z2
1 − Z2

− τ 2, L2 =
τ 2

Z2

− τ 2.

The distribution of Z1 is the limiting distribution of interest. Note that the
eigenvalues (L1, L2) ∼ fL must satisfy 0 < L2 < L1 < ∞. This leads to the
support for the joint distribution of (Z1, Z2):

D = {Z1, Z2 ∈ R : Z2 < Z2
1 , Z

2
1 < 2Z2, Z2 < 1}.

By the change of variable on fL (A.3), we get

fZ1,Z2(z1, z2) = fL(
τ 2

z21 − z2
− τ 2,

τ 2

z2
− τ 2) · 2z1

1

τ 4

(
τ 2

z2

τ 2

z21 − z2

)2

1(z1,z2∈D).

(A.5)
The marginal density of Z1 can be obtained by numerical integration of fZ1,Z2 .
The support of the density is then (0,

√
2).
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