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1. PREVENTION OF OVERFITTING BY SEQUENTIAL TESTS

1·1. Significance of small sphere fitting
The significance of small spheres against a great sphere is discussed. We propose a test proce-

dure consisting of two different tests for each level of subsphere fitting. Similar to the backward
regression procedure, sequentially testing small spheres at each layer may prevent overfitting.

There are two cases where a great sphere provides more a appropriate fit to the data, yet the
sum of squared residuals is minimized by a small sphere. The first case is where the true major
variation is along a great sphere, an example of which on S2 is illustrated in Fig. 1a. The second
case is when the underlying distribution is rotationally symmetric with a single mode, so that
there is no major variation along any direction. An example of such a distribution is N(0, Ik) in
a linear space, or the von Mises–Fisher distribution on Sd (Fisher, 1953; Mardia & Jupp, 2000),
as illustrated in Fig. 1b. In the latter situation, small spheres centered at the point of isotropy are
frequently obtained, which do not give a useful decomposition.

We have developed two different tests to handle these cases. The first is a likelihood ratio test
for the detection of the first case as exemplified in Fig. 1a, which tests the significance of the
reduction of residual variances. The second is a parametric bootstrap test aimed at the second
case as depicted in Fig. 1b, which tests the isotropy of the underlying distribution. A detailed
description of the tests is given in the following subsections. A procedure to apply these tests
in principal nested spheres fitting is then discussed in Section 1·4. As a reviewer pointed out,
the hierarchical structure of test hypotheses makes the control of type I error difficult, which is
also discussed in Section 1·4. Attempts to avoid the dependent test structure are contained in
Section 1·5 to Section 1·7.

1·2. Likelihood ratio test
We define a likelihood ratio statistic for each level to test sequentially the significance of the

small sphere fitting against the great sphere.
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Fig. 1. Simulated data examples on S2 projected with
an equal area projection, and the fitted best small (solid)
and great (dashed) spheres, which are arcs in this two-
dimensional case. (a) The likelihood ratio test gives the
p-value 0.565, while the p-value of the bootstrap test is
0. The likelihood ratio test detects the overfitting. (b) The
likelihood ratio test leads to p-value ≈ 0, and the bootstrap
p-value is 0.82. The bootstrap test detects the overfitting.
(c) When the fitted small sphere (circle) is not overfitted,
both tests give very small p-values. This ensures that the

small sphere is not overly fitted.

For the kth level of the procedure, where Ad−k is fitted to x1, . . . , xn ∈ Sd−k+1, we assume
that the deviations ξi ≡ ξi,d−k of the samples xi from the subsphere Ad−k(v, r) are indepen-
dently distributed as N(0, σ2). It makes more sense when a truncated normal distribution on a
range [−π/2, π/2] is assumed. However unless the data spread too widely, the distribution will
be approximately normal. Thus we use the approximate likelihood function of (v, r, σ2), given
by

L(v, r, σ2|xn1 ) =
1

(2πσ2)n/2
exp

[
− 1

2σ2

n∑
i=1

{ρ(xi, v)− r}2
]
,

where ρ is the geodesic distance function on Sd−k+1. The approximate maximum likelihood es-
timator of (v, r) coincides with (v̂, r̂), the solution of (3) in the main article, and the approximate
maximum likelihood estimator of σ2 is given by σ̂2 = n−1

∑n
i=1 ξi(v̂, r̂)

2, which is obtained by
differentiating the log-likelihood function and setting the derivative equal to zero.

The null hypothesis H0a is that the true model is a great sphere, while the alternative is that
the true model is a small sphere. In other words,

H0a : r = π/2 vs H1a : r < π/2,

which is tested by a likelihood ratio test. The maximum likelihood estimator of (v, r, σ2) under
H0a is given by (v̂0, π/2, σ̂2

0), where v̂0 minimizes the sum of squared residuals of (3) in the main
article with r = π/2, and σ̂2

0 = n−1
∑n

i=1 ξi(v̂
0, π/2)2. The log-likelihood ratio is (σ̂2/σ̂2

0)
−n/2.

Then using Wilks’ theorem, for large samples n log(σ̂2/σ̂2
0) ∼ χ2

1 under H0a, and the test rejects
H0a in favor of H1a for large values of n log(σ̂2/σ̂2

0).

1·3. Parametric bootstrap test
For each level of principal nested spheres fitting, suppose X ∈ Sm has a distribution function

FX . We wish to test for the underlying distribution FX ,

H0b : FX is an isotropic distribution with a single mode, vs H1b : not H0b.
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Analysis of Principal Nested Spheres 3

We develop a parametric bootstrap test with an assumption of the von Mises–Fisher distribution.
The von Mises–Fisher distribution is an analogue of the normal distribution on the unit sphere
with concentration parameter κ and directional parameter µ, denoted as VMF(µ, κ).

We build a test statistic that is large when FX is neither isotropic nor having a single mode.
For this purpose we derive the following test statistic. Given x1, . . . , xn ∈ Sm, estimate the best
fitting subsphere A(v̂, r̂) as done in (3) in the main article. Let ζi = ρd(xi, v̂) = cos−1(xTi v̂) be
the radial distances from the axis of the subsphere. Then the test statistic is the coefficient of
variation of ζ,

Z = Z(x1, . . . , xn) =
1
n

∑n
i=1 ζi{

1
n−1

∑n
i=1(ζi − ζ̄)2

}1/2
.

The next step is to estimate the null distribution of this statistic. Under H0b, FX is VMF(µ, κ).
The unknown parameters are estimated from the data. The location parameter µ is estimated by a
standard likelihood approach (Mardia & Jupp, 2000). For an estimate of κ, Banerjee et al. (2005)
empirically derived an approximation of the maximum likelihood estimate of κ. The estimates
are

µ̂ =
r

∥r∥
=

∑n
i=1 xi

∥
∑n

i=1 xi∥
, κ̂ ≈ r̄(d+ 1)− r̄3

1− r̄2
,

where r̄ = ∥r∥/n. We generate B ≥ 100 random samples of size n from VMF(µ̂, κ̂) and calcu-
late Z1, . . . , ZB . The test rejects H0b with a significance level α if

1

B

B∑
i=1

1{Zi>Z} < α.

1·4. Application procedure
A sequence of sample principal nested spheres is obtained by iterative fitting of subspheres.

In each layer of subsphere fitting, both of the tests developed in the previous sections will be
used, due to the observation in Fig. 1. We first illustrate how these tests are applied to the exam-
ples in Fig. 1, then propose a procedure to apply the tests to the principal nested spheres fitting
procedure.

Some typical data examples on the 2-sphere and the results of the two tests are illustrated in
Fig. 1. When the true major variation is along a great circle, as in Fig. 1a, the likelihood ratio
test works well and accepts H0a, but the bootstrap test rejects H0b. On the other hand, when
the underlying distribution is von Mises–Fisher, the likelihood ratio test rejects H0a in favor
of H1a. However, the best fitting small sphere is frequently inappropriate, as shown in Fig. 1b.
The bootstrap test accepts H0b and thus can be used to detect such a case. Therefore, in order to
prevent overfitting, we proposed to apply sequentially both tests at each level of subsphere fitting.
In a case where a true variation is along a small sphere, both tests reject the null hypotheses, and
we ensure that the small subsphere is not overfitted.

At each level of subsphere fitting, we use the following testing procedure to test the signifi-
cance of small subsphere fitting.

1. Test H0a versus H1a by the likelihood ratio test. If H0a is accepted, then fit a great sphere
with r = π/2 and proceed to the next layer.

2. If H0a is rejected, then test the isotropy of the distribution by the parametric bootstrap test.
If H0b is accepted, then use great spheres for all further subsphere fittings.

3. If both tests reject the null hypotheses, then use the fitted small sphere for the decomposition.
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Note that in Step 2, when H0b is accepted, we use great sphere fitting not only for the cor-
responding level, but also for all further levels with smaller dimensions. This is because once
H0b is accepted, the underlying distribution at the level is assumed to be von Mises–Fisher. An
analogy in Euclidean space is N(0, Ik) where a non-linear mode of variation is meaningless.
Therefore, great spheres are used for all further nested spheres, without further application of
tests.

Note that for Sd, we test at most 2(d− 1) hypotheses, and the hypotheses are hierarchically
structured. The hypotheses and test statistics of the (m+ 1)th tests are dependent on the result
of the mth tests. Moreover, the first hypotheses are far more important than the subsequent ones
in a sense that when an error, of either type I or type II, is committed in the first hypothesis,
all subsequent hypotheses are false. A simple Bonferroni’s method controlling family-wise error
rate in a multiple testing problem is not applied to our tree-structured hypotheses problem. While
we do not attempt to properly analyze the tree-structured hypotheses problem, some literature
related to the problem is pointed out, as follows.

A Markov decision process (Puterman, 1994) can be used to analyze the errors in the tree-
structured hypotheses problem. A Markov decision process model, translated into our problem,
contains the state space S, which contains the data xi ∈ Sd (i = 1, . . . , n) or the data projected
on small or great spheres x†i(k) ∈ Sd−k+1, a set of two actions A = {accept great sphere, reject
great sphere, i.e., accept small sphere}, and a real-valued reward function R : S ×A → R that
accounts for the type I or type II error of the tests. The effect of the action, rejection or acceptance
of the null hypotheses, depends only on the current state x†i(k) ∈ Sd−k+1 and not on the prior
history of actions. Thus, the Markov assumption is sensible.

Another related testing procedure is the so-called gatekeeping testing procedure (Bauer et al.,
1998; Westfall & Krishen, 2001; Dmitrienko et al., 2007, 2008). The gatekeeping procedure pro-
vides a way to test multiple hypotheses in a hierarchical manner where the subsequent hypotheses
are only examined if all or some hypotheses in the primary set of hypotheses are rejected. In our
case, the families of hypotheses are summarized in Table 1, in the case of d = 3.

Table 1. Families of hy-
potheses in the sequen-
tial testing procedure for

the d = 3 case.
S3 → S2: H1

0a H1
0b

S2 → S1: H2
0a H2

0b

The secondary family of hypotheses, H2
0a and H2

0b, in the second row is only examined if
the H2

0b in the first row is rejected. When considering only the second hypotheses H0b in each
family, the procedure is similar to the serial gatekeeping procedure (Bauer et al., 1998; Westfall
& Krishen, 2001). However, the second family is examined regardless of the rejection of the first
hypothesis H1

0a. To the best of our knowledge, such structure has not been studied.

1·5. Bayesian information criterion
Another approach is to utilize the Bayesian information criterion under Gaussian assumption.

This approach still assumes a distribution, but is convenient enough to use as a rule-or-thumb
method to indicate whether a small circle is overfitted. For the kth level of the small sphere fit-
ting, where Ad−k is fitted to x1, . . . , xn ∈ Sd−k+1, we assume that the deviations ξi from the
subsphere Ad−k(v, r) are independent N(0, σ2). Then the appropriate Bayesian information cri-
terion would be −2 log{L(v, r, σ2|xn1 )}+ k log(n) and by removing constant terms we compare
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Analysis of Principal Nested Spheres 5

the Bayesian information criterion from small sphere fitting

BICs = n log(σ̂2) + (d+ 1) log(n)

with the Bayesian information criterion from great sphere fitting

BICg = n log(σ̂2
0) + d log(n),

where σ̂2 = n−1
∑n

i=1 ξi(v̂, r̂) is the maximum likelihood estimator of σ2 under the small sphere
model and σ̂2

0 = n−1
∑n

i=1 ξi(v̂0, π/2) is the maximum likelihood estimator under the great
sphere model.

1·6. Data Example
The two proposed methods, the sequential tests and the Bayesian information criteria, are

compared in some data sets. In the sequential tests, we set bootstrap sample size B = 100 and
the significance level α = 0.05. Two datasets, the human movement data contained in Kume
et al. (2007) and the rat skull growth data in Bookstein (1991) are analyzed and the numerical
results are presented in Table 2.

In Table 2, when the human movement data are analyzed, the tests are applied to each of three
layers. Both tests result in p-values less than the significance level, therefore we chose to use
the small sphere. The Bayesian information criteria of the small sphere model BICs are always
smaller than the Bayesian information criteria of the great sphere model BICg, which leads to
the choice of small spheres. In the simple human movement data analysis, the two methods lead
to the same decision.

Table 2 also contains the results from rat skull data analysis. The dimension of the preshape
sphere is 13, and is higher than the dimension of the human movement data case where the
dimension is five, thus leading to a much more complicated result. Let us focus on the left
columns for the sequential tests. When fitting the 11-sphere from the 12-sphere, both tests reject
the null hypotheses in favor of the small sphere. Now when fitting the 10-sphere, the likelihood
ratio test results in a p-value greater than 0.05. As described in Section 1·4, a great sphere is
chosen and the parametric bootstrap test is skipped. Note that in the last three layers, the tests
choose small spheres. To compare this result with the decisions using the Bayesian information
criterion, note that when a 9-sphere is fitted, the Bayesian information criterion chooses the great
sphere but the test results are in favour of the small sphere fitting. Because the principal nested
spheres are nested, any further fitting will be different in these two decision rules. However,
we find a pattern in both of the decisions. In fact, the difference is only found when fitting the
9-sphere.

We inspected this difference by taking a closer look at Table 3. Table 3 shows the radii of
principal nested spheres when using the two different rules. Note that the radii of A1,A2, and A3

are similar, as seen in the last three rows. These three components contain more than 90% of the
variance, and we see that there is virtually no difference in scatter plots of the principal scores,
which we omit.

1·7. Soft decision rule
The test procedure and the Bayesian Information Criterion approach we discussed before have

some caveats. Both are based on a specific parametric assumption, which may be seen as inappro-
priate. Moreover, simultaneous inference is complicated because the tests are not independent.
In this section, an interesting approach, which does not depend on any complicated assumptions,
is introduced.
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Table 2. Decisions by
sequential tests and the
Bayesian information

criterion
Human movement

pLRT pVMF Decision BICs BICg Decision

4-sphere to 3-sphere 0.00 0 SMALL -542.68 -536.18 SMALL
3-sphere to 2-sphere 3.2× 10−10 0 SMALL -464.40 -428.78 SMALL
2-sphere to 1-sphere 2.8× 10−7 0 SMALL -310.64 -288.17 SMALL

Rat skull growth

pLRT pVMF Decision BICs BICg Decision

12-sphere to 11-sphere 0.01 0 SMALL -1762.39 -1759.71 SMALL
11-sphere to 10-sphere 0.10 GREAT -1612.67 -1615.10 GREAT
10-sphere to 9-sphere 0.03 0 SMALL -1587.57 -1587.96 GREAT
9-sphere to 8-sphere 0.01 0 SMALL -1560.01 -1556.32 SMALL
8-sphere to 7-sphere 0.77 GREAT -1400.23 -1405.22 GREAT
7-sphere to 6-sphere 2.1× 10−4 0 SMALL -1374.63 -1365.39 SMALL
6-sphere to 5-sphere 0.06 GREAT -1212.67 -1214.02 GREAT
5-sphere to 4-sphere 0.82 GREAT -1190.21 -1195.24 GREAT
4-sphere to 3-sphere 1.0× 10−6 0 SMALL -1153.95 -1134.76 SMALL
3-sphere to 2-sphere 0.00 0 SMALL -947.29 -942.59 SMALL
2-sphere to 1-sphere 0.00 0 SMALL -824.96 -742.40 SMALL

The p-values from the likelihood ratio test and the parametric bootstrap test are denoted by pLRT and pVMF.

Table 3. Rat skull data:
difference between deci-
sions by sequential tests
and the Bayesian infor-

mation criterion.
Tests BIC

decision radii radii decision
13-sphere 1.000 1.000
12-sphere 1.000 1.000
11-sphere SMALL 0.762 0.762 SMALL
10-sphere GREAT 0.762 0.762 GREAT

9-sphere SMALL 0.604 0.762 GREAT
8-sphere SMALL 0.474 0.499 SMALL
7-sphere GREAT 0.474 0.499 GREAT
6-sphere SMALL 0.322 0.324 SMALL
5-sphere GREAT 0.322 0.324 GREAT
4-sphere GREAT 0.322 0.324 GREAT
3-sphere SMALL 0.187 0.188 SMALL
2-sphere SMALL 0.179 0.179 SMALL
1-sphere SMALL 0.129 0.129 SMALL
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Analysis of Principal Nested Spheres 7

A family of important variations of principal nested spheres can be developed by either adding
a penalty term or modifying the least squares term in (3) in the main article. In particular, we
write a general optimization problem for each subsphere fitting as

n−1
n∑

i=1

L(xi, v, r) + λj(r), (1)

where L is loss function, j is a penalty function and λ > 0 is a tuning parameter. The
original least squares problem (3) in the main article is a special case of (1) given by
L(xi, v, r) = {ρd(xi, v)− r}2 and j(r) = 0. One may replace the squared loss by the absolute
loss, L(xi, v, r) = |ρd(xi, v)− r|, for more robust fitting.

A soft decision rule between small and great spheres fitting can be developed by the penal-
ization approach. A reasonable choice of the penalty functions would be j2(r) = (π/2− r)2

or j1(r) = |π/2− r|. Note that indeed j1(r) = π/2− r because 0 < r ≤ π/2. These penalty
functions penalize the departure of r from π/2, i.e. the departure of the fitted sphere from a great
sphere. As a referee pointed out, this penalized approach will lead to a compromised fit of small
and great spheres, leading to a soft decision between small and great spheres.

The algorithm we proposed to solve the optimization problem, (3) in the main article, may be
adapted to solve (1), for a special case of L(xi, v, r) = {ρd(xi, v)− r}2 and j(r) = (π/2− r)2.
Starting with an initial value, one can alternate the update of v and r. In particular, given r̂, the
objective function is numerically minimized with respect to v (by e.g. the Levenberg-Marquert
algorithm), then given v̂, the minimization of the objective function with respect to r is simple,
since the objective function is quadratic in r.

We believe a thorough investigation in this direction will lead to important and significant
findings.

2. ADDITIONAL DATA ANALYSIS EXAMPLES

2·1. Migration path of an elephant seal
The use of the proposed method for spherical data is illustrated. Since the sample space is now

Sd, we do not need to pre-align the data points as done in the shape data analysis in Section 5 of
the main article. The data analysis in this section utilizes the proposed test procedure.

As the simplest example, consider a dataset on the usual sphere S2. The dataset consists of
n = 73 daily location measurements of a migrating female elephant seal, presented in Brillinger
& Stewart (1998) and also discussed in Rivest (1999). The seal migrates from the southern Cali-
fornia coast to the eastern mid-north Pacific Ocean. Of interest is to investigate whether the seal
migrates along a great circle path, i.e. the shortest distance path. Note that Brillinger & Stewart
(1998) and Rivest (1999) have analyzed this dataset in greater detail. We briefly re-analyze this
data set with the proposed hypothesis test.

Fig. 2 shows the path of the migration, including both the forward journey and the return trip.
Since the dataset in latitude-longitude coordinates can be converted to points on the unit sphere,
it is viewed as a set of points on S2 and we fitted principal nested spheres, with only one nested
circle. We fit the best fitting great circle and small circle with fitted distance r̂ = 75.45◦. The
likelihood ratio test developed in Section 1·2 results in p-value 0.0851 (with H0a : r = 90◦, the
great circle). Therefore, the migration is not significantly different at the level α = 0.05 from a
great circle path, which is consistent with the results from Brillinger & Stewart (1998) and Rivest
(1999).
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Fig. 2. Daily observations of migration path of an elephant
seal, in the latitude-longitude coordinates, and the great cir-

cle and small circle fit of the data.

2·2. River and sea sand grains
We consider sand grain outlines that can be parameterized as a set of points in a hypersphere.

The dataset was originally analyzed in Kent et al. (2000), and consists of outlines of sand grains
from two-dimensional views. There are n1 = 25 river and n2 = 24 sea sand grains. We illustrate
an application of principal nested spheres, and use of the Euclidean-type representation to test
for group mean difference.

The outline of each sand grain is represented in polar coordinates (r1, . . . , rk) at each equally
spaced angle (θ1, . . . , θk), with k = 20. The scale is removed so that

∑k
i=1 r

2
i = 1. The origin

for each sand grain is its center of gravity, and we keep the grains fixed in the orientation that
they were recorded, rather than removing rotation as in the shape analysis of Kent et al. (2000).
With θi fixed throughout the samples as θi = (i− 1)2π/k, r = (r1, . . . , rk) on the unit (k − 1)-
sphere represents the scale invariant profile of a registered sand grain. Note that the size of river
sand grains are typically larger than that of sea sand (Kent et al., 2000), but this analysis focuses
on the variability in the scale invariant profiles of sand grains.

To the 49 (= n1 + n2) data points on the 19-sphere, we fitted sample principal nested spheres,
with significance level α = 0.05 for every test applied. The small sphere fitting is significant
for only three layers of the procedure, when fitting A18, A17 and A11, with both p-values less
than 0.05. The one-dimensional principal nested sphere A1 has radius 0.8738, suggesting that
the captured principal variation is not much more curved than geodesics. The principal nested
sphere leads to the Euclidean-type representation XPNS of the dataset, in a way that the curved
principal arcs are flattened. The first three coordinates in XPNS are used for visualization of
major variation as in Fig. 3.

To test the group mean difference between river and sea sand grains, we can use any Euclidean
space based test procedure applied to XPNS. Since we do not have any prior information on the
underlying distribution, it makes sense to use a nonparametric permutation test. In particular, we
use the Direction-Projection-Permutation test, described in Wichers et al. (2007), that is used to
test the group mean difference for multivariate data. The test finds a direction vector pointing
from one group to the other, and computes a t-statistic of the projected values onto the direction.



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432

Analysis of Principal Nested Spheres 9

Fig. 3. Scatterplot matrix of sand grain data set, by the dis-
tance weighted discrimination direction, labeled as DWD,
and the first three coordinates of XPNS. (+: river sand
grains, ◦: sea sand grains) Diagonal entries are jitter plots
of one-dimensional projections with kernel density esti-
mates for each group. The distance weighted discrimina-
tion direction separating the two groups is found in the Eu-

clidean space, XPNS.

The null distribution of the t-statistic is found by permutation of group labels. We have used the
test with the direction vector u as the distance weighted discrimination direction (Marron et al.,
2007). The distance weighted discrimination is a classification tool that separates two groups
with more generalizability than, e.g., the support vector machine (Vapnik, 1995). The subspace
formed by u and first three coordinates of XPNS is illustrated as a scatterplot matrix in Fig. 3.
Although the first three coordinates of XPNS do not give a visual separation between the groups,
XPNS turns out to be a useful Euclidean space for linear classification methods such as distance
weighted discrimination.

In our analysis, the test with 1000 permutations rejects the null hypothesis of equal group
means with p-value 0.0292. The difference of shapes in the overlay of the outlines of sand grains,
illustrated in Fig. 4, is statistically significant.

3. GEOMETRY OF NESTED SPHERES

3·1. Rotation matrices
For a, b ∈ Sm−1 ⊂ Rm such that |aT b| < 1, the rotation matrix that rotates b to the direction

of a with angle θ is denoted by Q(b → a, θ), and the rotation matrix that rotates v to the north
pole em = (0, . . . , 0, 1)T is denoted by R(v) as defined in the Appendix.
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Fig. 4. Overlaid outlines of 25 river sand grains (+) and
24 sea sand grains (◦) with the group means (thick out-
lines) identified with the geodesic mean of each group. The
DiProPerm test rejects a null hypothesis of equal group

means with p-value 0.0292

The following lemma is useful in developing further the geometry of nested spheres.

LEMMA 1. Assume that a, b ∈ Rm are unit vectors such that |aT b| < 1, and let θ ∈ (0, 2π].
(a) Let R be an m×m rotation matrix. Then, Q(Rb → Ra, θ) = RQ(b → a, θ)RT . Equiva-

lently, Q(RT b → RTa, θ) = RTQ(b → a, θ)R.
(b) Let a′ = (aT , 0)T , b′ = (bT , 0)T . Then the (m+ 1)× (m+ 1) rotation matrix that moves

b′ to a′ is given by

Q(b′ → a′, θ) =

[
Q(b → a, θ) 0m×1

01×m 1

]
,

where 0m×n is the m× n matrix of zeros.

3·2. Geometry of Subspheres
The nested spheres of Sd are lower dimensional submanifolds of Sd, each of which is isomor-

phic to the unit spheres in different dimensions. The subsphere Am−1 of Sm (m ≥ 2) induces
the nested spheres.

DEFINITION 1. A subsphere Am−1 of Sm is defined by an axis v ∈ Sm and a distance r ∈
(0, π/2], as follows:

Am−1(v, r) = {x ∈ Sm : ρm(v, x) = r}.

The Am−1(v, r) is the boundary of the geodesic ball in Sm with center v and radius r. The v
is said to be orthogonal to Am−1 in a sense of the following lemma.

LEMMA 2. (a) For any x, y ∈ Am−1, (x− y)T v = 0.
(b) x ∈ Am−1 if and only if vT {x− cos(r)v} = 0 and ∥x∥ = 1.

A subsphere Am−1 is essentially an (m− 1)-dimensional sphere. The following properties of
subspheres give the mathematical background to treat Am−1 as Sm−1.

PROPOSITION 1. Let Am−1(v, r) be a subsphere in Sm. Then
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(a) (Am−1, ρm) is isomorphic to (Sm−1, ρm−1) with an isomorphism f : Am−1 −→ Sm−1 de-
fined by

f(x) =
1

sin(r)
R−(v)x, x ∈ Am−1

with inverse

f−1(x†) = RT (v)

[
sin(r) · x†
cos(r)

]
, x† ∈ Sm−1,

where R(v) is the (m+ 1)× (m+ 1) rotation matrix that moves v to the north pole, R−(v)
is the m× (m+ 1) matrix consisting of the first m rows of R(v).

(b) Let ρ∗m−1(x, y) = sin(r)ρm−1{f(x), f(y)}. Then ρ∗m−1 is a metric on Am−1.
(c) (Am−1, ρ

∗
m−1) is isometric to (Sm−1, sin(r)ρm−1).

(d) The two metrics ρm and ρ∗m−1 are equivalent, in a sense that the following inequalities

ρm(x, y) ≤ ρ∗m−1(x, y) ≤
π sin(r)

2r
ρm(x, y)

hold for all x, y ∈ Am−1 and both equalities hold if and only if r = π/2 or x = y.
(e) ρ∗m−1(x, y)− ρm(x, y) ≤ π sin(r)− 2r for all x, y ∈ Am−1.

The ρ∗m−1(x, y) can be interpreted as the length of a minimal arc in Am−1 that joins x, y.
Precisely, the minimal arc is the image by f−1 of the minimal geodesic segment joining f(x)
and f(y). Let x† = f(x), y† = f(y). Then the geodesic segment is given by

Γ = {γ(θ) = Q(x† → y†, θ)x† : θ ∈ [0, cos−1(x†T y†)]}.

By Lemma 1, we have for any θ ∈ [0, cos−1(x†T y†)],

f−1(γ(θ)) = R(v)T
[
sin(r)Q(x† → y†, θ)x†

cos(r)

]
= R(v)T

[
Q(x† → y†, θ) 01×m

0m×1 1

]
R(v)R(v)T

[
sin(r)x†

cos(r)

]
= Q(xp → yp, θ)x,

where

xp = R(v)T
[
x†

0

]
=

x− cos(r)v

sin(r)
,

and yp is defined similarly. One can check that ρm(xp, yp) = ρm−1(x
†, y†) and Q(xp → yp)x =

y. Thus the arc {Q(xp → yp, θ)x : θ ∈ [0, cos−1(xTp yp)]} joins x to y and is minimal in Am−1

because it is isomorphic to the minimal geodesic Γ.
The difference between ρm and ρ∗m−1 is due to the fact that the minimal arc for ρ∗m−1 is not

a geodesic in Sm. If r < π/2, then the geodesic segment joining x, y is always shorter than
the minimal arc in Am−1. Since the difference is relatively small for close points as seen in
Proposition 1(d-e) later, the difference does not obscure much of the underlying structure in the
data points in Sm.

3·3. Geometry of Nested Spheres
We now define a sequence of nested spheres {Ad−1, . . . ,A1} of Sd (d ≥ 2) with decreasing

intrinsic dimensions. We first introduce a sequence of subspheres Ad−1, . . . , A1 of Sd, which are
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Fig. 5. Hierarchical structure of the sequence of nested
spheres of the 3-sphere.

in different spaces. The (d− 1)-dimensional subsphere Ad−1 of Sd, defined in Definition 1, is
in Sd ∈ Rd+1. The second subsphere Ad−2 is defined from the isomorphic space Sd−1 of Ad−1.
Similarly, the lower dimensional subspheres are defined recursively.

DEFINITION 2. A sequence {Ad−1, . . . , A1} of subspheres is defined recursively as follows:

(i) Ad−1 is defined as the subsphere with v1 ∈ Rd+1, r ∈ (0, π/2] by Definition 1.
(ii) For each k = 2, . . . , d− 1, Ad−k is the subsphere defined with vk ∈ Rd−k+2, rk ∈ (0, π/2]

from Sd−k+1, which is isomorphic to Ad−k+1.

A nested sphere is defined by the subsphere located in the original space Sd. For a general
subsphere Ad−k of Sd−k+1 (k = 1, . . . , d− 1), we also use the isomorphic transformation fk :
Ad−k → Sd−k and its inverse f−1

k . Let m = d− k + 1, so that the subsphere Ad−k ⊂ Sm ⊂
Rm+1. The transformations are defined by vk ∈ Sm and rk ∈ (0, π/2] as

fk(x) =
1

sin(rk)
R−(vk)x, x ∈ Ad−k,

f−1
k (x†) = RT (vk)

[
sin(rk) · x†
cos(rk)

]
, x† ∈ Sd−k,

(2)

where R(vk) is a (m+ 1)× (m+ 1) rotation matrix that moves vk to the north pole, and R−(vk)
is the m× (m+ 1) matrix consisting of the first m rows of R(vk).

DEFINITION 3. A (d− k)-dimensional nested sphere Ad−k of Sd is defined as

Ad−k =

{
f−1
1 ◦ · · · ◦ f−1

k−1(Ad−k) (k = 2, . . . , d− 1),
Ad−1 (k = 1).

The geometric interpretation and hierarchical structure of the nested spheres are illustrated in Fig.
5. The nested sphere Ad−k can be understood as a shifted (d− k)-sphere, which is orthogonal
to k orthogonal directions in the sense of Lemma 3. The following properties summarize some
geometric facts of the nested spheres.

LEMMA 3. Let Ad−1, . . . ,A1 be nested spheres of Sd from a sequence of subspheres
Ad−k(vk, rk). Then, there exists an orthogonal basis v∗1, . . . , v

∗
d−1 ∈ Rd+1 such that for each

k = 1, . . . , d− 1,

(a) (x− y)T v∗i = 0 for all i = 1, . . . , k and x, y ∈ Ad−k,
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(b) x ∈ Ad−k if and only if xTp,kv
∗
j = 0, for all j = 1, . . . , k, and ∥xp,k∥ =

∏k
i=1 sin(ri) where

xp,k = x− cos(r1)v
∗
1 − sin(r1) cos(r2)v

∗
2 − · · · −

k−1∏
i=1

sin(ri) cos(rk)v
∗
k.

Moreover, an explicit expression for v∗j can be obtained from v1, . . . , vj as

v†j = f−1
1 ◦ · · · ◦ f−1

j−1(vj) ∈ Ad−j+1, (3)

v∗j =

j−1∏
i=1

sin−1(ri)

{
v†j − cos(r1)v

∗
1 − · · · −

j−2∏
i=1

sin(ri) cos(rj−1)v
∗
j−1

}
(4)

Note that xp,k in the lemma can be understood as the projection of x onto the subspace that is
orthogonal to v∗1, . . . , v

∗
d−k. A direct consequence of Lemma 3 is that for any nested sphere Ad−k

of Sd can be understood as the intersection of a hyperplane Hk and Sd. The hyperplane Hk is a
(d− k)-dimensional affine subspace that is orthogonal to v∗1, . . . , v

∗
d−k.

PROPOSITION 2. Let Ad−1, . . . ,A1 be nested spheres of Sd from subspheres Ad−k(vk, rk).
Then,

(a) A1 ( A2 ( · · · ( Ad−1 ( Sd, where A ( B means that A is a proper subset of B,
(b) Let ρ∗d−k(x, y) =

∏k
i=1 sin(ri)ρd−k(x

′, y′), where x′ = fk ◦ · · · ◦ f1(x). Then ρ∗d−k is a met-
ric on Ad−k.

(c) (Ad−k, ρ
∗
d−k) is isometric to (Sd−k,

∏k
i=1 sin(ri)ρd−k).

The ρd and ρ∗d−k are indeed equivalent metrics. Moreover, one can show that ρ∗d−k(x, y) is the
length of a minimal arc in Ad−k that joins x and y.

3·4. Proofs and Additional Lemmas
Proof of Lemma 1. (a) Let a0 = Ra, b0 = Rb and c0 = {b0 − a0(a

T
0 b0)}/

∥∥b0 − a0(a
T
0 b0)

∥∥.
Then c0 = Rc, where c = {b− a(aT b)}/

∥∥b− a(aT b)
∥∥, since RRT = RTR = Im. Then,

Q(Rb → Ra, θ) = R[Id + sin(θ)(acT − caT ) + {cos(θ)− 1}(aaT + ccT )]RT = RQ(b → a, θ)RT .

(b) Let c′ be defined similarly for a′, b′. We have

a′a′T =

[
a
0

] [
aT 0

]
=

[
aaT 0m×1

01×m 0

]
,

and c′c′T ,a′c′T and c′a′T can be expressed in a similar fashion. Then the expression of Q in
Lemma 1(b) gives the desired result. �

Proof of Lemma 2. For x ∈ Rm such that ∥x∥ = 1, x ∈ Am−1 if and only if ρm(v, x) =
cos−1(vTx) = r. This is equivalent to vTx− cos(r)vT v = 0 since vT v = 1. This proves (b).
Write x− y = {x− cos(r)v} − {y − cos(r)v}, then the result (a) follows from (b). �

Proof of Proposition 1. We first show that f is a well-defined bijective function. Proofs for
(b-e) will follow. (a) is then given by (c) and (d).

First note that since sin(r) > 0, f is well defined. For any x ∈ Am−1, let x† = f(x). Then
x† ∈ Rm, and since R−(v)TR−(v) = Im+1 − vvT , we get

∥x†∥2 = 1

sin2(r)

∥∥R−(v)x
∥∥2 = 1

sin2(r)
{xTx− (xT v)2} =

1

sin2(r)
{1− cos2(r)} = 1
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Thus, x† ∈ Sm−1. Conversely, for any x† ∈ Sm−1, let x = f−1(x†). Then ∥x∥ = 1 and

vTx = {R(v)v}T
[
sin(r)x†

cos(r)

]
= cos(r).

By Lemma 2(b), x ∈ Am−1. One can easily show that f ◦ f−1(x†) = x†, f−1 ◦ f(x) = x.
Therefore, f is a well defined bijective function.

Since ρm−1 is a metric and sin(r) > 0, the metric ρ∗m−1 is nonnegative and symmetric, and
the triangle inequality holds. In addition, since f is bijective, we have ρ∗m−1(x, y) = 0 if and
only if x = y. This proves (b). With the metric ρ∗m−1, f is an isometry and (c) follows.

To prove (d) and (e), the difference between two metrics for a fixed r ∈ (0, π/2] is given by

ρ∗m−1(x, y)− ρm(x, y) = sin(r) cos−1

[
cos{ρm(x, y)} − cos2(r)

sin2(r)

]
− ρm(x, y) := hr{ρm(x, y)},

for x, y ∈ Am−1. Note that maxx,y ρm(x, y) = 2r. Then hr is a strictly increasing function on
[0, 2r] with minimum hr(0) = 0 and the maximum hr(2r) = π sin(r)− 2r. This proves (e) and
leads to the first inequality of (d). The second inequality is obtained from observing that

π sin(r)

2r
ρm(x, y)− ρ∗m−1(x, y)

is nonnegative and is zero if and only if ρm(x, y) = 0 or 2r. �

The following lemmas are useful to prove Lemma 3 and also could be of independent interest.

LEMMA 4. Let v†j and v∗j be as defined in (3-4). For any x ∈ Sd and k = 1, . . . , d− 1, the
following are equivalent:

(i) x ∈ Ad−k.
(ii) vTk {fk ◦ · · · ◦ f1(x)} = cos(rk).

(iii) For all j = 1, . . . , k,

xT v†j =

j−1∏
i=1

sin2(ri) cos(rj) +

j−2∏
i=1

sin2(ri) cos
2(rj−1) + · · ·+ cos2(r1).

(iv) For all j = 1, . . . , k,

xT v∗j =

j−1∏
i=1

sin(ri) cos(rj).

Proof of Lemma 4. [(i) ⇔ (ii)] By Definition 3 and since each fi is bijective, x ∈ Ad−k is
equivalent to fk ◦ · · · ◦ f1(x) ∈ Ad−k. By Lemma 2(b), this is also equivalent to (ii).

[(i) ⇔ (iii)] First note that for any k = 1, . . . , d− 1, for y ∈ Sd−k,

f−1
1 ◦ · · · ◦ f−1

k (y) = RT (v1)

[
sin(r1){f−1

2 ◦ · · · ◦ f−1
k (y)}

cos(r1)

]

= {R(v1, . . . , vk)}T


∏k

i=1 sin(ri)y∏k−1
i=1 sin(ri) cos(rk−1)

...
cos(r1)

 ,
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where R(v1, . . . , vk) is a rotation matrix defined as

{R(v1, . . . , vk)}T = RT (v1)

[
RT (v2) 0d×1

01×d 1

]
· · ·

[
RT (vk) 0(d+2−k)×1

01×(d+2−k) 1

]
.

Then

xT v†j =
[
f−1
1 ◦ · · · ◦ f−1

j−1{fj−1 ◦ · · · ◦ f1(x)}
]T

f−1
1 ◦ · · · ◦ f−1

j−1(vj)

=

j−1∏
i=1

sin2(ri){fj−1 ◦ · · · ◦ f1(x)}T vj +
j−2∏
i=1

sin2(ri) cos
2(rj−1) + · · ·+ cos2(r1)

and the result follows from (ii).
[(i) ⇒ (iv)] Since x ∈ Ad−k, we have xT v∗1 = cos(r1) by definition. Suppose xT v∗ȷ =∏ȷ−1
i=1 sin(ri) cos(rȷ) for all ȷ = 1, . . . , j − 1, then (iii) and cancelling terms give

xT v∗j = xT

{
v†j − cos(r1)v

∗
1 − · · · −

j−2∏
i=1

sin(r1) cos(rj−1)v
∗
j−1

}
j−1∏
i=1

sin−1(ri)

=

j−1∏
i=1

sin(r1) cos(rj).

Thus by induction, (iv) holds.
[(iv) ⇒ (iii)] Suppose (iv) holds, then for j = 1, . . . , k,

xT v∗j −
j−1∏
i=1

sin(ri) cos(rj)

=

j−1∏
i=1

sin−1(ri)

{
xT v†j − cos2(r1)− · · · −

j−2∏
i=1

sin2(ri) cos
2(rj−1)−

j−1∏
i=1

sin2(ri) cos(rj)

}
,

which equals to zero if and only if (iii) holds. �

Proof of Lemma 3. We first show that {v∗i ; i = 1, . . . , d− 1} is an orthonormal basis. Note
that v∗1 = v1, and v∗2 = sin−1(r1){v†2 − cos(r1)v

∗
1}. Since v†2 ∈ Ad−1, by Lemma 4, we have

v∗T2 v1 = sin−1(r1){v†T2 v1 − cos(r1)} = 0,

and

v∗T2 v∗2 = sin−1(r1)v
∗T
2 v†2 = sin−1(r1){v†T2 v†2 − cos(r1)v

†
2v

∗
1} = 1.

Suppose v∗Ti v∗j = 0 and ∥v∗i ∥ = ∥v∗i ∥ = 1 for 1 ≤ i < j ≤ k − 1. Since v†k ∈ Ad−k+1, by
Lemma 4, we have

v∗Tj v∗k =
k−1∏
i=1

sin−1(ri)v
∗T
j

{
v†k −

j−1∏
i=1

sin(ri) cos(rj)v
∗
j

}
= 0,
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and

∥v∗k∥ =
k−1∏
i=1

sin−1(ri)v
∗T
k v†k

=

k−1∏
i=1

sin−2(ri)v
†T
k

{
v†k − cos(r1)v

∗
1 − · · · −

k−2∏
i=1

sin(ri) cos(rk−1)v
∗
k−1

}
= 1.

Thus, by induction, v∗i (i = 1, . . . , d− 1) are orthonormal.
Now for (b), suppose first that x ∈ Ad−k. Then by Lemma 4, we get for j = 1, . . . , k

xTp,kv
∗
j = xT v†j −

j−1∏
i=1

sin(ri) cos(rj) = 0

and

∥xp,k∥2 = xTxp,k = xT {x− cos(r1)v
∗
1 − · · · −

k−1∏
i=1

sin(ri) cos(rk)v
∗
k}

= 1− cos2(r1)− · · · −
k−1∏
i=1

sin2(ri) cos
2(rk).

Thus by rearranging terms, ∥xp,k∥ =
∏k

i=1 sin(ri).
Conversely, suppose that xTp,kv

∗
j = 0 for all j = 1, . . . , k and ∥xp,k∥ =

∏k
i=1 sin(ri). Then

since xp,k, v
∗
1, . . . , v

∗
k are orthogonal to each other,

∥x∥2 =

∥∥∥∥∥xp,k + cos(r1)v
∗
1 + · · ·+

k−1∏
i=1

sin(ri) cos(rk)v
∗
k

∥∥∥∥∥
2

= xTp,kxp,k + cos2(r1) + · · ·+
k−1∏
i=1

sin2(ri) cos
2(rk) = 1.

One can check that for all j = 1, . . . , k

xT v∗j =

{
xp,k +

j−1∏
i=1

sin(ri) cos(rj)v
∗
j

}T

v∗j =

j−1∏
i=1

sin(ri) cos(rj),

and again by Lemma 4, the result follows. (a) is directly obtained from (b). �

Proof of Proposition 2. (a) is readily derived by either Lemma 3 or the fact that Am−1 ( Sm

for all m = 2, . . . , d.
For (b) and (c), it can be easily checked that fk ◦ · · · ◦ f1 : Ad−k → Sd−k is a well defined

bijective function. Since ρd−k is a metric and sin(ri) > 0, the metric ρd−k is nonnegative and
symmetric, and the triangle inequality holds. In addition, since f is a bijection, ρ∗d−k(x, y) = 0
if and only if x = y. This proves (b). Then by the definition of ρ∗d−k, fk ◦ · · · ◦ f1 is an isometry
and (c) follows. �

Proof of Theorem 1 (Main article). Note that wTw∗ = wTMw = 0, and for all z ∈ Sd

such that wT z ≥ 0 and wTMz = 0, zTw∗ = zTMw = wTMz = 0. Thus ρd(w,w
∗) =

cos−1(wTw∗) = π/2 and ρd(z, w
∗) = π/2. Moreover, since wT z ≥ 0, we have w, z ∈

hAd−1. �
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4. TRANSFORMATIONS BETWEEN SPHERICAL VARIABLE AND THE SPACE OF PRINCIPAL
SCORES

The material in this section supports Section 2.4 and 2.5 of the main article.
Suppose we have a sequence of nested spheres defined by the sequence of subspheres

{Ad−1(v1, r1), . . . , A1(vd−1, rd−1), vd},

where vk ∈ Sd−k+1 (k = 1, . . . , d− 1) and rk ∈ (0, π/2].
A point x ∈ Sd ⊂ Rd+1 is transformed into the subset E of a vector space that are coordinates

of the principal scores matrix. A detailed description of the transformation is as follows.
The point x of interest is projected to the first subsphere Ad−1(v1, r1), where the projection is

xP = P{x;Ad−1(v1, r1)} =
x sin(r1) + v1 sin(ξ1)

sin(ξ1 + r)
, (5)

where ξ1 is the signed deviance measured by the geodesic distance from x to Ad−1(v1, r1) and
is given by ξ1 = arccos(vT1 x)− r1. Define a transformation function g1 : S

d → Sd−1,

g1(x) = {1− (vT1 x)
2}−

1
2R−(v1)x,

where R(v) is the (d+ 1)× (d+ 1) rotation matrix that moves v to the north pole ed+1 =
(0, . . . , 0, 1)T and R−(v) is the d× (d+ 1) matrix consisting of the first d rows of R(v). It is
easy to see that g1(x) = f1(x

P ), for f1 defined in (2), which means that g1 is the transformed
version of the projection.

The second signed deviance is obtained with g1(x) ∈ Sd−1 in a recursive fashion. De-
fine gk : Sd−k+1 → Sd−k for each k = 1, . . . , d as gk(x) = {1− (vT1 x)

2}−
1
2R−(vk)x. Let gk1 :

Sd → Sd−k be gk1 (x) = gk ◦ · · · ◦ g1(x). Then ξk = arccos{vTk g
k−1
1 (x)} − rk (k = 1, . . . , d−

1). The last signed deviance is the signed deviation of gd−1
1 (x) ∈ S1 from vd and is

ξd = atan2{(v⊥d )T gd−1
1 (x), vTd g

d−1
1 (x)},

where

v⊥d =

(
0 −1
1 0

)
vd

is the orthogonal axis of vd and atan2(y, x) = 2 arctan{(
√

x2 + y2 − x)/y} if y ̸= 0 and is 0 if
y = 0. These residuals are scaled by multiplying by

∏k−1
i=1 sin(ri) which makes the magnitude

of the residuals commensurate. We then have

z =


ξd

∏d−1
i=1 sin(ri)

ξd−1
∏d−2

i=1 sin(ri)
...

ξ2 sin(r1)
ξ1

 ∈ E,

where E = [−π, π)× [−π/2, π/2)d−1. Let h : Sd → E ⊂ Rd be h : x 7→ z.
The inverse operation is recovering the original Sd from the deviances ξi. We begin with

recovering S1, then S2, and recursively up to Sd. For z = (z1, . . . , zd)
T ∈ E, let

ξj = zd+1−j

{
j−1∏
i=1

sin(ri)

}−1

(j = 1, . . . , d) (6)
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Recall that ξj is the signed deviation from the jth nested sphere with dimension d− j and a
zero-dimensional sphere is understood as a point. Also note that a sequence of nested spheres
defined by {(v1, r1), . . . , (vd−1, rr−1), vd} is still used to recover Sd.

We begin with ξd and vd to recover S1 as follows.

ξ⃗d = cos(ξd)vd + sin(ξd)v
⊥
d ∈ S1 ⊂ R2

The second step is to recover S2 from ξ⃗d ∈ S1 and ξd−1 ∈ [−π/2, π/2]. In general, all sub-
sequent steps recursively recover Sk from some ξ ∈ Sk−1 and ξk ∈ [−π/2, π/2]. It is useful to
define a transformation function g̃k : Sd−k × [−π/2, π/2] → Sd−k+1 (k = 1, . . . , d− 1) as

g̃k(ξ, ξk) = RT (vk)

[
sin(rk + ξk)ξ
cos(rk + ξk)

]
∈ Sd−k+1

Also define that g̃kd−1 = g̃k ◦ · · · ◦ g̃d−1, aggregating recoveries from S1 to Sd−k+1 for some
k = 1, . . . d− 1. The composition is understood as in the following example.

g̃d−2
d−1({ξ1, . . . , ξd}) = g̃d−2 ◦ g̃d−1({ξ1, . . . , ξd})

= g̃d−2

{
g̃d−1(ξ⃗d, ξd−1), ξd−2

}
.

For a given z ∈ E, a corresponding point x in Sd is found by

x = g̃1d−1({ξ1, . . . , ξd})

with the deviations {ξ1, . . . , ξd} obtained by (6). Let h̃ : E → Sd be h̃ : z → x.
Finally we check that h̃ is the inverse function h. This ensures that h can be used to transform

a spherical variable on Sd into the vector space E of principal scores and that h̃ is the inverse
operation.

5. CONVERGENCE OF THE PROPOSED ALGORITHM

In this section, we show the convergence of the proposed solution to a local minimum empir-
ically by showing the values of objective function at each iteration. Recall that the algorithm to
minimize the objective function

F (v, r) =

n∑
i=1

{ρd(xi, v)− r}2 (7)

consists of two layers: the inner and outer layers. The outer layer finds a tangential point for the
inner layer. The inner layer fits the least squares sphere to the data projected onto the tangent
space, which is solved by the well-known Levenberg–Marquardt algorithm (Scales, 1985, Ch.
4). In the outer iteration, the convergence to a local minimum is empirically shown by checking
values of the objective function (7) at each iteration, until the difference becomes small enough
to be ignored.

We have used two different initial cadidates for v. The first choice of the initial values is the
last singular vector from the singular value decomposition of the original data matrix. Denote
this choice of the initial values as c1. The second choice (c2) is the last singular vector from the
singular value decomposition of the centreed data matrix.

We examined the convergence with four real data sets.
1. Elephant Seal data
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The elephant seal data set consists of n = 73 observations on S2 (Brillinger & Stewart, 1998;
Rivest, 1999). The subsphere fitting occurs only once. Figure 6 shows the values of objective
functions in each iteration with two different initial values c1 and c2. With both choices of initial
values, the algorithm converges fast to the same v, and also r, in 3 or 6 iterations respectively.

1 2 3
7.43

7.432

7.434

7.436

7.438

7.44

7.442

7.444
x 10

−5

ob
je

ct
iv

e 
fu

nc
tio

n

iteration
1 2 3 4 5 6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

−4

ob
je

ct
iv

e 
fu

nc
tio

n

iteration

Fig. 6. Elephant seal data: Values of the objective func-
tions with the initial value c1 on the left, c2 on the right
panel. The values of the minimized objective function
with different choices of initial values are the same as

7.4317e− 005.

2. Rat Skull Growth data
The rat skull growth data is a landmark shape data set with k = 8 landmarks. We process this

data set as described in Section 5.2, then the algorithm is applied 11 times since the dimension
of the shape space is 12. Figures 7 and 8 show the values of the objective functions.

The top left panel of Fig. 7 illustrates the evaluated objective function values with c1 as the
initial value when fitting A11 from points x1, . . . , xn ∈ S12. The algorithm converges to a local
minimum at the 6th iteration. Then we move on to the fitting of A10 from S11, shown in the
second panel on the top row. Again, the algorithm converges to a local minimum in less than 20
iterations. We examine the convergence until finally fitting A1 from S2, shown at the rightmost
panel at the bottom row. Throughout 11 small sphere fittings, the algorithm requires less than 20
iterations.

Figure 8 shows the convergence results with a different choice of the initial value as c2. In the
rat skull data application, different choices of initial values led to very similar results, which can
be examined, for example, by checking that the minimized value of the objective function at the
bottom left panel is about 8.75× 10−4 at Fig. 8, which is the same at Fig. 7.

3. Digit 3 data
The digit 3 data set contained in Dryden & Mardia (1998) is also analyzed. The data set

consists of k = 13 landmarks on digitized hand written figure 3s. When aligned appropriately,
the preshapes are on S22. We show the first 15 layers of the principal nested spheres fitting
results.

The top left panel of Fig. 9 shows the values of objective functions with c1 as the initial value
when fitting A21 from points in S22. The next, to the right, panel shows the values at the second
fitting, and so on. In all the 21 sphere fittings, where the last six are not shown in the figures, the
algorithm converges to a local minimum mostly within 20 iterations.

When choosing c2 as the initial value, the convergence to a local minimum mostly within 20
iterations is also observed. See Fig. 10.

4. Human Movement data
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Fig. 7. Rat Skull data: values of the objective functions
with the initial value c1.
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Fig. 8. Rat Skull data: values of the objective functions
with the initial value c2.
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Fig. 9. Digit 3 data: values of the objective functions with
the initial value c1.
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Fig. 10. Digit 3 data: values of the objective functions with
the initial value c2.
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Table 4. Human movement data: Minimized values of
the objective function F .

Initial value S4 → A3 S3 → A2 S2 → A1

c1 1.3075× 10−5 1.4913× 10−4 0.0660
c2 1.3075× 10−5 6.7660× 10−5 0.0016

The human movement data, analyzed in greater detail in Section 5.1, are on S4, when aligned.
The proposed algorithm does not guarantee a convergence to the global minimum. In an analysis
of this data set, we have seen that different choices of initial values led to a convergence to a local,
not global, minimum. While it can be checked that the algorithm finds a local minimum as in Fig.
11, the algorithm does not guarantee a convergence to the global minimum. In Table 4, we see
that when c1 is used for the initial value of the algorithm, the solution is indeed a local minimum,
since the minimized values of the objective function are larger than those from choosing c2.

In practice, we examine the optimization results from both initial values, and take the one with
smaller value of the objective function.
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Fig. 11. Human data: values of the objective functions with
the initial value c1 in the top row and c2 in the bottom row.

6. PRINCIPAL NESTED GREAT SPHERE MEAN AND MEAN OF HUCKEMANN & ZIEZOLD
(2006)

We show that the principal nested great spheres mean, defined in Definition 3, and the mean
of Huckemann & Ziezold (2006) do not coincide even on S2, and also show an example where
the two are the same.
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Suppose x1, . . . , xn ∈ S2. Geodesic principal component analysis of Huckemann & Ziezold
(2006) first finds a best fitting geodesic γ1 = γ1(a, b), where γ1(a, b) (a, b ∈ S2 such that
aT b = 0) can be parametrized as γ1(t) = cos(t)a+ sin(t)b for t ∈ R. The great circle γ1 is
found by minimizing the sum of squared deviances to the data and thus coincides with the fit-
ted subsphere Â1(v, π/2) of S2 for v = a× b. The great circle γ1 is called the first geodesic
principal component. The second geodesic principal component γ2 minimizes

n∑
i=1

ρ22{xi, γ2(v, c)}, (c ∈ γ1)

where ρ2{x, γ2(v, c)} is the minimal great circle distance between x and γ2. Huckemann &
Ziezold (2006) defined a mean as one of the intersections between γ1 and γ2. Denote the mean
by γ0.

Clearly, the first geodesic principal component γ1 is identical to the one dimensional principal
nested great sphere A1 for the special case of S2.

However, γ0 may not be the same as the principal nested great spheres mean A0, because the
objective function of γ0 given γ1 is

n∑
i=1

ρ22{xi, γ2(v, c)} =

n∑
i=1

arccos2[{(vTxi)2 + (γT0 xi)
2}2], (8)

which is different from the objective function of principal nested spheres mean, written in terms
of γ0

n∑
i=1

ρ22[P{xi;A1(v, π/2)}, γ0]

=

n∑
i=1

ρ22[{xi − (xTi v)v}/ sin{ρ2(xi, v)}, γ0]

=

n∑
i=1

arccos2[γT0 xi/{1− (xTi v)
2}]. (9)

A case where γ0 and A0 are the same is when (8) and (9) are identical. A sufficient condition
for the identity is that vTi x1 = 0 for all i, which is the case where all data points are exactly
contained in Â1 = γ1.
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