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Summary. In modern biomedical research, it is ubiquitous to have multiple data sets measured on the same set of samples
from different views (i.e., multi-view data). For example, in genetic studies, multiple genomic data sets at different molecular
levels or from different cell types are measured for a common set of individuals to investigate genetic regulation. Integration
and reduction of multi-view data have the potential to leverage information in different data sets, and to reduce the magnitude
and complexity of data for further statistical analysis and interpretation. In this article, we develop a novel statistical model,
called supervised integrated factor analysis (SIFA), for integrative dimension reduction of multi-view data while incorporating
auxiliary covariates. The model decomposes data into joint and individual factors, capturing the joint variation across multiple
data sets and the individual variation specific to each set, respectively. Moreover, both joint and individual factors are partially
informed by auxiliary covariates via nonparametric models. We devise a computationally efficient Expectation–Maximization
(EM) algorithm to fit the model under some identifiability conditions. We apply the method to the Genotype-Tissue Expression
(GTEx) data, and provide new insights into the variation decomposition of gene expression in multiple tissues. Extensive
simulation studies and an additional application to a pediatric growth study demonstrate the advantage of the proposed
method over competing methods.
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1. Introduction

In contemporary biomedical studies, researchers usually have
access to multiple data sets for the same set of subjects from
different views or heterogeneous sources. Such data are com-
monly referred to as multi-view data or multi-source data. For
example, the Genotype-Tissue Expression (GTEx) project
collects gene expression data from multiple human tissues for
a common set of genotyped individuals to study genetic reg-
ulation (The GTEx Consortium, 2015). Different data sets
may contain distinct but related information. It is impor-
tant to understand the relations between variables in different
sets, and leverage information across views for further statis-
tical analysis such as inference, prediction and clustering. The
process is often called data integration or data fusion.

Factor analysis is a popular tool for modeling dependence
among multiple observed variables. It identifies a few latent
factors that capture the majority of variation in data. The
unknown factors and loadings in factor analysis are some-
times estimated via the principal component analysis (PCA).
The obtained factors reduce the dimensionality of the original
data and facilitate various statistical analyses. However, the
conventional factor analysis only applies to a single data set.
There is a pressing need for statistical methods that simulta-
neously identify the joint and individual structure in multiple
data sets.

In addition to multiple primary data sets, auxiliary
covariates are often collected on the same samples. In our
motivating GTEx example, other than the gene expression

data in multiple tissues, genotype data and experimental fac-
tors (e.g., batch effect) are also collected. These auxiliary data
can be viewed as covariates, driving the underlying expression
patterns in multiple tissues. Covariates are potential driving
factors of the joint and individual structures in multi-view
data. In other words, covariates provide supervision to the
underlying patterns. Using covariates to inform the integra-
tion of multi-view data not only leads to accurate estimation
of the underlying patterns but also provides highly inter-
pretable results.

In this article, we develop a novel statistical framework
called Supervised Integrated Factor Analysis (SIFA), for the
integration and reduction of multi-view data informed by
auxiliary covariates. SIFA decomposes multi-view data into
low-rank joint structure and individual structure. It exploits
a small number of joint factors to capture the shared pat-
terns across all data sets, and separate individual factors to
capture the specific patterns in each data set. Corresponding
loading vectors identify the contribution of the variables to
different factors. To allow auxiliary covariates to inform the
latent structure, the model assumes each factor is potentially
driven by the covariates and some random effects. We partic-
ularly consider regression models that flexibly accommodate
parametric or nonparametric relations between factors and
covariates. Through the regression models, the covariates
exert supervision on the latent structure. We also extend
the model to incorporate variable selection, in order to iden-
tify important covariates that drive different factors. Overall,
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SIFA provides a general framework for the covariate-driven
factor analysis of multi-view data.

There is an extensive body of literature on the integra-
tive analysis of multi-view data (Tseng, Ghosh and Zhou,
2015). Here, we particularly focus on data integration and
reduction. Multiple factor analysis is an extension of the con-
ventional factor analysis to multiple data sets (Abdi, Williams
and Valentin, 2013). The idea is to merge multiple data with
weights and perform the factor analysis on the combined data.
However, the method does not distinguish joint and indi-
vidual structure and may lead to misleading results. More
recently, new methods have been developed to decompose the
total variation of multiple data sets into shared and individ-
ual variation (Löfstedt, Hoffman and Trygg, 2013; Ray et al.,
2014; Schouteden et al., 2014; Yang and Michailidis, 2016;
Zhou et al., 2016). For example, Lock et al. (2013) adopts
an iterative PCA approach to estimate the Joint and Indi-
vidual Variation Explained (JIVE). However, a drawback of
these methods is that they cannot take into account any
auxiliary covariates in dimension reduction. When covari-
ates are strongly associated with the latent structure of
the multi-view data, incorporating the supervision effects
from covariates promises to improve estimation accuracy and
interpretability.

Recently, a couple of methods were proposed to allow
covariates to inform factor analysis. Li et al. (2016) devel-
oped the Supervised Singular Value Decomposition (SupSVD)
method that exploits linear models to accommodate covari-
ates in dimension reduction of a primary data matrix. Later,
Fan, Liao and Wang (2016) proposed the projected PCA
that generalizes SupSVD by allowing nonparametric rela-
tions between covariates and factors. However, these methods
are only suitable for a single data set, and cannot easily
extend to multi-view data. To our best knowledge, there is no
covariate-driven factor analysis method for multi-view data
decomposition. Our proposed method will bridge the gap and
provide a unified framework.

The rest of the article is organized as follows. In Section 2,
we propose a semiparametric latent variable model for
SIFA and develop an Expectation–Maximization (EM) algo-
rithm to fit the model. In Section 3, extensive simulation
studies are conducted to compare the proposed method
with existing methods. In Section 4, we apply SIFA to
the GTEx multi-tissue genetic data to offer novel insights
into the decomposition of genetic variation in a gene set
across multiple tissues. In Section 5, we discuss possible
directions for future research. Technical details, additional
simulation results, and an application to the decoupled
growth amplitude and phase data from the Berkeley
Growth Study can be found in the online supplementary
material.

2. Integrated Factor Analysis Framework

In this section, we first introduce the latent variable model
for SIFA and discuss its connection to existing methods. Then
we elaborate two sets of identifiability conditions, and devise
model fitting algorithms under respective conditions. Finally,
we propose rank selection methods to determine the joint and
individual ranks in the model.

2.1. Model

Let Y1, · · · , YK be K primary data matrices of size n ×
p1, · · · , n × pK for the same set of samples collected from K

different sources. Each row corresponds to a sample and each
column is a variable. Let X be an n × q data matrix contain-
ing covariates for the matched samples. The goal is to identify
low-rank joint and individual patterns from the primary data
matrices while accounting for the supervision effects from the
covariates. Without loss of generality, we center each column
of the primary data and the covariates to remove the mean
effect of each variable.

We propose a latent variable model called SIFA for the
integrative factor analysis of multiple data matrices. For
k = 1, · · · , K, the SIFA model is as follows (without special
notice, the index k takes integer values from 1 to K):

Y k = J k + J k + Ek, (1)

J k = U0V
T
0,k, (2)

Ak = UkV
T
k , (3)

U0 = f 0(X) + F0, (4)

Uk = f k(X) + F k. (5)

In (1), we adopt a signal-plus-noise model to capture the
important patterns in each data set. This type of model is
commonly used in the dimension reduction literature (cf.
Shabalin and Nobel, 2013). More specifically, the data matrix
Y k consists of signal J k + Ak and noise Ek. The matrix J k cap-
tures the joint structure shared across multiple sources, and
the matrix Ak captures the individual structure specific to this
data source. The noise matrix Ek is assumed to have indepen-
dent and identically distributed (i.i.d.) entries from a normal
distribution N (0, σ2

k ), where σ2
k is an unknown parameter.

In (2) and (3), we assume that the joint and individual
patterns for Y k have low-rank decomposition. Let r0 be the
underlying rank of the joint structure and rk be the rank of the
individual structure in the kth data set. Correspondingly, U0

and Uk are n × r0 and n × rk (latent) factor matrices, and V 0,k

and V k are pk × r0 and pk × rk loading matrices. In particular,
U0 contains r0 joint factors shared across different data sets,
and V 0 = (V T

0,1, · · · , V T
0,K)T contains r0 corresponding joint

loadings. The matrices Uk and V k contain rk individual factors
and loadings, respectively. Following the convention of the
factor analysis, we assume the factors are independent and
the loadings are orthonormal within each matrix. Namely,
V T

k V k = Irk for each k = 0, 1, · · · , K, where Irk denotes the rk ×
rk identity matrix (we shall drop the subscript when it does
not cause any confusion).

In order to capture the driving effects of covariates on the
low-rank structure, we propose to regress the latent factors
on the covariates via (4) and (5). The mapping functions
f k(·) : Rq �→ Rrk (k = 0, 1, · · · , K) are unknown parametric
or nonparametric functions. With a slight abuse of nota-
tion, we use f k(X) (k = 0, 1, · · · , K) to represent row-wise
mappings. Namely, f k(X) is an n × rk matrix whose ith
row corresponds to f k(x(i)), where x(i) is the ith row of
X (i = 1, · · · , n). The mapping functions capture flexible rela-
tions between covariates and the latent factors. In practice,



Supervised Integrated Factor Analysis 1435

users can determine whether to use nonparametric functions
or parametric functions (e.g., linear functions). Any unknown
variation in the factors is contained in the random matrices
F k (k = 0, 1, · · · , K). In particular, we assume each row of
F k follows an i.i.d. multivariate normal distribution with zero
mean and an unknown diagonal covariance matrix �k (with
positive, distinct, and decreasing diagonal values). Moreover,
we assume F0, F k’s, and Ek’s are mutually independent.

The proposed SIFA model provides a general framework
for the factor analysis of multi-view data. After rearranging
the formulas, we get an equivalent form of the model as

Y k = f 0(X)V T
0,k + f k(X)V T

k + F0V
T
0,k + F kV

T
k + Ek. (6)

It is easy to see that the SIFA model decomposes the kth
data matrix Y k into five parts: 1) f 0(X)V T

0,k is the joint deter-
ministic structure (because f 0(X) is shared across multiple
data sources and non-random) driven by the covariates; 2)
f k(X)V T

k is the individual deterministic structure; 3) F0V
T
0,k

is the joint random structure capturing any unknown varia-
tion; 4) F kV

T
k is the individual random structure; 5) Ek is the

random noise. With proper identifiability conditions which
we will discuss later, the SIFA model attributes the total
variation to different parts. Different model components will
facilitate different analyses. For example, the joint factors in
f 0(X) + F0 can be potentially used for consensus clustering;
the individual loadings in V k can be used to investigate the
dependence among variables in the kth data source.

We remark that the proposed SIFA model (6) subsumes
many existing methods as special cases. When K = 1, that
is, with only one primary data set Y , there is no distinc-
tion between the joint structure and the individual structure.
Consequently, the model degenerates to

Y = (f (X) + F)V T + E,

which corresponds to the projected PCA model proposed by
Fan, Liao and Wang (2016). In particular, if we let the func-
tion f (·) be a linear mapping, that is, f (X) = XB, where B

is a q × r coefficient matrix, the above model further connects
to the SupSVD model developed in Li et al. (2016). Further-
more, if we eliminate the covariate supervision by setting
f (X) = 0, the model degenerates to the conventional fac-
tor analysis model or the probabilistic PCA model (Tipping
and Bishop, 1999). When K ≥ 2, without accounting for the
covariates (i.e., f k(X) = 0; k = 0, 1, · · · , K), the SIFA model
reduces to

Y k = F0V
T
0,k + F kV

T
k + Ek.

This coincides with the JIVE model (Fan, Liao and Wang,
2016) if we assume F0 and F k are unknown score matrices
for the joint and individual structures. The SIFA model uni-
fies and generalizes the above models, and provides a general
framework for the integration and reduction of multi-view
data informed by covariates.

2.2. Identifiability

Suppose θ0 = {f 0(·), f k(·), V 0, V k, �0, �k, σ
2
k ; k = 1, . . . , K} is

a parameter set for Model (6), satisfying the basic conditions

of V T
k V k = I and �k being diagonal with distinct (decreasing)

positive diagonal values for each k = 0, 1, · · · , K. If there is
only one primary data set (i.e., K = 1), the model is uniquely
defined (Li et al., 2016). However, when there are multiple
data sets, the above basic conditions are no longer sufficient
for identifiability.

To be specific, let � be the collection of parameter sets
θ satisfying the basic conditions and having equal likelihood
L(Y1, · · · , YK | θ) (defined later in (7)) with θ0 for any data
Y1, · · · , YK. Namely, any parameter set θ ∈ � and θ0 are
observationally equivalent for Model (6), that is, � is the
equivalence class of θ0. We note that the collection � typically
contains multiple elements (see the supplementary material
for examples of some equivalent models). In other words, θ0

is unidentifiable. This non-identifiability is mainly caused by
the indistinguishable individual and joint structures. Differ-
ent elements in � may have different sets of ranks, or the
same set of ranks but different parameters. Additional reg-
ularity conditions are needed to enforce the identifiability of
the SIFA model. For this, we propose two sets of sufficient
conditions.

First, we consider a set of general conditions for each
k = 1, · · · , K:

A1. Each submatrix V 0,k of the joint loading matrix V 0 has
full column rank;

A2. The columns in V 0,k and V k are linearly independent,
and r0 + rk < pk.

Loosely speaking, Condition A1 guarantees that the joint
loading matrix V 0 indeed captures the joint structure, and
does not contain any structure only pertaining to a subset of
the K data sets. Condition A2 ensures that the joint and
individual patterns are well separated, and are not inter-
changeable. With both conditions, Model (6) is identifiable
as shown in the following proposition (the proof is postponed
to the supplementary material).

Proposition 1. Let θ0 be a parameter set satisfying Con-
ditions A1 and A2. For any element θ in the equivalent class �

of θ0, if θ also satisfies Conditions A1 and A2, then θ is equal
to θ0 up to trivial sign changes. Moreover, by writing r0(θ) as
the rank of V 0 in the parameter set θ, we have r0(θ0) ≤ r0(θ)
for all θ ∈ �.

The proposition guarantees that the general conditions
are sufficient for model identifiability. The identifiability is
defined up to trivial column-wise sign changes in V k and Uk

(k = 0, 1, · · · , K). In practice, one could easily fix the signs
by setting the first nonzero entry of each column of V k to be
positive. Correspondingly, the sign of each column of Uk is
fixed.

Remark: Technically, the general conditions may slightly
affect the generalizability of the model. Condition A1 rules
out the possibility of any partially joint structure pertaining
to multiple but not all data sets. Namely, the model can-
not identify common patterns across a subset of data sets.
The same issue exists for JIVE as well. This is a future
research direction as discussed in Section 5. Nevertheless,
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in practice, the general conditions are suitable for most
applications.

In some circumstances, it is desired to further restrict the
model parameters for better interpretation and computation.
We consider the following orthogonal conditions:

B1. The columns of V 0,k are orthogonal with norm 1/
√

K,
that is, V T

0,kV 0,k = 1
K

I;
B2. The columns in V 0,k and V k are orthogonal (V T

0,kV k =
0), and r0 + rk < pk.

Apparently, Conditions B1 and B2 are sufficient conditions
for Conditions A1 and A2. Therefore, they are also suffi-
cient conditions for the identifiability of the SIFA model.
Condition B1 implies that different data sets contribute
roughly equally to the joint factors U0 (i.e., columns in
V 0,k1 and V 0,k2 have the same �2 norm, for k1 	= k2). In
many real applications (e.g., the GTEx example in Section
4), when the data are properly preprocessed, the equal con-
tribution assumption can be well justified. Conditions B1
and B2 also imply that the combined loadings (V 0,k, V k)
for the kth data set are mutually orthogonal. For high
dimensional data, it is reasonable to assume that the orthog-
onality between different loadings holds (Ahn and Marron,
2010). When both assumptions are justified, it is beneficial
to study the SIFA model under the orthogonal conditions.
These conditions not only improve model interpretation,
but also facilitate computation as discussed in the next
subsection.

Remark: The SIFA model with the general conditions is
equivariant under individual scaling of each data set. In other
words, at the population level, the model is not affected by
weighing multiple data sets differently. In practice, to avoid
numerical instability, it is recommended to normalize differ-
ent data sets to the same scale before estimation (e.g., set the
Frobenius norm of every data set to be 1). The orthogonal
conditions do not have the equivariant property under rescal-
ing. Thus, if the orthogonal assumptions are justifiable, one
should directly apply the method without scaling the data. See
the supplementary material for more details. There, we also
discuss the effect of imbalanced dimensions of different data
sets.

2.3. Algorithm

To estimate the model parameters in θ0 = {f 0(·),
f k(·), V 0,k, V k, �0, �k, σ

2
k ; k = 1, . . . , K} for Model (6),

we use a maximum likelihood approach. We assume
all random variables are from normal distributions.
For the ease of presentation, V � = blkdiag(V 1, · · · , VK)
denotes the combined individual loading matrix of
size

∑K

k=1
pk × ∑K

k=1
rk, which is a block-wise diagonal

matrix with K diagonal blocks V 1, · · · , VK. We also let
U� = (U1, · · · , UK) = (f 1(X) + F1, · · · , fK(X) + FK) denote
the combined individual factor matrix. Let Y � = (Y1, · · · , YK)
and E� = (E1, · · · , EK) be the combined primary data matrix
and noise matrix respectively. As a result, the SIFA model
can be succinctly expressed as

Y � = U0V
T
0 + U�V

T
� + E�.

The log likelihood function of the SIFA model is

logL(Y � | θ0) =
n∑

i=1

[
−

∑K

k=1
pk

2
log 2π − 1

2
log |��|

− 1

2
(y�(i) − μ�(i))

T �−1
� (y�(i) − μ�(i))

]
, (7)

where y�(i) is a column vector corresponding to the ith row
of Y �, and μ�(i) and �� are the marginal expectation and
covariance matrix of y�(i), respectively. In particular,

μT
�(i) = f 0(x(i))V

T
0 + [

f 1(x(i))V
T
1 , · · · , fK(x(i))V

T
K

]
,

where x(i) is a column vector corresponding to the ith row of
X, and f k(x(i)) is a row vector of length rk (k = 0, 1, · · · , K).
The grand covariance matrix �� has the form

�� = V 0�0V
T
0 + V ��FV T

� + �E,

where�F = blkdiag(�1, · · · , �K) and�E = blkdiag(σ2
1Ir1 , · · · ,

σ2
k IrK ). The optimization of the above log likelihood func-

tion under the identifiability conditions is computationally
prohibitive because the likelihood function involves unknown
nonparametric functions and the conditions are non-convex.

To circumvent the computational issue, we resort to
the hierarchical form of the SIFA model in (1)–(5) and
treat U0 and U� as latent variables, and derive an
Expectation–Maximization (EM) algorithm. Specifically, in
the E step, we calculate the conditional distribution of the
latent variables (U0, U�) given the data Y � and the previously
estimated model parameters. In the M step, we maximize the
conditional expectation of the joint log likelihood of the latent
variables and the data. The joint log likelihood is partitioned
into the log likelihood of (U0, U�) and the conditional log
likelihood of Y � given (U0, U�). Furthermore, since the latent
variables U0, U1, · · · , UK are mutually independent, the log
likelihood of (U0, U�) is further partitioned. Consequently, the
M step is to solve the following problems under the respective
identifiability conditions:

max
f k(·),�k

EUk |Y�
L(Uk), k = 0, 1, · · · , K, (8)

max
V0,V �,σ2

1 ,··· ,σ2
K

EU0,U� |Y�
L(Y �|U0, U�), (9)

where EU0,U� |Y�
(·) represents the conditional expectation with

respect to (U0, U�). For simplicity, hereafter we will use E(·)
to denote the conditional expectations. Below we shall outline
the key steps of the M step. More details can be found in the
supplementary material.

It can be shown that in (8) each entry of the vector-valued
function f k(·) = (fk,1(·), · · · , fk,rk (·)) can be separately esti-
mated via solving a least square problem

f̂k,j(·) = arg minfk,j(·) ‖E(uk,j) − fk,j(X)‖2
F
,

j = 1, · · · , rk; k = 0, 1, · · · , K, (10)
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where uk,j is the jth column of Uk, and ‖ · ‖F denotes the
Frobenius norm. If fk,j(·) is a parametric function, the above
problem can be solved via a Newton–Raphson method. In
particular, if linear, it is explicitly solved via the ordi-
nary least squares. If fk,j(·) is nonparametric, the problem
becomes nonparametric regression. Standard kernel methods
and spline-based methods can be readily applied here (cf.
Fan and Gijbels, 1996; Hollander, Wolfe and Chicken, 2013).
When the dimension of the covariates is high, we can assume
fk,j(·) to be an additive model and easily incorporate vari-
able selection through penalized methods (Tibshirani, 1996;
Ravikumar et al., 2009). To sum up, regardless of the forms
of the functions, {f k(·)}k=0,··· ,K can be easily estimated using
existing methods.

Subsequently, it is easy to obtain the closed-form optimizer
of (8) with respect to �k as:

�̂k = 1

n
diag

{
E

[(
Uk − f̂ k(X)

)T (
Uk − f̂ k(X)

)]}
,

k = 0, 1, · · · , K,

where diag(S) is the diagonal matrix consisting of the diagonal

values of S, and f̂ k(·)’s are the estimated covariate functions.
From (9), we obtain the estimates of the loading matri-

ces and the noise variances under different identifiability
conditions.

Under the general conditions A1 and A2, there are no
explicit solutions of (9) for V 0 and V �. We propose to iter-
atively update the estimates of the loading matrices in a
block-wise coordinate descent fashion. In particular, we cycle
through the following steps: given V 0, update V k’s in parallel
via solving

min
V k :V

T
k
V k=I

E‖Y k − U0V
T
0,k − UkV

T
k ‖2
F
; (11)

and given V �, update V 0 by solving

min
V0:VT

0V0=I

K∑
k=1

σ−2
k E‖Y k − UkV

T
k − U0V

T
0,k‖2

F
. (12)

It can be shown that the optimization problem (11) has

a closed-form solution V̂ k = LRT , where L and R contain
the left and right singular vectors of YT

k E(Uk) − V 0,kE(U
T
0Uk).

The optimization (12) does not have an analytical solution
due to the possibly different σ2

k ’s. As a remedy, we relax the
orthogonality constraint in (12) temporarily, and obtain an
intermediate estimator of V 0,k as

Ṽ 0,k = [
YT

k E(U0) − V kE(U
T
k U0)

] [
E(UT

0U0)
]−1

.

To impose the orthogonality constraint, the final estima-

tor of V 0 is the eigenvectors of Ṽ 0�̂0Ṽ 0

T

. Correspondingly,
we update the diagonal values of �̂0 to be the eigenvalues of

Ṽ 0�̂0Ṽ 0

T

. This additional standardization step ensures that
�� in the likelihood function (7) remains unchanged. A sim-
ilar approach was used in Li et al. (2016). As a result, the

loading matrices are estimated under the general conditions.
We remark that in practice, a one-step update in each EM
iteration is usually accurate enough and there is no need to
iterate.

Under the orthogonal conditions B1 and B2, the computa-
tion can be greatly simplified. The loading matrices V 0,k and
V k can be estimated simultaneously and explicitly. By writing
W k = (

√
KV 0,k, V k), the optimization (9) is equivalent to

min
Wk :W

T
k
Wk=I

∥∥∥∥Y k −
(

1√
K
E(U0),E(Uk)

)
WT

k

∥∥∥∥2

F

,

which is exactly an orthogonal Procrustes problem (Gower
and Dijksterhuis, 2004). The optimizer has the explicit expres-

sion as Ŵ k = (
√

KV̂ 0,k, V̂ k) = LRT , where L and R contain
the left and right singular vectors of YT

k

(
1/

√
KE(U0),E(Uk)

)
.

Subsequently, it is easy to decouple V̂ 0,k and V̂ k, and obtain
closed-form estimators for different loading matrices.

Once the loading matrices are estimated, solving (9) with
respect to σ2

k ’s, we obtain the closed-form optimizers as:

σ̂2
k = 1

npk

E‖Y k − UkV̂ k

T − U0V̂ 0,k

T ‖2
F
, k = 1, · · · , K.

A step-by-step description of the algorithm can be found
in the supplementary material.

2.4. Rank Selection

Up to now, we assume the ranks for the joint and individ-
ual structures in the SIFA model are known. In practice, we
often need to estimate the ranks from data. The choice of the
ranks is crucial for parameter estimation and model interpre-
tation. In total, there are K + 1 ranks to be determined. Here,
we propose a two-step procedure to get a crude estimate of
the ranks, and an optional likelihood cross validation (LCV)
method for refining the estimate.

Since Model (6) can be viewed as a special form of a signal-
plus-noise model, a natural first step is to estimate the rank
of the underlying signal of each data set Y k (denoted as r�

k)
and the rank of the underlying signal of the combined data set
Y � (denoted as r�

total), respectively. There are many existing
methods to this purpose, such as the scree plot, the total vari-
ance explained criterion, hypothesis testing methods. Users
can choose their favorite methods. Once estimated, we use
r�
k and r�

total to calculate the ranks for different structures in
Model (6). Under either set of identifiability conditions, the
following equations hold:

r�
total = r0 +

K∑
k=1

rk, r�
k = r0 + rk,

for k = 1, · · · , K, where r0, r1, · · · , rK are the joint and indi-
vidual ranks for the SIFA model. Solving the equation system,
we get

r0 =
∑K

k=1
r�
k − r�

total

K − 1
, rk = r�

k − r0,
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which serve as good initial estimators of the ranks. Numeri-
cally, the estimate of r0 may be non-integer or even negative
when K > 2. In that case, we suggest rounding the estimate
to the nearest non-negative integer. Then we plug it into the
second equation to get an estimate of rk. If the estimate of rk

is negative, it can be set to 0.
The above two-step procedure typically provides a good

initial estimate of the ranks. If it is desired to further refine
the rank estimation, one may exploit a more computationally
intensive N-fold LCV approach. The idea is to randomly split
the samples into N groups across different data sets. In each
run, we withhold one group as the testing set and use the
remaining N − 1 groups as the training set to fit Model (6)
with different sets of ranks. For each set of ranks, the corre-
sponding LCV score is the value of negative log likelihood,
evaluated using (7) on the testing data. We repeat the pro-
cedure N times, and choose the set of ranks corresponding to
the smallest average LCV score. A more detailed description
can be found in the supplementary material.

3. Simulation Studies

In this section, we conduct comprehensive simulation studies
to demonstrate the advantage of the proposed methods. We
compare SIFA (under both sets of identifiability conditions)
with JIVE (the original version and a covariate-adjusted
version, denoted by cov-JIVE), SupSVD, and PCA. For cov-
JIVE, we first regress different data sets on the covariates,
and then apply JIVE to the residuals.

3.1. Simulation Settings

We consider two primary data sets Y1 and Y2 (i.e., K = 2)
on the same set of samples with sample size n = 500, and
dimension p1 = p2 = 200. The data are simulated from Model
(6) with different parameters. We first consider three set-
tings where, loosely speaking, the generative models are JIVE,
SIFA under the general conditions (denoted as SIFA-A), and
SIFA under the orthogonal conditions (denoted as SIFA-B).
In particular, the SIFA-A and SIFA-B models employ linear
models between covariates (with dimension q = 10) and latent
factors. The true ranks of the joint and individual patterns are
r0 = 2, r1 = r2 = 3. Some important features of these settings
are described below.

� Setting 1 (JIVE Model): For k = 0, 1, 2, the factors in Uk

are randomly generated and mutually independent (with
f k(·) = 0 in (6)); the loadings in V k and the covariance
�k satisfy the basic conditions. The measurement errors in
E1 and E2 are i.i.d. with different variances. To test the
robustness of the proposed method, we randomly generate
10 covariates unrelated with the factors, and incorporate
them in the SIFA estimation.

� Setting 2 (SIFA-A Model): The joint and individual fac-
tors are generated from the linear model Uk = XBk + F k for
k = 0, 1, 2. The loadings in V 0, V 1, and V 2 are filled with
random numbers and standardized to satisfy the general
conditions. To make them further deviate from the orthog-
onal conditions, we intentionally choose V 0,k not orthogonal
to V k (k = 1, 2), and artificially vary the norm of each col-
umn in V 0,1 and V 0,2.

� Setting 3 (SIFA-B Model): The factors are generated in
the same way as in Setting 2. The true loadings are specif-
ically normalized to satisfy the orthogonal conditions. We
note that the SIFA-B model is a special case of the SIFA-A
model.

For each simulation setting, we fit JIVE, cov-JIVE, SIFA-A,
and SIFA-B to the multiple simulated data sets, and fit PCA
and SupSVD to the concatenated data (Y1, Y2). We incorpo-
rate covariates for cov-JIVE, SIFA-A, SIFA-B, and SupSVD.
In particular, when fitting the SIFA models, we set the func-
tions in (10) to be linear, and use the ordinary least squares
to estimate the coefficients. To avoid ambiguity, these model
models are fitted with the true ranks. We set the rank for PCA
and SupSVD to be r0 + r1 + r2. We assess the performance of
the LCV for rank selection in the next section.

To compare the loading estimation in JIVE, cov-JIVE,
SIFA-A, and SIFA-B, we use the Grassmannian metric
(Mattila, 1999) between the true loadings in V k and the

estimated loadings in V̂ k for each k = 0, 1, 2. The metric is
defined as dG(V k, V̂ k) =

√∑rk

i=1
acos(δi)2, where δi is the ith

singular value of V T
k V̂ k. We also evaluate the maximal prin-

cipal angle \(V , V̂ ) (Björck and Golub, 1973) between the
subspaces in Rp1+p2 spanned by the true loading vectors in
V = (V 0,blkdiag(V 1, V 2)) and the estimated ones, across all
methods. To evaluate the accuracy of the estimated low-rank

structure, we use ‖UV T − ÛV̂
T ‖F where U = (U0, U1, U2).

The matrix Û represents the estimated score matrix for PCA
and JIVE, or the conditional expectation of the latent factor
matrix for SupSVD, SIFA-A, and SIFA-B.

We also conduct comprehensive simulation studies to inves-
tigate: 1) the goodness of fit when the relations between
covariates and latent factors are nonlinear; 2) the overfitting
issue when nonparametric functions are used in the presence
of linear relations; 3) the rank misspecification effect on the
performance; 4) the violation of the Gaussian assumption; 5)
the effect of rescaling different data sets; 6) the scalability of
SIFA-A and SIFA-B in high dimension. The simulation set-
tings and results are contained in the supplementary material.

3.2. Rank Estimation by LCV

We briefly demonstrate the efficacy of the LCV
method using a simulated example. Data are gener-
ated under Setting 3, with the chosen true ranks to
be (r0, r1, r2) = (2, 3, 3). Additional examples under
Settings 1 and 2 are provided in the supplementary
material. We particularly consider nine candidate rank
sets in the neighborhood of the true rank set: (r0, r1, r2) ∈
{(1, 2, 2), (2, 2, 2), (3, 2, 2), (1, 3, 3), (2, 3, 3), (3, 3, 3), (3, 4, 3),
(3, 4, 4), (4, 4, 4)}. We conduct a 10-fold LCV. The
evaluated LCV scores (i.e., the negative log likeli-
hood values of test samples) for different candidate
sets in each cross validation run are shown in
Figure 1. The average score reaches the minimum at
the true rank set. Namely, the LCV method correctly selects
the true ranks.
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Figure 1. The LCV scores for 10-fold cross validation on
nine candidate rank sets. Each dashed line with circles con-
tains corresponds to the LCV scores (negative log likelihood
values) in one cross validation run. The solid line with stars
contains the average LCV scores for different rank sets.

3.3. Simulation Results

For each setting, we repeat the simulation 100 times and sum-
marize the results. The results are summarized in Table 1.
In Setting 1, both SIFA-A and SIFA-B perform simi-
larly to JIVE in terms of the loading estimation, even
if the generative model is JIVE (i.e., the covariates are
unrelated to the factors). Remarkably, the SIFA meth-
ods provide the best low-rank structure recovery accuracy
among all. The reason is similar to the argument in
Li et al. (2016): the shrinkage effect of the conditional

expectation of the factors reduces estimation variance. In
Setting 2, SIFA-A provides the best performance in all
criteria. SIFA-B is suboptimal because the orthogonal con-
ditions are severely violated. In Setting 3, the SIFA-B
method performs the best, followed closely by SIFA-A.
Both are significantly better than the competing methods.
In practice, when the orthogonal conditions are well justified,
SIFA-B is favorable due to the ultra-fast computation and
accurate estimation. Otherwise, we recommend the use of the
SIFA-A method.

4. GTEx Data Analysis

In this section, we apply the proposed method to
the multi-tissue genetic data from the GTEx project.
We use the phs000424.v6 data which are available at
http://www.gtexportal.org/ (registration required for data
access). Technical details of data preprocessing and rank esti-
mation can be found in the supplementary material.

The GTEx project collects gene expression data from mul-
tiple tissues (e.g., muscle, blood, skin) from the same set of
subjects. We use the SIFA method to identify cross-tissue and
tissue-specific gene expression patterns, and quantify the her-
itability of phenotypes representing expressions of a group of
genes. Addressing the questions is integral to the fulfillment
of the GTEx goal (The GTEx Consortium, 2015).

We particularly focus on the p53 signaling pathway in three
tissues, that is, muscle, blood, and skin, for the illustration
purpose. The analysis can be easily generalized to other gene
sets or tissues. After proper preprocessing and normalization,
we obtain 191 genes on 204 common samples in each tissue,
denoted by Y1, Y2, Y3. Each gene expression is standardized.
In addition, we have the auxiliary data of sex, genotyping
platform index, and genetic variants for each sample as covari-
ates. To reduce the dimensionality of the genetic variants, we
obtain the top 30 principal components, which capture the

Table 1
Simulation results under Setting 1, 2, and 3 (each with 100 simulation runs). The mean and standard deviation of each

criterion for each method are shown in the table. The best results are highlighted in bold.

SIFA-A SIFA-B JIVE cov-JIVE SupSVD PCA

Setting 1 dG(V 0, V̂ 0) 0.61(0.03) 0.60(0.03) 0.69(0.07) 0.68(0.06)

(JIVE) dG(V 1, V̂ 1) 0.82(0.06) 0.81(0.06) 0.91(0.17) 0.89(0.16)

dG(V 2, V̂ 2) 1.32(0.17) 1.33(0.17) 1.31(0.18) 1.30(0.17)

\(V , V̂ ) 64.73(10.98) 65.33(10.96) 65.16(11.31) 64.35(10.98) 87.02(2.74) 86.76(2.77)

‖UV T − ÛV̂
T ‖F 193.28(2.85) 193.26(2.73) 240.49(4.53) 287.86(3.74) 239.21(2.82) 279.95(3.05)

Setting 2 dG(V 0, V̂ 0) 0.37(0.02) 1.01(0.05) 0.76(0.02) 1.40(0.14)

(SIFA-A) dG(V 1, V̂ 1) 0.27(0.01) 1.06(0.08) 0.28(0.01) 1.41(0.03)

dG(V 2, V̂ 2) 0.52(0.02) 0.67(0.03) 0.62(0.04) 1.80(0.09)

\(V , V̂ ) 27.67(1.42) 44.46(2.42) 33.34(2.27) 88.30(1.43) 39.40(2.30) 46.97(4.28)

‖UV T − ÛV̂
T ‖F 169.21(1.73) 207.74(2.03) 207.22(2.33) 296.14(2.11) 200.77(2.30) 235.44(3.00)

Setting 3 dG(V 0, V̂ 0) 0.38(0.03) 0.30(0.01) 0.61(0.02) 0.65(0.06)

(SIFA-B) dG(V 1, V̂ 1) 0.25(0.01) 0.24(0.01) 0.25(0.01) 1.16(0.21)

dG(V 2, V̂ 2) 0.35(0.01) 0.34(0.01) 0.36(0.01) 1.77(0.07)

\(V , V̂ ) 15.03(0.56) 14.97(0.57) 15.86(0.73) 85.93(2.83) 26.21(1.09) 27.71(1.30)

‖UV T − ÛV̂
T ‖F 171.99(1.65) 171.51(1.66) 204.64(1.97) 290.82(3.33) 200.77(1.81) 230.80(2.05)

http://www.gtexportal.org/
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majority of variation in the genotype data. The covariates
are denoted by X.

We first estimate the ranks for the joint and individ-
ual patterns. We use the two-step procedure described in
Section 2.4, and exploit a variance explained criterion in the
first step (with a preset 90% threshold). The joint and indi-
vidual ranks are estimated to be r0 = 26, r1 = 24, r2 = 5, and
r3 = 20. Note that the individual rank for blood (r2 = 5) is
much smaller than that for muscle or skin. From the viewpoint
of the expression pattern richness, blood is very different from
the other two tissues. This is generally concordant with the
previous discoveries (The GTEx Consortium, 2015).

We fit a SIFA-B model to the data with linear relations
between the covariates and the latent factors. For com-
parison, we also fit a JIVE model with the same ranks.
The estimated joint and individual patterns are shown in
Figure 2 (for the SIFA-B model) and Figure 3 (for the JIVE
model). By taking into account the auxiliary covariates, the
patterns obtained by the SIFA-B model are more discern-
able than those from the JIVE model. The joint structure in
Figure 2 clearly captures the shared patterns among samples
across tissues, while the individual structure distinguishes dif-
ferent tissues. We also quantify the variation explained by
different parts in both methods (see Figure 4). The SIFA-B
decomposition attributes more variation to the individual
structure than the JIVE method, which is consistent with the
domain knowledge that the p53 gene expressions are highly

tissue specific (Ribeiro et al., 2001; Tendler et al., 1999).
The tissue-specific expression patterns may be used to inves-
tigate tissue identity and functions.

To quantify the heritability of the derived phenotypes
(i.e., joint and individual scores) representing the p53 gene
expressions, we calculate the variation explained by different
components of the SIFA model. The results are summarized
in Table 2. Within the joint structure (common across all tis-
sues), the genetic variants explain about 17% of the variation,
which is concordant with the general belief in the literature
(Brown et al., 2015). The sex and the platform information
take up 2 and 2.5% of the variation, respectively. The vast
majority of the variation remains unexplained, which pro-
vokes further investigation. The individual structure for each
tissue has a similar decomposition to the joint structure. An
interesting finding is that sex is not a major contributor to
the individual gene expression patterns in blood. The derived
pathway expression phenotypes could also potentially be used
to discover associations with clinical outcome and environ-
mental factors. Due to the lack of such information in the
GTEx data, we do not further pursue it here.

5. Discussion

In this article, we develop a supervised integrated factor
analysis framework for reduction and integration of multi-
view data. It decomposes multiple related data sets into
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Figure 2. GTEx example: the heat maps of the joint and individual gene expression patterns for the p53 signaling pathway
identified by the SIFA-B model. For visualization purpose, we reorder samples across three tissues and genes in each tissue.
Top panel: the joint structure in three tissues; Bottom panel: the individual structures in three tissues. In each panel, the
samples are matched across tissues.
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Figure 3. GTEx example: the heat maps of the joint and individual gene expression patterns for the p53 signaling pathway
identified by the JIVE model. The rows and columns are ordered in the same way as in Figure 2.

joint and individual structures, while incorporating covari-
ate supervision through parametric or nonparametric models.
We investigate the identifiability of the model under two
sets of conditions, the general conditions and the orthogonal
conditions, each being useful in separate situations. An effi-
cient EM algorithm with some variants is devised to fit the
model. In particular, it is very easy to capture nonlinear rela-
tions between covariates and latent factors, and to incorporate
variable selection of covariates. The comprehensive simulation
studies demonstrate the efficacy of the proposed methods.
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Figure 4. GTEx example: the variation explained by dif-
ferent components in the JIVE model and the SIFA-B model,
respectively.

With application to the GTEx data, we provide new insights
into the genetic variation of a gene set across multiple tissues.

There are several directions for future research. First of all,
it is of potential interest to generalize the current framework
to accommodate non-normal data. Second, the model may

Table 2
GTEx example: the genetic variation explained by different
factors in different tissues. For each tissue, the last column
gives the percentage explained by the joint and individual

structure, and the noise (add up to 1). The variation in the
joint (individual) structure is further attributed to the geno-
type, sex, platform, and other unknown sources (add up to 1).

Genotype Sex Platform Unknown Total

Muscle
Joint 17.09% 2.03% 2.56% 78.32% 16.44%
Individual 15.55% 2.66% 1.74% 80.05% 65.29%
Noise 18.27%

Blood
Joint 17.09% 2.03% 2.56% 78.32% 16.44%
Individual 14.05% 0.65% 0.90% 84.39% 63.56%
Noise 20.00%

Skin
Joint 17.09% 2.03% 2.56% 78.32% 16.44%
Individual 16.55% 1.52% 1.04% 80.89% 66.06%
Noise 17.50%
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be specially modified to capture partially joint structure per-
taining to multiple but not all data sets. This is especially
relevant when multiple data sets are naturally grouped at the
source level. Third, customized rank estimation methods need
further investigation.

6. Supplementary Materials

Web Appendices, Tables, and Figures referenced in
Sections 2, 3, and 4 are available with this article at the
Biometrics website on Wiley Online Library. Matlab
code implementing the proposed methods is available at
https://github.com/reagan0323/SIFA.
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