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SCALING-ROTATION DISTANCE AND INTERPOLATION OF
SYMMETRIC POSITIVE-DEFINITE MATRICES∗
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Abstract. We introduce a new geometric framework for the set of symmetric positive-definite
(SPD) matrices, aimed at characterizing deformations of SPD matrices by individual scaling of
eigenvalues and rotation of eigenvectors of the SPD matrices. To characterize the deformation, the
eigenvalue-eigenvector decomposition is used to find alternative representations of SPD matrices
and to form a Riemannian manifold so that scaling and rotations of SPD matrices are captured
by geodesics on this manifold. The problems of nonunique eigen-decompositions and eigenvalue
multiplicities are addressed by finding minimal-length geodesics, which gives rise to a distance and
an interpolation method for SPD matrices. Computational procedures for evaluating the minimal
scaling-rotation deformations and distances are provided for the most useful cases of 2 × 2 and
3 × 3 SPD matrices. In the new geometric framework, minimal scaling-rotation curves interpolate
eigenvalues at constant logarithmic rate, and eigenvectors at constant angular rate. In the context
of diffusion tensor imaging, this results in better behavior of the trace, determinant, and fractional
anisotropy of interpolated SPD matrices in typical cases.
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1. Introduction. The analysis of symmetric positive-definite (SPD) matrices as
data objects arises in many contexts. A prominent example is diffusion tensor imaging
(DTI), which is a widely used technique that measures the diffusion of water molecules
in a biological object [4, 16, 2]. The diffusion of water is characterized by a symmetric
tensor that is represented by a 3× 3 SPD matrix. SPD matrices also appear in other
contexts, such as in tensor computing [24], in tensor-based morphometry [18], and as
covariance matrices [30]. In recent years, statistical analyses of SPD matrices have
received much attention [34, 26, 28, 27, 22, 33, 23].

The main challenge in the analysis of SPD matrices is that the set of p × p
SPD matrices, Sym+(p), is a proper open subset of a real matrix space, so it is not a
vector space. This has led researchers to consider alternative geometric frameworks to
handle analytic and statistical tasks for SPD matrices. The most popular framework
is a Riemannian framework, where the set of SPD matrices is endowed with an affine-
invariant Riemannian metric [21, 24, 17, 11]. The log-Euclidean metric, discussed
in [3], is also widely used, because of its simplicity. In [10], Dryden, Koloydenko,
and Zhou listed these popular approaches, including the Cholesky decomposition-
based approach of [31] and their own approach, which they called the Procrustes
distance. In [6], Bonnabel and Sepulchre proposed a different Riemannian approach
for symmetric positive semidefinite matrices of fixed rank.
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Although these approaches are powerful in generalizing statistics to SPD matri-
ces, they are not easy to interpret in terms of SPD matrix deformations. In particular,
in the context of DTI, tensor changes are naturally characterized by changes in dif-
fusion orientation and intensity, but the above frameworks do not provide such an
interpretation. In [25], Schwartzman proposed a scaling-rotation curve in Sym+(p),
which is interpretable as rotation of diffusion directions and scaling of the main modes
of diffusivity. In this paper we develop a novel framework to formally characterize
scaling-rotation deformations between SPD matrices and introduce a new distance,
here called the scaling-rotation distance, defined by the minimum amount of rotation
and scaling needed to deform one SPD matrix into another.

To this end, an alternative representation of Sym+(p), obtained from the decom-
position of each SPD matrix into an eigenvalue matrix and eigenvector matrix, is
identified as a Riemannian manifold. This manifold, a generalized cylinder embedded
in a higher-dimensional matrix space, is easy to endow with a Riemannian geometry.
A careful analysis is provided to handle the case of equal eigenvalues and, more gener-
ally, the nonuniqueness of the eigen-decomposition. We show that the scaling-rotation
curve corresponds to geodesics in the new geometry, and we characterize the family of
geodesics. A minimal deformation of SPD matrices in terms of the smallest amount
of scaling and rotation is then found by a minimal scaling-rotation curve, through a
minimal-length geodesic. Sufficient conditions for the uniqueness of minimal curves
are given.

The proposed framework not only provides a minimal deformation, it also yields
a distance between SPD matrices. This distance function is a semimetric on Sym+(p)
and is invariant under simultaneous rotation, scaling, and inversion of SPD matrices.
The invariance under matrix inversion is particularly desirable in analysis of DTI
data, where both large and small diffusions are unlikely [3]. While these invariance
properties are also found in other frameworks [21, 24, 17, 11, 3], the proposed distance
is directly interpretable in terms of the relative scaling of eigenvalues and rotation
angle between eigenvector frames of two SPD matrices.

For Sym+(3), other authors [9, 32] have proposed dissimilarity-measures and in-
terpolation schemes based on the same general idea as ours, i.e., separating the scaling
and rotation of SPD matrices. Their deformations of SPD matrices are similar to ours
in many cases, thus enjoying similar interpretability. But while [9, 32] mainly focused
on the p = 3 case, our work is more flexible by allowing unordered and equal eigen-
values. We discuss the importance of this later in section 3.

The proposed geometric framework for analysis of SPD matrices is viewed as an
important first step for developing statistical tools for SPD matrix data that will
inherit the interpretability and the advantageous regular behavior of scaling-rotation
curves. The development of tools similar to those already existing for other geometric
frameworks, such as bi- or trilinear interpolations [3], weighted geometric means and
spatial smoothing [21, 10, 7], principal geodesic analysis [11], and regression and
statistical testing [34, 28, 27, 33], will also be needed in the new framework, but we do
not address them here. The proposed framework also has potential future applications
beyond diffusion tensor study, such as in high-dimensional factor models [12] and
classification among SPD matrices [15, 30]. Algorithms allowing fast computation
or approximation of the proposed distance may be needed, but we will leave this
as a subject of future work. The current paper focuses only on analyzing minimal
scaling-rotation curves and the distance defined by them.

The main advantage of the new geometric framework for SPD matrices is that
minimal scaling-rotation curves interpolate eigenvalues at constant logarithmic rate,
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and eigenvectors at constant angular rate, with a minimal amount of scaling and
rotation. These are desirable characteristics in fiber-tracking in DTI [5]. Moreover,
scaling-rotation curves exhibit regular evolution of determinant and, in typical cases,
of fractional anisotropy and mean diffusivity. Linear interpolation of two SPD matri-
ces by the usual vector operation is known to have a swelling effect: the determinants
of interpolated SPD matrices are larger than those of the two ends. This is physically
unrealistic in DTI [3]. The Riemannian frameworks in [21, 24, 3] do not suffer from
the swelling effect, which was in part the rationale for favoring the more sophisticated
geometry. However, all of these exhibit a fattening effect: interpolated SPD matrices
are more isotropic than the two ends [8]. The Riemannian frameworks also produce
an unpleasant shrinking effect: the traces of interpolated SPD matrices are smaller
than those of the two ends [5]. The scaling-rotation framework, on the other hand,
does not suffer from the fattening effect and produces a smaller shrinking effect with
no shrinking at all in the case of pure rotations.

The rest of the paper is organized as follows. Scaling-rotation curves are formally
defined in section 2. Section 3 is devoted to precisely characterizing minimal scaling-
rotation curves between two SPD matrices and the distance obtained accordingly. The
cylindrical representation of Sym+(p) is introduced to handle the nonuniqueness of
the eigen-decomposition and repeated eigenvalue cases. Section 4 provides details for
the computation of the distance and curves for the special but most commonly useful
cases of 2 × 2 and 3 × 3 SPD matrices. In section 5, we highlight the advantageous
regular evolution of the scaling-rotation interpolations of SPD matrices. Technical
details, including proofs of theorems, are contained in Appendix B.

2. Scaling-rotation curves in Sym+(p). An SPD matrix M ∈ Sym+(p) can
be identified with an ellipsoid in R

p (ellipse if p = 2). In particular, the surface
coordinates x ∈ R

p of the ellipsoid corresponding to M satisfy x′M−1x = 1. The
semiprincipal axes of the ellipsoid are given by eigenvector and eigenvalue pairs of
M . Figure 1 illustrates some SPD matrices in Sym+(3) as ellipsoids in R

3. Any
deformation of the SPD matrix X to another SPD matrix can be achieved by the
combination of two operations:

1. individual scaling of the eigenvalues, or stretching (shrinking) the ellipsoid
along principal axes;

2. rotation of the eigenvectors, or rotation of the ellipsoid.

Denote an eigen-decomposition of X by X = UDU ′, where the columns of U ∈
SO(p) consist of orthogonal eigenvectors of X , and D ∈ Diag+(p) is the diagonal
matrix of positive eigenvalues that need not be ordered. Here, SO(p) denotes the
set of p× p real rotation matrices. To parameterize scaling and rotation, the matrix
exponential and logarithm, defined in Appendix A, are used. A continuous scaling of
the eigenvalues in D at a constant proportionality rate can be described by a curve
D(t) = exp(Lt)D in Diag+(p) for some L = diag(l1, . . . , lp) ∈ Diag(p), t ∈ R, where
Diag(p) is the set of all p × p real diagonal matrices. Since d

dtD(t) = LD(t), we call
L the scaling velocity. Each element li of L provides the scaling factor for the ith
coordinate di of D. A rotation of the eigenvectors in the ambient space at a constant
“angular rate” is described by a curve U(t) = exp(At)U in SO(p), where A ∈ so(p),
the set of antisymmetric matrices (the Lie algebra of SO(p)). Since d

dtU(t) = AU(t),
we call A the angular velocity. Incorporating the scaling and rotation together results
in the general scaling-rotation curve (introduced in [25]),

(2.1) χ(t) = χ(t;U,D,A, L) = exp(At)UD exp(Lt)U ′ exp(A′t) ∈ Sym+(p), t ∈ R.
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Fig. 1. Scaling-rotation curves in Sym+(3): (top) pure rotation with rotation axis normal
to the screen, (middle) individual scaling along principal axes without any rotation, and (bottom)
simultaneous scaling and rotation. The rotation axis is shown as a black line segment. The ellipsoids
are colored by the direction of principal axes, to help visualize the effect of rotation.

The scaling-rotation curve characterizes deformations of X = χ(0) ∈ Sym+(p)
so that the ellipsoid corresponding to X is smoothly rotated, and each principal axis
stretched and shrunk, as a function of t. For p = 2, 3, the matrix A gives the axis
and angle of rotation (cf. Appendix A). Figure 1 illustrates discretized trajectories of
scaling-rotation curves in Sym+(3), visualized by the corresponding ellipsoids. These
curves in general do not coincide with straight lines or geodesics in other geometric
frameworks, such as those in [31, 21, 24, 17, 11, 3, 10, 9, 32]. In section 3, we introduce
a Riemannian metric which reproduces these scaling-rotation curves as images of
geodesics.

Given two points X,Y ∈ Sym+(p), we will define the distance between them as
the length of a scaling-rotation curve χ(t) that joins X and Y . Thus it is of interest to
identify the parameters of the curve χ(t) that starts at X = χ(0) and meets Y = χ(1)
at t = 1. From eigen-decompositions of X and Y , X = UDU ′, Y = V ΛV ′, we could
equate χ(1) and V ΛV ′, and naively solve for eigenvector matrix and eigenvalue matrix
separately, leading to A = log(V U ′) ∈ so(p), L = log(D−1Λ) ∈ Diag(p). This solution
is generally correct if the eigen-decompositions of X and Y are chosen carefully (see
Theorem 3.14). The difficulty is that there are many other scaling-rotation curves
that also join X and Y , due to the nonuniqueness of eigen-decomposition. Thus we
consider a minimal scaling-rotation curve among all such curves.

3. Minimal scaling-rotation curves in Sym+(p) .

3.1. Decomposition of SPD matrices into scaling and rotation compo-
nents. An SPD matrix X can be eigen-decomposed into a matrix of eigenvectors
U ∈ SO(p) and a diagonal matrix D ∈ Diag+(p) of eigenvalues. In general, there are
many pairs (U,D) such that X = UDU ′. Denote the set of all pairs (U,D) by

(SO×Diag+)(p) = SO(p)×Diag+(p).

We use the following notation.
Definition 3.1. For all pairs (U,D) ∈ (SO×Diag+)(p) such that X = UDU ′,
(i) an eigen-decomposition (U,D) of X is called an (unobservable) version of

X in (SO×Diag+)(p);
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Sym+(p) (SO x Diag+)(p)

(U,D)

(U2,D)

(U3,D)

(U1,D)

(Uπ,Dπ)

X= UDU'
.....

Fig. 2. An SPD matrix X and its versions in (SO × Diag+)(p). The eigen-composition of
(U,D) is depicted as a many-to-one mapping from (SO×Diag+)(p) to Sym+(p).

(ii) X is the eigen-composition of (U,D), defined by a mapping c : (SO ×
Diag+)(p) → Sym+(p), c(U,D) = UDU ′ = X.

The many-to-one mapping c from (SO×Diag+)(p) to Sym+(p) is surjective. (The
symbol c stands for composition.) Figure 2 illustrates the relationship between an SPD
matrix and its many versions (eigen-decompositions). While Sym+(p) is an open cone,
the set (SO×Diag+)(p) can be understood as the boundary of a generalized cylinder;
i.e., (SO × Diag+)(p) forms a shape of cylinder whose cross-section is “spherical”
(SO(p)) and the centers of the cross-section are on the positive orthant of Rp, i.e.,
Diag+(p). The set (SO×Diag+)(p) is a complete Riemannian manifold, as described
below in section 3.2.

Note that considering (SO×Diag+)(p) as the set of all possible eigen-decomposi-
tions is an important relaxation of the usual ordered eigenvalue assumption. We will
see in the subsequent sections that this is necessary to describe the desired family
of deformations. As an example, the scaling-rotation curve depicted in the middle
row of Figure 1 is made possible by allowing unordered eigenvalues. Moreover, our
manifold (SO×Diag+)(p) has no boundaries, which not only allows us to handle equal
eigenvalues but also makes the applied Riemannian geometry simple.

We first discuss which elements of (SO×Diag+)(p) are the versions of any given
SPD matrix X .

Definition 3.2. Let Sp denote the symmetric group, i.e., the group of per-
mutations of the set {1, . . . , p}, for p ≥ 2. A permutation π ∈ Sp is a bijection
π : {1, . . . , p} → {1, . . . , p}. Let σp = {(ε1, . . . , εp) ∈ R

p : εi ∈ {±1}, 1 ≤ i ≤ p} and
σ+

p = {(ε1, . . . , εp) ∈ σp :
∏p

i=1 εi = 1}.
(i) For a permutation π ∈ Sp, its permutation matrix is the p × p matrix P 0

π

whose entries are all 0 except that in column i the entry π(i) equals 1. Moreover,

define Pπ = P 0
π if det(P 0

π ) = 1, and Pπ =
[−1 0′

0 Ip−1

]
P 0
π if det(P 0

π ) = −1.

(ii) For σ = (ε1, . . . , εp) ∈ σp, its associated sign-change matrix is the p × p
diagonal matrix Iσ whose ith diagonal element is εi. If σ ∈ σ+

p , we call Iσ an even
sign-change matrix.

(iii) For any D ∈ Diag(p), the stabilizer subgroup of D is GD = {R ∈ SO(p) :
RDR′ = D}.

For any σ ∈ σ+
p , π ∈ Sp, Pπ, Iσ ∈ SO(p). The number of different permutations

(or sign-changes) is p! (or 2p−1, respectively). These two types of matrices provide
operations for permutation and sign-changes in eigenvalue decomposition. In particu-
lar, for U ∈ SO(p), a column-permuted U , by a permutation π ∈ Sp, is UP ′

π ∈ SO(p),
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and a sign-changed U , by σ ∈ σ+
p , is UIσ ∈ SO(p). For D = diag(d1, . . . , dp), define

π ·D = diag(dπ−1(1), . . . , dπ−1(p)) ∈ Diag(p) as a diagonal matrix whose elements are
permuted by π ∈ Sp. Dπ := PπDP ′

π is exactly the diagonal matrix π ·D. The same
is true if Pπ is replaced by IσPπ for any σ ∈ σp. Finally, for any σ ∈ σ+

p , π ∈ Sp,
there exists σ0 ∈ σp such that Iσ0P 0

π = IσPπ .
Theorem 3.3. Each version of X = UDU ′ is of the form (U∗, D∗) = (URP ′

π, Dπ)
for R ∈ GD, π ∈ Sp, and Dπ = PπDP ′

π. Moreover, if the eigenvalues of X are all
distinct, every R ∈ GD is an even sign-change matrix Iσ, σ ∈ σ+

p .
Remark 3.4. If the eigenvalues ofX are all distinct, there are exactly p!2p−1 eigen-

decompositions of X . In such a case, all versions of X can be explicitly obtained by
application of permutations and sign-changes to any version (U,D) of X .

Remark 3.5. If the eigenvalues of X are not all distinct, there are infinitely
many eigen-decompositions of X due to the arbitrary rotation R of eigenvectors. The
stabilizer group of D, GD, to which R belongs in Theorem 3.3, does not depend on
particular eigenvalues but only on which eigenvalues are equal. More precisely, forD =
diag(d1, . . . , dp) ∈ Diag+(p), let JD be the partition of coordinate indices {1, . . . , p}
determined by D, i.e., for which i and j are in the same block if and only if di = dj . A
block can consist of nonconsecutive numbers. For a partition J = {J1, . . . , Jr} with
r blocks, let {W1, . . . ,Wr} = {RJ1 , . . . ,RJr} denote the corresponding subspaces of
R

p; x ∈ R
Ji if and only if the jth coordinate of x is 0 for all j /∈ Ji. The stabilizer

GD depends only on the partition JD. Define GJ ⊂ SO(p) by

(3.1) GJ = {R ∈ SO(p) : RWi = Wi, 1 ≤ i ≤ r}.
Then GD = GJD . As an illustration, let D = diag(1, 1, 2). Then JD = {{1, 2}, {3}}.
An example of R ∈ GD is a 3 × 3 block-diagonal matrix where the first 2 × 2 block
is any R1 ∈ SO(2) and the last diagonal element is r2 = 1. Intuitively, RDR′ with
this choice of R behaves as if the first 2 × 2 block of D, D1, is arbitrarily rotated.
Since D1 = I2, rotation makes no difference. Another example is given by setting
R1 ∈ O(2) with det(R1) = −1 and r2 = −1.

3.2. A Riemannian framework for scaling and rotation of SPD matri-
ces. The set of rotation matrices SO(p) is a p(p− 1)/2-dimensional smooth Rieman-
nian manifold equipped with the usual Riemannian inner product for the tangent
space [13, Chap. 18]. The set of positive diagonal matrices Diag+(p) is also a p-
dimensional smooth Riemannian manifold. The set (SO × Diag+)(p), being a direct
product of two smooth and complete manifolds, is a complete Riemannian manifold
[29, 1]. We state some geometric facts necessary to our discussion.

Lemma 3.6.

(i) (SO×Diag+)(p) is a differentiable manifold of dimension p+ p(p− 1)/2.
(ii) (SO×Diag+)(p) is the image of so(p)×Diag(p) under the exponential map

Exp((A,L)) = (exp(A), exp(L)), (A,L) ∈ so(p)×Diag(p).
(iii) The tangent space τ(I, I) to (SO × Diag+)(p) at the identity (I, I) can be

naturally identified as a copy of so(p)×Diag(p).
(iv) The tangent space τ(U,D) to (SO×Diag+)(p) at an arbitrary point (U,D)

can be naturally identified as the set τ(U,D) = {(AU,LD) : A ∈ so(p), L ∈ Diag(p)}.
Our choice of Riemannian inner product at (U,D) for the two tangent vectors

(A1U,L1D) and (A2U,L2D) is

〈(A1U,L1D), (A2U,L2D)〉(U,D) =
k

2
〈U ′A1U,U

′A2U〉+ 〈D−1L1D,D−1L2D〉

=
k

2
trace(A1A

′
2) + trace(L1L2), k > 0,(3.2)
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where 〈X,Y 〉 for X,Y ∈ GL(p) denotes the Frobenius inner product 〈X,Y 〉 =
trace(XY ′). Collard et al. [9] used a structure similar to (3.2), with the scaling
factor k being a function of D, to motivate their distance function. We use k = 1 for
all of our illustrations in this paper. The practical effect of using different values of
k is discussed in section 5.2, and examples are given in the supplementary material,
which is linked from the main article webpage. For any fixed k, we show that this
choice of Riemannian inner product leads to interpretable distances with invariance
properties (cf. Proposition 3.7 and Theorem 3.8).

The exponential map from a tangent space τ(U,D) to (SO×Diag+)(p) is Exp(U,D) :

τ(U,D) → (SO×Diag+)(p), where

Exp(U,D)((AU,LD)) = (U exp(U ′AU), D exp(D−1LD)) = (exp(A)U, exp(L)D).

The inverse of the exponential map is Log(U,D) : (SO×Diag+)(p) → τ(U,D), where

Log(U,D)((V,Λ)) = (U log(U ′V ), D log(D−1Λ)) = (log(V U ′)U, log(ΛD−1)D).

A geodesic in (SO × Diag+)(p) starting at (U,D) with initial direction (AU,LD) ∈
τ(U,D) is parameterized as

(3.3) γ(t) = γ(t;U,D,A, L) = Exp(U,D)((AUt, LDt)).

The inner product (3.2) provides the geodesic distance function on (SO×Diag+)(p).
Specifically, the squared geodesic distance from (U,D) to (V,Λ) is

d2 ((U,D), (V,Λ)) = 〈(AU,LD), (AU,LD)〉(U,D)(3.4)

= kdSO(p)(U, V )2 + dD(D,Λ)
2, k > 0,

whereA = log(V U ′), L = log(ΛD−1), dSO(p)(U1, U2)
2 = 1

2 ‖log(U2U
′
1)‖2F , dD(D1, D2)

2

=
∥∥log(D2D

−1
1 )

∥∥2

F
, and ‖ ‖F is the Frobenius norm.

The geodesic distance (3.4) is a metric, well-defined for any (U,D) and (V,Λ) ∈
(SO ×Diag+)(p), and is the length of the minimal geodesic curve γ(t) that joins the
two points. Note that for any two points (U,D) and (V,Λ), there are infinitely many
geodesics that connect the two points, just like there are many ways of wrapping a
cylinder with a string. There is, however, a unique minimal-length geodesic curve that
connects (U,D) and (V,Λ) if V U ′ is not an involution [20]. (A rotation matrix R is
an involution if R 
= I and R2 = I.) For p = 2, 3, R is an involution if it consists of a
rotation through angle π, in which case there are exactly two shortest-length geodesic
curves. If V U ′ is an involution, then V and U are said to be antipodal in SO(p), and
the matrix logarithm of V U ′ is not unique (there is no principal logarithm), but as
discussed in Appendix A, log(V U ′) means any solution A of exp(A) = V U ′ whose
Frobenius norm is the smallest among all such A.

Proposition 3.7. The geodesic distance (3.4) on (SO × Diag+)(p) is invari-
ant under simultaneous left and right multiplication by orthogonal matrices, permu-
tations, and scaling: For any R1, R2 ∈ O(p), π ∈ Sp, and S ∈ Diag+(p), and for
any (U,D), (V,Λ) ∈ (SO × Diag+)(p), we have

(
(U,D), (V,Λ)

)
= d

(
(R1UR2, SDπ),

(R1V R2, SΛπ)
)
.

3.3. Scaling-rotation curves as images of geodesics. We can give a pre-
cise characterization of scaling-rotation curves using the Riemannian manifold (SO×
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Diag+)(p). In particular, any geodesic in (SO × Diag+)(p) determines a scaling-
rotation curve in Sym+(p). The geodesic (3.3) gives rise to the scaling-rotation
curve χ(t) = χ(t;U,D,A, L) ∈ Sym+(p) (2.1) by the eigen-composition c ◦ γ = χ.
On the other hand, a scaling-rotation curve χ corresponds to many geodesics in
(SO×Diag+)(p).

To characterize the family of geodesics corresponding to a single curve χ(t), the
following notation is used. For a partition J of the set {1, . . . , p}, GJ denotes the
Lie subgroup of SO(p) defined in (3.1). Let gJ denote the Lie algebra of GJ . Then

gJ = {A ∈ so(p) : Aij = 0 for i 
∼ j} ⊂ so(p),

where i 
∼ j if i and j are in different blocks of J . For D ∈ Diag(p), recall from
Remark 3.5 that JD is the partition determined by eigenvalues of D, GD = GJD , and
define gD = gJD . For D,L ∈ Diag(p), let JD,L be the common refinement of JD and
JL so that i and j are in the same block of JD,L if and only if di = dj and li = lj .
Define GD,L = GJD,L = GD ∩GL, and let gD,L = gJD,L = gD ∩ gL be the Lie algebra
of GD,L. Finally, for B ∈ so(p), let adB : so(p) → so(p) be the linear map defined by
adB(C) = [B,C] = BC − CB.

Theorem 3.8. Let (U,D,A, L) be the parameters of a scaling-rotation curve χ(t)
in Sym+(p). Let I be a positive-length interval containing 0. Then a geodesic γ : I →
(SO × Diag+)(p) is identified with χ, i.e., χ(t) = c(γ(t)), for all t ∈ I, if and only if
γ(t) = γ(t;URP ′

π, Dπ, B, Lπ) for some π ∈ Sp, R ∈ GD,L, and B ∈ so(p) satisfying

both (i) B̃ − Ã ∈ gD,L, where B̃ = U ′BU and Ã = U ′AU , and (ii) (adB̃)
j(Ã) ∈ gD,L

for all j ≥ 1.
Note that the conjugation Ã = U ′AU expresses the infinitesimal rotation param-

eter A in the coordinate system determined by U . If A in Theorem 3.8 is such that
Ã ∈ gD,L, then conditions (i) and (ii) are equivalent to B̃ ∈ gD,L. If p = 2 or 3 and

Ã 
∈ gD,L, then the condition is B̃ = Ã.
It is worth emphasizing a special case where there are only finitely many geodesics

corresponding to a scaling-rotation curve χ(t).
Corollary 3.9. Suppose, for some t, the eigenvalues of χ(t) = χ(t;U,D,A, L)

are distinct. Then χ corresponds to only finitely many (p!2p−1) geodesics γ(t) =
γ(t;UIσP

′
π, Dπ, A, Lπ), where π ∈ Sp and σ ∈ σ+

p .

3.4. Scaling-rotation distance between SPD matrices. In (SO×Diag+)(p),
consider the set of all elements whose eigen-composition is X :

EX = {(U,D) ∈ (SO×Diag+)(p) : X = UDU ′}.

Since the eigen-composition is a surjective mapping, the collection of these sets EX
partitions the manifold (SO × Diag+)(p). The set EX = c−1(X) is called the fiber
over X . Theorem 3.3 above characterizes all members of EX for any X .

It is natural to define a distance between X and Y ∈ Sym+(p) to be the length
of the shortest geodesic connecting EX and EY ⊂ (SO ×Diag+)(p).

Definition 3.10. For X,Y ∈ Sym+(p), the scaling-rotation distance is defined
as

(3.5) dSR(X,Y ) := inf
(U,D)∈EX ,
(V,Λ)∈EY

d((U,D), (V,Λ)),

where d(·, ·) is the geodesic distance function (3.4).
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The geodesic distance d((U,D), (V,Λ)) measures the length of the shortest geodesic
segment connecting (U,D) and (V,Λ). Any geodesic, mapped to Sym+(p) by the
eigen-composition, is a scaling-rotation curve connecting X = UDU ′ and Y = V ΛV ′.
In this sense, the scaling-rotation distance dSR measures the minimum amount of
smooth deformation from X to Y (or vice versa) only by the rotation of eigenvectors
and individual scaling of eigenvalues.

Note that dSR on Sym+(p) is well-defined and the infimum is actually achieved,
as both EX and EY are nonempty and compact. It has desirable invariance properties
and is a semimetric on Sym+(p).

Theorem 3.11. For any X,Y ∈ Sym+(p), the scaling-rotation distance dSR is
(i) invariant under matrix inversion, i.e., dSR(X,Y ) = dSR(X−1, Y −1);
(ii) invariant under simultaneous uniform scaling and conjugation by a rotation

matrix, i.e., dSR(X,Y ) = dSR(sRXR′, sRY R′) for any s > 0, R ∈ SO(p);
(iii) a semimetric on Sym+(p); i.e., dSR(X,Y ) ≥ 0, dSR(X,Y ) = 0 if and only

if X = Y , and dSR(X,Y ) = dSR(Y,X).
Although dSR is not a metric on the entire set Sym+(p), it is a metric on an

important subset of Sym+(p).
Theorem 3.12. dSR is a metric on the set of SPD matrices whose eigenvalues

are all distinct.

3.5. Minimal scaling-rotation curves in Sym+(p). To evaluate the scaling-
rotation distance (3.5), it is necessary to find a shortest-length geodesic in (SO ×
Diag+)(p) between the fibers EX and EY . There are multiple geodesics connecting
two fibers, because each fiber contains at least p!2p−1 elements (Theorem 3.3), as
depicted in Figure 3. We think of fibers EX arranged vertically in (SO × Diag+)(p)
with the mapping c (eigen-composition) as downward projection. It is clear that
there exists a geodesic that joins the two fibers with the minimal distance. We call
such a geodesic a minimal geodesic for the two fibers EX and EY . A necessary, but
generally not sufficient, condition for a geodesic to be minimal for EX and EY is that
it is perpendicular to EX and EY at its endpoints. A pair ((U,D), (V,Λ)) ∈ EX × EY
is called a minimal pair if (U,D) and (V,Λ) are connected by a minimal geodesic.
The distance dSR(X,Y ) is the length of any minimal geodesic segment connecting
the fibers EX and EY .

Definition 3.13. Let X,Y ∈ Sym+(p). A scaling-rotation curve χ : [0, 1] →
Sym+(p), as defined in (2.1), with χ(0) = X and χ(1) = Y, is called minimal if
χ = c ◦ γ for some minimal geodesic segment γ connecting EX and EY .

Theorem 3.14. Let X,Y ∈ Sym+(p). Let ((U,D), (V,Λ)) be a minimal pair for
X and Y , and let A = log(V U ′), L = log(D−1Λ). Then the scaling-rotation curve
χ(t;U,D,A, L), 0 ≤ t ≤ 1, is minimal.

The above theorem tells us that for any two points X,Y ∈ Sym+(p), a minimal
scaling-rotation curve is determined by a minimal pair of EX and EY . Procedures
to evaluate the parameters of the minimal rotation-scaling curve and to compute the
scaling-rotation distance are provided for the special cases p = 2, 3 in section 4.

The minimal scaling-rotation curve may not be unique. The following theorem
gives sufficient conditions for uniqueness.

Theorem 3.15. Let ((U,D), (V,Λ)) be a minimal pair for EX and EY , and let
χo(t) = χ(t;U,D, log(V U ′), log(D−1Λ)) be the corresponding minimal scaling-rotation
curve.

(i) If either all eigenvalues of D are distinct or Λ has only one distinct eigen-
value, and if (V,Λ) is the unique minimizer of d((U,D), (V0,Λ0)) among all
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Fig. 3. (left) (SO×Diag+)(2) is drawn as a curved manifold. In this picture, the four versions
of X (and of Y ) are displayed vertically. For a fixed version (U3,D3) of X, there are four geodesics
γi joining (U3, D3) and the ith version of Y . A minimal geodesic (γ3 in this figure) has the shortest
length among these geodesics. (right) The fiber EX has infinitely many versions, shown as a vertical
dotted curve in (SO×Diag+)(2). There exist multiple minimal geodesics γi with the shortest length,
all of which meet the vertical fiber EX in a right angle. Here, γ∗ is an example of a nonminimal
geodesic that does not meet EX orthogonally.

(V0,Λ0) ∈ EY , then all minimal geodesics between EX and EY are mapped by
c to the unique χo(t) in Sym+(p).

(ii) If there exists (V1,Λ1) ∈ EY such that (V1,Λ1) 
= (V,Λ) and the pair ((U,D),
(V1,Λ1)) is also minimal, then χ1(t) = χ(t;U,D, log(V1U

′), log(D−1Λ1)) is
also minimal and χ1(t) 
= χo(t) for some t.

The following example shows a case with a unique minimal scaling-rotation curve
and two cases exhibiting nonuniqueness.

Example. Consider X = diag(e, e−1) and Y = Rθ(2X)R′
θ, where Rθ is the 2 × 2

rotation matrix by counterclockwise angle θ.
(i) If θ = π/3, then there exists a unique minimal scaling-rotation curve between

X,Y . This ideal case is depicted in Figure 4, where among the four scaling-rotation
curves, the red curve χ4 is minimal, as indicated by the length of the curves. In the
upper right panel, a version (I,X) of X , depicted as a diamond, and a version of Y
are joined by the red minimal geodesic segment.

(ii) Suppose θ = π/2. There are two minimal scaling-rotation curves, one by
uniform scaling and counterclockwise rotation, the other by the same uniform scaling
but by clockwise rotation.

(iii) Let X = diag(eε/2, e−ε/2) and Y = RθXR′
θ. For 0 ≤ θ ≤ π/2,

dSR(X,Y ) = min

{
θ,

√(π
2
− θ

)2

+ 2ε2

}
=

{
θ, θ ≤ π

4 + 2ε2

π ,√
(π2 − θ)2 + 2ε2 otherwise.

If the rotation angle is less than 45 degrees or the SPD matrices are highly anisotropic
(large ε), then the minimal scaling-rotation is a pure rotation (leading to the distance
θ). On the other hand, if the matrices are close to being isotropic (eigenvalues ≈ 1),
the minimal scaling-rotation curve is given by simultaneous rotation and scaling. An

exceptional case arises when θ = π
4 + 2ε2

π < π
2 , where both curves are of the same

length, and there are two minimal scaling-rotation curves.

4. Computing the minimal scaling-rotation curve and scaling-rotation
distance. We provide computation procedures for the scaling-rotation distance
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Fig. 4. Two SPD matrices X (blue) and Y (green) in the cone of Sym+(2) (top left), and their
four versions in a flattened (SO × Diag+(2)) (top right). The eigen-composition of each shortest
geodesic connecting versions of X and Y is a scaling-rotation curve in Sym+(2). Different colors
represent four different such curves. The red scaling-rotation curve has the shortest geodesic distance
in (SO × Diag+)(2) and thus is minimal. Its trajectory is shown as the deformation of ellipses in
the bottom panel (from leftmost X to rightmost Y ). Color is available only in the online version.

dSR(X,Y ) for X,Y ∈ Sym+(2) or Sym+(3). Theorems 4.1 and 4.3 below provide
the minimal pair(s), based on which the exact formulation of the minimal scaling-
rotation curve is evaluated in Theorem 3.14 above.

4.1. Scaling-rotation distance for 2×2 SPD matrices. Let (d1, d2) be the
eigenvalues of X , and let (λ1, λ2) be the eigenvalues of Y .

Theorem 4.1. Given any 2 × 2 SPD matrices X and Y , the distance (3.5) is
computed as follows.

(i) If d1 
= d2 and λ1 
= λ2, then there are exactly four versions of X, denoted
by (Ui, Di), i = 1, . . . , 4, and for any version (V,Λ) of Y ,

(4.1) dSR(X,Y ) = min
i=1,...,4

d((Ui, Di), (V,Λ)).

These versions are given by the permutation and sign changes.
(ii) If d1 = d2, then for any version (V,Λ) of Y , dSR(X,Y ) = d((V,D), (V,Λ)),

regardless of whether the eigenvalues of Y are distinct or not.
Therefore, the minimizer of (Uo, Do) of (4.1) and (V,Λ) are a minimal pair for

case (i); (V,D), (V,Λ) are a minimal pair for case (ii).

4.2. Scaling-rotation distance for 3×3 SPD matrices. LetX,Y ∈ Sym+(3).
Let (d1, d2, d3) be the eigenvalues of X , and (λ1, λ2, λ3) the eigenvalues of Y , without
any given ordering. In order to separately analyze and catalogue all cases of eigen-
value multiplicities in Theorem 4.3 below, we will use the following details for the
case where an eigenvalue of X is of multiplicity 2.
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For any version (U,D) with D = diag(d1, d1, d3), d1 = d2, all other versions of
X are of the form (UR1P

′
π, Dπ) for permutation π and rotation matrix R1 ∈ GD

(Theorem 3.3). We can take R1 = RIσ for some σ ∈ σ+
p and for some diagonal

rotation matrix R with +1 in the lower right-hand corner. For fixed (U,D), (V,Λ),
σ ∈ σ+

p , and π ∈ Sp, one can find a minimal rotation R̂σ,π satisfying

d((UR̂σ,πIσP
′
π, Dπ), (V,Λ)) ≤ d((URIσP

′
π, Dπ), (V,Λ))

for all such R, as the following lemma states.
Lemma 4.2. Let Γ = IσP

′
πV

′U =
[
Γ11 Γ12

Γ21 γ22

]
, where Γ11 is the first 2×2 block of Γ.

The minimal rotation matrix R̂σ,π = R̂ is given by R̂ =
[
E2E

′
1 0

0 1

]
, where E1ΛΓE

′
2 is the

“semisingular values” decomposition of Γ11. (In semisingular values decomposition,
we require that E1, E2 ∈ SO(2) and that the diagonal entries λ1 and λ2 of ΛΓ satisfy
λ1 ≥ |λ2| ≥ 0.)

Each choice of σ and π produces a minimally rotated version (Ûσ,π, Dπ) =

(UR̂σ,πIσP
′
π, Dπ). To provide a minimal pair as needed in Theorem 3.14, a com-

binatorial problem involving the 3!23−1 = 24 choices of (σ, π) needs to be solved since
the version of X closest to (V,Λ) is found by comparing distances between (Ûσ,π, Dπ)
and (V,Λ). Fortunately, there are only six such minimally rotated versions corre-
sponding to six choices of (σ, π). In particular, we need only π1 : (1, 2, 3) → (1, 2, 3),
π2 : (1, 2, 3) → (3, 1, 2), π3 : (1, 2, 3) → (1, 3, 2), and σ1 = (1, 1, 1), σ2 = (−1, 1,−1),
and R̂σj ,πi can be found for each (σj , πi), i = 1, 2, 3, j = 1, 2. The other pairs of
permutations and sign-changes do not need to be considered because each of them
will produce one of the six minimally rotated versions, with the same distance from
(V,Λ).

Theorem 4.3. Given any 3 × 3 SPD matrices X and Y , the distance (3.5) is
computed as follows:

(i) If the eigenvalues of X (and also of Y ) are all distinct, then there are exactly
24 versions of X, denoted by (Ui, Di), i = 1, . . . , 24, and for any version
(V,Λ) of Y , dSR(X,Y ) = mini=1,...,24 d((Ui, Di), (V,Λ)).

(ii) If d1 = d2 
= d3 and {λ1, λ2, λ3} are distinct, then for any version (V,Λ) of
Y and a version (U,D) of X satisfying D = diag(d1, d1, d3),

dSR(X,Y ) = min
i=1,2,3, j=1,2

d((Ûσj ,πi , Dπi), (V,Λ)),

where (Ûσj ,πi , Dπi), i = 1, 2, 3, j = 1, 2, are the six minimally rotated ver-
sions.

(iii) If d1 = d2 
= d3 and λ1 = λ2 
= λ3, then choose D = diag(d1, d2, d3) and
Λ = diag(λ1, λ2, λ3). For any versions (U,D), (V,Λ) of X and Y ,

dSR(X,Y ) = min
i=1,2,3, j=1,2

d((URθij IσiP
′
πj
, Dπj), (V Rφij ,Λ)),

where Rθ = exp([a]×), a = (0, 0, θ)′ (cf. Appendix A), and (θij , φij) simulta-
neously maximizes G(θ, φ) = trace(URθIσiP

′
πj
R′

φV
′).

(iv) If d1 = d2 = d3, then for any version (V,Λ) of Y , we have dSR(X,Y ) =
d((V,D), (V,Λ)), regardless of whether the eigenvalues of Y are distinct or
not.

The minimizer (θij , φij) of G(θ, φ) in Theorem 4.3(iii) is found by a numerical
method. Specifically, given the mth iterates θ(m), φ(m), the (m+1)st iterate θ(m+1) is
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the solution θ in Lemma 4.2, treating V Rφ(m) as V . We then find φ(m+1) similarly by
using Lemma 4.2, with the role of U and V switched. In our experiments, convergence
to the unique maximum was fast and reached by only a few iterations.

5. Scaling-rotation interpolation of SPD matrices. For X,Y ∈ Sym+(p),
a scaling-rotation interpolation from X to Y is defined as any minimal scaling-rotation
curve fSR(t) := χo(t), t ∈ [0, 1], such that fSR(0) = X , fSR(1) = Y . By defini-
tion, every scaling-rotation curve χ(t;U,D,A, L), and hence every scaling-rotation
interpolation, has a log-constant scaling velocity L and constant angular velocity
A. The scalar trace(L) gives the (constant) speed at which log-determinant evolves:
log(detχ(t)) = log(det(D)) + trace(L)t. Analogously, we view the scalar quantity
‖A‖F /

√
2 as a constant speed of rotation, and for all t ≥ 0 we define the amount of

rotation applied from time 0 to time t to be θt := t ‖A‖F /
√
2. For a minimal pair

((U,D), (V,Λ)) of X and Y , and the corresponding scaling-rotation interpolation fSR,
we have

(5.1) log(det fSR(t)) = (1− t) log(det(X)) + t log(det(Y )),

and we define the amount of rotation applied by fSR from X to Y to be θ :=
‖log(V U ′)‖F /

√
2. For p = 2, 3, θ is equal to the angle of rotation.

5.1. An application to diffusion tensor computing. This work provides an
interpretative geometric framework in analysis of diffusion tensor magnetic resonance
images [16], where diffusion tensors are given by 3 × 3 SPD matrices. Interpolation
of tensors is important for fiber tracking, registration, and spatial normalization of
diffusion tensor images [5, 8]. The scaling-rotation curve can be understood as a
deformation path from one diffusion tensor to another, and is nicely interpreted as
scaling of diffusion intensities and rotation of diffusion directions. This advantage in
interpretation has not been found in popular geometric frameworks such as [24, 11,
3, 10, 6]. The approaches in [5, 8, 9, 32] also explicitly use rotation of directions,
and many scaling-rotation curves are very similar to the deformation paths given in
[9, 32]. We defer the discussion on the difference between our framework and those
in [9, 32] to section 5.2.

As an example, consider interpolating from X = diag(15, 2, 1) to Y , whose eigen-
values are (100, 2, 1) and whose principal axes are different from those of X . The
first row of Figure 5 presents the corresponding evolution ellipsoids by the scaling-
rotation interpolation fSR. This evolution is consistent with human perception when
deforming X to Y . As shown in the two bottom left panels of Figure 5, the interpo-
lation exhibits the constant angular rate of rotation and log-constant rate of change
of determinant.

By way of comparison, the Euclidean interpolation in row 2 is defined by fE(t) =
(1 − t)X + tY . The log-Euclidean and affine-invariant Riemannian interpolations in
rows 3 and 4 are defined by fLE(t) = exp((1 − t) log(X) + t log(Y )) and fAI(t) =

X
1
2 exp(t log(X− 1

2Y X− 1
2 ))X

1
2 , respectively; see [3]. For these interpolations, we de-

fine the rotation angle at time t by the angle of swing from the major axis at time 0
to that at time t. These rotation angles are not, in general, linear in t, as the bottom
left panel illustrates. The log-Euclidean fLE and affine-invariant interpolations fAI

are log-linear in determinant, and in fact (5.1) holds exactly for fLE and fAI . On the
other hand, the Euclidean interpolation is known to suffer from the swelling effect :
det(fE(t)) > max(det(X), det(Y )) for some t ∈ [0, 1] [3]. This is shown in the second
bottom panel of Figure 5 for the same example. The other interpolations, fSR, fLE,
and fAI , do not suffer from the swelling effect.
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Fig. 5. (Top) Interpolations of two 3× 3 SPD matrices. Row 1: Scaling-rotation interpolation
by the minimal scaling-rotation curve. Row 2: (Euclidean) linear interpolation on coefficients.
Row 3: Log-Euclidean geodesic interpolation. Row 4: Affine-invariant Riemannian interpolation.
The pointy shape of ellipsoids on both ends is well preserved in the scaling-rotation interpolation.
(Bottom) Evolution of rotation angle, determinant, FA, and MD for these four interpolations. Only
the scaling-rotation interpolation provides a monotone pattern.

Minimal scaling-rotation curves not only provide regular evolution of rotation
angles and determinant, they also minimize the combined amount of scaling and
rotation, as in Definition 3.13. This results in a particularly desirable property: in
many examples, the fractional anisotropy (FA) and mean diffusivity (MD) evolve
monotonically. FA measures a degree of anisotropy that is zero if all eigenvalues are
equal and approaches 1 if one eigenvalue is held constant and the other two approach
zero; see [16]. MD is the average of eigenvalues MD(X) = trace(X)/3.

In the example of Figure 5, FA(fSR(t)) increases monotonically. In contrast,
other interpolations of the highly anisotropic X and Y become less anisotropic. This
phenomenon may be called a fattening effect : interpolated SPD matrices are more
isotropic than the two ends [8]. Moreover, log-Euclidean and affine-invariant Rieman-
nian interpolations can suffer from a shrinking effect : the MD of interpolated SPD
matrices is smaller than the MD of either end [5], as shown in the bottom right panel.
In this example, the scaling-rotation interpolation does not suffer from fattening and
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shrinking effects. These adverse effects are less severe in fSR than in fLE or fAI in
most typical examples, as shown in the supplementary material.

The advantageous regular evolution results from the rotational part of the in-
terpolation. To see this, consider, as in [5], a case where the interpolation by fSR

consists only of rotation (a precise example is shown in Figure 1 in the supplemen-
tary material). The scaling-rotation interpolation preserves the determinant, FA, and
MD, while the other modes of interpolation exhibit irregular behavior in some of the
measurements. On the other hand, when fSR(t) is composed of pure scaling, then
fSR(t) = fLE(t) = fAI(t) for all t, and there is no guarantee that MD or FA grows
monotonically for either curve. The equality of these three curves in this special case
is a consequence of the geometric scaling of eigenvalues in the scaling-rotation curve
(2.1), which in turn is a consequence of our use of the Riemannian inner product (3.2).

In summary, while the three most popular methods suffer from swelling, fat-
tening, or shrinking effects, the scaling-rotation interpolation provides good regular
evolution of all three summary statistics, and solely provides constant angular rate of
rotation. More examples illustrating these effects in various scenarios are given in the
supplementary material.

5.2. Comparing to other rotation-scaling schemes. Geometric frameworks
for 3×3 SPD matrices that decouple rotation from scaling have also been developed in
[9, 32]. However, our framework differs in two major ways. First, we allow unordered
and equal eigenvalues in any dimension, while in [9, 32] only dimension 3 and only the
case of distinct, ordered eigenvalues were considered. In our framework, every scaling-
rotation curve corresponds to geodesics in a smooth manifold, which is not possible
if eigenvalues are ordered. This leads to a more flexible family of interpolations than
those of [9, 32], as we illustrate in the supplementary material.

Other differences lie in the choice of the metric for SO(3) and the weight k in
(3.2). While we use geodesic distance and interpolation determined by the standard
Riemannian metric on SO(3), in [9] a chordal distance and extrinsic interpolation
were used. As a consequence, the interpolation in [9] is close to, but not equal to, a
special case of minimal scaling-rotation curves, in particular when k in (3.2) is small.
An example illustrating this effect of k is given in section 2 of the supplementary
material.

Appendix A. Parameterization of scaling and rotation.The matrix expo-

nential of a square matrix Y is exp(Y ) =
∑∞

j=0
Y j

j! . For a square matrix X , if there

exists a unique matrix Y of smallest norm such that X = exp(Y ), then we call Y the
principal logarithm of X , denoted log(X).

The exponential map from Diag(p) to Diag+(p), defined by the matrix exponen-
tial, is bijective. Moreover, the elementwise exponential and logarithm for the diag-
onal elements give the matrix exponential and logarithm for Diag(p) and Diag+(p)
[13, Chap. 18].

Rotation matrices can be parameterized by antisymmetric matrices since the ex-
ponential map from so(p) to SO(p) is onto. Contrary to the Diag+(p) case, the
matrix exponential is not one-to-one. The principal logarithm is defined on the set
{R ∈ SO(p) : R is not an involution}, a dense open subset of SO(p). For completeness,
when there exists no principal logarithm of R, we use the notation log(R) to denote
any solution A of exp(A) = R satisfying that ‖A‖F is the smallest among all such
choices of A.

This parameterization gives a physical interpretation of rotations. Specifically, in
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the case of p = 3, a rotation matrix R = exp(A) ∈ SO(3) can be understood as a
linear operator rotating a vector in the real 3-space around an “axis” a = (a1, a2, a3)

′

by angle θ = ‖a‖2 (in radians), where A ∈ so(3) is the cross-product matrix of a
defined by

A = [a]× =

⎡
⎣ 0 −a3 a2

a3 0 −a1
−a2 a1 0

⎤
⎦ ∈ so(3).

Explicit formulas for the matrix exponential and logarithm are given in the following.
Lemma A.1 (see [20, 13]).
(i) (Rodrigues’ formula) Any A ∈ so(3) equals [a]× for some axis a = θã ∈ R

3,
‖ã‖ = 1. An explicit formula for the matrix exponential of A is exp(A) =
I + [ã]× sin(θ) + [ã]2×(1− cos(θ)).

(ii) For any R ∈ SO(3), there exists θ ∈ [0, π] satisfying 2 cos(θ) = trace(R) −
1, ‖log(R)‖F =

√
2|θ|. If θ < π, then R has the principal logarithm log(R) =

θ
2 sin(θ)(R −R′) if θ ∈ (0, π) and 0 if θ = 0.

If there exists no principal logarithm of R, i.e., if θ = π, then we take log(R) to
be either of the two elements A ∈ so(3) satisfying exp(A) = R and ‖A‖F =

√
2π.

Appendix B. Additional lemmas and proofs.
Proof of Theorem 3.3. For any (U∗, D∗) ∈ (SO × Diag+)(p), there exists V ∈

SO(p), L ∈ Diag+(p) such that U∗ = UV and D∗ = DL. Therefore, a version of
(U,D) can be written as (UV,DL) satisfying UV DLV ′U ′ = UDU ′, or equivalently,

(B.1) V DLV ′ = D.

The set of eigenvalues of V DLV ′ is {dili : i = 1, . . . , p}, which should be the same
as the eigenvalues of D. That is, dili = dj for some j. In other words, for some
permutation π, DL = Dπ. There are at most p! possible ways to achieve this.

Observe that there exists R ∈ SO(p) such that RP ′
π = V for any V and π.

Equation (B.1) is then RP ′
πDπPπR

′ = D, which becomes RDR′ = D since P ′
πDπPπ =

D.
The last statement of Theorem 3.3 can be seen from noting that R and D com-

mute, so the eigenvector matrix of R is I, with eigenvalues {eiθj , e−iθj , 1 : j =
1, . . . , �p/2�} [14, Cor. 2.5.11]. However, all possible values of θj are either 0 or π
because R must be a real matrix. Therefore, R is an even sign-change matrix.

Proof of Proposition 3.7. Since S commutes with other diagonal matrices,

d2 ((R1UR2, SDπ), (R1V R2, SΛπ))

=
k

2
‖log(R1UR2R

′
2V

′R′
1)‖2F + trace(log2(SΛπD

−1
π S−1))

=
k

2
‖log(UV ′)‖2F + trace(log2(ΛD−1) = d2 ((U,D), (V,Λ)) .

Proof of Theorem 3.8. We use the following lemmas.
Lemma B.1. For any D,L ∈ Diag(p), Tbad = {t ∈ R : JD exp(Lt) 
= JD,L} has at

most p(p− 1)/2 elements.
Proof. Let D = diag(d1, . . . , dp) and L = diag(l1, . . . , lp). For 1 ≤ i < j ≤ p, if

i ∼D,L j, i.e., di = dj and li = lj, then i ∼D exp(Lt) j (or di exp(lit) = dj exp(ljt)) for
all t and the indices i and j are in a same block of JD,L and JD exp(Lt) for all t. If
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i 
∼D,L j, then i ∼D exp(Lt) j for at most one t. The result follows from the fact that
there are only p(p− 1)/2 pairs of i and j.

Lemma B.2. Let I ⊂ R be a positive-length interval containing 0. Let G ⊂ SO(p)
be a Lie subgroup of SO(p), and let g ⊂ so(p) denote the Lie algebra of G. Then for
any A,B ∈ so(p),

B −A ∈ g, (adB)
j(A) ∈ g for all j ≥ 1(B.2)

if and only if there exists a C∞ map g : I → G such that

(B.3) exp(tB) = exp(tA)g(t) for all t ∈ I.

Proof. Throughout the proof, the “prime” symbol denotes derivative, not trans-
pose. Suppose first that (B.3) holds. For t ∈ I, define X(t) = g(t)−1g′(t) and
Y (t) = g(t)−1Ag(t). Since g′(t) ∈ Tg(t)G, we have X(t) = g(t)−1g′(t) ∈ TIG = g.
Thus, X is a C∞ map I → g, and Y is a C∞ map I → so(p). Differentiating (B.3)
gives

exp(tB)B = exp(tA)(Ag(t) + g′(t)) = exp(tA)g(t)(Y (t) +X(t)

= exp(tB)(Y (t) +X(t).

Therefore,

(B.4) X(t) + Y (t) = B for all t ∈ I.

A simple computation leads to

(B.5) Y ′(t) = [Y (t), X(t)] = −[X(t), Y (t)].

From (B.4), we get

(B.6) X ′(t) = −Y ′(t) = [X(t), Y (t)] = [X(t), B −X(t)] = [X(t), B],

and consequently

(B.7) X ′(t) = −adB(X(t)).

Equation (B.7) is a constant-coefficient linear differential equation for a function
X : I → so(p). The general solution is therefore

(B.8) X(t) = exp(−tadB)X(0).

From general Lie group theory, we have, for W ∈ g, exp(adW ) = Adexp(W ), where
Adh : g → g is conjugation by h. Thus X(t) can also be written as

(B.9) X(t) = exp(−tB)X(0) exp(tB).

It is easy to check that (B.9) solves the ordinary differential equation (B.7) (or, equiv-
alently, (B.6)). Now, since g(0) = I, we have Y (0) = A. Thus (B.4) implies that
X(0) = B −A. Since X(t) lies in the vector space g, so do the derivatives X(j)(0) of
all orders j ≥ 0. So B −A = X(0) ∈ g, X(j)(0) ∈ g for all j ≥ 1. Hence

B −A = X(0) ∈ g,

(adB)
j(A) = −(adB)

j(B −A) = ±X(j)(0) ∈ g for all j ≥ 1,
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leading to the conditions (B.2).
Next, suppose (B.2) holds. Define C = B−A. Then (adB)

j(C) = −(adB)
j(A) ∈ g

for all j ≥ 1. Define X(t) = exp(−tadB)C; then, for all t,

X(t) = C +

∞∑
j=1

1

j!
(−tadB)

j(C) ∈ g.

Note that X is the unique solution of the initial-value problem X ′(t) = −[B,X(t)],
X(0) = C. From (B.8)–(B.9), X(t) can be written as

X(t) = exp(−tB)C exp(tB) = B − exp(−tB)C exp(−tB).

It is a known fact that for a compact Lie group G with Lie algebra g, and
any smooth X1 : R → g, the initial-value problem g(t)−1g′(t) = X1(t), g(0) =
identity element of G has a unique solution, that the solution is smooth, and that the
maximal time-domain of the solution is all of R. Since G ⊂ SO(p) is compact and X
is smooth, we have a smooth solution g : R → G of the initial-value problem

g(t)−1g′(t) = X(t), g(0) = I.

Define Y1(t) = g(t)−1Ag(t). Then, as computed in (B.5), Y ′
1(t) = [Y1(t), X(t)].

Define Y2(t) = exp(−tB)A exp(tB) = B −X(t). Then Y ′
2(t) = −X ′(t) = [B,X(t)] =

[X(t) + Y2(t), X(t)] = [Y2(t), X(t)]. Note also that Y1(0) = A = Y2(0). Thus Y1, Y2

satisfy the same linear initial-value problem for a function Y : R → so(p), and hence
are identically equal. Therefore, X(t) + Y1(t) = X(t) + Y2(t) = B for all t.

Define h(t) = exp(tA)g(t) exp(−tB). Then

h′(t) = exp(tA)(Ag(t) + g′(t)− g(t)B) exp(−tB)

= exp(tA)g(t)(Y1(t) +X(t)−B) exp(−tB) ≡ 0,

so h(t) = h(0) = I for all t ∈ R. Therefore the function g satisfies (B.3).
We now provide a proof of Theorem 3.8. Let (V,Λ) ∈ (SO×Diag+)(p), B ∈ so(p),

N ∈ Diag(p), and γ = γ(V,Λ, B,N) : I → (SO ×Diag+)(p).
Suppose first that χ(t) = c(γ(t)) for all t ∈ I. Theorem 3.3 indicates that for all

t ∈ I, there exist R(t) ∈ GD exp(Lt) and πt ∈ Sp such that

exp(tB)V = exp(tA)UR(t)P ′
πt
,(B.10)

exp(tN)Λ = exp(tLπt)Dπt .(B.11)

Setting t = 0, we have

(B.12) V = UR(0)P ′
π0
, Λ = Dπ0 .

From (B.11) and (B.12), we get tN + logDπ0 = tLπt + logDπt . Thus, for i = 1, . . . , p
and all t ∈ I\{0},

(B.13) ni = lt,i +
ct,i
t
,

where ni, lt,i, and ct,i are the ith diagonal entries of N , Lπt , and log(DπtD
−1
π0

), re-
spectively. As t, πt, and i range over their possible values, there are only finitely many
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values of lt,i and ct,i. Therefore, unless ct,i = 0 for all i and t 
= 0, the right-hand side
of (B.13) is unbounded as t → 0, contradicting the constancy of ni. Thus,

(B.14) Dπt = Dπ0 , Lπt = N = Lπ0 for all t ∈ I.

Next, let Tbad = {t ∈ I : JD exp(Lt) 
= JD,L}, a finite set (cf. Lemma B.1). On
I\Tbad, the partition K determined by exp(tN)Λ = exp(tLπ0)Dπ0 is constant, as is the
partition JD,L determined by D exp(Lt). Thus we can replace πt, for all t ∈ I\Tbad,
by a constant permutation π∞ that carries JD,L to K, without affecting the truth of
(B.10)–(B.11). With this replacement applied to (B.10), we have

(B.15) exp(tB)V = exp(tB)UR(0)P ′
π0

= exp(tA)UR(t)P ′
π∞

for t ∈ I\Tbad. Letting Ã = U ′AU , B̃ = U ′AU , and P = P ′
π∞Pπ0 , we rewrite (B.15)

as

exp(tB̃) = exp(tÃ)g(t)(B.16)

for all t ∈ I\Tbad, where g(t) = R(t)PR(0)′. Thus

(B.17) R(t) = exp(−tÃ) exp(tB̃)R(0)P ′, t ∈ I\Tbad.

The right-hand side of (B.17) is continuous on I. Hence the left-hand side of (B.17)
continuously extends to each tbad ∈ Tbad, replacing R(tbad) with limt→tbad

R(t). With
this replacement for R(t), (B.16) is true for all t ∈ I, and the new functions t �→ R(t)
and t �→ g(t) are continuous on all of I. Evaluating (B.16) at t = 0, we get I = g(0) =
R(0)PR(0)′, implying that P = I.

Note that R(t) ∈ GJD,L for all t ∈ I\Tbad. Since GJD,L is a closed subset of
SO(p), continuity implies that R(t) ∈ GJD,L for all t ∈ Tbad as well. From (B.17), it
then follows that t �→ R(t) is a C∞ function I → GJD,L . Therefore there exists a C∞

map g : I → GJD,L satisfying (B.16) for all t ∈ I. Then Lemma B.2 shows that the
asserted conditions for B are necessary.

For the sufficiency, Lemma B.2 shows that there exists a C∞ function g : I →
GJD,L satisfying (B.16). From this it is easy to check that, for R and π as in the
assumption, the eigen-composition of γ(URP ′

π, Dπ, B, Lπ) is χ.
Proof of Corollary 3.9. Let t0 ∈ I be such that eigenvalues of χ(t0) are all dis-

tinct. Then JD,L = ∩t∈IJD exp(Lt) ⊂ JD exp(Lt0). Since JD exp(Lt0) has only singleton
blocks, so does JD,L. Then gD,L consists only of 0, and conditions (i)–(ii) in Theo-
rem 3.8 are simplified to B = A. Finally, Theorem 3.3 shows that any R ∈ GD,L is
an even sign-change matrix.

Theorem 3.11 is easily obtained, and we omit the proof.
Proof of Theorem 3.12. By Theorem 3.11, it suffices to show the triangle inequal-

ity. Fix a version of Z, say (U,D). As all eigenvalues of D are distinct, there exists a
unique minimizer (VX ,ΛX) ∈ EX such that d((VX ,ΛX), (U,D)) ≤ d((V,Λ), (U,D)) for
all (V,Λ) ∈ EX . Likewise, denote (VY ,ΛY ) ∈ EY the unique minimizer with respect to
(U,D). Then dSR(X,Z)+dSR(Z, Y ) = d((VX ,ΛX), (U,D))+d((VY ,ΛY ), (U,D)). As
d is a metric, by the triangle inequality for ((SO×Diag+)(p), d), d((VX ,ΛX), (U,D))+
d((VY ,ΛY ), (U,D)) ≥ d((VX ,ΛX), (VY ,ΛY )). The proof is concluded by noting that
dSR(X,Y ) ≤ d((VX ,ΛX), (VY ,ΛY )).

Proof of Theorem 3.15. The following lemma is used in the proof.
Lemma B.3. If ((U,D), (V,Λ)) is minimal for EX and EY , then for any R ∈ GD,Λ

and π ∈ Sp, the shortest-length geodesics connecting

(B.18) (URP ′
π, Dπ) and (V RP ′

π,Λπ)
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are also minimal. (These minimal pairs are said to be equivalent to each other.)

Proof of Lemma B.3. The result is obtained by two facts. (URP ′
π, Dπ) is a version

of X = UDU ′, and (V RP ′
π,Λπ) is a version of Y = V ΛV ′; by the invariance of d

(Proposition 3.7), we have d((URP ′
π , Dπ), (V RP ′

π,Λπ)) = d((U,D), (V,Λ)).

To prove (i) of Theorem 3.15, suppose ((U1, D1), (V1,Λ1)) is another minimal
pair. Then there exist R ∈ GD, π ∈ Sp such that U1 = URP ′

π, D1 = Dπ. By
Proposition 3.7,

d((U1, D1), (V1,Λ1)) = d((URP ′
π , Dπ), (V1,Λ1))

= d((UR,D), (V1P
′
π−1 ,Λ1,π−1)), where Λ1,π−1 = (Λ1)π−1 ,

= d((U,D), (V1P
′
π−1R,Λ1,π−1)).

The conditions on D and Λ lead to GD ⊂ GΛπ for all π ∈ Sp, which in turn leads
to R ∈ GΛ1,π−1 . Since (V1P

′
π−1R,Λ1,π−1) ∈ EY , the uniqueness assumption gives

V1 = V RPπ and Λ1 = Λπ. Thus by Lemma B.3, all minimal pairs are equivalent
to each other. Moreover, the scaling-rotation curve corresponding to the shortest-
length geodesic between the minimal pair (U1, D1) and (V1,Λ1) is the same as χo(t)
(Theorem 3.8). Thus χo is unique.

For (ii), let γ0(t) = γ(t;U,D,A, L) and γ1(t) = γ(t;U,D,B, L1) be the two min-
imal geodesics, where A = log(V U ′), L = log(D−1Λ), B = log(V1U

′), and L1 =
log(D−1Λ1). The length-minimizing property of minimal geodesics implies that both
d
dtγ0(t)|t=0 and d

dtγ1(t)|t=0 are perpendicular to T(U,D)EX . Note that

T(U,D)EX = {(UC, 0) ∈ Sym(p)×Diag(p) : C ∈ gD}.

Since left and right translations by (U,D) and (R, I) are isometry of (SO×Diag+)(p),
we have (T(U,D)EX)⊥ = U(gD)⊥ ⊕ Diag(p), where U(gD)⊥ = {UW : W ∈ (gD)⊥ ⊂
TISO(p) = so(p)}.

Let Ã = U ′AU , B̃ = U ′BU . Since d
dtγ0(t)|t=0 = (UÃ,DL) and d

dtγ1(t)|t=0 =

(UB̃,DL1), it follows that Ã, B̃ ∈ (gD)⊥, and thus B̃ − Ã ∈ (gD)⊥.
Let χ0 = c ◦ γ0, χ1 = c ◦ γ1, and assume χ0 = χ1. By the necessary condition (i)

in Theorem 3.8, we have B̃ − Ã ∈ gD. Hence B̃ − Ã = 0, implying that B = A and
V1 = V . Then “χ0 = χ1” implies L1 = L as well, a contradiction.

Proof of Theorem 4.1. (i) By (3.5), dSR(X,Y ) = mink,j d((Uk, Dk), (Vj ,Λj)) for
k, j = 1, 2, 3, 4. Suppose, without loss of generality, that (V,Λ) = (V1,Λ1). For any
choice of j = 1, 2, 3, 4, there exist π ∈ Sp and σ ∈ σ+

p such that (VjIσPπ, (Λj)π) =
(V1,Λ1). Moreover, for any k, one can choose some i so that (UkIσPπ, (Dk)π) =
(Ui, Di). Therefore, with the help of Proposition 3.7, for any k, j, there exist π, Iσ,
and i satisfying

d((Uk, Dk), (Vj ,Λj)) = d((UkIσPπ, (Dk)π), (VjIσPπ , (Λj)π)) = d((Ui, Di), (V1,Λ1)).

Thus it is enough to fix a version of Y and compare the distances given by the four
versions of X .

(ii) It is clear from the proof of (i) and by Proposition 3.7 that we can fix a version
of Y first. Since the eigenvalues of D are identical to, say, d1, (U, d1I2) is a version of
X for any U ∈ SO(2). Thus choosing U = V leads to the smallest distance between
U, V ∈ SO(2).

Proof of Lemma 4.2. Note that a matrix R that rotates the first two columns of
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U when postmultiplied is R = [R11 0
0 1 ], R11 ∈ SO(2). Using Lemma A.1(ii), we have

argmin
R

d((URIσP
′
π, Dπ), (V,Λ)) = argmin

R
‖log(URIσP

′
πV

′)‖F
= argmin

R
‖log(URIσP

′
πV

′)‖F = argmax
R

trace(URIσP
′
πV

′)

= argmax
R

trace(IσP
′
πV

′UR) = argmax
R11

trace

([
Γ11 Γ12

Γ21 γ22

] [
R11 0
0 1

])
= argmax

R11

trace(Γ11R11) + γ22.

Since R11 ∈ SO(2), the singular values of R11 are unity. The result is obtained by an
application of the fact from [19] that for any square matrices A and B with vectors
of singular values σA and σB in non-increasing order, |trace(A′B)| ≤ σ′

AσB .
Proof of Theorem 4.3. Proofs of (i), (ii), and (iv) can be obtained by a simple

extension of the proof of Theorem 4.1. For (iii), note that all versions of X and
Y are (URθIσk

P ′
πl
, Dπl

) and (V RφIσaP
′
πb
,Λπb

). Following the lines of the proof of
Theorem 4.1(i), by choosing Iσa = Pπb

= I, it is enough to compare (URθIσiP
′
πj
, Dπj )

and (V Rφ,Λ). Moreover, the presence of the rotation matrix Rθ allows us to restrict
the choice of Iσ and π to only six pairs. For a fixed (i, j) (i = 1, 2, 3, j = 1, 2),

min
θ,φ

d((URθIσiP
′
πj
, Dπj), (V Rφ,Λ)) = min

θ,φ

∥∥∥log(URθIσiP
′
πj
R′

φV
′)
∥∥∥
F

= max
θ,φ

trace(URθIσiP
′
πj
R′

φV
′)(B.19)

by Lemma A.1(ii).
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