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ABSTRACT
A novel backwards viewpoint of Principal Component Anal-
ysis is proposed. In a wide variety of cases, that fall into
the area of Object Oriented Data Analysis, this viewpoint is
seen to provide much more natural and accessable analogs of
PCA than the standard forward viewpoint. Examples con-
sidered here include principal curves, landmark based shape
analysis, medial shape representation and trees as data.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Multivariate statistics

General Terms
Theory

1. INTRODUCTION
Principal Component Analysis (PCA) is a workhorse method

in a wide variety of fields, for many purposes including data
visualization and dimension reduction. The approach is so
broadly applicable that it has appeared (perhaps been rein-
vented) in a variety of disciplines. For example, it is called
Empirical Orthogonal Functions in climate and geoscience
areas, Proper Orthogonal Decomposition in applied math-
ematics, and the Karhunen-Loeve Expansion in electrical
engineering and probability. In a number of other fields
PCA is called Factor Analysis, although in the social sci-
ences where the name originated, the latter term actually
refers to a related but deeper model for variation in data.

Wang and Marron (2007) proposed the term object ori-
ented data analysis (OODA), to describe a wide array of
modern data contexts and methodologies. The main idea is
easily understood in terms of the atom of the data analy-
sis. In simple statistical analyses, atoms are numbers, and
the goal is to understand populations of numbers. In clas-
sical multivariate analysis, vectors are the atoms. In the
relatively new field of functional data analysis, see Ramsay
and Silverman (2002), (2005), the atoms are curves, and the
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goal is to understand the variation in a data set of curves.
OODA generalizes this to more general types of data objects
as atoms. Important examples include the study of popu-
lations of images, spectra, human movement traces, shape
representations, and tree or graph structured objects.

While PCA continues to be broadly useful in OODA, an
important limitation is that it is strongly rooted in Euclidean
properties of conventional vector space data. In particular,
the inner product space notions of subspace and orthogo-
nality are fundamental. For a growing number of OODA
applications, these ideas do not apply, because the data
spaces are non-Euclidean. A useful distinction among non-
Euclidean data types is between mildly (discussed further in
Section 1.1) and strongly (discussed further in Section 1.2)
non-Euclidean data.

1.1 Mildly Non-Euclidean Data
In mildly non-Euclidean contexts, the data objects are

points on the surface of a curved manifold. Examples in-
clude:

• Directional data, see e.g. Fisher et al (1987), Fisher
(1993), and Mardia (2000), where each data atom is an
angle, represented as a point on either the unit circle
or unit sphere (two simple examples of manifolds).

• Landmark based shape representations, see e.g. Dry-
den and Mardia (1998), where each data atom repre-
sents the shape of an object in terms of a 2- or 3-d
set of corresponding (across the objects in the popula-
tion) landmarks. These data are naturally viewed as
lying on the surface of a non-Euclidean manifold, after
location, scale and rotation have been modded out.

• Medial shape representations, see Siddiqi and Pizer
(2008), where data objects are represented in terms
of a parametric model involving angular parameters.
The natural data space here is a manifold which is a
direct product of Euclidean spaces and unit spheres.

• Diffeomorphisms for shape representation, see e.g. Joshi
et al (2004), where shapes are represented as deforma-
tions of a common atlas object. The set of diffeomor-
phic warpings lie in a very high dimensional manifold.

• Diffusion tensor imaging, see e.g. Basser et al (1994),
Pennec et al (2006) and Dryden et al (2009), a vari-
ation of magnetic resonance imaging, where 3 dimen-
sional fluid displacement is measured in terms of ten-
sors that are effectively represented as points on the
manifold of symmetric positive definite matrices.
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• Manifold Learning, see e.g. Roweis and Saul (2000)
and Tenenbaum (2000), where the goal is to model the
variation in high dimensional Euclidean data in terms
of low dimensional approximating curved manifolds.

Effective PCA for data lying on the surface of a manifold
is challenging. A simple minded approach would be treat
the data as points in the Euclidean embedded space (e.g.
when a data set of angles is represented as points on the
unit circle, S1, they can also be thought of as points in R2),
but then the analysis (e.g. projections onto eigenvectors)
leaves the manifold, and thus gives neither useful insights
into the desired population of data objects, nor effective di-
mension reduction. This has motivated a number of varia-
tions of PCA that are defined within the manifold. The la-
bel mildly non-Euclidean is used for manifold data, because
at each point of a manifold, it can be approximated by a
(Euclidean) tangent hyperplane. This structure is exploited
in Principal Geodesic Analysis (PGA), see Fletcher et al
(2003), (2004), where the manifold surface is approximated
by a tangent plane centered on the geodesic mean (defined
in Section 2) of the data. Conventional PCA is performed
in the tangent hyperplane, and the results are mapped back
into the manifold, so that the usual lines (passing through
the sample mean) that best represent the data are replaced
by geodesics (through the geodesic mean). Some interesting
variations on PGA are discussed in Section 3.1.

1.2 Strongly Non-Euclidean Data
Strongly non-Euclidean data is used to describe data sets

where each atom is a tree or graph structured object. Im-
portant examples include phylogenetic trees, see e.g. Billera
et al (2001), social networks, see e.g. Wasserman and Faust
(1995), and various anatomical objects, such as blood vessel
trees, see e.g. Bullitt and Aylward (2002), and lung airway
trees, see e.g. Tschirren et al (2002). The label strongly Eu-
clidean are used for this type of data, because tree or graph
spaces do not seem to have any useful notion of approximat-
ing tangent plane. Furthermore, notions such as geodesics
are much more challenging to define and work with, and
have properties that are even farther from the properties of
lines in Euclidean space. These issues are discussed in more
detail in Section 3.4.

2. NOTATION AND MATHEMATICAL DE-
VELOPMENT

The input to conventional Euclidean PCA is a set of d-
dimensional vectors X1, ..., Xn ∈ Rd. It is notionally conve-
nient to aggregate the (column) vectors of data into a data
matrix X = [X1 · · ·Xn] ∈ Rd×n. A conventional approach
to PCA is given by the following steps:

1. Use the sample (Euclidean) mean, X = n−1∑n
i=1Xi.

to represent the centerpoint of the data set.

2. Find the line, i.e. affine 1-d space, which best approx-
imates the data. The Pythagorean Theorem shows
that this line can be thought of as either the mini-
mizer of the sum of squared distances from the data to
the line, or equivalently as the maximizer of the vari-
ance of the data projected to the line. A different ap-
plication of the Pythagorean Theorem shows that the
minimizing line must go through the sample mean, X.

This best one dimensional approximating line (affine
1-d subspace) can be written in the form

AS1
1 =

{
X + cU1 : c ∈ R

}
,

where U1 is the first eigenvector from the eigen-analysis

of the sample covariance matrix, Σ̂ = n−1
(
X −X

) (
X −X

)t
.

Thus AS1
1 is the line centered at X pointing in the di-

rection U1.

3. Next find the line, restricted to the plane through X
that is orthogonal to U1, that best approximates the
data. The result can be shown to be the 1-d affine
space of the form

AS1
2 =

{
X + cU2 : c ∈ R

}
,

where U2 is the second eigenvector of Σ̂, and where
U1⊥U2. Another application of the Pythagorean The-
orem shows that the 2-d affine space

AS2 = AS1
1 ∪AS1

2 =
{
X + c1U1 + c2U2 : c1, c2 ∈ R

}
is the best two dimensional approximation of the data
(again either in terms of minimum sum of squares, or
maximum variation of the projections).

4. This process can be iterated, for k = 3, 4, · · · , d, to
obtain Uk and ASk, which results in the k-d affine
space

ASk =
⋃k

j=1
ASj =

{
X +

∑k

j=1
cjUj : c1, · · · , ck ∈ R

}
as the best k-dimensional affine approximation of the
data (again in terms of either minimum residuals of
maximum variation).

One hurdle to the analysis of either data on a manifold, or
a population of tree-graph structured objects, is to obtain
an appropriate generalization of the sample mean for non-
Euclidean spaces. A common approach to this is the Fréchet
mean, defined as:

arg min
x∈Rd

n∑
i=1

δ (x,Xi)
2 , (1)

where δ is some metric. When δ is Euclidean distance, a
simple calculation shows that the Fréchet mean is the same
as the sample mean, X. The Fréchet representation, (1),
is far more general because it is well defined in any metric
space. As noted in Koenker (2007) ideas such as the Fréchet
notion of centerpoint have been central to the development
of a large number of robust statistical methods, such as M
estimation, where an important goal is finding definitions of
population center that are not strongly affected by outliers
(e.g. replacing the power 2 in (1) by 1 gives a version of me-
dian). For manifold data, it is natural to take the distance
δ to be geodesic distance (essentially arc length along the
surface of the manifold). This results in the geodesic mean,
which provides the centerpoint for PGA as discussed in Sec-
tion 1. The geodesic mean is not always unique for manifolds
of positive curvature, although there are sufficient conditions
on the support of the data to check for uniqueness, e.g. see
Le (1995). Interesting work combining notions of robustness
and manifold data can be found in Fletcher et al (2009).

More challenging is the generalization of PCA to non-
Euclidean data contexts. As noted in Section 3, it is not
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always clear how to even define the first principal compo-
nent. The notion of second principal component can be even
more challenging from the conventional viewpoint, as there
is usually no notion of orthogonal subspace available. This
makes it generally hard to usefully formulate an appropri-
ate analog of the approximating sequence AS1

1 , AS1
2 , · · · ,

AS1
d , which then generates the nested sequence of (affinely

shifted) subspaces{
X
}
⊆ AS1

1 ⊆ AS2 ⊆ · · · ⊆ ASd. (2)

Borrowing terminology from step-wise multiple linear regres-
sion, this approach to PCA is called the forward view of
PCA. An alternate viewpoint, which comes from rewriting
(2) as

ASd ⊇ ASd−1 ⊇ · · · ⊇ AS1
1 ⊇

{
X
}
,

is called the backward view of PCA. The idea is that instead
of building the sequence from lower dimensions into higher
dimensions, as in Steps 1-4 above, instead the process goes
in the opposite direction.

For Euclidean data forward and backward PCA are equiv-
alent. However, for non-Euclidean data, this is no longer
the case. While the forward approach is typically thought
of as the most intuitive, especially for teaching PCA, the
perhaps surprising premise of this paper is that, as shown
in the next section, the backward approach seems to yield
the easiest generalization to non-Euclidean spaces.

3. APPLICATIONS AND SPECULATION
Some specific applications, and speculation about the fu-

ture, of the backwards viewpoint of PCA are discussed in
the following subsections.

3.1 Principal Arc Analysis
There are a number of variations of the notion of PCA for

data that lie on the surface of S2, the usual unit sphere in R3.
As noted in Section 1, Fletcher proposed PGA, where the
data are approximated by geodesics (great circles) that are
constrained to pass through the geodesic mean. A limita-
tion of this approach is that performance will clearly be best
when the data points are closest to the geodesic mean,. re-
sulting in effective tangent hyperplane approximation. How-
ever, this approximation can be very poor. An extreme case
is data distributed roughly uniformly along the equator. In
this case the equator itself will be the geodesic that best fits
the data. However, the (non-unique) geodesic mean is either
the north or the south pole, so the constraint that the first
PG pass through the geodesic mean is a strong one. This
will result in two components being required to describe the
variation in this essentially one dimensional data.

This consideration motivated Huckemann et al (2010) to
improve PGA to Geodesic PCA. The main improvement is
that in Geodesic PCA the best fitting geodesic is drawn from
all the set of all geodesics, instead of being constrained to go
through the geodesic mean. In the simple equatorial data
example described above, this gives a simple one dimensional
mode of variation of the data. A consequence worth noting
is the geodesic mean no longer appears in the sequence (2).
Huckemann et al (2010) address this issue by redefining the
center of the data to be an appropriately chosen intersec-
tion of the first two Geodesic PCs. Thus this falls in the
framework of a backwards approach to PCA.

A related example, that has motivated the idea of Princi-
pal Arc Analysis (PAA), proposed by Jung et al (2010), is
data distributed along the Tropic of Capricorn. In this case,
both PGA and Geodesic PCA will use two components to
adequately describe this intrinsically one dimensional data
set. PAA addresses this challenge by seeking the small (i.e.
not necessarily great) circle which best fits the data. For
the Tropic of Capricorn example, the tropic becomes the
best fit small circle, which gives an efficient one dimensional
description of the data. PAA was shown to provide just this
type of efficient data description for m-rep data in Jung et
al (2010). PAA also falls in the domain of a backward ap-
proach to PCA, because one starts with the full data sphere,
reduces to the best fitting small circle, then takes an appro-
priate mean of the projected data.

3.2 Principal Nested Spheres
A more serious example of the concept of backwards PCA,

and in fact its motivation, comes from some unpublished
work by Jung, Dryden and Marron, who are developing Prin-
cipal Nested Sphere (PNS) Analysis, for analysis of land-
mark based shape data objects. That work was motivated
by the problem of extending PAA to landmark based shape
data.

Classical approaches to PCA for landmark based data, see
e.g. Section 5.5 of Dryden and Mardia (1998), is a tangent
plane approach. For a number of interesting data sets, this
has resulted in an analysis with an apparent one dimensional
mode of variation again curving through more than one com-
ponent (apparently an analog of the problems encountered
by PGA in the above examples).

PNS addresses this by starting with the full data space
(essentially a high dimensional sphere), and directly focusing
on backwards PCA, by iteratively reducing the dimension of
the fit sphere. This has produced more representative modes
of variation in a number of standard examples.

3.3 Principal Curves
Hastie and Stuetzle (1989), proposed principal curves, as

an extension of PCA. The idea is to replace the linear affine
approximating line, AS1

1 , with a possibly curved version,
that is appropriately regularized (resulting in a spline fit
of the data) to avoid overfitting. While the basic idea is
very appealing, no truly convincing analog of AS1

2 has yet
been proposed. The principal surface approach of Leblanc
and Tibshirani (1994) contains some interesting preliminary
ideas and methodologies, but it completely ignores nesting
issues, and thus cannot be viewed as an extension of forward
PCA. We believe that, despite the large literature in this
area (there are hundreds of references to Hastie and Stuetzle
(1989)), the lack of forward PCA proposals is because, as
in Section 3.2, the forward approach to PCA unnecessarily
obscures the key issues, which are made very clear by taking
a backward approach. In particular, instead of trying to
find an analog of AS1

2 , which is perpendicular in some sense
to AS1

1 , it seems far more natural to fit a two dimensional
spline, the natural analog of AS2, to the data. Similarly,
the k dimensional analog of ASk, is a spline of dimension k.

3.4 Trees as Data
It is interesting to study the tree line analysis of Aydin

et al (2009), from the perspective of backwards PCA. Tree
lines are an attempt at a one dimensional representation of
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tree data, defined in terms of successive tree grow growth.
A notion of projection of a data point onto a tree line leads
to the development of a best fitting tree line, which is thus
taken to be a tree based analog of the first principal com-
ponent. Originally thinking from a forward perspective on
PCA, Aydin et al (2009) went on to develop a notion of
second component by finding another direction which mini-
mizes the projection onto the union of the first line, and the
new one. In retrospect, this appears more like a backwards
approach because instead of finding the second component
by optimization, and then constructing the two dimensional
entity, the two dimensional representation is the foundation
of the analysis.

The notion of backwards PCA can also generate new ap-
proaches to tree line PCA. In particular, following the back-
wards PCA principal in full suggests first optimizing over a
number of lines together, and then iteratively reducing the
number of lines.
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