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CHAPTER 12

3

Basic Probability

Random Experiments
We are all familiar with the importance of experiments in science and engineering. Experimentation is useful to
us because we can assume that if we perform certain experiments under very nearly identical conditions, we
will arrive at results that are essentially the same. In these circumstances, we are able to control the value of the
variables that affect the outcome of the experiment.

However, in some experiments, we are not able to ascertain or control the value of certain variables so that
the results will vary from one performance of the experiment to the next even though most of the conditions are
the same. These experiments are described as random. The following are some examples.

EXAMPLE 1.1 If we toss a coin, the result of the experiment is that it will either come up “tails,” symbolized by T (or 0),
or “heads,” symbolized by H (or 1), i.e., one of the elements of the set {H, T} (or {0, 1}).

EXAMPLE 1.2 If we toss a die, the result of the experiment is that it will come up with one of the numbers in the set
{1, 2, 3, 4, 5, 6}.

EXAMPLE 1.3 If we toss a coin twice, there are four results possible, as indicated by {HH, HT, TH, TT}, i.e., both
heads, heads on first and tails on second, etc.

EXAMPLE 1.4 If we are making bolts with a machine, the result of the experiment is that some may be defective.
Thus when a bolt is made, it will be a member of the set {defective, nondefective}.

EXAMPLE 1.5 If an experiment consists of measuring “lifetimes” of electric light bulbs produced by a company, then
the result of the experiment is a time t in hours that lies in some interval—say, 0 t 4000—where we assume that
no bulb lasts more than 4000 hours.

Sample Spaces
A set S that consists of all possible outcomes of a random experiment is called a sample space, and each outcome
is called a sample point. Often there will be more than one sample space that can describe outcomes of an 
experiment, but there is usually only one that will provide the most information.

EXAMPLE 1.6 If we toss a die, one sample space, or set of all possible outcomes, is given by {1, 2, 3, 4, 5, 6} while
another is {odd, even}. It is clear, however, that the latter would not be adequate to determine, for example, whether an
outcome is divisible by 3.

It is often useful to portray a sample space graphically. In such cases it is desirable to use numbers in place
of letters whenever possible.

EXAMPLE 1.7 If we toss a coin twice and use 0 to represent tails and 1 to represent heads, the sample space (see 
Example 1.3) can be portrayed by points as in Fig. 1-1 where, for example, (0, 1) represents tails on first toss and heads
on second toss, i.e., TH.
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If a sample space has a finite number of points, as in Example 1.7, it is called a finite sample space. If it has
as many points as there are natural numbers 1, 2, 3, . . . , it is called a countably infinite sample space. If it has
as many points as there are in some interval on the x axis, such as 0 x 1, it is called a noncountably infinite
sample space. A sample space that is finite or countably infinite is often called a discrete sample space, while
one that is noncountably infinite is called a nondiscrete sample space.

Events
An event is a subset A of the sample space S, i.e., it is a set of possible outcomes. If the outcome of an experi-
ment is an element of A, we say that the event A has occurred. An event consisting of a single point of S is often
called a simple or elementary event.

EXAMPLE 1.8 If we toss a coin twice, the event that only one head comes up is the subset of the sample space that
consists of points (0, 1) and (1, 0), as indicated in Fig. 1-2.
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Fig. 1-1

Fig. 1-2

As particular events, we have S itself, which is the sure or certain event since an element of S must occur, and
the empty set , which is called the impossible event because an element of cannot occur.

By using set operations on events in S, we can obtain other events in S. For example, if A and B are events, then

1. A B is the event “either A or B or both.” A B is called the union of A and B.
2. A B is the event “both A and B.” A B is called the intersection of A and B.
3. A is the event “not A.” A is called the complement of A.
4. A � B � A B is the event “A but not B.” In particular, A � S � A.

If the sets corresponding to events A and B are disjoint, i.e., A B � , we often say that the events are mu-
tually exclusive. This means that they cannot both occur. We say that a collection of events A1, A2, , An is mu-
tually exclusive if every pair in the collection is mutually exclusive.

EXAMPLE 1.9 Referring to the experiment of tossing a coin twice, let A be the event “at least one head occurs” and
B the event “the second toss results in a tail.” Then A � {HT, TH, HH}, B � {HT, TT }, and so we have

A � B � 5TH, HH 6Ar � 5TT 6
A > B � 5HT 6A < B � 5HT, TH, HH, TT 6 � S
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The Concept of Probability
In any random experiment there is always uncertainty as to whether a particular event will or will not occur. As
a measure of the chance, or probability, with which we can expect the event to occur, it is convenient to assign
a number between 0 and 1. If we are sure or certain that the event will occur, we say that its probability is 100%
or 1, but if we are sure that the event will not occur, we say that its probability is zero. If, for example, the prob-
ability is we would say that there is a 25% chance it will occur and a 75% chance that it will not occur. Equiv-
alently, we can say that the odds against its occurrence are 75% to 25%, or 3 to 1.

There are two important procedures by means of which we can estimate the probability of an event.

1. CLASSICAL APPROACH. If an event can occur in h different ways out of a total number of n possible
ways, all of which are equally likely, then the probability of the event is h n.

EXAMPLE 1.10 Suppose we want to know the probability that a head will turn up in a single toss of a coin. Since there
are two equally likely ways in which the coin can come up—namely, heads and tails (assuming it does not roll away or
stand on its edge)—and of these two ways a head can arise in only one way, we reason that the required probability is
1 2. In arriving at this, we assume that the coin is fair, i.e., not loaded in any way.

2. FREQUENCY APPROACH. If after n repetitions of an experiment, where n is very large, an event is
observed to occur in h of these, then the probability of the event is h n. This is also called the empirical
probability of the event.

EXAMPLE 1.11 If we toss a coin 1000 times and find that it comes up heads 532 times, we estimate the probability
of a head coming up to be 532 1000 � 0.532.

Both the classical and frequency approaches have serious drawbacks, the first because the words “equally
likely” are vague and the second because the “large number” involved is vague. Because of these difficulties,
mathematicians have been led to an axiomatic approach to probability.

The Axioms of Probability
Suppose we have a sample space S. If S is discrete, all subsets correspond to events and conversely, but if S is
nondiscrete, only special subsets (called measurable) correspond to events. To each event A in the class C of
events, we associate a real number P(A). Then P is called a probability function, and P(A) the probability of the
event A, if the following axioms are satisfied.

Axiom 1 For every event A in the class C,

P(A) 0 (1)

Axiom 2 For the sure or certain event S in the class C,

P(S) � 1 (2)

Axiom 3 For any number of mutually exclusive events A1, A2, , in the class C,

P(A1 A2 ) � P(A1) � P(A2) � (3)

In particular, for two mutually exclusive events A1, A2,

P(A1 A2) � P(A1) � P(A2) (4)

Some Important Theorems on Probability
From the above axioms we can now prove various theorems on probability that are important in further work.

Theorem 1-1 If A1 A2, then P(A1) P(A2) and P(A2 – A1) � P(A2) � P(A1).

Theorem 1-2 For every event A,

(5)

i.e., a probability is between 0 and 1.

Theorem 1-3 P( ) � 0 (6)

i.e., the impossible event has probability zero.
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Theorem 1-4 If A is the complement of A, then

P(A ) � 1 � P(A) (7)

Theorem 1-5 If A � A1 A2 An, where A1, A2, . . . , An are mutually exclusive events, then

P(A) � P(A1) � P(A2) � � P(An) (8)

In particular, if A � S, the sample space, then

P(A1) � P(A2) P(An) � 1 (9)

Theorem 1-6 If A and B are any two events, then

P(A B) � P(A) � P(B) � P(A B) (10)

More generally, if A1, A2, A3 are any three events, then

P(A1 A2 A3) � P(A1) � P(A2) � P(A3)

� P(A1 A2) �P(A2 A3) �P(A3 A1)

� P(A1 A2 A3) (11)

Generalizations to n events can also be made.

Theorem 1-7 For any events A and B,

P(A) � P(A B) � P(A B ) (12)

Theorem 1-8 If an event A must result in the occurrence of one of the mutually exclusive events 
A1, A2, . . . , An, then

P(A) � P(A A1) � P(A A2) � � P(A An) (13)

Assignment of Probabilities
If a sample space S consists of a finite number of outcomes a1, a2, , an, then by Theorem 1-5,

P(A1) � P(A2) � � P(An) � 1 (14)

where A1, A2, , An are elementary events given by Ai � {ai}.
It follows that we can arbitrarily choose any nonnegative numbers for the probabilities of these simple events

as long as (14) is satisfied. In particular, if we assume equal probabilities for all simple events, then

(15)

and if A is any event made up of h such simple events, we have

(16)

This is equivalent to the classical approach to probability given on page 5. We could of course use other pro-
cedures for assigning probabilities, such as the frequency approach of page 5.

Assigning probabilities provides a mathematical model, the success of which must be tested by experiment
in much the same manner that theories in physics or other sciences must be tested by experiment.

EXAMPLE 1.12 A single die is tossed once. Find the probability of a 2 or 5 turning up.

The sample space is S � {1, 2, 3, 4, 5, 6}. If we assign equal probabilities to the sample points, i.e., if we assume that
the die is fair, then

The event that either 2 or 5 turns up is indicated by 2 5. Therefore,

P(2 < 5) � P(2) � P(5) �
1
6

�
1
6

�
1
3

<

P(1) � P(2) � c� P(6) �
1
6

P(A) �
h
n

P(Ak) �
1
n, k � 1,  2, c, n
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Conditional Probability
Let A and B be two events (Fig. 1-3) such that P(A) 0. Denote by P the probability of B given that A
has occurred. Since A is known to have occurred, it becomes the new sample space replacing the original S.
From this we are led to the definition

(17)

or P(A B) P(A) P (18)(B u A);>

P(B u A) ;
P(A> B)

P(A)

(B u A)�
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Fig. 1-3

In words, (18) says that the probability that both A and B occur is equal to the probability that A occurs times
the probability that B occurs given that A has occurred. We call P the conditional probability of B given
A, i.e., the probability that B will occur given that A has occurred. It is easy to show that conditional probability
satisfies the axioms on page 5.

EXAMPLE 1.13 Find the probability that a single toss of a die will result in a number less than 4 if (a) no other infor-
mation is given and (b) it is given that the toss resulted in an odd number.

(a) Let B denote the event {less than 4}. Since B is the union of the events 1, 2, or 3 turning up, we see by Theorem 1-5 that

assuming equal probabilities for the sample points.

(b) Letting A be the event {odd number}, we see that Then

Hence, the added knowledge that the toss results in an odd number raises the probability from 1 2 to 2 3.

Theorems on Conditional Probability
Theorem 1-9 For any three events A1, A2, A3, we have

P(A1 A2 A3) � P(A1) P(A2 A1) P(A3 A1 A2) (19)

In words, the probability that A1 and A2 and A3 all occur is equal to the probability that A1 occurs times the
probability that A2 occurs given that A1 has occurred times the probability that A3 occurs given that both A1 and A2

have occurred. The result is easily generalized to n events.

Theorem 1-10 If an event A must result in one of the mutually exclusive events A1, A2, , An, then

P(A) � P(A1) P(A A1) � P(A2) P(A A2) P(An ) P(A An ) (20)

Independent Events
If P(B A) � P(B), i.e., the probability of B occurring is not affected by the occurrence or non-occurrence of A,
then we say that A and B are independent events. This is equivalent to

P(A B) � P(A)P(B) (21)

as seen from (18). Conversely, if (21) holds, then A and B are independent.

>
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>uu>>
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P(A > B)
P(A) �

1>3
1>2 �

2
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P(A) �
3
6 �

1
2.  Also  P(A >  B) �

2
6 �

1
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We say that three events A1, A2, A3 are independent if they are pairwise independent:

P(Aj Ak ) � P(Aj)P(Ak) j k where j, k � 1, 2, 3 (22)

and P(A1 A2 A3) � P(A1)P(A2 )P(A3) (23)

Note that neither (22) nor (23) is by itself sufficient. Independence of more than three events is easily defined.

Bayes’ Theorem or Rule
Suppose that A1, A2, , An are mutually exclusive events whose union is the sample space S, i.e., one of the
events must occur. Then if A is any event, we have the following important theorem:

Theorem 1-11 (Bayes’ Rule):

(24)

This enables us to find the probabilities of the various events A1, A2, , An that can cause A to occur. For this
reason Bayes’ theorem is often referred to as a theorem on the probability of causes.

Combinatorial Analysis
In many cases the number of sample points in a sample space is not very large, and so direct enumeration or
counting of sample points needed to obtain probabilities is not difficult. However, problems arise where direct
counting becomes a practical impossibility. In such cases use is made of combinatorial analysis, which could also
be called a sophisticated way of counting.

Fundamental Principle of Counting: Tree Diagrams
If one thing can be accomplished in n1 different ways and after this a second thing can be accomplished in n2 dif-
ferent ways, . . . , and finally a kth thing can be accomplished in nk different ways, then all k things can be ac-
complished in the specified order in n1n2 nk different ways.

EXAMPLE 1.14 If a man has 2 shirts and 4 ties, then he has 2 4 � 8 ways of choosing a shirt and then a tie.

A diagram, called a tree diagram because of its appearance (Fig. 1-4), is often used in connection with the
above principle.

EXAMPLE 1.15 Letting the shirts be represented by S1, S2 and the ties by T1, T2, T3, T4, the various ways of choosing
a shirt and then a tie are indicated in the tree diagram of Fig. 1-4.

?

c

c

P(Ak u A) �
P(Ak) P(A u Ak)

a
n

j�1
P(Aj) P(A u Aj)

c

>>

2>
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Permutations
Suppose that we are given n distinct objects and wish to arrange r of these objects in a line. Since there are n
ways of choosing the 1st object, and after this is done, n � 1 ways of choosing the 2nd object, . . . , and finally
n � r � 1 ways of choosing the rth object, it follows by the fundamental principle of counting that the number
of different arrangements, or permutations as they are often called, is given by

nPr � n(n � 1)(n � 2) (n � r � 1) (25)

where it is noted that the product has r factors. We call nPr the number of permutations of n objects taken r at a time.
In the particular case where r � n, (25) becomes

nPn � n(n �1)(n �2) 1 � n! (26)

which is called n factorial. We can write (25) in terms of factorials as

(27)

If r � n, we see that (27) and (26) agree only if we have 0! � 1, and we shall actually take this as the definition of 0!.

EXAMPLE 1.16 The number of different arrangements, or permutations, consisting of 3 letters each that can be formed
from the 7 letters A, B, C, D, E, F, G is

Suppose that a set consists of n objects of which n1 are of one type (i.e., indistinguishable from each other),
n2 are of a second type, . . . , nk are of a kth type. Here, of course, n � n1 � n2 nk. Then the number of
different permutations of the objects is

(28)

See Problem 1.25.

EXAMPLE 1.17 The number of different permutations of the 11 letters of the word M I S S I S S I P P I, which con-
sists of 1 M, 4 I’s, 4 S’s, and 2 P’s, is

Combinations
In a permutation we are interested in the order of arrangement of the objects. For example, abc is a different per-
mutation from bca. In many problems, however, we are interested only in selecting or choosing objects without
regard to order. Such selections are called combinations. For example, abc and bca are the same combination.

The total number of combinations of r objects selected from n (also called the combinations of n things taken

r at a time) is denoted by nCr or We have (see Problem 1.27)

(29)

It can also be written

(30)

It is easy to show that

(31)¢n

r
≤ � ¢ n

n � r
≤  or  nCr � nCn�r

¢n

r
≤ �

n(n � 1) c (n � r � 1)
r!

�
nPr

r!

¢n

r
≤ � nCr �

n!
r!(n � r)!

an
r
b .

11!
1!4!4!2! � 34,650

nPn1, n2,  c , nk
�

n!
n1!n2! c nk!

� c�

7P3 �
7!
4! � 7 ? 6 ? 5 � 210

nPr �
n!

(n � r)!

c

c
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EXAMPLE 1.18 The number of ways in which 3 cards can be chosen or selected from a total of 8 different cards is

Binomial Coefficient
The numbers (29) are often called binomial coefficients because they arise in the binomial expansion

(32)

They have many interesting properties.

EXAMPLE 1.19

Stirling’s Approximation to n!
When n is large, a direct evaluation of n! may be impractical. In such cases use can be made of the approximate
formula

(33)

where e � 2.71828 . . . , which is the base of natural logarithms. The symbol in (33) means that the ratio of
the left side to the right side approaches 1 as n .

Computing technology has largely eclipsed the value of Stirling’s formula for numerical computations, but
the approximation remains valuable for theoretical estimates (see Appendix A).

SOLVED PROBLEMS

Random experiments, sample spaces, and events
1.1. A card is drawn at random from an ordinary deck of 52 playing cards. Describe the sample space if consid-

eration of suits (a) is not, (b) is, taken into account.

(a) If we do not take into account the suits, the sample space consists of ace, two, . . . , ten, jack, queen, king,
and it can be indicated as {1, 2, . . . , 13}.

(b) If we do take into account the suits, the sample space consists of ace of hearts, spades, diamonds, and clubs; . . . ;
king of hearts, spades, diamonds, and clubs. Denoting hearts, spades, diamonds, and clubs, respectively, by
1, 2, 3, 4, for example, we can indicate a jack of spades by (11, 2). The sample space then consists of the 52
points shown in Fig. 1-5.

`S
,

n! , 22pn  nne�n

� x4 � 4x3 y � 6x2 y2 � 4xy3 � y4

(x � y)4 � x4 � ¢4

1
≤x3 y � ¢4

2
≤x2 y2 � ¢4

3
≤xy3 � ¢4

4
≤y4

(x � y)n � xn � ¢n

1
≤xn�1y � ¢n

2
≤xn�2 y2 � c� ¢n

n
≤yn

8C3 � ¢8

3
≤ �

8 ? 7 ? 6
3! � 56

CHAPTER 1 Basic Probability10

Fig. 1-5



1.2. Referring to the experiment of Problem 1.1, let A be the event {king is drawn} or simply {king} and B the
event {club is drawn} or simply {club}. Describe the events (a) A B, (b) A B, (c) A B , (d) A B ,
(e) A � B, (f ) A � B , (g) (A B) (A B ).

(a) A B � {either king or club (or both, i.e., king of clubs)}.

(b) A B � {both king and club} � {king of clubs}.

(c) Since B � {club}, B � {not club} � {heart, diamond, spade}.

Then A B � {king or heart or diamond or spade}.

(d ) A B � {not king or not club} � {not king of clubs} � {any card but king of clubs}.

This can also be seen by noting that A B � (A B) and using (b).

(e) A � B � {king but not club}.

This is the same as A B � {king and not club}.

(f) A � B � {not king and not “not club”} � {not king and club} � {any club except king}.

This can also be seen by noting that A � B � A (B ) � A B.

(g) (A B) (A B ) � {(king and club) or (king and not club)} � {king}.

This can also be seen by noting that (A B) (A B ) � A.

1.3. Use Fig. 1-5 to describe the events (a) A B, (b) A B .

The required events are indicated in Fig. 1-6. In a similar manner, all the events of Problem 1.2 can also be indi-
cated by such diagrams. It should be observed from Fig. 1-6 that A B is the complement of A B.<r>r

r>r<

r><>

r><>

>rrr>rrr

rr

r>

r>r<r

r<r

r<

r

>

<

r><>rr
r<rr<><
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Theorems on probability
1.4. Prove (a) Theorem 1-1, (b) Theorem 1-2, (c) Theorem 1-3, page 5.

(a) We have A2 � A1 (A2 � A1) where A1 and A2 � A1 are mutually exclusive. Then by Axiom 3, page 5:

P(A2) � P(A1) � P(A2 � A1)

so that P(A2 � A1) � P(A2) � P(A1)

Since P(A2 � A1) 0 by Axiom 1, page 5, it also follows that P(A2) P(A1).

(b) We already know that P(A) 0 by Axiom 1. To prove that P(A) 1, we first note that A S. Therefore,
by Theorem 1-1 [part (a)] and Axiom 2,

P(A) P(S) � 1

(c) We have S � S . Since S � , it follows from Axiom 3 that

P(S) � P(S) � P( ) or P( ) � 0\\

\> \\<

�

(��

��

<



1.5. Prove (a) Theorem 1-4, (b) Theorem 1-6.

(a) We have A A � S. Then since A A � , we have

P(A A ) � P(S) or P(A) � P(A ) � 1

i.e., P(A ) � 1 �P(A)

(b) We have from the Venn diagram of Fig. 1-7,

(1) A B � A [B � (A B)]

Then since the sets A and B � (A B) are mutually exclusive, we have, using Axiom 3 and Theorem 1-1,

P(A B) � P(A) � P[B � (A B)]

� P(A) � P(B) � P(A B)>

><

>

><<

r

rr<

\r>r<
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Calculation of probabilities
1.6. A card is drawn at random from an ordinary deck of 52 playing cards. Find the probability that it is (a) an

ace, (b) a jack of hearts, (c) a three of clubs or a six of diamonds, (d) a heart, (e) any suit except hearts,
(f) a ten or a spade, (g) neither a four nor a club.

Let us use for brevity H, S, D, C to indicate heart, spade, diamond, club, respectively, and 1, 2 13 for 
ace, two, , king. Then 3 H means three of hearts, while 3 H means three or heart. Let us use the
sample space of Problem 1.1(b), assigning equal probabilities of 1 52 to each sample point. For example,
P(6 C) � 1 52.

(a)

This could also have been achieved from the sample space of Problem 1.1(a) where each sample point, in
particular ace, has probability 1 13. It could also have been arrived at by simply reasoning that there are 13
numbers and so each has probability 1 13 of being drawn.

(b)

(c)

(d)

This could also have been arrived at by noting that there are four suits and each has equal probability of
being drawn.

(e) using part (d) and Theorem 1-4, page 6.

(f) Since 10 and S are not mutually exclusive, we have, from Theorem 1-6,

(g) The probability of neither four nor club can be denoted by P(4 C ). But 4 C � (4 C) .r<r>rr>r

P(10 <  S) � P(10) � P(S) � P(10  >   S) �
1

13 �
1
4 �

1
52 �

4
13

P(Hr) � 1 � P(H) � 1 �
1
4 �

3
4

1>2
P(H) � P(1 >  H or 2  >  H  or c13  >  H) �

1
52 �

1
52 � c�

1
52 �

13
52 �

1
4

P(3 > C    or    6  >   D) � P(3 >  C ) � P(6  >  D) �
1

52 �
1

52 �
1

26

P(11 >  H) �
1

52

>
>

�
1
52 �

1
52 �

1
52 �

1
52 �

1
13

� P(1 > H) � P(1 > S) � P(1 > D) � P(1 > C  )

P(1) � P(1 > H or 1 > S or 1 > D or 1 > C  )

>>
><>c

,c,



Therefore,

We could also get this by noting that the diagram favorable to this event is the complement of the event
shown circled in Fig. 1-8. Since this complement has 52 �16 � 36 sample points in it and each sample point
is assigned probability 1 52, the required probability is 36 52 � 9 13.>>>

� 1 � B 1
13

�
1
4

�
1

52
R �

9
13

� 1 � [P(4) � P(C) � P(4> C)]

P(4r > Cr) � P[(4 < C)r] � 1 � P(4 < C)
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Fig. 1-8

1.7. A ball is drawn at random from a box containing 6 red balls, 4 white balls, and 5 blue balls. Determine the
probability that it is (a) red, (b) white, (c) blue, (d) not red, (e) red or white.

(a) Method 1
Let R, W, and B denote the events of drawing a red ball, white ball, and blue ball, respectively. Then

Method 2
Our sample space consists of 6 � 4 � 5 � 15 sample points. Then if we assign equal probabilities 1 15 to>

P(R) �
ways of choosing a red ball

total ways of choosing a ball �
6

6 � 4 � 5 �
6

15 �
2
5

each sample point, we see that P(R) � 6 15 � 2 5, since there are 6 sample points corresponding to “red ball.”

(b)

(c)

(d) by part (a).

(e) Method 1

This can also be worked using the sample space as in part (a).

Method 2

by part (c).

Method 3
Since events R and W are mutually exclusive, it follows from (4), page 5, that

P(R < W) � P(R) � P(W) �
2
5 �

4
15 �

2
3

P(R < W) � P(Br) � 1 � P(B) � 1 �
1
3 �

2
3

�
6 � 4

6 � 4 � 5 �
10
15 �

2
3

P(red or white) � P(R < W  ) �
ways of choosing a red or white ball

total ways of choosing a ball

P(not red) � P(Rr) � 1 � P(R) � 1 �
2
5 �

3
5

P(B) �
5

6 � 4 � 5 �
5

15 �
1
3

P(W) �
4

6 � 4 � 5 �
4

15

>>



Conditional probability and independent events
1.8. A fair die is tossed twice. Find the probability of getting a 4, 5, or 6 on the first toss and a 1, 2, 3, or 4 on

the second toss.

Let A1 be the event “4, 5, or 6 on first toss,” and A2 be the event “1, 2, 3, or 4 on second toss.” Then we are
looking for P(A1 A2).

Method 1

We have used here the fact that the result of the second toss is independent of the first so that P(A2 u A1) � P(A2).

P(A1  > A2) � P(A1) P(A2 u A1) � P(A1) P(A2) � ¢ 3
6 ≤ ¢ 4

6 ≤ �
1
3

>
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Fig. 1-9

If we let A be the event “7 or 11,” then A is indicated by the circled portion in Fig. 1-9. Since 8 points are
included, we have P(A) � 8 36 � 2 9. It follows that the probability of no 7 or 11 is given by

P(Ar) � 1 � P(A) � 1 �
2
9 �

7
9

>>

Also we have used P(A1) � 3 6 (since 4, 5, or 6 are 3 out of 6 equally likely possibilities) and P(A2) � 4 6 (since
1, 2, 3, or 4 are 4 out of 6 equally likely possibilities).

Method 2
Each of the 6 ways in which a die can fall on the first toss can be associated with each of the 6 ways in which it
can fall on the second toss, a total of 6 6 � 36 ways, all equally likely.

Each of the 3 ways in which A1 can occur can be associated with each of the 4 ways in which A2 can occur to
give 3 4 � 12 ways in which both A1 and A2 can occur. Then

This shows directly that A1 and A2 are independent since

1.9. Find the probability of not getting a 7 or 11 total on either of two tosses of a pair of fair dice.

The sample space for each toss of the dice is shown in Fig. 1-9. For example, (5, 2) means that 5 comes up on
the first die and 2 on the second. Since the dice are fair and there are 36 sample points, we assign probability 
1 36 to each.>

P(A1 > A2) �
1
3 � ¢ 3

6 ≤ ¢ 4
6 ≤ � P(A1) P(A2)

P(A1>  A2) �
12
36 �

1
3

?

?

>>



Using subscripts 1, 2 to denote 1st and 2nd tosses of the dice, we see that the probability of no 7 or 11 on
either the first or second tosses is given by

using the fact that the tosses are independent.

1.10. Two cards are drawn from a well-shuffled ordinary deck of 52 cards. Find the probability that they are both
aces if the first card is (a) replaced, (b) not replaced.

Method 1
Let A1 � event “ace on first draw” and A2 � event “ace on second draw.” Then we are looking for P(A1 A2) �

P(A1) P(A2 A1).

(a) Since for the first drawing there are 4 aces in 52 cards, P(A1) � 4 52. Also, if the card is replaced for the>
u

>

P(Ar1 ) P(Ar2 u Ar1) � P(Ar1) P(Ar2 ) � ¢ 7
9 ≤ ¢ 7

9 ≤ �
49
81,
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second drawing, then P(A2 A1) � 4 52, since there are also 4 aces out of 52 cards for the second drawing.
Then

(b) As in part (a), P(A1) � 4 52. However, if an ace occurs on the first drawing, there will be only 3 aces left in>
P(A1>  A2) � P(A1) P(A2 u A1) � ¢ 4

52 ≤ ¢ 4
52 ≤ �

1
169

>u

the remaining 51 cards, so that P(A2 A1) � 3 51. Then

Method 2
(a) The first card can be drawn in any one of 52 ways, and since there is replacement, the second card can also

be drawn in any one of 52 ways. Then both cards can be drawn in (52)(52) ways, all equally likely.
In such a case there are 4 ways of choosing an ace on the first draw and 4 ways of choosing an ace on the

second draw so that the number of ways of choosing aces on the first and second draws is (4)(4). Then the
required probability is

(b) The first card can be drawn in any one of 52 ways, and since there is no replacement, the second card can
be drawn in any one of 51 ways. Then both cards can be drawn in (52)(51) ways, all equally likely.

In such a case there are 4 ways of choosing an ace on the first draw and 3 ways of choosing an ace on the
second draw so that the number of ways of choosing aces on the first and second draws is (4)(3). Then the
required probability is

1.11. Three balls are drawn successively from the box of Problem 1.7. Find the probability that they are drawn
in the order red, white, and blue if each ball is (a) replaced, (b) not replaced.

Let R1 � event “red on first draw,” W2 � event “white on second draw,” B3 � event “blue on third draw.” We
require P(R1 W2 B3).

(a) If each ball is replaced, then the events are independent and

� ¢ 6
6 � 4 � 5 ≤ ¢ 4

6 � 4 � 5 ≤ ¢ 5
6 � 4 � 5 ≤ �

8
225

� P(R1) P(W2) P(B3)

P(R1 > W2 > B3) � P(R1) P(W2 u R1) P(B3 u R2 >W2)

>>

(4)(3)
(52)(51) �

1
221

(4)(4)
(52)(52) �

1
169

P(A1 > A2) � P(A1) P(A2 Z A1) � ¢ 4
52 ≤ ¢ 3

51 ≤ �
1

221

>u



(b) If each ball is not replaced, then the events are dependent and

1.12. Find the probability of a 4 turning up at least once in two tosses of a fair die.

Let A1 � event “4 on first toss” and A2 � event “4 on second toss.” Then

A1 A2 � event “4 on first toss or 4 on second toss or both”

� event “at least one 4 turns up,”

and we require P(A1 A2).

Method 1
Events A1 and A2 are not mutually exclusive, but they are independent. Hence, by (10) and (21),

Method 2
P(at least one 4 comes up) � P(no 4 comes up) � 1

Then P(at least one 4 comes up) � 1 � P(no 4 comes up)

� 1 � P(no 4 on 1st toss and no 4 on 2nd toss)

Method 3
Total number of equally likely ways in which both dice can fall � 6 6 � 36.

Also Number of ways in which A1 occurs but not A2 � 5
Number of ways in which A2 occurs but not A1 � 5
Number of ways in which both A1 and A2 occur � 1

Then the number of ways in which at least one of the events A1 or A2 occurs � 5 � 5 � 1 � 11. Therefore,
P(A1 A2) � 11 36.

1.13. One bag contains 4 white balls and 2 black balls; another contains 3 white balls and 5 black balls. If one
ball is drawn from each bag, find the probability that (a) both are white, (b) both are black, (c) one is white
and one is black.

Let W1 � event “white ball from first bag,” W2 � event “white ball from second bag.”

(a)

(b)

(c) The required probability is

1.14. Prove Theorem 1-10, page 7.

We prove the theorem for the case n � 2. Extensions to larger values of n are easily made. If event A must
result in one of the two mutually exclusive events A1, A2, then

A � (A A1) (A A2)><>

1 � P(W1 > W2) � P(Wr1  >Wr2 ) � 1 �
1
4 �

5
24 �

13
24

P(Wr1  > Wr2 ) � P(Wr1 ) P(Wr2 uWr1 ) � P(Wr1 ) P(Wr2 ) � ¢ 2
4 � 2 ≤ ¢ 5

3 � 5 ≤ �
5

24

P(W1 > W2) � P(W1) P(W2 uW1) � P(W1) P(W2) � ¢ 4
4 � 2 ≤ ¢ 3

3 � 5 ≤ �
1
4

><

?

� 1 � ¢ 5
6 ≤ ¢5

6 ≤ �
11
36

� 1 � P(Ar1 > Ar2 ) � 1 � P(Ar1 ) P(Ar2)

�
1
6 �

1
6 � ¢ 1

6 ≤ ¢ 1
6 ≤ �

11
36

� P(A1) � P(A2) � P(A1) P(A2)

P(A1 <  A2) � P(A1) � P(A2) � P(A1 > A2)

<

<

� ¢ 6
6 � 4 � 5 ≤ ¢ 4

5 � 4 � 5 ≤ ¢ 5
5 � 3 � 5 ≤ �

4
91

P(R1 > W2>  B3) � P(R1) P(W2 u R1) P(B3 u R1 >W2)
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But A A1 and A A2 are mutually exclusive since A1 and A2 are. Therefore, by Axiom 3,

P(A) � P(A A1) � P(A A2)

� P(A1) P(A A1) � P(A2) P(A A2)

using (18), page 7.

1.15. Box I contains 3 red and 2 blue marbles while Box II contains 2 red and 8 blue marbles. A fair coin is
tossed. If the coin turns up heads, a marble is chosen from Box I; if it turns up tails, a marble is chosen
from Box II. Find the probability that a red marble is chosen.

Let R denote the event “a red marble is chosen” while I and II denote the events that Box I and Box II are
chosen, respectively. Since a red marble can result by choosing either Box I or II, we can use the results of
Problem 1.14 with A � R, A1 � I, A2 � II. Therefore, the probability of choosing a red marble is

Bayes’ theorem
1.16. Prove Bayes’ theorem (Theorem 1-11, page 8).

Since A results in one of the mutually exclusive events A1, A2, , An, we have by Theorem 1-10 
(Problem 1.14),

Therefore,

1.17. Suppose in Problem 1.15 that the one who tosses the coin does not reveal whether it has turned up heads
or tails (so that the box from which a marble was chosen is not revealed) but does reveal that a red mar-
ble was chosen. What is the probability that Box I was chosen (i.e., the coin turned up heads)?

Let us use the same terminology as in Problem 1.15, i.e., A � R, A1 � I, A2 � II. We seek the probability that Box
I was chosen given that a red marble is known to have been chosen. Using Bayes’ rule with n � 2, this probability
is given by

Combinational analysis, counting, and tree diagrams
1.18. A committee of 3 members is to be formed consisting of one representative each from labor, management,

and the public. If there are 3 possible representatives from labor, 2 from management, and 4 from the pub-
lic, determine how many different committees can be formed using (a) the fundamental principle of count-
ing and (b) a tree diagram.

(a) We can choose a labor representative in 3 different ways, and after this a management representative in 2
different ways. Then there are 3 2 � 6 different ways of choosing a labor and management representative.
With each of these ways we can choose a public representative in 4 different ways. Therefore, the number
of different committees that can be formed is 3 2 4 � 24.??

?

P(I uR) �
P(I ) P(R u I )

P(I ) P(R u I ) � P(II ) P(R u II )
�

¢ 1
2 ≤ ¢ 3

3 � 2 ≤¢ 1
2 ≤ ¢ 3

3 � 2 ≤ � ¢ 1
2 ≤ ¢ 2

2 � 8 ≤ �
3
4

P(Ak u A) �
P(Ak > A)

P(A) �
P(Ak) P(A u Ak )

a
n

j�1
P(Aj) P(A u Aj )

P(A) � P(A1) P(A u A1) � c� P(An) P(A u An) � a
n

j�1
P(Aj) P(A u Aj)

c

P(R) � P(I) P(R u I) � P(II) P(R u II) � ¢ 1
2 ≤ ¢ 3

3 � 2 ≤ � ¢ 1
2 ≤ ¢ 2

2 � 8 ≤ �
2
5

uu

>>

>>
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(b) Denote the 3 labor representatives by L1, L2, L3; the management representatives by M1, M2; and the public
representatives by P1, P2, P3, P4. Then the tree diagram of Fig. 1-10 shows that there are 24 different
committees in all. From this tree diagram we can list all these different committees, e.g., L1M1P1, L1 M1P2, etc.

CHAPTER 1 Basic Probability18

Fig. 1-10

Permutations
1.19. In how many ways can 5 differently colored marbles be arranged in a row?

We must arrange the 5 marbles in 5 positions thus: �����. The first position can be occupied by any one of
5 marbles, i.e., there are 5 ways of filling the first position. When this has been done, there are 4 ways of filling
the second position. Then there are 3 ways of filling the third position, 2 ways of filling the fourth position, and
finally only 1 way of filling the last position. Therefore:

Number of arrangements of 5 marbles in a row � 5 4 3 2 l � 5! � 120

In general,

Number of arrangements of n different objects in a row � n(n � l)(n � 2) 1 � n!

This is also called the number of permutations of n different objects taken n at a time and is denoted by n Pn.

1.20. In how many ways can 10 people be seated on a bench if only 4 seats are available?

The first seat can be filled in any one of 10 ways, and when this has been done, there are 9 ways of filling the
second seat, 8 ways of filling the third seat, and 7 ways of filling the fourth seat. Therefore:

Number of arrangements of 10 people taken 4 at a time � 10 9 8 7 � 5040

In general,

Number of arrangements of n different objects taken r at a time � n(n � 1) (n � r � 1)

This is also called the number of permutations of n different objects taken r at a time and is denoted by nPr.
Note that when r � n, n Pn � n! as in Problem 1.19.

c

???

c

????



1.21. Evaluate (a) 8P3, (b) 6P4, (c) l5P1, (d) 3P3.

(a) 8P3 � 8 7 6 � 336 (b) 6P4 � 6 5 4 3 � 360 (c) 15P1 � 15 (d) 3P3 � 3 2 1 � 6

1.22. It is required to seat 5 men and 4 women in a row so that the women occupy the even places. How many
such arrangements are possible?

The men may be seated in 5 P5 ways, and the women in 4P4 ways. Each arrangement of the men may be
associated with each arrangement of the women. Hence,

Number of arrangements � 5P5 4P4 � 5! 4! � (120)(24) � 2880

1.23. How many 4-digit numbers can be formed with the 10 digits 0, 1, 2, 3, . . . , 9 if (a) repetitions are allowed,
(b) repetitions are not allowed, (c) the last digit must be zero and repetitions are not allowed?

(a) The first digit can be any one of 9 (since 0 is not allowed). The second, third, and fourth digits can be any
one of 10. Then 9 10 10 10 � 9000 numbers can be formed.

(b) The first digit can be any one of 9 (any one but 0).

The second digit can be any one of 9 (any but that used for the first digit).

The third digit can be any one of 8 (any but those used for the first two digits).

The fourth digit can be any one of 7 (any but those used for the first three digits).

Then 9 9 8 7 � 4536 numbers can be formed.

Another method
The first digit can be any one of 9, and the remaining three can be chosen in 9P3 ways. Then 9 9P3 �

9 9 8 7 � 4536 numbers can be formed.

(c) The first digit can be chosen in 9 ways, the second in 8 ways, and the third in 7 ways. Then 9 8 7 � 504
numbers can be formed.

Another method
The first digit can be chosen in 9 ways, and the next two digits in 8P2 ways. Then 9 8P2 � 9 8 7 �
504 numbers can be formed.

1.24. Four different mathematics books, six different physics books, and two different chemistry books are to
be arranged on a shelf. How many different arrangements are possible if (a) the books in each particular
subject must all stand together, (b) only the mathematics books must stand together?

(a) The mathematics books can be arranged among themselves in 4P4 � 4! ways, the physics books in 6P6 � 6!
ways, the chemistry books in 2P2 � 2! ways, and the three groups in 3P3 � 3! ways. Therefore,

Number of arrangements � 4!6!2!3! � 207,360.

(b) Consider the four mathematics books as one big book. Then we have 9 books which can be arranged in 

9P9 � 9! ways. In all of these ways the mathematics books are together. But the mathematics books can be
arranged among themselves in 4P4 � 4! ways. Hence,

Number of arrangements � 9!4! � 8,709,120

1.25. Five red marbles, two white marbles, and three blue marbles are arranged in a row. If all the marbles of
the same color are not distinguishable from each other, how many different arrangements are possible?

Assume that there are N different arrangements. Multiplying N by the numbers of ways of arranging (a) the five
red marbles among themselves, (b) the two white marbles among themselves, and (c) the three blue marbles
among themselves (i.e., multiplying N by 5!2!3!), we obtain the number of ways of arranging the 10 marbles if
they were all distinguishable, i.e., 10!.

Then (5!2!3!)N � 10! and N � 10! (5!2!3!)

In general, the number of different arrangements of n objects of which n1 are alike, n2 are alike, . . . , nk are

alike is where n1 � n2 nk � n.� c�
n!

n 1!n 2! c nk!

>

???

??

???

?

???

???

?

???????
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1.26. In how many ways can 7 people be seated at a round table if (a) they can sit anywhere, (b) 2 particular peo-
ple must not sit next to each other?

(a) Let 1 of them be seated anywhere. Then the remaining 6 people can be seated in 6! � 720 ways, which is
the total number of ways of arranging the 7 people in a circle.

(b) Consider the 2 particular people as 1 person. Then there are 6 people altogether and they can be arranged in
5! ways. But the 2 people considered as 1 can be arranged in 2! ways. Therefore, the number of ways of
arranging 7 people at a round table with 2 particular people sitting together � 5!2! � 240.

Then using (a), the total number of ways in which 7 people can be seated at a round table so that the 2
particular people do not sit together � 730 �240 � 480 ways.

Combinations
1.27. In how many ways can 10 objects be split into two groups containing 4 and 6 objects, respectively?

This is the same as the number of arrangements of 10 objects of which 4 objects are alike and 6 other objects

are alike. By Problem 1.25, this is 

The problem is equivalent to finding the number of selections of 4 out of 10 objects (or 6 out of 10 objects), the
order of selection being immaterial. In general, the number of selections of r out of n objects, called the number

10!
4!6! �

10 ? 9 ? 8 ? 7
4! � 210.
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of combinations of n things taken r at a time, is denoted by nCr or and is given by

1.28. Evaluate (a) 7C4, (b) 6C5, (c) 4C4.

(a)

(b)

(c) 4C4 is the number of selections of 4 objects taken 4 at a time, and there is only one such selection. Then 4C4 � 1.
Note that formally

if we define 0! � 1.

1.29. In how many ways can a committee of 5 people be chosen out of 9 people?

1.30. Out of 5 mathematicians and 7 physicists, a committee consisting of 2 mathematicians and  3 physicists
is to be formed. In how many ways can this be done if (a) any mathematician and any physicist can be in-
cluded, (b) one particular physicist must be on the committee, (c) two particular mathematicians cannot
be on the committee?

(a) 2 mathematicians out of 5 can be selected in 5C2 ways.
3 physicists out of 7 can be selected in 7C3 ways.

Total number of possible selections � 5C2 7C3 � 10 35 � 350

(b) 2 mathematicians out of 5 can be selected in 5C2 ways.
2 physicists out of 6 can be selected in 6C2 ways.

Total number of possible selections � 5C2 6C2 � 10 15 � 150

(c) 2 mathematicians out of 3 can be selected in 3C2 ways.
3 physicists out of 7 can be selected in 7C3 ways.

Total number of possible selections � 3C2 7C3 � 3 35 � 105??

??

??

¢9

5
≤ � 9C5 �

9!
5!4!

�
9 ? 8 ? 7 ? 6 ? 5

5!
� 126

4C4 �
4!

4!0! � 1

6C5 �
6!

5!1! �
6 ? 5 ? 4 ? 3 ? 2

5! � 6, or 6C5 � 6C1 � 6.

7 C4 �
7!

4!3! �
7 ? 6 ? 5 ? 4

4! �
7 ? 6 ? 5
3 ? 2 ? 1 � 35.

nCr � ¢n

r
≤ �

n!
r!(n � r)! �

n(n � 1) c (n � r � 1)
r! �

n Pr

r!

an
r
b



1.31. How many different salads can be made from lettuce, escarole, endive, watercress, and chicory?

Each green can be dealt with in 2 ways, as it can be chosen or not chosen. Since each of the 2 ways of dealing
with a green is associated with 2 ways of dealing with each of the other greens, the number of ways of dealing
with the 5 greens � 25 ways. But 25 ways includes the case in which no greens is chosen. Hence,

Number of salads � 25 �1 � 31

Another method
One can select either 1 out of 5 greens, 2 out of 5 greens, . . . , 5 out of 5 greens. Then the required number of
salads is

5C1 � 5C2 � 5C3 � 5C4 � 5C5 � 5 � 10 � 10 � 5 � 1 � 31

In general, for any positive integer n, nC1 � nC2 � nC3 � � nCn � 2n � 1.

1.32. From 7 consonants and 5 vowels, how many words can be formed consisting of 4 different consonants and
3 different vowels? The words need not have meaning.

The 4 different consonants can be selected in 7C4 ways, the 3 different vowels can be selected in 5C3 ways, and
the resulting 7 different letters (4 consonants, 3 vowels) can then be arranged among themselves in 7P7 � 7!
ways. Then

Number of words � 7C4 5C3 7! � 35 10 5040 � 1,764,000

The Binomial Coefficients

1.33. Prove that 

We have

The result has the following interesting application. If we write out the coefficients in the binomial
expansion of (x � y)n for n � 0, 1, 2, . . . , we obtain the following arrangement, called Pascal’s triangle:

1
1 1

1 2       1
1 3 3 1

1 4 6  4 1
1 5 10 10 5 1

1 6 15  20 15 6 1

An entry in any line can be obtained by adding the two entries in the preceding line that are to its immediate left
and right. Therefore, 10 � 4 � 6, 15 � 10 � 5, etc.

� ¢n � 1

r
≤ � ¢n � 1

r � 1
≤�

(n � 1)!
r!(n � r � 1)! �

(n � 1)!
(r � 1)!(n � r)!

�
(n � r)(n � 1)!

r!(n � r)! �
r(n � 1)!
r!(n � r)!

¢n

r
≤ �

n!
r!(n � r)! �

n(n � 1)!
r!(n � r)! �

(n � r � r)(n � 1)!
r!(n � r)!

¢n

r
≤ � ¢n � 1

r
≤ � ¢n � 1

r � 1
≤ .

????

c
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n � 0
n � 1
n � 2
n � 3
n � 4
n � 5
n � 6
etc.



1.34. Find the constant term in the expansion of 

According to the binomial theorem,

The constant term corresponds to the one for which 3k �12 � 0, i.e., k � 4, and is therefore given by

Probability using combinational analysis

1.35. A box contains 8 red, 3 white, and 9 blue balls. If 3 balls are drawn at random without replacement, de-
termine the probability that (a) all 3 are red, (b) all 3 are white, (c) 2 are red and 1 is white, (d) at least 1
is white, (e) 1 of each color is drawn, (f) the balls are drawn in the order red, white, blue.

(a) Method 1
Let R1, R2, R3 denote the events, “red ball on 1st draw,” “red ball on 2nd draw,” “red ball on 3rd draw,”
respectively. Then R1 R2 R3 denotes the event “all 3 balls drawn are red.” We therefore have

Method 2

(b) Using the second method indicated in part (a),

The first method indicated in part (a) can also be used.

(c) P(2 are red and 1 is white)

(d) P(none is white) Then

(e) P(l of each color is drawn)

(f) P(balls drawn in order red, white, blue) P(l of each color is drawn)

using (e)

Another method

� ¢ 8
20 ≤ ¢ 3

19 ≤ ¢ 9
18 ≤ �

3
95

P(R1 > W2 >B3) � P(R1) P(W2 u R1) P(B3 u R1 >W2)

�
1
6 ¢ 18

95 ≤ �
3

95,

�
1
3!

�
(8C1)(3C1)(9C1)

20C3
�

18
95

P(at least 1 is white) � 1 �
34
57 �

23
57

�
17C3

20C3
�

34
57.

�
(8C2)(3C1)

20C3
�

7
95

�
(selections of 2 out of 8 red balls)(selections of 1 out of 3 white balls)

number of selections of 3 out of 20 balls

P(all 3 are white) �
3C3

20C3
�

1
1140

Required probability �
number of selections of 3 out of 8 red balls

number of selections of 3 out of 20 balls �
8C3

20C3
�

14
285

� ¢ 8
20 ≤ ¢ 7

19 ≤ ¢ 6
18 ≤ �

14
285

P(R1 > R2 >R3) � P(R1) P(R2 u R1) P(R3 u R1 > R2)

>>

¢12

4
≤ �

12 ? 11 ? 10 ? 9
4 ? 3 ? 2 ? 1 � 495

¢x 2 �
1
x ≤ 12

� a
12

k�0
¢12

k
≤ (x 2)k¢ 1

x ≤ 12�k

� a
12

k�0
¢12

k
≤x 3k�12.

¢x 2 �
1
x ≤12

.
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1.36. In the game of poker 5 cards are drawn from a pack of 52 well-shuffled cards. Find the probability that (a)
4 are aces, (b) 4 are aces and 1 is a king, (c) 3 are tens and 2 are jacks, (d) a nine, ten, jack, queen, king
are obtained in any order, (e) 3 are of any one suit and 2 are of another, (f) at least 1 ace is obtained.

(a)

(b) P(4 aces and 1 king)

(c) P(3 are tens and 2 are jacks)

(d) P(nine, ten, jack, queen, king in any order)

(e) P(3 of any one suit, 2 of another)

since there are 4 ways of choosing the first suit and 3 ways of choosing the second suit.

(f ) P(no ace) Then P(at least one ace)

1.37. Determine the probability of three 6s in 5 tosses of a fair die.

Let the tosses of the die be represented by the 5 spaces �����. In each space we will have the events 6 or
not 6 (6 ). For example, three 6s and two not 6s can occur as 6 6 6 6 6 or 6 6 6 6 6, etc.

Now the probability of the outcome 6 6 6 6 6 is

P(6 6 6 6 6 ) � P(6) P(6) P(6 ) P(6) P(6 )

since we assume independence. Similarly,

for all other outcomes in which three 6s and two not 6s occur. But there are 5C3 � 10 such outcomes, and these
are mutually exclusive. Hence, the required probability is

In general, if p � P(A) and q � 1 �p � P(A ), then by using the same reasoning as given above, the
probability of getting exactly x A’s in n independent trials is

1.38. A shelf has 6 mathematics books and 4 physics books. Find the probability that 3 particular mathematics
books will be together.

All the books can be arranged among themselves in 10P10 � 10! ways. Let us assume that the 3 particular
mathematics books actually are replaced by 1 book. Then we have a total of 8 books that can be arranged
among themselves in 8P8 � 8! ways. But the 3 mathematics books themselves can be arranged in 3P3 � 3!
ways. The required probability is thus given by

Miscellaneous problems
1.39. A and B play 12 games of chess of which 6 are won by A, 4 are won by B, and 2 end in a draw. They agree

to play a tournament consisting of 3 games. Find the probability that (a) A wins all 3 games, (b) 2 games
end in a draw, (c) A and B win alternately, (d ) B wins at least 1 game.

Let A1, A2, A3 denote the events “A wins” in 1st, 2nd, and 3rd games, respectively, B1, B2, B3 denote the events 
“B wins” in 1st, 2nd, and 3rd games, respectively. On the basis of their past performance (empirical probability),

8!3!
10! �

1
15

nCx px qn�x � ¢n

x
≤ px qn�x

r

P(6 6 6r6 6r or  6 6r6 6r6 or c) � 5C3¢ 1
6 ≤ 3¢ 5

6 ≤ 2

�
5!

3!2! ¢ 1
6 ≤ 3¢ 5

6 ≤ 2

�
125

3888

P � ¢ 1
6 ≤ 3¢ 5

6 ≤ 2

�
1
6 ?

1
6 ?

5
6 ?

1
6 ?

5
6 � ¢ 1

6 ≤ 3¢ 5
6 ≤ 2

rrrr

rr
rrrrr

� 1 �
35,673
54,145 �

18,472
54,145.�

48C5

52C5
�

35,673
54,145.

�
(4 ? 13C3)(3 ? 13C2)

52C5
�

429
4165,

�
(4C1)(4C1)(4C1)(4C1)(4C1)

52C5
�

64
162,435.

�
(4C3)(4C2)

52C5
�

1
108,290.

�
(4C4)(4C1)

52C5
�

1
649,740.

P(4 aces) �
(4C4)(48C1)

52C5
�

1
54,145.
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we shall assume that

P(A wins any one game) P(B wins any one game)

(a) P(A wins all 3 games) � P(A1 A2 A3) � P(A1) P(A2) P(A3)

assuming that the results of each game are independent of the results of any others. (This assumption would
not be justifiable if either player were psychologically influenced by the other one’s winning or losing.)

(b) In any one game the probability of a nondraw (i.e., either A or B wins) is and the
probability of a draw is Then the probability of 2 draws in 3 trials is (see Problem 1.37)

(c) P(A and B win alternately) � P(A wins then B wins then A wins

or B wins then A wins then B wins)

� P(A1 B2 A3) � P(B1 A2 B3)

� P(A1)P(B2)P(A3) � P(B1)P(A2)P(B3)

�

(d) P(B wins at least one game) � 1 � P(B wins no game)

1.40. A and B play a game in which they alternately toss a pair of dice. The one who is first to get a total of 
7 wins the game. Find the probability that (a) the one who tosses first will win the game, (b) the one who
tosses second will win the game.

(a) The probability of getting a 7 on a single toss of a pair of dice, assumed fair, is 1 6 as seen from Problem 1.9
and Fig. 1-9. If we suppose that A is the first to toss, then A will win in any of the following mutually
exclusive cases with indicated associated probabilities:

(1) A wins on 1st toss. Probability � .

(2) A loses on 1st toss, B then loses, A then wins. Probability �

(3) A loses on 1st toss, B loses, A loses, B loses, A wins. Probability �

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Then the probability that A wins is

where we have used the result 6 of Appendix A with x � (5 6)2.

(b) The probability that B wins the game is similarly

�
5>36

1 � (5>6)2
�

5
11

a5
6b a1

6b � a5
6b a5

6b a5
6b a1

6b � c� a5
6b a1

6b c1 � a5
6b

2

� a5
6b

4

� cd

>
�

1
6 B1 � ¢ 5

6 ≤ 2

� ¢ 5
6 ≤ 4

� cR �
1>6

1 � (5>6)2 �
6

11

¢1
6 ≤ � ¢5

6 ≤ ¢5
6 ≤ ¢ 1

6 ≤ � ¢ 5
6 ≤ ¢5

6 ≤ ¢ 5
6 ≤ ¢5

6 ≤ ¢ 1
6 ≤ � c

¢ 5
6 ≤ ¢ 5

6 ≤ ¢5
6 ≤ ¢ 5

6 ≤ ¢1
6 ≤ .

¢ 5
6 ≤ ¢ 5

6 ≤ ¢ 1
6 ≤ .

1
6

>

� 1 � ¢ 2
3 ≤ ¢ 2

3 ≤ ¢ 2
3 ≤ �

19
27

� 1 � P(Br1) P(Br2) P(Br3)

� 1 � P(Br1> Br2> Br3 )

¢ 1
2 ≤ ¢ 1

3 ≤ ¢ 1
2 ≤ � ¢ 1

3 ≤ ¢ 1
2 ≤ ¢ 1

3 ≤ �
5

36

>>>>

¢3

2
≤ p2q3�2 � 3 ¢ 1

6 ≤ 2 ¢ 5
6 ≤ �

5
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p � 1 � q �
1
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q �
1
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1
3 �

5
6
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2 ≤ �

1
8>>
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Therefore, we would give 6 to 5 odds that the first one to toss will win. Note that since

the probability of a tie is zero. This would not be true if the game was limited. See Problem 1.100.

1.41. A machine produces a total of 12,000 bolts a day, which are on the average 3% defective. Find the prob-
ability that out of 600 bolts chosen at random, 12 will be defective.

Of the 12,000 bolts, 3%, or 360, are defective and 11,640 are not. Then:

Required probability

1.42. A box contains 5 red and 4 white marbles. Two marbles are drawn successively from the box without re-
placement, and it is noted that the second one is white. What is the probability that the first is also white?

Method 1
If W1, W2 are the events “white on 1st draw,” “white on 2nd draw,” respectivley, we are looking for P(W1 W2).
This is given by

Method 2
Since the second is known to be white, there are only 3 ways out of the remaining 8 in which the first can be
white, so that the probability is 3 8.

1.43. The probabilities that a husband and wife will be alive 20 years from now are given by 0.8 and 0.9, respec-
tively. Find the probability that in 20 years (a) both, (b) neither, (c) at least one, will be alive.

Let H, W be the events that the husband and wife, respectively, will be alive in 20 years. Then P(H) � 0.8,
P(W) � 0.9. We suppose that H and W are independent events, which may or may not be reasonable.

(a) P(both will be alive) � P(H W ) � P(H)P(W ) � (0.8)(0.9) � 0.72.

(b) P(neither will be alive) � P(H W ) � P(H ) P(W ) � (0.2)(0.1) � 0.02.

(c) P(at least one will be alive) � 1 �P(neither will be alive) � 1 �0.02 � 0.98.

1.44. An inefficient secretary places n different letters into n differently addressed envelopes at random. Find the
probability that at least one of the letters will arrive at the proper destination.

Let A1, A2, . . . An denote the events that the 1st, 2nd, . . . , nth letter is in the correct envelope. Then the event that
at least one letter is in the correct envelope is A1 A2 An, and we want to find P(A1 A2 An).
From a generalization of the results (10) and (11), page 6, we have

(1)

where P(Ak) the sum of the probabilities of Ak from 1 to n, P(Aj Ak) is the sum of the probabilities of Aj>>aa
� c � (�1)n�1P(A1 > A2 >c>  An)

P(A1 <  A2 <c <  An) � aP(Ak) � a P(Aj > Ak ) � a P(Ai > Aj > Ak)

< c <<< c<<

rrr>r

>

>

P(W1 uW2) �
P(W1 > W2)

P(W2)
�

(4>9)(3>8)

4>9 �
3
8

u

�
360C12 11,640C588

12,000C600

6
11 �

5
11 � 1
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Ak with j and k from 1 to n and k j, etc. We have, for example, the following:

(2) and similarly

since, of the n envelopes, only 1 will have the proper address. Also

(3)

since, if the 1st letter is in the proper envelope, then only 1 of the remaining n �1 envelopes will be proper. In a
similar way we find

(4) P(A1 > A2 >A3) � P(A1) P(A2 u A1) P(A3 u A1 > A2) � a1
nb a 1

n � 1b a 1
n � 2b

P(A1 > A2) � P(A1) P(A2 u A1) � a1
nb a 1

n � 1b

P(Ak) �
1
nP(A1) �

1
n

�



probability is

From calculus we know that (see Appendix A)

so that for x � –1

or

It follows that if n is large, the required probability is very nearly . This means that there
is a good chance of at least 1 letter arriving at the proper destination. The result is remarkable in that the
probability remains practically constant for all n 10. Therefore, the probability that at least 1 letter will arrive
at its proper destination is practically the same whether n is 10 or 10,000.

1.45. Find the probability that n people (n 365) selected at random will have n different birthdays.

We assume that there are only 365 days in a year and that all birthdays are equally probable, assumptions which
are not quite met in reality.

The first of the n people has of course some birthday with probability 365 365 � 1. Then, if the second is to
have a different birthday, it must occur on one of the other 364 days. Therefore, the probability that the second
person has a birthday different from the first is 364 365. Similarly the probability that the third person has a
birthday different from the first two is 363 365. Finally, the probability that the nth person has a birthday>

>
>

�

�

1 � e�1 � 0.6321

1 �
1
2! �

1
3! � c � 1 � e�1

e�1 � 1 � a1 �
1
2! �

1
3! � cb

ex � 1 � x �
x2

2! �
x3

3! � c

� 1 �
1
2! �

1
3! � c� (�1)n�1 1

n!

� c � (�1)n�1an
n
b a 1

n!b

P(A1 < A2<  c<  An) � an
1
b a1

nb � an
2
b a1

nb a 1
n � 1b � an

3
b a1

nb a 1
n � 1b a 1

n � 2b
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different from the others is (365 � n � l) 365. We therefore have

P(all n birthdays are different) 

1.46. Determine how many people are required in Problem 1.45 to make the probability of distinct birthdays less
than 1 2.

Denoting the given probability by p and taking natural logarithms, we find

(1)

But we know from calculus (Appendix A, formula 7) that

(2) ln (1 � x) � �x �
x 2

2 �
x 3

3 � c

ln p � ln a1 �
1

365b � ln a1 �
2

365b � c� ln a1 �
n � 1
365 b

>

� a1 �
1

365b a1 �
2

365b c a1 �
n � 1
365 b

�
365
365 ?

364
365 ?

363
365

c

365 � n � 1
365

>

etc., and finally

(5)

Now in the sum there are terms all having the value given by (3). Similarly in

, there are terms all having the value given by (4). Therefore, the requiredan
3
b � nC3a P(Ai > Aj> Ak)

an
2
b � nC2a P(Aj > Ak)

P(A1>  A2 >c  > An) � a1
nb a 1

n � 1bc a1
1b �

1
n!



so that (1) can be written

(3)

Using the facts that for n � 2, 3, . . . (Appendix A, formulas 1 and 2)

(4)

we obtain for (3)

(5)

For n small compared to 365, say, n 30, the second and higher terms on the right of (5) are negligible
compared to the first term, so that a good approximation in this case is

(6) In 

(6) [&!ln!p�*frac*{n(n-1)}{730}&]
For Therefore, we have

(7) or n2 � n � 506 � 0 or (n �23)(n � 22) � 0

so that n � 23. Our conclusion therefore is that, if n is larger than 23, we can give better than even odds that at
least 2 people will have the same birthday.

SUPPLEMENTARY PROBLEMS

Calculation of probabilities
1.47. Determine the probability p, or an estimate of it, for each of the following events:

(a) A king, ace, jack of clubs, or queen of diamonds appears in drawing a single card from a well-shuffled
ordinary deck of cards.

(b) The sum 8 appears in a single toss of a pair of fair dice.

(c) A nondefective bolt will be found next if out of 600 bolts already examined, 12 were defective.

(d ) A 7 or 11 comes up in a single toss of a pair of fair dice.

(e) At least 1 head appears in 3 tosses of a fair coin.

1.48. An experiment consists of drawing 3 cards in succession from a well-shuffled ordinary deck of cards. Let A1 be
the event “king on first draw,” A2 the event “king on second draw,” and A3 the event “king on third draw.” State
in words the meaning of each of the following:

(a) (b) (c) (d) (e)

1.49. A marble is drawn at random from a box containing 10 red, 30 white, 20 blue, and 15 orange marbles. Find the
probability that it is (a) orange or red, (b) not red or blue, (c) not blue, (d) white, (e) red, white, or blue.

1.50. Two marbles are drawn in succession from the box of Problem 1.49, replacement being made after each
drawing. Find the probability that (a) both are white, (b) the first is red and the second is white, (c) neither is
orange, (d) they are either red or white or both (red and white), (e) the second is not blue, (f) the first is orange,
(g) at least one is blue, (h) at most one is red, (i) the first is white but the second is not, ( j) only one is red.

P[(A1 > A2)<  (Ar2  > A3)].P(Ar1>  Ar2 > Ar3),P(Ar1  < Ar2),P(A1 < A2),P(A1>  Ar2 ),

n(n � 1)
730 � 0.693

p �
1
2, ln p � �ln  2 � �0.693.

p �
n(n � 1)

730

�

ln p � �
n(n � 1)

730 �
n(n � 1)(2n � 1)

12(365)2 � c

1 � 2 � c � (n � 1) �
n(n � 1)

2 ,    12 � 22 � c � (n � 1)2 �
n(n � 1)(2n � 1)

6

ln p � � c1 � 2 � c� (n � 1)
365 d �

1
2 c

12 � 22 � c� (n � 1)2

(365)2 d �c
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1.51. Work Problem 1.50 with no replacement after each drawing.

Conditional probability and independent events
1.52. A box contains 2 red and 3 blue marbles. Find the probability that if two marbles are drawn at random (without

replacement), (a) both are blue, (b) both are red, (c) one is red and one is blue.

1.53. Find the probability of drawing 3 aces at random from a deck of 52 ordinary cards if the cards are 
(a) replaced, (b) not replaced.

1.54. If at least one child in a family with 2 children is a boy, what is the probability that both children are boys?

1.55. Box I contains 3 red and 5 white balls, while Box II contains 4 red and 2 white balls. A ball is chosen at random
from the first box and placed in the second box without observing its color. Then a ball is drawn from the
second box. Find the probability that it is white.

Bayes’ theorem or rule
1.56. A box contains 3 blue and 2 red marbles while another box contains 2 blue and 5 red marbles. A marble

drawn at random from one of the boxes turns out to be blue. What is the probability that it came from the
first box?

1.57. Each of three identical jewelry boxes has two drawers. In each drawer of the first box there is a gold watch. In
each drawer of the second box there is a silver watch. In one drawer of the third box there is a gold watch while
in the other there is a silver watch. If we select a box at random, open one of the drawers and find it to contain a
silver watch, what is the probability that the other drawer has the gold watch?

1.58. Urn I has 2 white and 3 black balls; Urn II, 4 white and 1 black; and Urn III, 3 white and 4 black. An urn is
selected at random and a ball drawn at random is found to be white. Find the probability that Urn I was
selected.

Combinatorial analysis, counting, and tree diagrams
1.59. A coin is tossed 3 times. Use a tree diagram to determine the various possibilities that can arise.

1.60. Three cards are drawn at random (without replacement) from an ordinary deck of 52 cards. Find the number of
ways in which one can draw (a) a diamond and a club and a heart in succession, (b) two hearts and then a club
or a spade.

1.61. In how many ways can 3 different coins be placed in 2 different purses?

Permutations
1.62. Evaluate (a) 4P2, (b) 7P5, (c) 10 P3.

1.63. For what value of n is n�1P3 � nP4?

1.64. In how many ways can 5 people be seated on a sofa if there are only 3 seats available?

1.65. In how many ways can 7 books be arranged on a shelf if (a) any arrangement is possible, (b) 3 particular books
must always stand together, (c) two particular books must occupy the ends?
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1.66. How many numbers consisting of five different digits each can be made from the digits 1, 2, 3, . . . , 9 if 
(a) the numbers must be odd, (b) the first two digits of each number are even?

1.67. Solve Problem 1.66 if repetitions of the digits are allowed.

1.68. How many different three-digit numbers can be made with 3 fours, 4 twos, and 2 threes?

1.69. In how many ways can 3 men and 3 women be seated at a round table if (a) no restriction is imposed,
(b) 2 particular women must not sit together, (c) each woman is to be between 2 men?

Combinations
1.70. Evaluate (a) 5C3, (b) 8C4, (c) 10C8.

1.71. For what value of n is 3 n�1C3 � 7 nC2?

1.72. In how many ways can 6 questions be selected out of 10?

1.73. How many different committees of 3 men and 4 women can be formed from 8 men and 6 women?

1.74. In how many ways can 2 men, 4 women, 3 boys, and 3 girls be selected from 6 men, 8 women, 4 boys and 5
girls if (a) no restrictions are imposed, (b) a particular man and woman must be selected?

1.75. In how many ways can a group of 10 people be divided into (a) two groups consisting of 7 and 3 people,
(b) three groups consisting of 5, 3, and 2 people?

1.76. From 5 statisticians and 6 economists, a committee consisting of 3 statisticians and 2 economists is to be
formed. How many different committees can be formed if (a) no restrictions are imposed, (b) 2 particular
statisticians must be on the committee, (c) 1 particular economist cannot be on the committee?

1.77. Find the number of (a) combinations and (b) permutations of 4 letters each that can be made from the letters of
the word Tennessee.

Binomial coefficients

1.78. Calculate (a) 6C3, (b) (c) (8C2)(4C3) 12C5.

1.79. Expand (a) (x � y)6, (b) (x � y)4, (c) (x � x –1) 5, (d) (x2 � 2)4.

1.80. Find the coefficient of x in

Probability using combinatorial analysis
1.81. Find the probability of scoring a total of 7 points (a) once, (b) at least once, (c) twice, in 2 tosses of a pair of 

fair dice.

ax �
2
xb

9

.

>a11

4
b,

??
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1.82. Two cards are drawn successively from an ordinary deck of 52 well-shuffled cards. Find the probability that
(a) the first card is not a ten of clubs or an ace; (b) the first card is an ace but the second is not; (c) at least one
card is a diamond; (d) the cards are not of the same suit; (e) not more than 1 card is a picture card ( jack, queen,
king); (f ) the second card is not a picture card; (g) the second card is not a picture card given that the first was a
picture card; (h) the cards are picture cards or spades or both.

1.83. A box contains 9 tickets numbered from 1 to 9, inclusive. If 3 tickets are drawn from the box 1 at a time, find
the probability that they are alternately either odd, even, odd or even, odd, even.

1.84. The odds in favor of A winning a game of chess against B are 3:2. If 3 games are to be played, what are 
the odds (a) in favor of A winning at least 2 games out of the 3, (b) against A losing the first 2 games
to B?

1.85. In the game of bridge, each of 4 players is dealt 13 cards from an ordinary well-shuffled deck of 52 cards. 
Find the probability that one of the players (say, the eldest) gets (a) 7 diamonds, 2 clubs, 3 hearts, and 1 spade;
(b) a complete suit.

1.86. An urn contains 6 red and 8 blue marbles. Five marbles are drawn at random from it without replacement. Find
the probability that 3 are red and 2 are blue.

1.87. (a) Find the probability of getting the sum 7 on at least 1 of 3 tosses of a pair of fair dice, (b) How many tosses
are needed in order that the probability in (a) be greater than 0.95?

1.88. Three cards are drawn from an ordinary deck of 52 cards. Find the probability that (a) all cards are of one suit,
(b) at least 2 aces are drawn.

1.89. Find the probability that a bridge player is given 13 cards of which 9 cards are of one suit.

Miscellaneous problems
1.90. A sample space consists of 3 sample points with associated probabilities given by 2p, p2, and 4p �1. Find the

value of p.

1.91. How many words can be made from 5 letters if (a) all letters are different, (b) 2 letters are identical, (c) all
letters are different but 2 particular letters cannot be adjacent?

1.92. Four integers are chosen at random between 0 and 9, inclusive. Find the probability that (a) they are all
different, (b) not more than 2 are the same.

1.93. A pair of dice is tossed repeatedly. Find the probability that an 11 occurs for the first time on the 
6th toss.

1.94. What is the least number of tosses needed in Problem 1.93 so that the probability of getting an 11 will be
greater than (a) 0.5, (b) 0.95?

1.95. In a game of poker find the probability of getting (a) a royal flush, which consists of the ten, jack, queen, king,
and ace of a single suit; (b) a full house, which consists of 3 cards of one face value and 2 of another (such as 3
tens and 2 jacks); (c) all different cards; (d) 4 aces.
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1.96. The probability that a man will hit a target is If he shoots at the target until he hits it for the first time, find
the probability that it will take him 5 shots to hit the target.

1.97. (a) A shelf contains 6 separate compartments. In how many ways can 4 indistinguishable marbles be placed in
the compartments? (b) Work the problem if there are n compartments and r marbles. This type of problem
arises in physics in connection with Bose-Einstein statistics.

1.98. (a) A shelf contains 6 separate compartments. In how many ways can 12 indistinguishable marbles be
placed in the compartments so that no compartment is empty? (b) Work the problem if there are n
compartments and r marbles where r n. This type of problem arises in physics in connection with 
Fermi-Dirac statistics.

1.99. A poker player has cards 2, 3, 4, 6, 8. He wishes to discard the 8 and replace it by another card which he hopes
will be a 5 (in which case he gets an “inside straight”). What is the probability that he will succeed assuming
that the other three players together have (a) one 5, (b) two 5s, (c) three 5s, (d) no 5? Can the problem be
worked if the number of 5s in the other players’ hands is unknown? Explain.

1.100. Work Problem 1.40 if the game is limited to 3 tosses.

1.101. Find the probability that in a game of bridge (a) 2, (b) 3, (c) all 4 players have a complete suit.

ANSWERS TO SUPPLEMENTARY PROBLEMS

1.47. (a) 5 26 (b) 5 36 (c) 0.98 (d) 2 9 (e) 7 8

1.48. (a) Probability of king on first draw and no king on second draw.

(b) Probability of either a king on first draw or a king on second draw or both.

(c) No king on first draw or no king on second draw or both (no king on first and second draws).

(d) No king on first, second, and third draws.

(e) Probability of either king on first draw and king on second draw or no king on second draw and king on
third draw.

1.49. (a) 1 3 (b) 3 5 (c) 11 15 (d) 2 5 (e) 4 5

1.50. (a) 4 25 (c) 16 25 (e) 11 15 (g) 104 225 (i) 6 25
(b) 4 75 (d) 64 225 (f) 1 5 (h) 221 225 ( j) 52 225

1.51. (a) 29 185 (c) 118 185 (e) 11 15 (g) 86 185 (i) 9 37
(b) 2 37 (d) 52 185 (f) 1 5 (h) 182 185 ( j) 26 111

1.52. (a) 3 10 (b) 1 10 (c) 3 5 1.53. (a) 1 2197 (b) 1 17,576

1.54. 1 3 1.55. 21 56 1.56. 21 31 1.57. 1 3 1.58. 14 57>>>>>
>>>>>

>>>>>
>>>>>

>>>>>
>>>>>

>>>>>

>>>>

�

2
3.
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1.59.

1.60. (a) 13 	 13 	 13 (b) 13 	 12 	 26 1.61. 8 1.62. (a) 12 (b) 2520 (c) 720

1.63. n � 5 1.64. 60 1.65. (a) 5040 (b) 720 (c) 240 1.66. (a) 8400 (b) 2520

1.67. (a) 32,805 (b) 11,664 1.68. 26 1.69. (a) 120 (b) 72 (c) 12

1.70. (a) 10 (b) 70 (c) 45 1.71. n � 6 1.72. 210 1.73. 840

1.74. (a) 42,000 (b) 7000 1.75. (a) 120 (b) 2520 1.76. (a) 150 (b) 45 (c) 100

1.77. (a) 17 (b) 163 1.78. (a) 20 (b) 330 (c) 14 99

1.79. (a) x 6 � 6x 5y � 15x 4y 2 � 20x 3y 3 � 15x 2y 3 � 6xy 5 � y 6

(b) x 4 � 4x 3y � 6x 2y 2 � 4xy3 � y 4

(c) x 5 � 5x 3 � 10x � 10x –1 � 5x –3 � x –5

(d) x 8 � 8x 6 � 24x 4 � 32x 2 � 16

1.80. 2016 1.81. (a) 5 18 (b) 11 36 (c) 1 36

1.82. (a) 47 52 (b) 16 221 (c) 15 34 (d) 13 17 (e) 210 221 (f) 10 13 (g) 40 51 (h) 77 442

1.83. 5 18 1.84. (a) 81 : 44 (b) 21 : 4

1.85. (a) (13C7)(13C2)(13C3)(13C1) 52C13 (b) 4 52C13 1.86. (6C3)(8C2) 14C5

1.87. (a) 91 216 (b) at least 17 1.88. (a) 4 13C3 /52C3 (b) (4C2 48C1�4C3) 52C3

1.89. 4(13C9)(39C4) 52C13 1.90. 1.91. (a) 120 (b) 60 (c) 72211 � 3>

>?>?>

>>>

>

>>>>>>>>

>>>

>



1.92. (a) 63 125 (b) 963 1000 1.93. 1,419,857 34,012,224 1.94. (a) 13 (b) 53

1.95. (a) 4 52C5 (b) (13)(2)(4)(6) 52C5 (c) 45 (13C5) 52C5 (d) (5)(4)(3)(2) (52)(51)(50)(49)

1.96. 2 243 1.97. (a) 126 (b) n � r�1Cn–1 1.98. (a) 462 (b) r �1Cn �1

1.99. (a) 3 32 (b) 1 16 (c) 1 32 (d) 1 8

1.100. prob. A wins � 61 216, prob. B wins � 5 36, prob. of tie � 125 216

1.101. (a) 12 (52C13)(39C13) (b) 24 (52C13)(39C13)(26C13)>>

>>>

>>>>

>

>>>>

>>>
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CHAPTER 12

Random Variables and
Probability Distributions

Random Variables
Suppose that to each point of a sample space we assign a number. We then have a function defined on the sam-
ple space. This function is called a random variable (or stochastic variable) or more precisely a random func-
tion (stochastic function). It is usually denoted by a capital letter such as X or Y. In general, a random variable
has some specified physical, geometrical, or other significance.

EXAMPLE 2.1 Suppose that a coin is tossed twice so that the sample space is S � {HH, HT, TH, TT}. Let X represent
the number of heads that can come up. With each sample point we can associate a number for X as shown in Table 2-1.
Thus, for example, in the case of HH (i.e., 2 heads), X � 2 while for TH (1 head), X � 1. It follows that X is a random
variable.

CHAPTER 2

Sample Point HH HT TH TT

X 2 1 1 0

Table 2-1

It should be noted that many other random variables could also be defined on this sample space, for example, the
square of the number of heads or the number of heads minus the number of tails.

A random variable that takes on a finite or countably infinite number of values (see page 4) is called a dis-
crete random variable while one which takes on a noncountably infinite number of values is called a nondiscrete
random variable.

Discrete Probability Distributions
Let X be a discrete random variable, and suppose that the possible values that it can assume are given by x1, x2,
x3, . . . , arranged in some order. Suppose also that these values are assumed with probabilities given by

P(X � xk) � f (xk) k � 1, 2, . . . (1)

It is convenient to introduce the probability function, also referred to as probability distribution, given by 

P(X � x) � f (x) (2)

For x � xk, this reduces to (1) while for other values of x, f (x) � 0.
In general, f (x) is a probability function if

1. f (x) � 0

2.

where the sum in 2 is taken over all possible values of x.

a
x

f (x) � 1

34
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EXAMPLE 2.2 Find the probability function corresponding to the random variable X of Example 2.1. Assuming that
the coin is fair, we have

Then

The probability function is thus given by Table 2-2.

P(X � 0) � P(TT) �
1
4

P(X � 1) � P(HT < TH ) � P(HT ) � P(TH ) �
1
4 �

1
4 �

1
2

P(X � 2) � P(HH) �
1
4

P(HH ) �
1
4  P(HT ) �

1
4  P(TH ) �

1
4  P(T T ) �

1
4

Distribution Functions for Random Variables
The cumulative distribution function, or briefly the distribution function, for a random variable X is defined by

F(x) � P(X � x) (3)

where x is any real number, i.e., � � x � .
The distribution function F(x) has the following properties:

1. F(x) is nondecreasing [i.e., F(x) � F(y) if x � y].
2.

3. F(x) is continuous from the right [i.e., for all x].

Distribution Functions for Discrete Random Variables
The distribution function for a discrete random variable X can be obtained from its probability function by noting
that, for all x in (� , ),

(4)

where the sum is taken over all values u taken on by X for which u � x.
If X takes on only a finite number of values x1, x2, . . . , xn, then the distribution function is given by

(5)

EXAMPLE 2.3 (a) Find the distribution function for the random variable X of Example 2.2. (b) Obtain its graph.

(a) The distribution function is

F(x) � d0 �` � x � 0
1
4 0 �  x � 1
3
4 1 � x � 2

1 2 � x � `

F(x) � e0 �` � x � x1

f (x1) x1 � x � x2

f (x1) � f (x2) x2 � x � x3

(  (
f (x1) � c� f (xn) xn � x � `

F(x) � P(X � x) � a
u�x

f (u)

``

lim
hS0�

F(x � h) � F(x)

lim
xS�`

F(x) � 0;  lim
xS`

F(x) � 1.

``

x 0 1 2

f (x) 1 4 1 2 1 4>>>

Table 2-2
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(b) The graph of F(x) is shown in Fig. 2-1.

The following things about the above distribution function, which are true in general, should be noted.

1. The magnitudes of the jumps at 0, 1, 2 are which are precisely the probabilities in Table 2-2. This fact
enables one to obtain the probability function from the distribution function.

2. Because of the appearance of the graph of Fig. 2-1, it is often called a staircase function or step function.
The value of the function at an integer is obtained from the higher step; thus the value at 1 is and not . This
is expressed mathematically by stating that the distribution function is continuous from the right at 0, 1, 2.

3. As we proceed from left to right (i.e. going upstairs), the distribution function either remains the same or
increases, taking on values from 0 to 1. Because of this, it is said to be a monotonically increasing function.

It is clear from the above remarks and the properties of distribution functions that the probability function of
a discrete random variable can be obtained from the distribution function by noting that

(6)

Continuous Random Variables
A nondiscrete random variable X is said to be absolutely continuous, or simply continuous, if its distribution func-
tion may be represented as

(7)

where the function f (x) has the properties

1. f (x) � 0

2.

It follows from the above that if X is a continuous random variable, then the probability that X takes on any
one particular value is zero, whereas the interval probability that X lies between two different values, say, a and b,
is given by

(8)P(a � X � b) � 3
b

a
f (x) dx

3
`

�`
f (x) dx � 1

F(x) � P(X � x) � 3
x

�`
f (u) du  (�` � x � `)

f (x) � F(x) � lim
uSx�

F(u).

1
4

3
4

1
4,

1
2,

1
4

Fig. 2-1



EXAMPLE 2.4 If an individual is selected at random from a large group of adult males, the probability that his height
X is precisely 68 inches (i.e., 68.000 . . . inches) would be zero. However, there is a probability greater than zero than X
is between 67.000 . . . inches and 68.500 . . . inches, for example.

A function f (x) that satisfies the above requirements is called a probability function or probability distribu-
tion for a continuous random variable, but it is more often called a probability density function or simply den-
sity function. Any function f (x) satisfying Properties 1 and 2 above will automatically be a density function, and
required probabilities can then be obtained from (8).

EXAMPLE 2.5 (a) Find the constant c such that the function

is a density function, and (b) compute P(1 � X � 2).

(a) Since f (x) satisfies Property 1 if c � 0, it must satisfy Property 2 in order to be a density function. Now

and since this must equal 1, we have c � 1 9.

(b)

In case f (x) is continuous, which we shall assume unless otherwise stated, the probability that X is equal
to any particular value is zero. In such case we can replace either or both of the signs � in (8) by �. Thus, in
Example 2.5,

EXAMPLE 2.6 (a) Find the distribution function for the random variable of Example 2.5. (b) Use the result of (a) to
find P(1 � x � 2).

(a) We have

If x � 0, then F(x) � 0. If 0 � x � 3, then 

If x � 3, then

Thus the required distribution function is

Note that F(x) increases monotonically from 0 to 1 as is required for a distribution function. It should also be noted
that F(x) in this case is continuous.

F(x) � •
0  x � 0

x3>27 0 � x � 3

1  x � 3

F(x) � 3
3

0
f (u) du � 3

x

3
f (u) du � 3

3

0

1
9

u2 du � 3
x

3
 0 du � 1

F(x) � 3
x

0
f  (u)  du � 3

x

0

1
9

u2 du �
x3

27

F(x) � P(X � x) � 3
x

�`
f  (u) du

P(1 � X � 2) � P(1 � X � 2) � P(1 � X � 2) � P(1 � X � 2) �
7

27

P(1 � X � 2) � 3
2

1

1
9  x2 dx �

x3

27  2  2
1

�
8

27 �
1

27 �
7

27

>

3
`

�`
f (x) dx � 3

3

0
cx2 dx �

cx3

3
 2  3

0
� 9c

f (x) � bcx2  0 � x � 3

0   otherwise
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(b) We have

as in Example 2.5.

The probability that X is between x and is given by

(9)

so that if is small, we have approximately

(10)

We also see from (7) on differentiating both sides that

(11)

at all points where f (x) is continuous; i.e., the derivative of the distribution function is the density function.
It should be pointed out that random variables exist that are neither discrete nor continuous. It can be shown

that the random variable X with the following distribution function is an example.

In order to obtain (11), we used the basic property

(12)

which is one version of the Fundamental Theorem of Calculus.

Graphical Interpretations
If f (x) is the density function for a random variable X, then we can represent y � f (x) graphically by a curve as
in Fig. 2-2. Since f (x) � 0, the curve cannot fall below the x axis. The entire area bounded by the curve and the
x axis must be 1 because of Property 2 on page 36. Geometrically the probability that X is between a and b, i.e.,
P(a � X � b), is then represented by the area shown shaded, in Fig. 2-2.

The distribution function F(x) � P(X � x) is a monotonically increasing function which increases from 0 to
1 and is represented by a curve as in Fig. 2-3.

d
dx3

x

a
f (u) du � f  (x)

F(x) � μ
0 x � 1

x
2
 1 � x � 2

1 x � 2

dF(x)
dx

� f (x)

P(x � X � x � 
x) � f (x)
x


x

P(x � X � x � 
x) � 3
x�
x

x
f  (u) du

x � 
x

P(1 � X � 2) 5 P(X � 2) � P(X � 1)

5 F(2) � F(1)

5
23

27
�

13

27
�

7
27

Fig. 2-2 Fig. 2-3



Joint Distributions 
The above ideas are easily generalized to two or more random variables. We consider the typical case of two ran-
dom variables that are either both discrete or both continuous. In cases where one variable is discrete and the other
continuous, appropriate modifications are easily made. Generalizations to more than two variables can also be
made.

1. DISCRETE CASE. If X and Y are two discrete random variables, we define the joint probability func-
tion of X and Y by

P(X � x, Y � y) � f (x, y) (13)

where 1. f (x, y) � 0

2.

i.e., the sum over all values of x and y is 1.
Suppose that X can assume any one of m values x1, x2, . . . , xm and Y can assume any one of n values y1, y2, . . . , yn.

Then the probability of the event that X � xj and Y � yk is given by 

P(X � xj, Y � yk) � f (xj, yk) (14)

A joint probability function for X and Y can be represented by a joint probability table as in Table 2-3. The
probability that X � xj is obtained by adding all entries in the row corresponding to xi and is given by

(15)P(X � xj) � f1(xj) � a
n

k�1
f (xj, yk)

a
x
a

y
f (x, y) � 1
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X

Y
y1 y2 yn Totals

x1 f (x1, y1) f (x1, y2) f (x1, yn) f1 (x1)

x2 f (x2, y1) f (x2, y2) f (x2, yn) f1 (x2)

xm f (xm, y1 ) f (xm, y2 ) f (xm, yn) f1 (xm)

Totals f2 (y1 ) f2 (y2 ) f2 (yn) 1 Grand Totaldc
S

c

(((((

c

c

c

Table 2-3

T

For j � 1, 2, . . . , m, these are indicated by the entry totals in the extreme right-hand column or margin of Table 2-3.
Similarly the probability that Y � yk is obtained by adding all entries in the column corresponding to yk and is
given by

(16)

For k � 1, 2, . . . , n, these are indicated by the entry totals in the bottom row or margin of Table 2-3.
Because the probabilities (15) and (16) are obtained from the margins of the table, we often refer to 

f1(xj) and f2(yk) [or simply f1(x) and f2(y)] as the marginal probability functions of X and Y, respectively. 

P(Y � yk) � f2(yk) � a
m

j�1
f (xj, yk)
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It should also be noted that

(17)

which can be written

(18)

This is simply the statement that the total probability of all entries is 1. The grand total of 1 is indicated in the
lower right-hand corner of the table.

The joint distribution function of X and Y is defined by

(19)

In Table 2-3, F(x, y) is the sum of all entries for which xj � x and yk � y.

2. CONTINUOUS CASE. The case where both variables are continuous is obtained easily by analogy with
the discrete case on replacing sums by integrals. Thus the joint probability function for the random vari-
ables X and Y (or, as it is more commonly called, the joint density function of X and Y ) is defined by

1. f (x, y) � 0

2.

Graphically z � f(x, y) represents a surface, called the probability surface, as indicated in Fig. 2-4. The total vol-
ume bounded by this surface and the xy plane is equal to 1 in accordance with Property 2 above. The probability
that X lies between a and b while Y lies between c and d is given graphically by the shaded volume of Fig. 2-4 and
mathematically by

(20)P(a � X � b,  c � Y � d ) � 3
b

x�a
3

d

y�c
f (x, y) dx dy

3
`

�`
3
`

�`
f (x, y) dx dy � 1

F(x, y) � P(X �  x,  Y �  y) � a  
u� x 

a
v� y

f (u, v)

a
m

j�1
 a

n

k�1
f (xj, yk) � 1

a
m

j�1
f1 (xj) � 1 a

n

k�1
f2 (yk) � 1

More generally, if A represents any event, there will be a region A of the xy plane that corresponds to it. In such
case we can find the probability of A by performing the integration over A, i.e.,

(21)

The joint distribution function of X and Y in this case is defined by

(22)F(x, y) � P(X �  x,  Y � y) � 3
x

u��`
3

y

v��`
f (u, v) du dv

P(A) � 33
5A

f (x, y) dx dy

5
5

Fig. 2-4



It follows in analogy with (11), page 38, that

(23)

i.e., the density function is obtained by differentiating the distribution function with respect to x and y.
From (22) we obtain

(24)

(25)

We call (24) and (25) the marginal distribution functions, or simply the distribution functions, of X and Y, respec-
tively. The derivatives of (24) and (25) with respect to x and y are then called the marginal density functions, or
simply the density functions, of X and Y and are given by

(26)

Independent Random Variables
Suppose that X and Y are discrete random variables. If the events X � x and Y � y are independent events for all
x and y, then we say that X and Y are independent random variables. In such case,

(27)

or equivalently

f (x, y) � f1(x) f2(y) (28)

Conversely, if for all x and y the joint probability function f (x, y) can be expressed as the product of a function
of x alone and a function of y alone (which are then the marginal probability functions of X and Y), X and Y are
independent. If, however, f (x, y) cannot be so expressed, then X and Y are dependent.

If X and Y are continuous random variables, we say that they are independent random variables if the events
X � x and Y � y are independent events for all x and y. In such case we can write

P(X � x, Y � y) � P(X � x)P(Y � y) (29)

or equivalently

F(x, y) � F1(x)F2(y) (30)

where F1(z) and F2(y) are the (marginal) distribution functions of X and Y, respectively. Conversely, X and Y are
independent random variables if for all x and y, their joint distribution function F(x, y) can be expressed as a prod-
uct of a function of x alone and a function of y alone (which are the marginal distributions of X and Y, respec-
tively). If, however, F(x, y) cannot be so expressed, then X and Y are dependent.

For continuous independent random variables, it is also true that the joint density function f (x, y) is the prod-
uct of a function of x alone, f1(x), and a function of y alone, f2(y), and these are the (marginal) density functions
of X and Y, respectively.

Change of Variables
Given the probability distributions of one or more random variables, we are often interested in finding distribu-
tions of other random variables that depend on them in some specified manner. Procedures for obtaining these
distributions are presented in the following theorems for the case of discrete and continuous variables.

P(X � x,  Y � y) � P(X � x)P(Y � y)

f1(x) � 3
`

v��`
f (x, v) dv  f2( y) � 3

`

u��`
f (u, y) du

P(Y �  y) � F2( y) � 3
`

u��`
3

y

v��`
f (u, v) du dv

P(X �  x) � F1(x) � 3
x

u��`
3
`

v��`
f (u, v) du dv

'2F
'x'y � f (x, y)
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1. DISCRETE VARIABLES
Theorem 2-1 Let X be a discrete random variable whose probability function is f (x). Suppose that a discrete

random variable U is defined in terms of X by U � �(X), where to each value of X there corre-
sponds one and only one value of U and conversely, so that X � �(U). Then the probability func-
tion for U is given by

g(u) � f [�(u)] (31)

Theorem 2-2 Let X and Y be discrete random variables having joint probability function f (x, y). Suppose that
two discrete random variables U and V are defined in terms of X and Y by U � �1(X, Y), V �
�2 (X, Y), where to each pair of values of X and Y there corresponds one and only one pair of val-
ues of U and V and conversely, so that X � �1(U, V ), Y � �2(U, V). Then the joint probability
function of U and V is given by

g(u, v) � f [�1(u, v), �2(u, v)] (32)

2. CONTINUOUS VARIABLES
Theorem 2-3 Let X be a continuous random variable with probability density f (x). Let us define U � �(X)

where X � � (U ) as in Theorem 2-1. Then the probability density of U is given by g(u) where

g(u)|du | � f (x) |dx | (33)

or (34)

Theorem 2-4 Let X and Y be continuous random variables having joint density function f (x, y). Let us define
U � �1(X, Y ), V � �2(X, Y ) where X � �1(U, V ), Y � �2(U, V ) as in Theorem 2-2. Then the
joint density function of U and V is given by g(u, v) where

g(u, v)|du dv | � f (x, y)|dx dy | (35)

or (36)

In (36) the Jacobian determinant, or briefly Jacobian, is given by

(37)

Probability Distributions of Functions of Random Variables
Theorems 2-2 and 2-4 specifically involve joint probability functions of two random variables. In practice one
often needs to find the probability distribution of some specified function of several random variables. Either of
the following theorems is often useful for this purpose.

Theorem 2-5 Let X and Y be continuous random variables and let U � �1(X, Y ), V � X (the second choice is
arbitrary). Then the density function for U is the marginal density obtained from the joint den-
sity of U and V as found in Theorem 2-4. A similar result holds for probability functions of dis-
crete variables.

Theorem 2-6 Let f (x, y) be the joint density function of X and Y. Then the density function g(u) of the 
random variable U � �1(X, Y ) is found by differentiating with respect to u the distribution 

∞J �
'(x, y)
'(u, v)

�

'x
'u   

'x
'v

'y
'u   

'y
'v

∞

g(u, v) �  f (x, y) 2  '(x, y)
'(u, v) 

2 � f [ c1 (u, v), c2(u, v)]ZJZ

g(u) � f (x) 2  dx
du

 2 � f [c (u)]Z  cr(u)Z



function given by

(38)

Where is the region for which �1(x, y) � u.

Convolutions
As a particular consequence of the above theorems, we can show (see Problem 2.23) that the density function of
the sum of two continuous random variables X and Y, i.e., of U � X � Y, having joint density function f (x, y) is
given by

(39)

In the special case where X and Y are independent, f (x, y) � f1 (x) f2 (y), and (39) reduces to

(40)

which is called the convolution of f1 and f2, abbreviated, f1 * f2.
The following are some important properties of the convolution:

1. f1 * f2 � f2 * f1

2. f1 *( f2 * f3) � ( f1 * f2) * f3

3. f1 *( f2 � f3) � f1 * f2 � f1 * f3

These results show that f1, f2, f3 obey the commutative, associative, and distributive laws of algebra with respect
to the operation of convolution.

Conditional Distributions
We already know that if P(A) � 0,

(41)

If X and Y are discrete random variables and we have the events (A: X � x), (B: Y � y), then (41) becomes

(42)

where f (x, y) � P(X � x, Y � y) is the joint probability function and f1 (x) is the marginal probability function
for X. We define

(43)

and call it the conditional probability function of  Y given X. Similarly, the conditional probability function of X
given Y is

(44)

We shall sometimes denote f (x y) and f( y x) by f1 (x y) and f2 ( y x), respectively.
These ideas are easily extended to the case where X, Y are continuous random variables. For example, the con-

ditional density function of Y given X is

(45)f (y u x) ;
f (x, y)
f1(x)

uuuu

f  (x u  y) ;   
f (x, y)
f2(y)

f (y u  x) ;   
f (x, y)
f1(x)

P(Y � y u  X �  x) �  
f (x, y)
f1(x)

P(B uA) �  
P(A ¨  B)

P(A)

g(u) � 3
`

�`
f1(x) f2 (u � x) dx

g(u) �  3
`

�`
f (x, u � x) dx

5

G(u) � P[f1 (X, Y ) � u] � 6
5

 

 f (x, y) dx dy
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where f (x, y) is the joint density function of X and Y, and f1 (x) is the marginal density function of X. Using (45)
we can, for example, find that the probability of Y being between c and d given that x � X � x � dx is

(46)

Generalizations of these results are also available.

Applications to Geometric Probability
Various problems in probability arise from geometric considerations or have geometric interpretations. For ex-
ample, suppose that we have a target in the form of a plane region of area K and a portion of it with area K1, as
in Fig. 2-5. Then it is reasonable to suppose that the probability of hitting the region of area K1 is proportional
to K1. We thus define

P(c � Y � d u x � X � x � dx) � 3
d

c
f ( y u x) dy

Fig. 2-5

(47)

where it is assumed that the probability of hitting the target is 1. Other assumptions can of course be made. For
example, there could be less probability of hitting outer areas. The type of assumption used defines the proba-
bility distribution function.

SOLVED PROBLEMS

Discrete random variables and probability distributions
2.1. Suppose that a pair of fair dice are to be tossed, and let the random variable X denote the sum of the points.

Obtain the probability distribution for X.

The sample points for tosses of a pair of dice are given in Fig. 1-9, page 14. The random variable X is the sum of
the coordinates for each point. Thus for (3, 2) we have X � 5. Using the fact that all 36 sample points are equally
probable, so that each sample point has probability 1 36, we obtain Table 2-4. For example, corresponding to X � 5,
we have the sample points (1, 4), (2, 3), (3, 2), (4, 1), so that the associated probability is 4 36.>

>

P(hitting region of area K1) �  
K1

K

x 2 3 4 5 6 7 8 9 10 11 12

f (x) 1 36 2 36 3 36 4 36 5 36 6 36 5 36 4 36 3 36 2 36 1 36>>>>>>>>>>>

Table 2-4



2.2. Find the probability distribution of boys and girls in families with 3 children, assuming equal probabilities
for boys and girls.

Problem 1.37 treated the case of n mutually independent trials, where each trial had just two possible outcomes,
A and A�, with respective probabilities p and q � 1 � p. It was found that the probability of getting exactly x A’s
in the n trials is nCx px qn�x. This result applies to the present problem, under the assumption that successive births
(the “trials”) are independent as far as the sex of the child is concerned. Thus, with A being the event “a boy,” n � 3,
and , we have

where the random variable X represents the number of boys in the family. (Note that X is defined on the
sample space of 3 trials.) The probability function for X,

is displayed in Table 2-5.

f (x) � 3Cx Q12R
3

P(exactly x  boys) � P(X �  x) � 3Cx Q12R
xQ1

2
R3�x

 �  3Cx Q12R
3

p � q �
1
2
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x 0 1 2 3

f (x) 1 8 3 8 3 8 1 8>>>>

Table 2-5

Discrete distribution functions
2.3. (a) Find the distribution function F(x) for the random variable X of Problem 2.1, and (b) graph this distri-

bution function.

(a) We have Then from the results of Problem 2.1, we find

(b) See Fig. 2-6.

F(x)  �   g0  �`  �  x �  2

1>36  2 �   x �  3

3>36  3 �   x �  4

6>36  4 �   x �  5

(   (
35>36 11 �   x �  12

1  12 �   x �  `

F(x) � P(X � x) � gu� x f (u).

Fig. 2-6

2.4. (a) Find the distribution function F(x) for the random variable X of Problem 2.2, and (b) graph this distri-
bution function.
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(a) Using Table 2-5 from Problem 2.2, we obtain

(b) The graph of the distribution function of (a) is shown in Fig. 2-7.

F(x)  �   e0  �`  �  x � 0

1>8 0 �   x �  1

1>2 1 �   x �  2

7>8 2 �   x �  3

1  3 �  x �  `

Fig. 2-7

Continuous random variables and probability distributions
2.5. A random variable X has the density function f (x) � c (x2 � 1), where � � x � . (a) Find the value of

the constant c. (b) Find the probability that X2 lies between 1 3 and 1.

(a) We must have i.e.,

so that c � 1 �.

(b) If then either or Thus the required probability is

2.6. Find the distribution function corresponding to the density function of Problem 2.5.

�
1
2

  �   
1
p  tan �1 x

�
1
p  [tan �1 x � tan �1(�`)]  �   

1
p  B tan �1 x �  

p
2
RF(x)  � 3

x

�`
f (u) du �

1
p3

x

�`
  

du
u2 � 1

�
1
p  B tan�1 uZx

�`
R

�
2
p ¢p4 �

p
6
≤ �  

1
6

�
2
p  Btan �1(1) � tan �1¢23

3
≤ R1

p3
�!3>3

�1

 
dx

x2 � 1
�

1
p3

1

!3>3
dx

x2 � 1
�

2
p3

1

!3>3
dx

x2 � 1

�1 � X � �
23
3 .

23
3  �   X �   1

1
3 � X2 � 1,

>
3
`

�`

c dx
x2 � 1

� c tan �1 x P`
�`

� cBp
2

 �  ¢�
p
2
≤ R � 1

3
`

�`
f (x) dx � 1,

>
``>



2.7. The distribution function for a random variable X is

Find (a) the density function, (b) the probability that X � 2, and (c) the probability that �3 � X � 4.

(a)

(b)

Another method
By definition, P(X � 2) � F(2) � 1 � e�4. Hence,

P(X � 2) � 1 � (1 � e�4) � e�4

(c)

Another method

P(�3 � X � 4) � P(X � 4) � P(X � �3)

� F(4) � F(�3)

� (1 � e�8) � (0) � 1 � e�8

Joint distributions and independent variables
2.8. The joint probability function of two discrete random variables X and Y is given by f(x, y) � c(2x � y), where

x and y can assume all integers such that 0 � x � 2, 0 � y � 3, and f (x, y) � 0 otherwise.

(a) Find the value of the constant c. (c) Find P(X � 1, Y � 2).
(b) Find P(X � 2, Y � 1).

(a) The sample points (x, y) for which probabilities are different from zero are indicated in Fig. 2-8. The
probabilities associated with these points, given by c(2x � y), are shown in Table 2-6. Since the grand total,
42c, must equal 1, we have c � 1 42.>

P(�3 �  X �   4) � 3
4

�3
f (u) du � 3

0

�3
 0 du � 3

4

0
 2e�2u du

� �e�2u Z 4
0

� 1 � e�8

P(X � 2) � 3
`

2
 2e�2u du � �e�2u P `

2 � e�4

f (x)  �   
d
dx

 F(x) � e2e�2x x  �  0

0  x �  0

F(x) � e1 � e�2x x  �   0

0  x  �  0
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X
Y 0 1 2 3 Totals

0 0 c 2c 3c 6c

1 2c 3c 4c 5c 14c

2 4c 5c 6c 7c 22c

Totals 6c 9c 12c 15c 42cS

T

Fig. 2-8

Table 2-6

(b) From Table 2-6 we see that

P(X �  2,  Y �  1)  �  5c �  
5
42
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(c) From Table 2-6 we see that

as indicated by the entries shown shaded in the table.

2.9. Find the marginal probability functions (a) of X and (b) of Y for the random variables of Problem 2.8.

(a) The marginal probability function for X is given by P(X � x) � f1(x) and can be obtained from the margin
totals in the right-hand column of Table 2-6. From these we see that

Check:

(b) The marginal probability function for Y is given by P(Y � y) � f2(y) and can be obtained from the margin
totals in the last row of Table 2-6. From these we see that

Check:

2.10. Show that the random variables X and Y of Problem 2.8 are dependent.

If the random variables X and Y are independent, then we must have, for all x and y,

But, as seen from Problems 2.8(b) and 2.9,

so that

The result also follows from the fact that the joint probability function (2x � y) 42 cannot be expressed as a
function of x alone times a function of y alone.

2.11. The joint density function of two continuous random variables X and Y is

(a) Find the value of the constant c. (c) Find P(X � 3, Y � 2).

(b) Find P(1 � X � 2, 2 � Y � 3).

(a) We must have the total probability equal to 1, i.e.,

3
`

�`
3
`

�`
f (x, y) dx dy � 1

f (x, y) �  e cxy 0 � x � 4,  1 � y � 5

0 otherwise

>
P(X � 2, Y � 1) 2 P(X � 2)P(Y � 1)

P(Y �  1) �  
3
14P(X �  2) �  

11
21P(X �  2, Y �  1) �  

5
42

P(X � x, Y � y) � P(X � x)P(Y � y)

1
7 �

3
14 �

2
7 �

5
14 � 1

P(Y �  y) �  f2(y) �  μ
6c �  1>7 y �  0

9c �  3>14 y �  1

12c �  2>7 y �  2

15c �  5>14 y �  3

1
7

 �  
1
3

 �  
11
21

 �  1

P(X � x) � f1 (x) �  •
6c � 1>7 x � 0

14c � 1>3 x � 1

22c � 11>21 x � 2

� 24c �
24
42

�
4
7

� (2c � 3c � 4c)(4c � 5c � 6c)

P(X � 1, Y � 2) � a
x�1

 a
y�2

f (x, y)



Using the definition of f (x, y), the integral has the value

Then 96c � 1 and c � 1 96.

(b) Using the value of c found in (a), we have

(c)

2.12. Find the marginal distribution functions (a) of X and (b) of Y for Problem 2.11.

(a) The marginal distribution function for X if 0 � x � 4 is

For x � 4, F1(x) � 1; for x � 0, F1(x) � 0. Thus

As F1 (x) is continuous at x � 0 and x � 4, we could replace � by � in the above expression.

F1(x) � •
0 x � 0

x2>16 0 � x � 4

1 x � 4

�
1

963
x

u�0
B 35

v�1
uvdvR  du �

x2

16

� 3
x

u�0
3

5

v�1
 
uv
96

dudv

F1(x) � P(X � x) � 3
x

u��`
3
`

v��`
f (u, v) dudv

�
1

963
4

x�3

3x
2

 dx �
7

128

�
1

963
4

x�3
B32

y�1
xydyR  dx �

1
963

4

x�3

xy2

2
2 2
y�1

dx

P(X � 3, Y � 2) � 3
4

x�3
3

2

y�1

xy
96

dx dy

�
1

963
2

x�1
 
5x
2

 dx �
5

192
ax2

2
b 2 2

1

�
5

128

�
1
963

2

x�1
B33

y�2
xy dyR  dx �

1
963

2

x�1

xy2

2
2 3
y�2

 dx

P(1 �  X �  2, 2 �  Y � 3)  �   3
2

x�1
3

3

y�2 

 
xy
96

  dx dy

>

� c3
4

x�0
 12x dx � c(6x2) 2 4

x�0

� 96c

�  c3
4

z�0
 
xy2

2
 2 5

y�1

dx � c3
4

x�0
¢25x

2
�

x
2
≤  dx

3
4

x�0
3

5

y�1
cxy dxdy � c3

4

x�0 

B35

y�1
xydyR  dx
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(b) The marginal distribution function for Y if 1 � y � 5 is

For y � 5, F2( y) � 1. For y � 1, F2(y) � 0. Thus

As F2(y) is continuous at y � 1 and y � 5, we could replace � by � in the above expression.

2.13. Find the joint distribution function for the random variables X, Y of Problem 2.11.

From Problem 2.11 it is seen that the joint density function for X and Y can be written as the product of a
function of x alone and a function of y alone. In fact, f (x, y) � f1(x) f2(y), where

and c1c2 � c � 1 96. It follows that X and Y are independent, so that their joint distribution function is given by>
f2(y) �  e c2y 1 �  y �  5

0 otherwise
f1 (x) � e c1x 0 �  x � 4

0 otherwise

F2(y) � •
0 y � 1

(y2 � 1)>24 1 � y � 5

1 y � 5

� 3
4

u�0
 3

y

v�1
  
uv
96

dudv �
y2 � 1

24

F2( y) � P(Y � y) � 3
`

u��`
 3

y

v�1
f (u, v) dudv

Fig. 2-9

In Fig. 2-10 we have indicated the square region 0 � x � 4, 1 � y � 5 within which the joint density
function of X and Y is different from zero. The required probability is given by

P(X �  Y � 3)  �   6
5

 

 f (x, y) dx dy

F(x, y) � F1(x)F2(y). The marginal distributions F1(x) and F2(y) were determined in Problem 2.12, and Fig. 2-9
shows the resulting piecewise definition of F(x, y).

2.14. In Problem 2.11 find P(X � Y � 3).



where is the part of the square over which x � y � 3, shown shaded in Fig. 2-10. Since f (x, y) � xy 96
over , this probability is given by

�
1
963

2

x�0
 
xy2

2
 2 3�x

y�1

 dx �  
1

1923
2

x�0
[x(3 � x)2 � x] �  

1
48

�
1

963
2

x�0
B 33�x

y�1
 xy dyR  dx

3
2

x�0
 3

3�x

y�1
 
xy
96

dxdy

5
>5
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Fig. 2-10

Change of variables
2.15. Prove Theorem 2-1, page 42.

The probability function for U is given by

In a similar manner Theorem 2-2, page 42, can be proved.

2.16. Prove Theorem 2-3, page 42.

Consider first the case where u � �(x) or x � �(u) is an increasing function, i.e., u increases as x increases
(Fig. 2-11). There, as is clear from the figure, we have

(1) P(u1 � U � u2) � P(x1 � X � x2)

or

(2) 3
u2

u1

g(u) du � 3
x2

x1

f (x) dx

g(u) � P(U � u) � P[f(X) � u] � P[X � c(u)] � f [c(u)]

Fig. 2-11
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Letting x � �(u) in the integral on the right, (2) can be written

This can hold for all u1 and u2 only if the integrands are identical, i.e.,

This is a special case of (34), page 42, where (i.e., the slope is positive). For the case where
i.e., u is a decreasing function of x, we can also show that (34) holds (see Problem 2.67). The

theorem can also be proved if or .

2.17. Prove Theorem 2-4, page 42.

We suppose first that as x and y increase, u and v also increase. As in Problem 2.16 we can then show that

P(u1 � U � u2, v1 � V � v2) � P(x1 � X � x2, y1 � Y � y2)

or

Letting x � �1 (u, v), y � �2(u, v) in the integral on the right, we have, by a theorem of advanced calculus,

where

is the Jacobian. Thus

which is (36), page 42, in the case where J � 0. Similarly, we can prove (36) for the case where J � 0.

2.18. The probability function of a random variable X is

Find the probability function for the random variable .

Since the relationship between the values u and x of the random variables U and X is given by 

u � x4 � 1 or where u � 2, 17, 82, . . . and the real positive root is taken. Then the required

probability function for U is given by

using Theorem 2-1, page 42, or Problem 2.15.

2.19. The probability function of a random variable X is given by

Find the probability density for the random variable U �
1
3  (12 � X ).

f (x) � e x2>81 �3 � x � 6

0 otherwise

g(u) � e2�24 u�1 u � 2, 17, 82, . . .

0 otherwise

x � 24 u � 1,

U � X4 � 1,

U � X4 � 1

f (x) � e2�x x � 1, 2, 3, c

0 otherwise

g(u, v) � f [c1(u, v), c2(u, v)]J

J �
'(x, y)
'(u, v)

3
u2

v1

3
v2

v1

g(u, v) du dv � 3
u2

u1

3
v2

v1

f [c1 (u, v), c2(u, v)]J du dv

3
u2

v1

3
v2

v1

g(u, v) du dv � 3
x2

x1

3
y2

y1

f (x, y) dx dy

cr(u) � 0cr(u) � 0
cr(u) � 0,

cr(u) � 0

g(u) � f [c(u)]cr(u)

3
u2

u1

g(u) du � 3
u2

u1

f [c (u)] cr(u) du



We have or x � 12 � 3u. Thus to each value of x there is one and only one value of u andu �
1
3   (12 � x)
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Fig. 2-12

But if 9 � u � 36, we have

G(u)  �   P(U �   u)  �   P(�3 �  X � !u) � 32u

�3
f (x) dx

conversely. The values of u corresponding to x � �3 and x � 6 are u � 5 and u � 2, respectively. Since
, it follows by Theorem 2-3, page 42, or Problem 2.16 that the density function for U is

Check:

2.20. Find the probability density of the random variable U � X2 where X is the random variable of
Problem 2.19.

We have or Thus to each value of x there corresponds one and only one value of u, but to
each value of there correspond two values of x. The values of x for which �3 � x � 6 correspond to
values of u for which 0 � u � 36 as shown in Fig. 2-12.

As seen in this figure, the interval �3 � x � 3 corresponds to 0 � u � 9 while 3 � x � 6 corresponds to 
9 � u � 36. In this case we cannot use Theorem 2-3 directly but can proceed as follows. The distribution
function for U is

G(u) � P(U � u)

Now if 0 � u � 9, we have

� 3
1u

�1u
f (x) dx

G(u) � P(U � u) � P(X2 � u) � P(�!u � X � !u)

u 2 0
x � !u.u � x2

3
5

2
 
(12 � 3u)2

27
du � �

(12 � 3u)3

243
 2 5

2

� 1

g(u) � e (12 � 3u)2>27 2 � u � 5

0 otherwise

cr(u) � dx>du � �3
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Since the density function g(u) is the derivative of G(u), we have, using (12),

Using the given definition of f (x), this becomes

Check:

2.21. If the random variables X and Y have joint density function

(see Problem 2.11), find the density function of U � X � 2Y.

Method 1
Let u � x � 2y, v � x, the second relation being chosen arbitrarily. Then simultaneous solution 
yields Thus the region 0 � x � 4, 1 � y � 5 corresponds to the region 0 � v � 4,x � v, y �

1
2 (u � v).

f (x, y) � e xy>96 0 � x � 4,  1 � y � 5

0 otherwise

3
9

0
 
!u
81

 du � 3
36

9
 
!u
162

  du �
2u3>2
243

 2 9
0

�
u3>2
243

  2 36

9

� 1

g(u) � •
!u>81   0 �   u �   9

!u>162    9 � u � 36

0 otherwise

g(u) � e f (!u) � f (�!u)

2!u
0 � u � 9

f (!u)

2!u
9 � u � 36

0 otherwise

Fig. 2-13

The Jacobian is given by

J � 4  'x'u 'x
'v

'y
'u

'y
'v

 4
0 1

1
2 �

1
2

�

� �
1
2

2 � u � v � 10 shown shaded in Fig. 2-13.
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Then by Theorem 2-4 the joint density function of U and V is

The marginal density function of U is given by

as seen by referring to the shaded regions I, II, III of Fig. 2-13. Carrying out the integrations, we find

A check can be achieved by showing that the integral of g1 (u) is equal to 1.

Method 2
The distribution function of the random variable X � 2Y is given by

For 2 � u � 6, we see by referring to Fig. 2-14, that the last integral equals

The derivative of this with respect to u is found to be (u � 2)2(u � 4) 2304. In a similar manner we can obtain
the result of Method 1 for 6 � u � 10, etc.

>
3

u�2

x�0
3

(u�x)>2
y�1

 
xy
96  dx dy � 3

u�2

x�0
B x(u � x)2

768 �
x

192 R dx

P(X � 2Y �   u) � 6
x�2y�  u

f (x, y)dx  dy � 6
x�2y�u
0�x�4
1�y�5

 
xy
96 dx  dy

g1(u) � d (u � 2)2(u � 4)>2304 2 � u � 6

(3u � 8)>144 6 � u � 10

(348u � u3 � 2128)>2304  10 � u � 14

0 otherwise

g1(u) � g3u�2

v�0
 
v(u � v)

384 dv 2 �  u �  6

3
4

v�0
 
v(u � v)

384 dv 6 � u � 10

3
4

v�u�10

v(u � v)
384 dv 10 � u � 14

0  otherwise

g(u, v) � ev(u � v)>384 2 � u � v � 10, 0 � v � 4

0 otherwise

Fig. 2-14 Fig. 2-15
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2.22. If the random variables X and Y have joint density function

(see Problem 2.11), find the joint density function of U � XY 2, V � X2Y.

Consider u � xy2, v � x2y. Dividing these equations, we obtain y x � u v so that y � ux v. This leads to>>>

f (x,  y) � e xy>96 0 � x � 4,  1 � y � 5

0 otherwise

the simultaneous solution x � v2 3 u �1 3, y � u2 3 v �1 3. The image of 0 � x � 4, 1 � y � 5 in the uv-plane is
given by

which are equivalent to

This region is shown shaded in Fig. 2-15.
The Jacobian is given by

Thus the joint density function of U and V is, by Theorem 2-4,

or

Convolutions
2.23. Let X and Y be random variables having joint density function f (x, y). Prove that the density function of

U � X � Y is

Method 1
Let U � X � Y, V � X, where we have arbitrarily added the second equation. Corresponding to these we have 
u � x � y, v � x or x � v, y � u � v. The Jacobian of the transformation is given by

Thus by Theorem 2-4, page 42, the joint density function of U and V is

g(u, v) � f (v, u � v)

It follows from (26), page 41, that the marginal density function of U is

g(u) � 3
`

�`
 f (v, u � v)dv

J � 4 'x'u 'x
'v

'y
'u 

'y
'v

4 � 2  0 1

1 �1
 2 � �1

g(u) � 3
`

�`
 f (v, u � v)dv

g(u, v) � eu�1>3 v�1>3>288 v2 � 64u,  v � u2 � 125v

0 otherwise

g(u, v) � c(v2> 3u�1>3)(u2>3v�1>3)
96 (1

3  u�2>3 v�2>3)  v2 � 64u, v � u2 � 125v

0 otherwise

J � 4�1
3v

2>3 u�4>3 2
3 v

�1>3u�1>3

2
3 u�1>3 v�1>3 �

1
3 u2>3v�4>3

4 � �
1
3  u�2>3 v�2>3

v2 � 64u  v � u2 � 125v

0 � v2>3u�1>3 � 4  1 � u2>3v�1>3 � 5

>>>>
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Method 2
The distribution function of U � X � Y is equal to the double integral of f (x, y) taken over the region defined
by x � y u, i.e.,

Since the region is below the line x � y � u, as indicated by the shading in Fig. 2-16, we see that

G(u) � 3
`

x��`
B 3u�x

y��`  

f (x, y) dyR  dx

G(u) � 6
x�y�  u

f (x, y) dx dy

�

Fig. 2-16

The density function of U is the derivative of G (u) with respect to u and is given by

using (12) first on the x integral and then on the y integral.

2.24. Work Problem 2.23 if X and Y are independent random variables having density functions f1(x), f2(y),
respectively.

In this case the joint density function is f (x, y) � f 1(x) f2(y), so that by Problem 2.23 the density function 
of U � X � Y is

which is the convolution of f1 and f2.

2.25. If X and Y are independent random variables having density functions

find the density function of their sum, U � X � Y.

By Problem 2.24 the required density function is the convolution of f1 and f2 and is given by

In the integrand f1 vanishes when v � 0 and f2 vanishes when v � u. Hence

�  6e�3u 3
u

0 

ev dv � 6e�3u (eu � 1) � 6(e�2u � e3u)

g(u) � 3
u

0
(2e�2v)(3e�3(u�v)) dv

g(u) � f1 * f2 � 3
`

�`
f1(v) f2(u � v) dv

f2(y) � e3e�3y y � 0

0 y � 0
f1(x) � e2e�2x x � 0

0 x � 0

g(u) � 3
`

�`
f1(v) f2(u � v)dv � f1 * f2

g(u) � 3
`

�`
f (x, u � x)dx
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if u � 0 and g(u) � 0 if u � 0.

Check:

2.26. Prove that f1 * f2 � f2 * f1 (Property 1, page 43).
We have

Letting w � u � v so that v� u � w, dv � �dw, we obtain

Conditional distributions
2.27. Find (a) f (y 2), (b) P(Y � 1 X � 2) for the distribution of Problem 2.8.

(a) Using the results in Problems 2.8 and 2.9, we have

so that with x � 2

(b)

2.28. If X and Y have the joint density function

find (a) f ( y x), (b) 

(a) For 0 � x � 1,

and

For other values of x, f ( y x) is not defined.

(b)

2.29. The joint density function of the random variables X and Y is given by

Find (a) the marginal density of X, (b) the marginal density of Y, (c) the conditional density of X, (d) the
conditional density of Y.

The region over which f (x, y) is different from zero is shown shaded in Fig. 2-17.

f (x, y) � e8xy 0 �  x � 1, 0 � y �  x

0 otherwise

P(Y �  
1
2 u  

1
2 �  X �  

1
2 �  dx) � 3

`

1>2 f (y u 1
2) dy � 3

1

1> 2
 
3 � 2y

4  dy �
9

16

u

f (y u x) �
f (x, y)
f1(x) � •

3 � 4xy
3 � 2x 0 �  y �  1

0 other y

f1(x) � 3
1

0
¢ 3

4 � xy≤ dy �
3
4 �

x
2

P(Y �
1
2 u  

1
2 � X �  

1
2 � dx).u

f (x, y) � e 3
4 � xy  0 �  x � 1,  0 � y � 1

0 otherwise

P(Y � 1 u  X � 2) � f (1 u 2) �
5

22

f (y u 2) �
(4 � y)>42

11>21
�

4 �  y
22

f (y u x) �
f (x, y)
f1(x) �

(2x �  y)>42
f1(x)

uu

f1 * f2 � 3
�`

w�` 

 f1(u � w) f2(w)(�dw) � 3
`

w��`
 
 

f2(w)f1(u � w) dw � f2 * f1

f1 * f2 � 3
`

v��` 

f1(v) f2(u � v) dv

3
`

�`
 g(u) du �  63

`

0
(e�2u � e�3u) du � 6¢ 1

2 �
1
3 ≤ � 1
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(a) To obtain the marginal density of X, we fix x and integrate with respect to y from 0 to x as indicated by the
vertical strip in Fig. 2-17. The result is

for 0 � x � 1. For all other values of x, f1 (x) � 0.

(b) Similarly, the marginal density of Y is obtained by fixing y and integrating with respect to x from x � y to x � 1,
as indicated by the horizontal strip in Fig. 2-17. The result is, for 0 � y � 1,

For all other values of y, f2 ( y) � 0.

(c) The conditional density function of X is, for 0 � y � 1,

The conditional density function is not defined when f2( y) � 0.

(d) The conditional density function of Y is, for 0 � x � 1,

The conditional density function is not defined when f1(x) � 0.

Check:

2.30. Determine whether the random variables of Problem 2.29 are independent.

In the shaded region of Fig. 2-17, f (x, y) � 8xy, f1(x) � 4x3, f2( y) � 4y (1 � y2). Hence f (x, y) f1(x) f2( y),
and thus X and Y are dependent.

It should be noted that it does not follow from f (x, y) � 8xy that f (x, y) can be expressed as a function of x
alone times a function of y alone. This is because the restriction 0 y x occurs. If this were replaced by
some restriction on y not depending on x (as in Problem 2.21), such a conclusion would be valid.

��

2

3
x

0
f2( y u x) dy � 3

x

0
 
2y
x 2 dy � 1

3
1

y
 f1(x u y) dx � 3

1

y
 

2x
1 � y2  dx � 1

3
1

0
f1(x) dx � 3

1

0 

4x 3 dx � 1, 3
1

0
f2(y) dy � 3

1

0
 4y(1 � y2) dy � 1

f2(y u x) �
f (x, y)
f1(x) � e2y>x 2 0 � y �  x

0  other y

f1(x u y) �
f (x, y)
f2 (y) � e2x>(1 � y2) y �   x �   1

0 other x

f2 (y) � 3
1

x�y
 8xy dx �  4y(1 � y2)

f1(x) � 3
x

y�0
8xy dy �  4x 3

Fig. 2-17
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Applications to geometric probability
2.31. A person playing darts finds that the probability of the dart striking between r and r � dr is

Here, R is the distance of the hit from the center of the target, c is a constant, and a is the radius of the tar-
get (see Fig. 2-18). Find the probability of hitting the bull’s-eye, which is assumed to have radius b. As-
sume that the target is always hit.

The density function is given by

Since the target is always hit, we have

c3
a

0 

B1 � ¢ r
a ≤ 2R  dr � 1

f (r) � c B1 � ¢ r
a ≤ 2R

P(r �  R �  r � dr) � c B1 � ¢ r
a ≤ 2R dr

Fig. 2-18

from which c � 3 2a. Then the probability of hitting the bull’s-eye is

2.32. Two points are selected at random in the interval 0 x 1. Determine the probability that the sum of their
squares is less than 1.

Let X and Y denote the random variables associated with the given points. Since equal intervals are assumed to
have equal probabilities, the density functions of X and Y are given, respectively, by

(1)

Then since X and Y are independent, the joint density function is given by

(2)

It follows that the required probability is given by

(3)

where is the region defined by x2 � y2 1, x 0, y 0, which is a quarter of a circle of radius 1 (Fig. 2-19).
Now since (3) represents the area of , we see that the required probability is 4.>pr

���r

P(X2 � Y2 � 1) � 6
r

 

dx dy

f (x, y) � f1(x) f2(y) � e1 0 �  x � 1, 0 �  y � 1

0  otherwise

f2 ( y) � e1 0 �  y � 1

0  otherwise
f1(x) � e1 0 �  x � 1

0  otherwise

��

3
b

0 

f (r) dr �
3

2a 3
b

0 

B1 � ¢ r
a ≤ 2R  dr �

b (3a2 � b2)

2a3

>
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Miscellaneous problems
2.33. Suppose that the random variables X and Y have a joint density function given by

Find (a) the constant c, (b) the marginal distribution functions for X and Y, (c) the marginal density func-
tions for X and Y, (d) P(3 � X � 4, Y � 2), (e) P(X � 3), (f) P(X � Y � 4), (g) the joint distribution func-
tion, (h) whether X and Y are independent.

(a) The total probability is given by

For this to equal 1, we must have c � 1 210.

(b) The marginal distribution function for X is

The marginal distribution function for Y is

� g3`u��`
3

y

v��8
 0 du dv � 0   y � 0

3
6

u�0
3

y

v�0

2u � v
210   du dv �

y2 �  16y
105   0 �   y �  5

3
6

u�2
3

5

v�0

2u � v
210  du dv � 1  y �   5

F2(y) � P(Y �   y) � 3
`

u��`
3

y

v��`
 f (u, v) du dv

� g3x

u��`
3
`

v��`
0 du dv �  0  x � 2

3
x

u�2
3

5

v�0

2u � v
210 du dv �  

2x 2 � 5x � 18
84    2 �   x � 6

3
6

u�2
3

5

v�0

2u � v
210 du dv � 1   x �  6

F1(x) � P(X �  x) � 3
x

u��`
3
`

v��`
f (u, v) du dv

>

53
6

x�2
c¢10x �

25
2 ≤ dx � 210c

3
6

x�2
3

5

y�0
c(2x � y) dx dy � 3

6

x�2
c¢2xy �

y2

2 ≤ 2 50 dx

f (x, y) � e c (2x � y) 2 � x � 6, 0 � y � 5

0 otherwise

Fig. 2-19
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(c) The marginal density function for X is, from part (b),

The marginal density function for Y is, from part (b),

(d)

(e)

(f )

where is the shaded region of Fig. 2-20. Although this can be found, it is easier to use the fact that

where is the cross-hatched region of Fig. 2-20. We have

Thus P(X � Y � 4) � 33 35.>
P(X � Y �  4) �

1
2103

4

x�2
3

4�x

y�0 

(2x � y) dx dy �
2

35

rr

P(X � Y � 4) � 1 � P(X � Y �  4) � 1 � 6
r

 

f (x, y) dx dy

r

P(X � Y � 4) � 6
r

 

f (x, y) dx dy

P(X � 3) �  
1

2103
6

x�3
3

5

y�0
(2x � y) dx dy �

23
28

P(3 � X � 4, Y � 2) �
1

2103
4

x�3
3

5

y�2
(2x �  y) dx dy �

3
20

f2( y) �
d
dy F2(y) � e (2y �  16)>105 0 � y � 5

0  otherwise

f1(x) �
d
dx F1(x) � e (4x � 5)>84 2 � x � 6

0 otherwise

Fig. 2-20 Fig. 2-21

(g) The joint distribution function is

In the uv plane (Fig. 2-21) the region of integration is the intersection of the quarter plane u x, v y and
the rectangle 2 � u � 6, 0 � v� 5 [over which f (u, v) is nonzero]. For (x, y) located as in the figure, we have

F(x, y) � 3
6

u�2
3

y

v�0

2u � v
210 du dv �  

16y � y2

105

��

F(x, y) � P(X �  x, Y � y) � 3
x

u��`
3

y

v��` 

f (u, v) du dv
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When (x, y) lies inside the rectangle, we obtain another expression, etc. The complete results are shown in 
Fig. 2-22.

(h) The random variables are dependent since

f (x, y) f1(x) f2(y)

or equivalently, F(x, y) F1(x)F2(y).

2.34. Let X have the density function

Find a function Y � h(X) which has the density function

g(y) � e12y3(1 � y2) 0 � y � 1

0 otherwise

f (x) � e6x (1 � x) 0 � x � 1

0  otherwise

2

2

Fig. 2-22

We assume that the unknown function h is such that the intervals X x and Y y � h(x) correspond in a
one-one, continuous fashion. Then P(X x) � P(Y y), i.e., the distribution functions of X and Y must be
equal. Thus, for 0 � x, y � 1,

or 3x2 � 2x3 � 3y4 � 2y6

By inspection, x � y2 or is a solution, and this solution has the desired properties. Thus
.

2.35. Find the density function of U � XY if the joint density function of X and Y is f (x, y).

Method 1
Let U � XY and V � X, corresponding to which u � xy, v� x or x � v, y � u v. Then the Jacobian is given by

J � 4 'x'u 'x
'v

'y
'u 

'y
'v

4 � 2 0    1

v�1  �uv�2
2 � �v�1

>

Y � �!X
y � h(x) � �!x

3
x

0
6u(1 � u) du � 3

y

0
12v3 (1 � v2) dv

��

��
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Thus the joint density function of U and V is

from which the marginal density function of U is obtained as

Method 2
The distribution function of U is

For u � 0, the region of integration is shown shaded in Fig. 2-23. We see that

G(u) � 3
0

�`

 B 3`
u>x  

f (x, y) dyR  dx � 3
`

0 

B 3u>x
�`

f (x, y) dyR    dx

G(u) �  6
xy�  u

f (x, y) dx dy

g(u) �  3
`

�`
g(u, v) dv �  3

`

�`

1
u v u

 f ¢v, u
v ≤ dv

g(u,v) �
1
u v u

  f ¢v, u
v ≤

Fig. 2-23 Fig. 2-24

Differentiating with respect to u, we obtain

The same result is obtained for u � 0, when the region of integration is bounded by the dashed hyperbola in
Fig. 2-24.

2.36. A floor has parallel lines on it at equal distances l from each other. A needle of length a � l is dropped at
random onto the floor. Find the probability that the needle will intersect a line. (This problem is known as
Buffon’s needle problem.)

Let X be a random variable that gives the distance of the midpoint of the needle to the nearest line (Fig. 2-24). Let 
be a random variable that gives the acute angle between the needle (or its extension) and the line. We denote by
x and any particular values of X and . It is seen that X can take on any value between 0 and l 2, so that 0
x l 2. Also can take on any value between 0 and 2. It follows that

i.e., the density functions of X and are given by f1(x) � 2 l, f2( ) � 2 . As a check, we note that

3
l>2
0

2
l dx � 1 3

p>2
0

2
p du � 1

p>u>�

P(u �   � � du) �
2
p duP(x � X �   x � dx) �

2
l dx

>p�>�

�>�u

�

g(u) � 3
0

�`
¢�1

x ≤  f ¢x,
u
x ≤     dx � 3

`

0

1
x f ¢x, 

u
x ≤ dx � 3

`

�`
 

1
u x u

 f ¢x,  
u
x ≤ dx
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Since X and are independent the joint density function is

From Fig. 2-24 it is seen that the needle actually hits a line when X (a 2) sin . The probability of this
event is given by

When the above expression is equated to the frequency of hits observed in actual experiments, accurate
values of are obtained. This indicates that the probability model described above is appropriate.

2.37. Two people agree to meet between 2:00 P.M. and 3:00 P.M., with the understanding that each will wait no
longer than 15 minutes for the other. What is the probability that they will meet?

Let X and Y be random variables representing the times of arrival, measured in fractions of an hour after 
2:00 P.M., of the two people. Assuming that equal intervals of time have equal probabilities of arrival, the
density functions of X and Y are given respectively by

Then, since X and Y are independent, the joint density function is

(1)

Since 15 minutes hour, the required probability is

(2)

where 5 is the region shown shaded in Fig. 2-25. The right side of (2) is the area of this region, which is equal
to since the square has area 1, while the two corner triangles have areas each. Thus the
required probability is 7 16.>

1
2  (3

4)(
3
4)1 � (3

4)(3
4) �

7
16,

P¢ uX � Y u  �   
1
4 ≤ � 6

r 

dx dy

�
1
4

f (x, y) � f1(x) f2(y) � e1 0 �  x � 1,  0 �  y � 1

0 otherwise

f2( y) � e1 0 � y � 1

0  otherwise

f1(x) � e1 0 �  x � 1

0 otherwise

p

4
lp 3

p>2
u�0

 3
(a>2) sin  u

x�0
dx du �  

2a
lp

�>�

f (x, u) �
2
l ?

2
p �

4
lp

�

Fig. 2-25
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SUPPLEMENTARY PROBLEMS

Discrete random variables and probability distributions
2.38. A coin is tossed three times. If X is a random variable giving the number of heads that arise, construct a table

showing the probability distribution of X.

2.39. An urn holds 5 white and 3 black marbles. If 2 marbles are to be drawn at random without replacement and X
denotes the number of white marbles, find the probability distribution for X.

2.40. Work Problem 2.39 if the marbles are to be drawn with replacement.

2.41. Let Z be a random variable giving the number of heads minus the number of tails in 2 tosses of a fair coin. Find
the probability distribution of Z. Compare with the results of Examples 2.1 and 2.2.

2.42. Let X be a random variable giving the number of aces in a random draw of 4 cards from an ordinary deck of 52
cards. Construct a table showing the probability distribution of X.

Discrete distribution functions
2.43. The probability function of a random variable X is shown in Table 2-7. Construct a table giving the distribution

function of X.

x 1 2 3

f (x) 1 2 1 3 1 6>>>

Table 2-7

x 1 2 3 4

F(x) 1 8 3 8 3 4 1>>>

Table 2-8

2.44. Obtain the distribution function for (a) Problem 2.38, (b) Problem 2.39, (c) Problem 2.40.

2.45. Obtain the distribution function for (a) Problem 2.41, (b) Problem 2.42.

2.46. Table 2-8 shows the distribution function of a random variable X. Determine (a) the probability function,
(b) P(1 X 3), (c) P(X 2), (d) P(X � 3), (e) P(X � 1.4).

Continuous random variables and probability distributions
2.47. A random variable X has density function

Find (a) the constant c, (b) P(l � X � 2), (c) P(X � 3), (d) P(X � 1).

2.48. Find the distribution function for the random variable of Problem 2.47. Graph the density and distribution
functions, describing the relationship between them.

2.49. A random variable X has density function

Find (a) the constant c, (b) P(X � 2), (c) P(1 2 � X � 3 2).>>

f (x) � •
cx 2 1 � x � 2

cx 2 � x � 3

0 otherwise

f (x) � e ce�3x x � 0

0 x � 0

���
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2.50. Find the distribution function for the random variable X of Problem 2.49.

2.51. The distribution function of a random variable X is given by

If P(X � 3) � 0, find (a) the constant c, (b) the density function, (c) P(X � 1), (d) P(1 � X � 2).

2.52. Can the function

be a distribution function? Explain.

2.53. Let X be a random variable having density function

Find (a) the value of the constant c, (b) (c) P(X � 1), (d) the distribution function.

Joint distributions and independent variables
2.54. The joint probability function of two discrete random variables X and Y is given by f (x, y) � cxy for x � 1, 2, 3

and y � 1, 2, 3, and equals zero otherwise. Find (a) the constant c, (b) P(X � 2, Y � 3), (c) P(l X 2, Y 2),
(d) P(X � 2), (e) P(Y � 2), (f) P(X � 1), (g) P(Y � 3).

2.55. Find the marginal probability functions of (a) X and (b) Y for the random variables of Problem 2.54. 
(c) Determine whether X and Y are independent.

2.56. Let X and Y be continuous random variables having joint density function

Determine (a) the constant c, (b) (c) (d) (e) whether X and Y are
independent.

2.57. Find the marginal distribution functions (a) of X and (b) of Y for the density function of Problem 2.56.

Conditional distributions and density functions
2.58. Find the conditional probability function (a) of X given Y, (b) of Y given X, for the distribution of Problem 2.54.

2.59. Let

Find the conditional density function of (a) X given Y, (b) Y given X.

2.60. Find the conditional density of (a) X given Y, (b) Y given X, for the distribution of Problem 2.56.

2.61. Let

be the joint density function of X and Y. Find the conditional density function of (a) X given Y, (b) Y given X.

f (x, y) � e e�(x�y) x � 0, y � 0

0 otherwise

f (x, y) � e x � y 0 �  x � 1, 0 �  y � 1

0 otherwise

P(Y �
1
2),P (1

4 � X �
3
4),P(X �  

1
2, Y �

1
2),

f (x, y) � e c(x 2 � y2) 0 �  x � 1, 0 � y � 1

0 otherwise

���

P(1
2 � X �

3
2),

f (x) � e cx 0 �  x �  2

0 otherwise

F(x) � e c(1 � x2) 0 �  x � 1

0 otherwise

F(x) � •
cx3 0 � x � 3

1  x � 3

0 x � 0
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Change of variables
2.62. Let X have density function

Find the density function of Y � X2.

2.63. (a) If the density function of X is f (x) find the density function of X3. (b) Illustrate the result in part (a) by
choosing

and check the answer.

2.64. If X has density function find the density function of Y � X2.

2.65. Verify that the integral of g1(u) in Method 1 of Problem 2.21 is equal to 1.

2.66. If the density of X is f (x) � 1 (x2 � 1), , find the density of Y � tan�1 X.

2.67. Complete the work needed to find g1(u) in Method 2 of Problem 2.21 and check your answer.

2.68. Let the density of X be

Find the density of (a) 3X � 2, (b) X3 � 1.

2.69. Check by direct integration the joint density function found in Problem 2.22.

2.70. Let X and Y have joint density function

If U � X Y, V � X � Y, find the joint density function of U and V.

2.71. Use Problem 2.22 to find the density function of (a) U � XY2, (b) V � X 2Y.

2.72. Let X and Y be random variables having joint density function f (x, y) � (2 )�1 , ,
. If R and are new random variables such that X � R cos , Y � R sin , show that the density

function of R is

g(r) � e re�r2>2 r � 0

0 r � 0

����` � y � `

�` � x � `e�(x2�y2)p

>
f (x, y) � e e�(x�y) x �  0, y �  0

0 otherwise

f (x) � e1>2 �1 � x � 1

0 otherwise

�` � x � `p>

f (x) � 2(p)�1> 2e�x2> 2, �`  � x � `,

f (x) � e2e�2x x � 0

0 x � 0

f (x) � e e�x x � 0

0 x �  0
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2.73. Let

be the joint density function of X and Y. Find the density function of Z � XY.

Convolutions
2.74. Let X and Y be identically distributed independent random variables with density function

Find the density function of X � Y and check your answer.

2.75. Let X and Y be identically distributed independent random variables with density function

Find the density function of X � Y and check your answer.

2.76. Work Problem 2.21 by first making the transformation 2Y � Z and then using convolutions to find the density
function of U � X � Z.

2.77. If the independent random variables X1 and X2 are identically distributed with density function

find the density function of X1 � X2.

Applications to geometric probability
2.78. Two points are to be chosen at random on a line segment whose length is a � 0. Find the probability that the

three line segments thus formed will be the sides of a triangle.

2.79. It is known that a bus will arrive at random at a certain location sometime between 3:00 P.M. and 3:30 P.M. A
man decides that he will go at random to this location between these two times and will wait at most 5 minutes
for the bus. If he misses it, he will take the subway. What is the probability that he will take the subway?

2.80. Two line segments, AB and CD, have lengths 8 and 6 units, respectively. Two points P and Q are to be chosen at
random on AB and CD, respectively. Show that the probability that the area of a triangle will have height AP
and that the base CQ will be greater than 12 square units is equal to (1 � ln 2) 2.

Miscellaneous problems
2.81. Suppose that f (x) � c 3x, x � 1, 2 is the probability function for a random variable X. (a) Determine c.

(b) Find the distribution function. (c) Graph the probability function and the distribution function. (d) Find 
P(2 X 5). (e) Find P(X � 3).

2.82. Suppose that

is the density function for a random variable X. (a) Determine c. (b) Find the distribution function. (c) Graph the
density function and the distribution function. (d) Find P(X � 1). (e) Find P(2 X � 3).�

f (x) � e cxe�2x x �  0

0 otherwise

��

,c,>

>

f (t) � e te�t t � 0

0 t � 0

f (t) � e e�t t �  0

0 otherwise

f (t) � e1 0 �  t � 1

0 otherwise

f (x, y) � e1 0 �  x � 1, 0 � y � 1

0 otherwise
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2.83. The probability function of a random variable X is given by

where p is a constant. Find (a) P(0 X � 3), (b) P(X � 1).

2.84. (a) Prove that for a suitable constant c,

is the distribution function for a random variable X, and find this c. (b) Determine P(l � X � 2).

2.85. A random variable X has density function

Find the density function of the random variable Y � X2 and check your answer.

2.86. Two independent random variables, X and Y, have respective density functions

Find (a) c1 and c2, (b) P(X � Y � 1), (c) P(l � X � 2, Y 1), (d) P(1 � X � 2), (e) P(Y l).

2.87. In Problem 2.86 what is the relationship between the answers to (c), (d), and (e)? Justify your answer.

2.88. Let X and Y be random variables having joint density function

Find (a) the constant c, (b) (c) the (marginal) density function of X, (d) the (marginal) density
function of Y.

2.89. In Problem 2.88 is ? Why?

2.90. In Problem 2.86 find the density function (a) of X2, (b) of X � Y.

2.91. Let X and Y have joint density function

(a) Determine whether X and Y are independent, (b) Find (c) Find (d) Find

2.92. Generalize (a) Problem 2.74 and (b) Problem 2.75 to three or more variables.

P(X � Y �
1
2).

P(X �
1
2, Y �

1
3).P(X �

1
2).

f (x, y) � e1>y 0 � x � y, 0 � y � 1

0 otherwise

P(X �
1
2, Y �

3
2) � P(X �

1
2)P(Y �

3
2)

P(X �
1
2, Y �

3
2),

f (x, y) � e c(2x � y) 0 � x � 1, 0 � y � 2

0 otherwise

��

g( y) � e c2 ye�3y  y � 0

0 y �  0
f (x) � e c1e�2x  x � 0

0 x �  0

f (x) � e 3
2(1 � x2) 0 �  x � 1

0 otherwise

F(x) � e0 x � 0

c(1 � e�x)2 x � 0

�

f (x) � μ
2p x � 1

p x � 2

4p x � 3

0 otherwise
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2.93. Let X and Y be identically distributed independent random variables having density function
Find the density function of Z � X2 � Y 2.

2.94. The joint probability function for the random variables X and Y is given in Table 2-9. (a) Find the marginal
probability functions of X and Y. (b) Find P(l X � 3, Y 1). (c) Determine whether X and Y are
independent.

��

f (u) � (2p)�1> 2e�u2> 2, �` � u � `.

Y
X 0 1 2

0 1 18 1 9 1 6

1 1 9 1 18 1 9

2 1 6 1 6 1 18>>>
>>>
>>>

Table 2-9

2.95. Suppose that the joint probability function of random variables X and Y is given by

(a) Determine whether X and Y are independent. (b) Find (c) Find P(Y 1). (d) Find

2.96. Let X and Y be independent random variables each having density function

where . Prove that the density function of X � Y is

2.97. A stick of length L is to be broken into two parts. What is the probability that one part will have a length of
more than double the other? State clearly what assumptions would you have made. Discuss whether you
believe these assumptions are realistic and how you might improve them if they are not.

2.98. A floor is made up of squares of side l. A needle of length a � l is to be tossed onto the floor. Prove that the
probability of the needle intersecting at least one side is equal to .

2.99. For a needle of given length, what should be the side of a square in Problem 2.98 so that the probability of
intersection is a maximum? Explain your answer.

2.100. Let

be the joint density function of three random variables X, Y, and Z. Find (a) 
(b) P(Z � X � Y ).

2.101. A cylindrical stream of particles, of radius a, is directed toward a hemispherical target ABC with center at O as
indicated in Fig. 2-26. Assume that the distribution of particles is given by

f (r) � e1>a 0 � r � a

0 otherwise

P(X �
1
2, Y �

1
2, Z �

1
2),

f (x, y, z) � e24xy2z3 0 � x � 1, 0 � y � 1, 0 � z � 1

0 otherwise 

a(4l � a)>pl2

g(u) �
(2l)ue�2l

u!   u � 0, 1, 2,c

l � 0

f (u) �
lue�l

u   u � 0, 1, 2,c

P(1
2 � X � 1, Y �  1).

�P(1
2 � X � 1).

f (x, y) � e cxy 0 � x � 2, 0 � y � x

0 otherwise
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where r is the distance from the axis OB. Show that the distribution of particles along the target is given by

where is the angle that line OP (from O to any point P on the target) makes with the axis.u

g(u) � e cos  u 0 � u � p>2
0 otherwise

Fig. 2-26

2.102. In Problem 2.101 find the probability that a particle will hit the target between � 0 and � .

2.103. Suppose that random variables X, Y, and Z have joint density function

Show that although any two of these random variables are independent, i.e., their marginal density function
factors, all three are not independent.

ANSWERS TO SUPPLEMENTARY PROBLEMS

2.38. 2.39.

f (x, y, z) � e1�cospx cospy cospz 0 � x � 1, 0 � y � 1, 0 � z � 1

0 otherwise

p>4uu

x 0 1 2 3

f (x) 1 8 3 8 3 8 1 8>>>>
x 0 1 2

f (x) 3 28 15 28 5 14>>>
2.40.

2.42.

2.43.

2.46. (a) (b) 3 4 (c) 7 8 (d) 3 8 (e) 7 8 >>>>

x 0 1 2

f (x) 9 64 15 32 25 64>>>

x 0 1 2 3 4

f (x)
1

270,725
192

270,725
6768

270,725
69,184

270,725
194,580
270,725

x 0 1 2 3

f (x) 1 8 1 2 7 8 1>>>

x 1 2 3 4

f (x) 1 8 1 4 3 8 1 4>>>>
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2.47. (a) 3 (b) (c) (d) 2.48.

2.49. (a) 6 29 (b) 15 29 (c) 19 116 2.50.

2.51. (a) 1/27 (b) (c) 26 27 (d) 7 27

2.53. (a) 1 2 (b) 1 2 (c) 3 4 (d) 

2.54. (a) 1 36 (b) 1 6 (c) 1 4 (d) 5 6 (e) 1 6 (f) 1 6 (g) 1 2

2.55. (a) (b)

2.56. (a) 3 2 (b) 1 4 (c) 29 64 (d) 5 16

2.57. (a) (b)

2.58. (a) for y � 1, 2, 3 (see Problem 2.55)

(b) for x � 1, 2, 3 (see Problem 2.55)

2.59. (a)

(b)

2.60. (a)

(b)

2.61. (a) (b) 

2.62. 2.64. for y 0; 0 otherwise

2.66. for otherwise

2.68. (a) (b) 

2.70. for otherwiseu � 0, v � 0; 0ve�v>(1 � u)2

g( y) � •
1
6 (1 � y)�2>3 0 � y � 1
1
6 ( y � 1)�2>3 1 � y � 2

0 otherwise

g( y) � e
1
6 �5 � y � 1

0 otherwise

�p>2 � y � p>2; 01>p

�(2p)�1> 2y�1> 2 e�y> 2e�1y>2!y for y � 0; 0 otherwise

f (y u  x) � e e�y x � 0, y � 0

0 x � 0, y � 0
f (x uy) � e e�x x � 0, y � 0

0 x � 0, y � 0

f (y ux) � e (x 2 � y2)>(x 2 �
1
3) 0 � x � 1, 0 � y � 1

0 0 � x � 1, other y

f (x uy) � e (x2 � y2)>(y2 �
1
3) 0 � x � 1, 0 � y � 1

0 other x, 0 � y � 1

f (y ux) � e (x � y)>(x �
1
2) 0 � x � 1, 0 � y � 1

0 0 � x � 1, other y

f (x uy) � e (x � y)>( y �
1
2) 0 � x � 1, 0 � y � 1

0 other x, 0 � y � 1

f ( y u x) � f2(y)

f (x u y) � f1(x)

F2( y) � •
0 y � 0
1
2 (y3 � y) 0 � y � 1

1 y � 1

F1(x) � •
0 x � 0
1
2 (x 3 � x) 0 � x � 1

1 x � 1

>>>>

f2( y) � e y>6 y � 1, 2, 3

0 other y
f1(x) � e x>6 x � 1, 2, 3

0 other x

>>>>>>>

F(x) � •
0 x � 0

x 2>4 0 � x � 2

1 x � 2

>>>

>>f (x) � e x 2/9 0 �  x � 3

0  otherwise

F (x) � μ
0 x � 1

(2x 3 � 2)>29 1 � x � 2

(3x 2 � 2)>29 2 � x � 3

1 x � 3

>>>

F (x) � e1 � e�3x x �  0

0 x �  0
1 � e�3e�9e�3 � e�6
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2.73. 2.77.

2.74. 2.78. 1 4

2.75. 2.79. 61 72

2.81. (a) 2 (b) (d) 26 81 (e) 1 9

2.82. (a) 4 (b) (d) (e) 

2.83. (a) 3 7 (b) 5 7 2.84. (a) c � 1 (b) 

2.86. (a) c1 � 2, c2 � 9 (b) (c) (d) (e) 

2.88. (a) 1 4 (b) 27 64 (c) (d) 

2.90. (a) (b)

2.91. (b) (c) (d) 2.95. (b) 15 256 (c) 9 16 (d) 0

2.93. 2.100. (a) 45 512 (b) 1 14

2.94. (b) 7 18 2.102. !2>2>

>>g(z) � e 1
2 e�z> 2 z � 0

0 z � 0

>>1
2 ln 2

1
6 �

1
2 ln 2

1
2  (1 � ln 2)

e18e�2u u � 0

0 otherwise
e e�2y/!y y � 0

0 otherwise

f2(y) � e 1
4  (y � 1) 0 � y � 2

0 otherwise
f1(x) � e x �

1
2 0 � x � 1

0 otherwise
>>

4e�3e�2 � e�44e�5 � 4e�79e�2 � 14e�3

e�4 � 3e�2 � 2e�1>>
5e�4 � 7e�63e�2F(x) � e1 � e�2x (2x � 1) x � 0

0 x � 0

>>F(x) � e0 x � 1

1 � 3�y y � x � y � 1; y � 1, 2, 3,c

>g(u) � eue�u u � 0

0 u � 0

>g(u) � •
u 0 � u � 1

2 � u 1 � u � 2

0 otherwise

g(x) � e x 3e�x/6 x � 0

0 x � 0
g(z) � e�ln z 0 � z � 1

0 otherwise
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Mathematical Expectation

Definition of Mathematical Expectation
A very important concept in probability and statistics is that of the mathematical expectation, expected value, or
briefly the expectation, of a random variable. For a discrete random variable X having the possible values x1, , xn,
the expectation of X is defined as

(1)

or equivalently, if P(X � xj) � f (xj),

(2)

where the last summation is taken over all appropriate values of x. As a special case of (2), where the probabil-
ities are all equal, we have

(3)

which is called the arithmetic mean, or simply the mean, of x1, x2, , xn.
If X takes on an infinite number of values x1, x2, , then provided that the infinite se-

ries converges absolutely.
For a continuous random variable X having density function f (x), the expectation of X is defined as

(4)

provided that the integral converges absolutely.
The expectation of X is very often called the mean of X and is denoted by X, or simply , when the partic-

ular random variable is understood.
The mean, or expectation, of X gives a single value that acts as a representative or average of the values of X,

and for this reason it is often called a measure of central tendency. Other measures are considered on page 83.

EXAMPLE 3.1 Suppose that a game is to be played with a single die assumed fair. In this game a player wins $20 if
a 2 turns up, $40 if a 4 turns up; loses $30 if a 6 turns up; while the player neither wins nor loses if any other face turns
up. Find the expected sum of money to be won.

Let X be the random variable giving the amount of money won on any toss. The possible amounts won when the die
turns up 1, 2 6 are x1, x2 x6, respectively, while the probabilities of these are f(x1), f (x2), . . . , f (x6). The prob-
ability function for X is displayed in Table 3-1. Therefore, the expected value or expectation is

E(X) � (0)¢1
6 ≤ � (20)¢1

6 ≤ � (0)¢ 1
6 ≤ � (40)¢ 1

6 ≤ � (0)¢ 1
6 ≤ � (�30)¢ 1

6 ≤ � 5

,c,,c,

mm

E(X) � 3
`

�`
x f (x) dx

E(X) � g`
j�1 xj f (xj)c

c

E(X) �
x1 � x2 � c� xn

n

E(X) � x1 f (x1) � c� xn f (xn) � a
n

j�1
 xj f (xj) � ax f (x)

E(X) � x1P(X � x1) � c� xnP(X � xn ) � a
n

j�1
 xj P(X � xj)

c

CHAPTER 12CHAPTER 3



It follows that the player can expect to win $5. In a fair game, therefore, the player should be expected to pay $5 in order
to play the game.

EXAMPLE 3.2 The density function of a random variable X is given by

The expected value of X is then

Functions of Random Variables
Let X be a discrete random variable with probability function f (x). Then Y � g(X) is also a discrete random vari-
able, and the probability function of Y is

If X takes on the values x1, x2, , xn, and Y the values  y1, y2, , ym (m n), then 
Therefore,

(5)

Similarly, if X is a continuous random variable having probability density f (x), then it can be shown that

(6)

Note that (5) and (6) do not involve, respectively, the probability function and the probability density function
of Y � g(X).

Generalizations are easily made to functions of two or more random variables. For example, if X and Y are two
continuous random variables having joint density function f(x, y), then the expectation of g(X, Y) is given by

(7)

EXAMPLE 3.3 If X is the random variable of Example 3.2,

Some Theorems on Expectation

Theorem 3-1 If c is any constant, then

E(cX) � cE(X) (8)

E(3X2 � 2X) � 3
`

�`
(3x2 � 2x) f (x) dx � 3

2

0 

(3x2 � 2x)¢ 1
2  x≤  dx �

10
3

E[g(X, Y)] � 3
`

�`
3
`

�`
g(x, y) f (x, y) dx dy

E[g(X)] � 3
`

�`
g(x) f (x) dx

� a
n

j�1
 g(xj) f (xj) � a  g(x) f (x)

E[g(X)] � g(x1) f (x1) � g(x2) f (x2) � c� g(xn)f (xn)

ymh(ym) � g(x1)f (x1) � g(x2) f (x2) � c� g(xn) f (xn).
y1h(y1) � y2h(y2) � c��cc

h(y) � P(Y � y) � a5xZg(x)�y6
P(X � x) � a5xZg(x)�y6 

 f (x)

E(X) � 3
`

�`
xf (x) dx � 3

2

0
x ¢ 1

2  x≤  dx � 3
2

0
  
x2

2   dx �
x3

6  2 2
0

�
4
3

f (x) � e
1
2x  0 � x � 2

0 otherwise
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xj 0 �20 0 �40 0 �30

f (xj) 1 6 1 6 1 6 1 6 1 6 1 6>>>>>>

Table 3-1



Theorem 3-2 If X and Y are any random variables, then

E(X � Y) � E(X) � E(Y) (9)

Theorem 3-3 If X and Y are independent random variables, then

E(XY) � E(X)E(Y ) (10)

Generalizations of these theorems are easily made.

The Variance and Standard Deviation
We have already noted on page 75 that the expectation of a random variable X is often called the mean and
is denoted by . Another quantity of great importance in probability and statistics is called the variance and is
defined by

Var(X) � E[(X � )2] (11)

The variance is a nonnegative number. The positive square root of the variance is called the standard deviation
and is given by

(12)

Where no confusion can result, the standard deviation is often denoted by instead of X, and the variance in
such case is 2.

If X is a discrete random variable taking the values x1, x2, . . . , xn and having probability function f (x), then
the variance is given by

(13)

In the special case of (13) where the probabilities are all equal, we have

(14)

which is the variance for a set of n numbers x1, . . . , xn.
If X takes on an infinite number of values x1, x2, . . . , then provided that the series

converges.
If X is a continuous random variable having density function f (x), then the variance is given by

(15)

provided that the integral converges.
The variance (or the standard deviation) is a measure of the dispersion, or scatter, of the values of the ran-

dom variable about the mean . If the values tend to be concentrated near the mean, the variance is small; while
if the values tend to be distributed far from the mean, the variance is large. The situation is indicated graphically
in Fig. 3-1 for the case of two continuous distributions having the same mean .m

m

s2
X � E[(X � m)2] � 3

`

�`
(x � m)2 f (x) dx

s2
X � g`

j�1 (xj � m)2f (xj),

s2 � [(x1 � m)2 � (x2 � m)2 � c� (xn � m)2]>n

s2
X � E[(X � m)2] � a

n

j�1
(xj � m)2f (xj) � a(x � m)2 f (x)

s

ss

sX � 2Var (X) � 2E[(X � m)2]

m

m
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Fig. 3-1



EXAMPLE 3.4 Find the variance and standard deviation of the random variable of Example 3.2. As found in Example 3.2,
the mean is � E(X) � 4 3. Then the variance is given by

and so the standard deviation is 

Note that if X has certain dimensions or units, such as centimeters (cm), then the variance of X has units cm2

while the standard deviation has the same unit as X, i.e., cm. It is for this reason that the standard deviation is
often used.

Some Theorems on Variance

Theorem 3-4 2 � E[(X � )2] � E(X2) � 2 � E(X2) � [E(X)]2 (16)

where � E(X).

Theorem 3-5 If c is any constant,

Var(cX) � c2 Var(X) (17)

Theorem 3-6 The quantity E[(X � a)2] is a minimum when a � � E(X).

Theorem 3-7 If X and Y are independent random variables,

(18)

(19)

Generalizations of Theorem 3-7 to more than two independent variables are easily made. In words, the vari-
ance of a sum of independent variables equals the sum of their variances.

Standardized Random Variables
Let X be a random variable with mean and standard deviation ( � 0). Then we can define an associated stan-
dardized random variable given by

(20)

An important property of X* is that it has a mean of zero and a variance of 1, which accounts for the name stan-
dardized, i.e.,

E(X*) � 0, Var(X*) � 1 (21)

The values of a standardized variable are sometimes called standard scores, and X is then said to be expressed
in standard units (i.e., is taken as the unit in measuring X – ).

Standardized variables are useful for comparing different distributions.

Moments
The rth moment of a random variable X about the mean , also called the rth central moment, is defined as

r � E [(X � )r] (22)mm

m

ms

X* �
X � m
s

ssm

Var (X � Y) � Var (X) � Var (Y)  or  s2
X�Y � s2

X � s2
Y

Var (X � Y) � Var (X) � Var (Y)  or  s2
X�Y � s2

X � s2
Y 

m

m

mms

s � A2
9 �

22
3

s2 � E B ¢X �
4
3 ≤ 2R � 3

`

�`
¢x �

4
3 ≤ 2

 f (x) dx � 3
2

0
¢x �

4
3 ≤ 2¢ 1

2  x≤  dx �
2
9

>m
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where r � 0, 1, 2, . . . . It follows that 0 � 1, 1 � 0, and 2 � 2, i.e., the second central moment or second
moment about the mean is the variance. We have, assuming absolute convergence,

(23)

(24)

The rth moment of X about the origin, also called the rth raw moment, is defined as

(25)

where r � 0, 1, 2, . . . , and in this case there are formulas analogous to (23) and (24) in which � 0.
The relationship between these moments is given by

(26)

As special cases we have, using and 

(27)

Moment Generating Functions
The moment generating function of X is defined by

MX(t) � E(etX) (28)

that is, assuming convergence,

(29)

(30)

We can show that the Taylor series expansion is [Problem 3.15(a)]

(31)

Since the coefficients in this expansion enable us to find the moments, the reason for the name moment gener-
ating function is apparent. From the expansion we can show that [Problem 3.15(b)]

(32)

i.e., is the rth derivative of MX(t) evaluated at t � 0. Where no confusion can result, we often write M(t) in-
stead of MX(t).

Some Theorems on Moment Generating Functions
Theorem 3-8 If MX(t) is the moment generating function of the random variable X and a and b (b 0) are con-

stants, then the moment generating function of (X � a) b is

(33)M(X�a)>b(t) � eat>bMX ¢ t
b
≤ > 2

mrr

mrr �
dr

dtr  MX(t) 2
t�0

MX(t) � 1 � mt � mr2 
t2

2!
� c� mrr  

tr

r!
� c

MX(t) � 3
`

�`
etx  f (x) dx   (continuous variable)

MX(t) � a  etx  f (x)  (discrete variable)

m2 � mr2 � m2

m3 � mr3 � 3mr2 m � 2m3

m4 � mr4 � 4mr3 m � 6mr2 m
2 � 3m4

mr0 � 1,mr1 � m

mr � mrr � ¢ r

1
≤mrr�1 m � c� (�1) j¢ r

j
≤mrr�j  m

j � c� (�1)rmr0mr

m

mrr � E(Xr)

mr � 3
`

�`
(x � m)r f (x) dx   (continuous variable)

mr � a(x � m)r f (x)  (discrete variable)

smmm
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Theorem 3-9 If X and Y are independent random variables having moment generating functions MX(t) and
MY(t), respectively, then

MX � Y (t) � MX (t) MY (t) (34)

Generalizations of Theorem 3-9 to more than two independent random variables are easily made. In words, the
moment generating function of a sum of independent random variables is equal to the product of their moment
generating functions.

Theorem 3-10 (Uniqueness Theorem) Suppose that X and Y are random variables having moment generat-
ing functions MX (t) and MY (t), respectively. Then X and Y have the same probability distribu-
tion if and only if MX (t) � MY (t) identically.

Characteristic Functions
If we let t � i , where i is the imaginary unit, in the moment generating function we obtain an important func-
tion called the characteristic function. We denote this by

(35)

It follows that

(36)

(37)

Since the series and the integral always converge absolutely.
The corresponding results (31) and (32) become

(38)

where (39)

When no confusion can result, we often write ( ) instead of X( ).
Theorems for characteristic functions corresponding to Theorems 3-8, 3-9, and 3-10 are as follows.

Theorem 3-11 If X( ) is the characteristic function of the random variable X and a and b (b 0) are con-2vf

vfvf

mrr � (�1)rir 
dr

dvr  fX(v) 2
v�0

fX(v) � 1 � imv � mr2 
v2

2!
� c� irmrr 

vr

r!
� c

ueivx u � 1,

fX(v) � 3
`

�`
eivx  f (x) dx   (continuous variable)

fX(v) � aeivx  f (x)  (discrete variable)

fX(v) � MX(iv) � E(eivX)

v
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only if X ( ) � Y ( ) identically.vfvf

stants, then the characteristic function of (X � a) b is

(40)

Theorem 3-12 If X and Y are independent random variables having characteristic functions X( ) and Y ( ),
respectively, then

(41)

More generally, the characteristic function of a sum of independent random variables is equal to the product
of their characteristic functions.

Theorem 3-13 (Uniqueness Theorem) Suppose that X and Y are random variables having characteristic func-
tions X( ) and Y( ), respectively. Then X and Y have the same probability distribution if andvfvf

fX�Y (v) � fX (v) fY (v)

vfvf

f(X�a)>b(v) � eaiv>bfX¢vb ≤>



An important reason for introducing the characteristic function is that (37) represents the Fourier transform
of the density function f (x). From the theory of Fourier transforms, we can easily determine the density function
from the characteristic function. In fact,

(42)

which is often called an inversion formula, or inverse Fourier transform. In a similar manner we can show in the
discrete case that the probability function f(x) can be obtained from (36) by use of Fourier series, which is the
analog of the Fourier integral for the discrete case. See Problem 3.39.

Another reason for using the characteristic function is that it always exists whereas the moment generating
function may not exist.

Variance for Joint Distributions. Covariance
The results given above for one variable can be extended to two or more variables. For example, if X and Y are
two continuous random variables having joint density function f (x, y), the means, or expectations, of X and Y are

(43)

and the variances are

(44)

Note that the marginal density functions of X and Y are not directly involved in (43) and (44).
Another quantity that arises in the case of two variables X and Y is the covariance defined by

(45)

In terms of the joint density function f (x, y), we have

(46)

Similar remarks can be made for two discrete random variables. In such cases (43) and (46) are replaced by

(47)

(48)

where the sums are taken over all the discrete values of X and Y. 
The following are some important theorems on covariance.

Theorem 3-14 (49)

Theorem 3-15 If X and Y are independent random variables, then

(50)

Theorem 3-16 (51)

or (52)

Theorem 3-17 (53)ZsXY Z � sX sY

s2
XY � s2

X � s2
Y  2sXY

Var (X  Y ) � Var (X) � Var (Y )  2 Cov (X, Y )

sXY � Cov (X, Y ) � 0

sXY � E(XY ) � E(X)E(Y ) � E(XY ) � mXmY

sXY � a
x
a
y

 (x � mX)(y � mY) f (x, y)

mX � a
x
a
y

 xf (x, y)   mY � a
x
a
y

yf(x, y)

sXY � 3
`

�`
3
`

�`
(x � mX)(y � mY) f (x, y) dx dy

sXY � Cov (X, Y ) � E[(X � mX)(Y � mY)]

s2
X � E[(X � mX)2] � 3

`

�`
3
`

�`
(x � mX)2  f (x, y) dx dy

s2
Y � E[(Y � mY)2] � 3

`

�`
3
`

�`
( y � mY)2  f (x, y) dx dy

mX � E(X) � 3
`

�`
3
`

�`
xf (x, y) dx dy,  mY � E(Y) � 3

`

�`
3
`

�`
yf (x, y) dx dy

f (x) �
1

2p3
`

�`
e�ivx fX (v) dv
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The converse of Theorem 3-15 is not necessarily true. If X and Y are independent, Theorem 3-16 reduces to
Theorem 3-7.

Correlation Coefficient
If X and Y are independent, then Cov(X, Y) � XY � 0. On the other hand, if X and Y are completely dependent,
for example, when X � Y, then Cov(X, Y) � XY � . From this we are led to a measure of the dependence
of the variables X and Y given by

(54)

We call the correlation coefficient, or coefficient of correlation. From Theorem 3-17 we see that .�1 � r � 1r

r �
sXY

sX sY

sX sYs

s
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In the case where � 0 (i.e., the covariance is zero), we call the variables X and Y uncorrelated. In such cases,
however, the variables may or may not be independent. Further discussion of correlation cases will be given in
Chapter 8.

Conditional Expectation, Variance, and Moments
If X and Y have joint density function f (x, y), then as we have seen in Chapter 2, the conditional density function
of Y given X is � f (x, y) f1 (x) where f1 (x) is the marginal density function of X. We can define the con-
ditional expectation, or conditional mean, of Y given X by

(55)

where “X � x” is to be interpreted as x � X x � dx in the continuous case. Theorems 3-1 and 3-2 also hold
for conditional expectation.

We note the following properties:

1. E(Y X � x) � E(Y) when X and Y are independent.

2.

It is often convenient to calculate expectations by use of Property 2, rather than directly.

EXAMPLE 3.5 The average travel time to a distant city is c hours by car or b hours by bus. A woman cannot decide
whether to drive or take the bus, so she tosses a coin. What is her expected travel time?

Here we are dealing with the joint distribution of the outcome of the toss, X, and the travel time, Y, where Y � Ycar if
X � 0 and Y � Ybus if X � 1. Presumably, both Ycar and Ybus are independent of X, so that by Property 1 above

E(Y X � 0) � E(Ycar X � 0) � E(Ycar) � c

and E(Y X � l) � E(Ybus X � 1) � E(Ybus) � b

Then Property 2 (with the integral replaced by a sum) gives, for a fair coin,

In a similar manner we can define the conditional variance of Y given X as

(56)

where 2 � E(Y X � x). Also we can define the rth conditional moment of Y about any value a given X as

(57)

The usual theorems for variance and moments extend to conditional variance and moments.

E[(Y � a)r uX � x] � 3
`

�`
(y � a)r f (y u x) dy

um

E[(Y � m2)2 uX � x] � 3
`

�`
(y � m2)2 f (y ux) dy

E(Y) � E(Y uX � 0)P(X � 0) � E(Y uX � 1)P(X � 1) �
c � b

2

uu

uu

E(Y) � 3
`

�`
E(Y uX � x) f1(x) dx.

u

�

E(Y uX � x) � 3
`

�`
y f (y ux) dy

>f (y u x)

r



Chebyshev’s Inequality
An important theorem in probability and statistics that reveals a general property of discrete or continuous ran-
dom variables having finite mean and variance is known under the name of Chebyshev’s inequality.

Theorem 3-18 (Chebyshev’s Inequality) Suppose that X is a random variable (discrete or continuous) having
mean and variance 2, which are finite. Then if P is any positive number,

(58)

or, with P � k ,

(59)

EXAMPLE 3.6 Letting k � 2 in Chebyshev’s inequality (59), we see that

P ( X � 2 ) 0.25 or P( X � � 2 ) 0.75

In words, the probability of X differing from its mean by more than 2 standard deviations is less than or equal to 0.25;
equivalently, the probability that X will lie within 2 standard deviations of its mean is greater than or equal to 0.75. This
is quite remarkable in view of the fact that we have not even specified the probability distribution of X.

Law of Large Numbers
The following theorem, called the law of large numbers, is an interesting consequence of Chebyshev’s inequality.

Theorem 3-19 (Law of Large Numbers): Let X1, X2, . . . , Xn be mutually independent random variables (dis-
crete or continuous), each having finite mean and variance 2. Then if

(60)

Since Sn n is the arithmetic mean of X1, . . . , Xn, this theorem states that the probability of the arithmetic
mean Sn n differing from its expected value by more than P approaches zero as . A stronger result,
which we might expect to be true, is that but this is actually false. However, we can prove thatlim S

nS` n>n � m,
n S `m> >

lim
nS`

P¢ 2 Sn

n � m 2  � P≤ � 0

Xn(n � 1, 2, c),
Sn � X1 � X2 � c�sm

�sumu�s�umu

P(uX � m u �  ks) �
1
k2

s

P( uX � m u � P) �  
s2

P2

sm
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with probability one. This result is often called the strong law of large numbers, and, by contrast,lim S
nS` n>n � m

that of Theorem 3-19 is called the weak law of large numbers. When the “law of large numbers” is referred to
without qualification, the weak law is implied.

Other Measures of Central Tendency
As we have already seen, the mean, or expectation, of a random variable X provides a measure of central ten-
dency for the values of a distribution. Although the mean is used most, two other measures of central tendency
are also employed. These are the mode and the median.

1. MODE. The mode of a discrete random variable is that value which occurs most often or, in other words,
has the greatest probability of occurring. Sometimes we have two, three, or more values that have relatively
large probabilities of occurrence. In such cases, we say that the distribution is bimodal, trimodal, or multi-
modal, respectively. The mode of a continuous random variable X is the value (or values) of X where the
probability density function has a relative maximum.

2. MEDIAN. The median is that value x for which and In the case of a con-P(X � x) �
1
2.P(X � x) �

1
2

tinuous distribution we have and the median separates the density curve into
two parts having equal areas of 1 2 each. In the case of a discrete distribution a unique median may not
exist (see Problem 3.34).

>P(X � x) �
1
2 � P(X � x),



Percentiles
It is often convenient to subdivide the area under a density curve by use of ordinates so that the area to the left
of the ordinate is some percentage of the total unit area. The values corresponding to such areas are called per-
centile values, or briefly percentiles. Thus, for example, the area to the left of the ordinate at in Fig. 3-2 is .
For instance, the area to the left of x0.10 would be 0.10, or 10%, and x0.10 would be called the 10th percentile
(also called the first decile). The median would be the 50th percentile (or fifth decile).

axa
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Fig. 3-2

Other Measures of Dispersion
Just as there are various measures of central tendency besides the mean, there are various measures of disper-
sion or scatter of a random variable besides the variance or standard deviation. Some of the most common are
the following.

1. SEMI-INTERQUARTILE RANGE. If x0.25 and x0.75 represent the 25th and 75th percentile values, the
difference x0.75 � x0.25 is called the interquartile range and is the semi-interquartile range.

2. MEAN DEVIATION. The mean deviation (M.D.) of a random variable X is defined as the expectation
of i.e., assuming convergence,

(discrete variable) (61)

(continuous variable) (62)

Skewness and Kurtosis
1. SKEWNESS. Often a distribution is not symmetric about any value but instead has one of its tails longer

than the other. If the longer tail occurs to the right, as in Fig. 3-3, the distribution is said to be skewed to the right,
while if the longer tail occurs to the left, as in Fig. 3-4, it is said to be skewed to the left. Measures describing
this asymmetry are called coefficients of skewness, or briefly skewness. One such measure is given by

(63)

The measure 3 will be positive or negative according to whether the distribution is skewed to the right or left,
respectively. For a symmetric distribution, 3 � 0.s

s

a3 �
E[(X � m)3]

s3
�
m3

s3

M.D.(X) � E [uX � mu] � 3
`

�`
u x � m u f (x) dx

M.D.(X) � E [uX � mu] � a ux � mu f (x)

uX � m u ,

1
2  (x0.75 � x0.25)

Fig. 3-3 Fig. 3-4 Fig. 3-5

2. KURTOSIS. In some cases a distribution may have its values concentrated near the mean so that the dis-
tribution has a large peak as indicated by the solid curve of Fig. 3-5. In other cases the distribution may be



relatively flat as in the dashed curve of Fig. 3-5. Measures of the degree of peakedness of a distribution are
called coefficients of kurtosis, or briefly kurtosis. A measure often used is given by

(64)

This is usually compared with the normal curve (see Chapter 4), which has a coefficient of kurtosis equal to 3.
See also Problem 3.41.

SOLVED PROBLEMS

Expectation of random variables
3.1. In a lottery there are 200 prizes of $5, 20 prizes of $25, and 5 prizes of $100. Assuming that 10,000 tickets

are to be issued and sold, what is a fair price to pay for a ticket?

Let X be a random variable denoting the amount of money to be won on a ticket. The various values of X together
with their probabilities are shown in Table 3-2. For example, the probability of getting one of the 20 tickets
giving a $25 prize is 20 10,000 � 0.002. The expectation of X in dollars is thus

E(X) � (5)(0.02) � (25)(0.002) � (100)(0.0005) � (0)(0.9775) � 0.2

or 20 cents. Thus the fair price to pay for a ticket is 20 cents. However, since a lottery is usually designed to raise
money, the price per ticket would be higher.

>

a4 �
E[(X � m)4]

s4 �
m4

s4
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Table 3-2

x (dollars) 5 25 100 0

P(X � x) 0.02 0.002 0.0005 0.9775

3.2. Find the expectation of the sum of points in tossing a pair of fair dice.

Let X and Y be the points showing on the two dice. We have

Then, by Theorem 3-2,

E(X � Y) � E(X) � E(Y) � 7

3.3. Find the expectation of a discrete random variable X whose probability function is given by

We have

To find this sum, let

Then

Subtracting,

Therefore, S � 2.

1
2  S �

1
2 �  1

4 �
1
8 �  1

16 � c� 1

1
2  S �    1

4 � 2¢1
8 ≤ � 3¢ 1

16≤ � c

S �
1
2 � 2¢ 1

4 ≤ � 3¢ 1
8 ≤ � 4¢ 1

16 ≤ � c

E(X) � a
`

x�1
 x ¢1

2 ≤ x

�
1
2 � 2¢ 1

4 ≤ � 3¢ 1
8 ≤ � c

f (x) � ¢1
2
≤ x

   (x � 1, 2, 3, c)

E(X) � E(Y) � 1¢ 1
6 ≤ � 2¢ 1

6 ≤ � c� 6¢ 1
6 ≤ �

7
2



3.4. A continuous random variable X has probability density given by

Find (a) E(X), (b) E(X2).

(a)

(b)

3.5. The joint density function of two random variables X and Y is given by

Find (a) E(X), (b) E(Y), (c) E(XY), (d) E(2X � 3Y).

(a)

(b)

(c)

(d)

Another method
(c) Since X and Y are independent, we have, using parts (a) and (b),

(d) By Theorems 3-1 and 3-2, pages 76–77, together with (a) and (b),

3.6. Prove Theorem 3-2, page 77.

Let f (x, y) be the joint probability function of X and Y, assumed discrete. Then

If either variable is continuous, the proof goes through as before, with the appropriate summations replaced by
integrations. Note that the theorem is true whether or not X and Y are independent.

� E(X) � E(Y)

� a
x
a
y

xf (x, y) � a
x
a
y

yf (x, y)

E(X � Y) � a
x
a
y

(x � y) f (x, y)

E(2X � 3Y) � 2E(X) � 3E(Y) � 2¢ 8
3 ≤ � 3¢ 31

9 ≤ �
47
3

E(XY) � E(X)E(Y) � ¢ 8
3 ≤ ¢ 31

9 ≤ �
248
27

E(2X � 3Y) � 3
`

�`
3
`

�`
(2x � 3y) f (x, y) dx dy � 3

4

x�0
3

5

y�1
(2x � 3y)¢ xy

96 ≤  dx dy �
47
3

E(XY) � 3
`

�`
3
`

�`
(xy) f (x, y) dx dy � 3

4

x�0
3

5

y�1
(xy)¢ xy

96 ≤  dx dy �
248
27

E(Y) � 3
`

�`
3
`

�`
yf (x, y) dx dy � 3

4

x�0
3

5

y�1
y¢ xy

96 ≤  dx dy �
31
9

E(X) � 3
`

�`
3
`

�`
xf (x, y) dx dy � 3

4

x�0
3

5

y�1
x¢ xy

96 ≤  dx dy �
8
3

f (x, y) � e xy>96 0 � x � 4, 1 � y � 5

0 otherwise

� 2B (x2)¢ e�2x

�2 ≤ � (2x)¢ e�2x

4 ≤ � (2)¢ e�2x

�8 ≤ R  2 `
0

�
1
2

E(X2) � 3
`

�`
x2f (x) dx � 23

`

0 

x2e�2x dx

� 2B (x)¢ e�2x

�2 ≤ � (1)¢ e�2x

4 ≤ R  2 `
0

�
1
2

E(X) � 3
`

�`
xf (x) dx � 3

`

0
x(2e�2x) dx � 23

`

0
xe�2x dx

f (x) � e2e�2x  x � 0

0 x � 0
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3.7. Prove Theorem 3-3, page 77.

Let f (x, y) be the joint probability function of X and Y, assumed discrete. If the variables X and Y are independent,
we have f (x, y) � f1 (x) f2 (y). Therefore,

If either variable is continuous, the proof goes through as before, with the appropriate summations replaced by
integrations. Note that the validity of this theorem hinges on whether f (x, y) can be expressed as a function of x
multiplied by a function of y, for all x and y, i.e., on whether X and Y are independent. For dependent variables it
is not true in general.

Variance and standard deviation
3.8. Find (a) the variance, (b) the standard deviation of the sum obtained in tossing a pair of fair dice.

(a) Referring to Problem 3.2, we have E(X) � E(Y) � 1 2. Moreover,

Then, by Theorem 3-4,

and, since X and Y are independent, Theorem 3-7 gives

(b)

3.9. Find (a) the variance, (b) the standard deviation for the random variable of Problem 3.4. 

(a) As in Problem 3.4, the mean of X is Then the variance is

Another method
By Theorem 3-4,

(b) s � 2Var (X) � A1
4 �

1
2

Var (X) � E[(X � m)2] � E(X2) � [E(X)]2 �
1
2 � ¢ 1

2 ≤ 2

�
1
4

Var (X) � E[(X � m)2] � E B¢X �
1
2 ≤ 2R � 3

`

�`
¢x �

1
2 ≤ 2

 f (x) dx

� 3
`

0
¢x �

1
2 ≤ 2

(2e�2x) dx �
1
4

m � E(X) �
1
2.

sX�Y � 2Var (X � Y) � A35
6

Var (X � Y) � Var (X) � Var (Y) �
35
6

Var (X) � Var (Y) �
91
6 � ¢ 7

2 ≤ 2

�
35
12

E(X2) � E(Y2) � 12¢ 1
6 ≤ � 22¢ 1

6 ≤ � c� 62¢ 1
6 ≤ �

91
6

>

E(XY) � a
x
a
y

 xyf (x, y) � a
x
a
y

 xyf1(x) f2 (y)

� a
x
Bxf1(x)a

y
yf2(y)R

� a
x

[(xf1(x)E(y)]

� E(X)E(Y)
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3.10. Prove Theorem 3-4, page 78.

We have

3.11. Prove Theorem 3-6, page 78.

since E(X � ) � E(X ) � � 0. From this we see that the minimum value of E[(X � a)2] occurs when mm

� E [(X � m)2] � (m � a)2

� E [(X � m)2] � 2(m � a)E(X � m) � (m � a)2

� E [(X � m)2 � 2(X � m)(m � a) � (m � a)2]

E [(X � a)2] � E [5(X � m) � (m � a)62]

� E(X2) � [E(X)]2

� E(X2) � 2m2 � m2 � E(X2) � m2

E[(X � m)2] � E(X2 � 2mX � m2) � E(X2) � 2mE(X ) � m2
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( � a)2 � 0, i.e., when a � .

3.12. If X* � (X � ) is a standardized random variable, prove that (a) E(X*) � 0, (b) Var(X*) � 1.

(a)

since E(X) � .

(b)

using Theorem 3-5, page 78, and the fact that E[(X � )2] � 2.

3.13. Prove Theorem 3-7, page 78.

using the fact that

since X and Y, and therefore X � X and Y � Y, are independent. The proof of (19), page 78, follows onmm

E[(X � mX)(Y � mY)] � E(X � mX)E(Y � mY) � 0

� Var (X ) � Var(Y )

� E [(X � mX)2] � 2E[(X � mX)(Y � mY)] � E[(Y � mY)2]

� E [(X � mX)2 � 2(X � mX)(Y � mY) � (Y � mY)2]

� E [5(X � mX) � (Y � mY)62]

Var (X � Y ) � E [5(X � Y ) � (mX � mY)62]

sm

Var (X*) � Var ¢X � m
s ≤ �

1
s2  E[(X � m)2] � 1

m

E(X*) � E ¢X � m
s ≤ �

1
s  [E(X � m)] �

1
s  [E(X) � m] � 0

s>m
mm

replacing Y by �Y and using Theorem 3-5.

Moments and moment generating functions
3.14. Prove the result (26), page 79.

� c� (�1)r�1 ¢ r

r � 1
≤Xmr�1 � (�1)rmrR� E BXr � ¢ r

1
≤Xr�1m � c� (�1) j ¢ r

j
≤Xr�j m j

mr � E[(X � m)r]



where the last two terms can be combined to give (�l)r�1(r � 1) r.

3.15. Prove (a) result (31), (b) result (32), page 79.

(a) Using the power series expansion for eu (3., Appendix A), we have

(b) This follows immediately from the fact known from calculus that if the Taylor series of f (t) about t � a is

then

3.16. Prove Theorem 3-9, page 80.

Since X and Y are independent, any function of X and any function of Y are independent. Hence,

3.17. The random variable X can assume the values 1 and �1 with probability each. Find (a) the moment gen-
erating function, (b) the first four moments about the origin.

(a)

(b) We have

Then (1)

But (2)

Then, comparing (1) and (2), we have

The odd moments are all zero, and the even moments are all one.

m � 0,  mr2 � 1,   mr3 � 0,   mr4 � 1,c

MX(t) � 1 � mt � mr2  
t2

2! � mr3  
t3

3! � mr4  
t4

4! � c

1
2  (et � e�t) � 1 �

t2

2! �
t4

4! � c

e�t � 1 � t �
t2

2! �
t3

3! �
t4

4! � c

et � 1 � t �
t2

2! �
t3

3! �
t4

4! � c

E(etX) � et(1)¢1
2 ≤ � et(�1)¢ 1

2 ≤ �
1
2  (et � e�t)

1
2

MX�Y (t) � E[et(X�Y )] � E(etXetY ) � E(etX )E(etY ) � MX(t)MY (t)

cn �
1
n!

dn

dtn   f (t) 2
t�a

f (t) � a
`

n�0
 cn(t � a)n

� 1 � mt � mr2 
t2

2! � mr3 
t3

3! � c

� 1 � tE(X ) �
t2

2!  E(X2) �
t3

3!  E(X3) � c

MX(t) � E(etX) � E ¢1 � tX �
t2X2

2! �
t3X3

3! � c≤
m

� c� (�1)r�1rmr � (�1)�rmr

� mrr � ¢ r

1
≤mrr�1m � c� (�1) j¢r

j
≤mrr�j m   

j

� c� (�1)r�1¢ r

r � 1
≤E(X )mr�1 � (�1)rmr

� E(Xr) � ¢ r

1
≤E(Xr�1)m � c� (�1) j ¢r

j
≤E(Xr�j)m j
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3.18. A random variable X has density function given by

Find (a) the moment generating function, (b) the first four moments about the origin.

(a)

(b) If | t | � 2 we have

But

Therefore, on comparing terms,

3.19. Find the first four moments (a) about the origin, (b) about the mean, for a random variable X having den-
sity function

(a)

(b) Using the result (27), page 79, we have

Characteristic functions
3.20. Find the characteristic function of the random variable X of Problem 3.17.

The characteristic function is given by

E(eivX ) � eiv(1)¢1
2 ≤ � eiv(�1)¢ 1

2 ≤ �
1
2  (eiv � e�iv) � cosv

m4 �
27
2 � 4¢216

35 ≤ ¢ 8
5 ≤ � 6(3)¢ 8

5 ≤ 2

� 3¢ 8
5 ≤ 4

�
3693
8750

m3 �
216
35 � 3(3)¢ 8

5 ≤ � 2¢ 8
5 ≤ 3

� �
32

875

m2 � 3 � ¢8
5 ≤ 2

�
11
25 � s2

m1 � 0

mr4 � E(X4) �
4

813
3

0 

x5(9 � x2) dx �
27
2

mr3 � E(X3) �
4

813
3

0 

x4(9 � x2) dx �
216
35

mr2 � E(X2) �
4

813
3

0 

x3(9 � x2) dx � 3

mr1 � E(X) �
4

813
3

0 

x2(9 � x2) dx �
8
5 � m

f (x) � e4x(9 � x2)>81 0 � x �  3

0 otherwise

m �
1
2, mr2 �

1
2, mr3 �

3
4, mr4 �

3
2.

M(t) � 1 � mt � mr2  
t2

2! � mr3  
t3

3! � mr4  
t4

4! � c

2
2 � t �

1
1 � t>2 � 1 �

t
2 �

t2

4 �
t3

8 �
t4

16 � c

�
2e(t�2)x

t � 2  2 `
0

�
2

2 � t,  assuming t � 2

� 3
`

0
etx(2e�2x) dx � 23

`

0
e(t�2)x dx

M(t) � E(etX ) � 3
`

�`
etx f (x) dx

f (x) � e2e�2x x � 0

0 x � 0
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using Euler’s formulas,

with . The result can also be obtained from Problem 3.17(a) on putting t � i .

3.21. Find the characteristic function of the random variable X having density function given by

The characteristic function is given by

using Euler’s formulas (see Problem 3.20) with .

3.22. Find the characteristic function of the random variable X having density function f (x) � ce–a|x|,
, where a � 0, and c is a suitable constant.

Since f (x) is a density function, we must have

so that

Then c � a 2. The characteristic function is therefore given by

Covariance and correlation coefficient
3.23. Prove Theorem 3-14, page 81.

By definition the covariance of X and Y is

� E(XY ) � E(X )E(Y )

� E(XY ) � mXmY

� E(XY ) � mXmY � mYmX � mXmY

� E(XY ) � mXE(Y ) � mYE(X ) � E(mXmY)

� E[XY � mXY � mYX � mXmY]

sXY � Cov (X, Y ) � E[(X � mX)(Y � mY)]

�
a

2(a � iv) �
a

2(a � iv) �
a2

a2 � v2

�
a
2

e(a�iv)x

a � iv
2 0
�`

� a 
e�(a�iv)x

�(a � iv)  2 `
0

�
a
2  B 30

�`
e(a�iv)x dx � 3

`

0
e�(a�iv)x dxR�

a
2  B 30

�`
eivxe�a(�x) dx � 3

`

0
eivxe�a(x) dxRE(eivX) � 3

`

�`
eivx  f (x) dx

>
� c 

eax

a  2 0
�`

� c 
e�ax

�a  2 `
0

�
2c
a � 1

c3
`

�`
e�aZxZ dx � c B 30

�`
e�a(�x) dx � 3

`

0
e�a(x) dxR

3
`

�`
 f (x) dx � 1

�` � x � `

u � av

�
1

2a
eivx

iv  2 a
�a

�
eiav � e�iav

2iav �
sin av

av

E(eivX) � 3
`

�`
eivx f (x) dx �

1
2a3

a

�a
eivx dx

f (x) � e1>2a Z x Z � a

0 otherwise

vu � v

eiu � cos u � i sin u  e�iu � cos u � i sin u
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3.24. Prove Theorem 3-15, page 81.

If X and Y are independent, then E(XY) � E(X )E(Y). Therefore, by Problem 3.23,

3.25. Find (a) E(X), (b) E(Y), (c) E(XY), (d) E(X2), (e) E(Y2), (f ) Var (X), (g) Var (Y), (h) Cov (X, Y), (i) , if the
random variables X and Y are defined as in Problem 2.8, pages 47–48.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

3.26. Work Problem 3.25 if the random variables X and Y are defined as in Problem 2.33, pages 61–63.

Using c � 1 210, we have:

(a)

(b)

(c) E(XY ) �
1

2103
6

x�2
3

5

y�0
(xy)(2x � y) dx dy �

80
7

E(Y ) �
1

2103
6

x�2
3

5

y�0
(y)(2x � y) dx dy �

170
63

E(X ) �
1

2103
6

x�2
3

5

y�0
(x)(2x � y) dx dy �

268
63

>

r �
sXY

sXsY
�

�20>147

2230>441255>49
�

�20

2230255
� �0.2103 approx.

sXY � Cov (X, Y ) � E(XY ) � E(X )E(Y ) �
17
7 � ¢ 29

21 ≤ ¢ 13
7 ≤ � �

20
147

s2
Y � Var (Y ) � E(Y2) � [E(Y )]2 �

32
7 � ¢ 13

7 ≤ 2

�
55
49

s2
X � Var (X) � E(X2) � [E(X)]2 �

17
7 � ¢ 29

21 ≤ 2

�
230
441

� (0)2(6c) � (1)2(9c) � (2)2(12c) � (3)2(15c) � 192c �
192
42 �

32
7

E(Y2) � a
x
a
y

 y2 f (x, y) � a
y

y2Ba
x

 f (x, y)R� (0)2(6c) � (1)2(14c) � (2)2(22c) � 102c �
102
42 �

17
7

E(X2) � a
x
a
y

 x2 f(x, y) � a
x

 x2Ba
y

  f (x, y)R� 102c �
102
42 �

17
7

� (2)(0)(4c) � (2)(1)(5c) � (2)(2)(6c) � (2)(3)(7c)

� (1)(0)(2c) � (1)(1)(3c) � (1)(2)(4c) � (1)(3)(5c)

� (0)(0)(0) � (0)(1)(c) � (0)(2)(2c) � (0)(3)(3c)

E(XY ) � a
x
a
y

 xy f (x, y)

� (0)(6c) � (1)(9c) � (2)(12c) � (3)(15c) � 78c �
78
42 �

13
7

E(Y ) � a
x
a
y

 yf (x, y) � a
y

 yBa
x

  f (x, y)R� (0)(6c) � (1)(14c) � (2)(22c) � 58c �
58
42 �

29
21

E(X ) � a
x
a
y

xf (x, y) � a
x

xBa
y

  f (x, y)R r

sXY � Cov (X, Y ) � E(XY ) � E(X )E(Y ) � 0
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(d)

(e)

(f)

(g)

(h)

(i)

Conditional expectation, variance, and moments
3.27. Find the conditional expectation of Y given X � 2 in Problem 2.8, pages 47–48.

As in Problem 2.27, page 58, the conditional probability function of Y given X � 2 is

Then the conditional expectation of Y given X � 2 is

where the sum is taken over all y corresponding to X � 2. This is given by

3.28. Find the conditional expectation of (a) Y given X, (b) X given Y in Problem 2.29, pages 58–59.

(a)

(b)

3.29. Find the conditional variance of Y given X for Problem 2.29, pages 58–59.

The required variance (second moment about the mean) is given by

where we have used the fact that from Problem 3.28(a).

Chebyshev’s inequality
3.30. Prove Chebyshev’s inequality.

We shall present the proof for continuous random variables. A proof for discrete variables is similar if integrals
are replaced by sums. If f(x) is the density function of X, then

s2 � E[(X � m)2] � 3
`

�`
(x � m)2f (x) dx

m2 � E(Y uX � x) � 2x>3
E[(Y � m2)2 uX � x] � 3

`

�`
(y � m2)2f2(y u x)dy � 3

x

0 

¢y �
2x
3 ≤ 2¢ 2y

x2 ≤  dy �
x2

18

�
2(1 � y3)

3(1 � y2)
�

2(1 � y � y2)
3(1 � y)

E(X uY � y) � 3
`

�`
xf1(x u y) dx � 3

1

y 

x¢ 2x
1 � y2 ≤  dx

E(Y uX � x)3
`

�`
 yf2(y u x) dy � 3

x

0  

y¢ 2y

x2 ≤  dy �
2x
3

E(Y uX � 2) � (0)¢ 4
22 ≤ � 1¢ 5

22 ≤ � 2¢ 6
22 ≤ � 3¢ 7

22 ≤ �
19
11

E(Y uX � 2) � a
y

 y¢ 4 � y
22 ≤

f (y u2) �
4 � y

22

r �
sXY

sXsY
�

�200>3969

25036>3969216,225>7938
�

�200

22518216,225
� �0.03129 approx.

sXY � Cov(X, Y ) � E(XY ) � E(X )E(Y) �
80
7 � ¢ 268

63 ≤ ¢170
63 ≤ � �

200
3969

s2
Y � Var (Y) � E(Y2) � [E(Y )]2 �

1175
126 � ¢ 170

63 ≤ 2

�
16,225
7938

s2
X � Var (X ) � E(X2) � [E(X )]2 �

1220
63 � ¢ 268

63 ≤ 2

�
5036
3969

E(Y2) �
1

2103
6

x�2
3

5

y�0
(y2)(2x � y) dx dy �

1175
126

E(X2) �
1

2103
6

x�2
3

5

y�0
(x2)(2x � y) dx dy �

1220
63
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Since the integrand is nonnegative, the value of the integral can only decrease when the range of integration is
diminished. Therefore,

But the last integral is equal to . Hence,

3.31. For the random variable of Problem 3.18, (a) find . (b) Use Chebyshev’s inequality to ob-
tain an upper bound on and compare with the result in (a).

(a) From Problem 3.18, � 1 2. Then

Therefore

(b) From Problem 3.18, . Chebyshev’s inequality with P � 1 then gives

Comparing with (a), we see that the bound furnished by Chebyshev’s inequality is here quite crude. In practice,
Chebyshev’s inequality is used to provide estimates when it is inconvenient or impossible to obtain exact values.

Law of large numbers
3.32. Prove the law of large numbers stated in Theorem 3-19, page 83.

We have

Then

so that

where we have used Theorem 3-5 and an extension of Theorem 3-7.
Therefore, by Chebyshev’s inequality with X � Sn n, we have

Taking the limit as , this becomes, as required,

Other measures of central tendency
3.33. The density function of a continuous random variable X is

(a) Find the mode. (b) Find the median. (c) Compare mode, median, and mean.

f (x) � e4x(9 � x2)>81 0 �  x � 3

0 otherwise

lim
nS`  P¢ 2  Sn

n � m 2 � P ≤ � 0

n S `

P¢ 2  Sn

n � m 2 � P≤  �
s2

nP 2

>

Var ¢ Sn

n ≤ �
1
n2   Var (Sn) �

s2

n

Var (Sn) � Var (X1 � c� Xn) � Var (X1) � c� Var (Xn) � ns2

E ¢Sn

n ≤ � E ¢X1 � c� Xn

n ≤ �
1
n  [E(X1) � c� E(Xn)] �

1
n  (nm) � m

Var (X1) � Var (X2) � c � Var (Xn) � s2

E(X1) � E(X2) � c � E(Xn) � m

P( uX � m u � 1) � s2 � 0.25

s2 � mr2 � m2 � 1>4
P¢ 2  X �

1
2  2 � 1≤ � 1 � (1 � e�3) � e�3 � 0.04979

� 3
3>2
0

2e�2x dx � 1 � e�3

P( uX � m u � 1) � P¢ 2  X �
1
2  2 � 1≤ � P¢�

1
2 � X �

3
2 ≤>m

P( uX � m u � 1)
P( uX � m u � 1)

P( uX � m u � P) �  
s2

P2

P( uX � m u � P)

s2 � 3
ux�mu �P

(x � m)2f (x) dx � 3
ux�mu �P

P2f (x) dx � P23
ux�mu �P

f (x) dx
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(a) The mode is obtained by finding where the density f (x) has a relative maximum. The relative maxima of
f (x) occur where the derivative is zero, i.e.,

Then approx., which is the required mode. Note that this does give the maximum since
the second derivative, �24x 81, is negative for 

(b) The median is that value a for which . Now, for ,

Setting this equal to 1 2, we find that

2a4 � 36a2 � 81 � 0

from which

Therefore, the required median, which must lie between 0 and 3, is given by

from which a � 1.62 approx.

(c)

which is practically equal to the median. The mode, median, and mean are shown in Fig. 3-6.

E(X ) �
4

813
3

0
x2(9 � x2) dx �

4
81  ¢3x3 �

x5

5 ≤ 2
0

3

� 1.60

a2 � 9 �
9
222

a2 �
36  2(36)2 � 4(2)(81)

2(2) �
36  2648

4 � 9 
9
222

>

P(X � a) �
4

813
a

0 

x(9 � x2) dx �
4

81  ¢ 9a2

2 �
a4

4 ≤0 � a � 3P(X � a) � 1>2
x � !3.>

x � !3 � 1.73

d
dx  B4x(9 � x2)

81 R �
36 � 12x2

81 � 0
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3.34. A discrete random variable has probability function f(x) � 1 2x where x � 1, 2, . . . . Find (a) the mode,
(b) the median, and (c) compare them with the mean.

(a) The mode is the value x having largest associated probability. In this case it is x � 1, for which the
probability is 1 2.

(b) If x is any value between 1 and 2, and Therefore, any number between 1 and
2 could represent the median. For convenience, we choose the midpoint of the interval, i.e., 3 2.

(c) As found in Problem 3.3, � 2. Therefore, the ordering of the three measures is just the reverse of that in
Problem 3.33.

m

>
P(X � x) �

1
2.P(X � x) �

1
2

>

>



Percentiles
3.35. Determine the (a) 10th, (b) 25th, (c) 75th percentile values for the distribution of Problem 3.33.

From Problem 3.33(b) we have

(a) The 10th percentile is the value of a for which P(X a) � 0.10, i.e., the solution of (18a2 � a4) 81 � 0.10.
Using the method of Problem 3.33, we find a � 0.68 approx.

(b) The 25th percentile is the value of a such that (18a2 � a4) 81 � 0.25, and we find a � 1.098 approx.

(c) The 75th percentile is the value of a such that (18a2 � a4) 81 � 0.75, and we find a � 2.121 approx.

Other measures of dispersion
3.36. Determine, (a) the semi-interquartile range, (b) the mean deviation for the distribution of Problem 3.33.

(a) By Problem 3.35 the 25th and 75th percentile values are 1.098 and 2.121, respectively. Therefore,

(b) From Problem 3.33 the mean is . Then

Skewness and kurtosis
3.37. Find the coefficient of (a) skewness, (b) kurtosis for the distribution of Problem 3.19.

From Problem 3.19(b) we have

(a) Coefficient of skewness 

(b) Coefficient of kurtosis 

It follows that there is a moderate skewness to the left, as is indicated in Fig. 3-6. Also the distribution is
somewhat less peaked than the normal distribution, which has a kurtosis of 3.

Miscellaneous problems
3.38. If M(t) is the moment generating function for a random variable X, prove that the mean is � M (0) and

the variance is 2 � M (0) � [M (0)]2.

From (32), page 79, we have on letting r � 1 and r � 2,

Then from (27)

m2 � s2 � Ms(0) � [Mr(0)]2m � Mr(0)

mr2 � Ms(0)mr1 � Mr(0)

rss

rm

� a4 �
m4

s4 � 2.172

� a3 �
m3

s3 � �0.1253

m4 �
3693
8750m3 � �

32
875s2 �

11
25

� 0.555 approx.

� 3
8>5
0
¢8

5 � x≤ B 4x
81  (9 � x2)R  dx � 3

3

8>5¢x �
8
5 ≤ B 4x

81  (9 � x2)R  dx

� 3
3

0 

2  x �
8
5   2 B 4x

81  (9 � x2)R  dx

Mean deviation � M.D.5E(uX � m u) � 3
`

�`
u x � mu f (x) dx

m � 1.60 � 8>5
Semi-interquartile range �

2.121 � 1.098
2 � 0.51 approx.

>
>

>�

P(X � a) �
4

81  ¢ 9a2

2 �
a4

4 ≤ �
18a2 � a4

81
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3.39. Let X be a random variable that takes on the values xk � k with probabilities pk where k � 1, . . . ,  n.
(a) Find the characteristic function ( ) of X, (b) obtain pk in terms of ( ).

(a) The characteristic function is

(b) Multiply both sides of the expression in (a) by and integrate with respect to from 0 to 2 . Then

since

Therefore,

or, replacing j by k,

We often call (where n can theoretically be infinite) the Fourier series of ( ) and pk the
Fourier coefficients. For a continuous random variable, the Fourier series is replaced by the Fourier integral
(see page 81).

3.40. Use Problem 3.39 to obtain the probability distribution of a random variable X whose characteristic func-
tion is .

From Problem 3.39

If k � 1, we find if k � �1, we find For all other values of k, we have pk � 0. Therefore, the
random variable is given by

As a check, see Problem 3.20.

3.41. Find the coefficient of (a) skewness, (b) kurtosis of the distribution defined by the normal curve, having
density

(a) The distribution has the appearance of Fig. 3-7. By symmetry, and . Therefore the
coefficient of skewness is zero.

mr3 � 0mr1 � m � 0

f (x) �
1

22p
 e�x2>2  �` � x � `

X � e 1 probability 1>2
�1 probability 1>2

p�1 �
1
2.p1 �

1
2;

�
1

4p3
2p

v�0
ei(1�k)v dv �

1
4p3

2p

v�0 

e�i(1�k)v dv

�
1

2p3
2p

v�0
e�ikv B eiv � e�iv

2 R  dv

pk �
1

2p3
2p

v�0
e�ikv cosv dv

f(v) � cos v

vfgn
k��n  pkeikv

pk �
1

2p3
2p

v�0
e�ikvf(v) dv

pj �
1

2p3
2p

v�0
e�ijvf(v) dv

3
2p

v�0
ei(k�j)v dv � •

ei(k�j)v

i(k � j)  2 2p
0

� 0 k 2 j

2p k � j

3
2p

v�0
e�ijvf(v) dv � a

n

k��n
 pk3

2p

v�0 

ei(k�j)v dv � 2ppj

pve�ijv

f(v) � E(eivX) � a
n

k��n
eivxk pk � a

n

k��n
pkeikv

vfvf

CHAPTER 3 Mathematical Expectation 97



(b) We have

where we have made the transformation x2 2 � v and used properties of the gamma function given in (2) and
(5) of Appendix A. Similarly we obtain

Now

Thus the coefficient of kurtosis is

3.42. Prove that �1 1 (see page 82).

For any real constant c, we have

E[{Y � Y � c(X � )}2] 0

Now the left side can be written

�
s2

Xs
2
Y � s2

XY

s2
X

� s2
X¢c �

sXY

s2
X

≤ 2

� s2
Y � s2

X¢c2 �
sXY

s2
X

≤ 2

�
s2

XY

s2
X

� s2
Y � s2

X¢c2 �
2csXY

s2
X

≤E[(Y � mY)2] � c2E[(X � mX)2] � 2cE[(X � mX)(Y � mY)] � s2
Y � c2s2

X � 2csXY

�mm

�r�

m4

s4 � 3

m4 � E[(X � m)4] � E(X4) � mr4 � 3

s2 � E[(X � m)2] � E(X )2 � mr2 � 1

�
4

2p
 � ¢ 5

2 ≤ �
4

2p
?

3
2 ?

1
2  � ¢ 1

2 ≤ � 3

�
4

2p
3
`

0
v3>2e�v  dv

mr4 � E(X4) �
1

22p
3
`

�`
x4e�x2>2  dx �

2

22p
3
`

0
x4e�x2>2  dx

>
�

2

2p
 �¢ 3

2 ≤ �
2

2p
?

1
2  �¢ 1

2 ≤ � 1

�
2

2p
3
`

0
v1>2e�v  dv

mr2 � E(X2) �
1

22p
3
`

�`
x2e�x2>2  dx �

2

22p
3
`

0
x2e�x2>2  dx
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In order for this last quantity to be greater than or equal to zero for every value of c, we must have

which is equivalent to or .

SUPPLEMENTARY PROBLEMS

Expectation of random variables

3.43. A random variable X is defined by 

3.44. Let X be a random variable defined by the density function 

Find (a) E(X ), (b) E(3X � 2), (c) E(X2).

3.45. The density function of a random variable X is

Find (a) E(X ), (b) E(X2), (c) E[(X � 1)2].

3.46. What is the expected number of points that will come up in 3 successive tosses of a fair die? Does your answer
seem reasonable? Explain.

3.47. A random variable X has the density function . Find E(e2X 3).

3.48. Let X and Y be independent random variables each having density function

Find (a) E(X � Y ), (b) E(X2 � Y2), (c) E(XY ).

3.49. Does (a) E(X � Y ) � E(X ) � E(Y), (b) E(XY ) � E(X)E(Y), in Problem 3.48? Explain.

3.50. Let X and Y be random variables having joint density function

Find (a) E(X), (b) E(Y ), (c) E(X � Y ), (d) E(XY ).

3.51. Does (a) E(X � Y ) � E(X ) � E(Y), (b) E(XY ) � E(X)E(Y), in Problem 3.50? Explain.

3.52. Let X and Y be random variables having joint density

Find (a) E(X), (b) E(Y ), (c) E(X � Y ), (d) E(XY ).

f (x, y) � e4xy 0 � x � 1, 0 � y � 1

0 otherwise

f (x, y) � e 3
5 x(x � y) 0 � x � 1, 0 � y � 2

0 otherwise

f (u) � e2e�2u u � 0

0 otherwise

>f (x) � e e�x x � 0

0 x � 0

f (x) � e e�x x � 0

0 otherwise
.

f (x) � e3x2 0 � x � 1

0 otherwise
.

X � •
�2 prob. 1>3
 3 prob. 1>2. Find (a) E(X ), (b) E(2X � 5), (c) E(X2).

1 prob. 1>6

�1 � r � 1r2 � 1

s2
Xs

2
Y � s2

XY � 0 or 
s2

XY

s2
X s

2
Y

 � 1
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3.53. Does (a) E(X � Y ) � E(X ) � E(Y), (b) E(XY ) � E(X )E(Y ), in Problem 3.52? Explain.

3.54. Let . Find (a) E(X ), (b) E(Y ), (c) E(X2), (d) E(Y2),

(e) E(X � Y ), (f ) E(XY).

3.55. Let X and Y be independent random variables such that

Find (a) E(3X � 2Y ), (b) E(2X2 � Y2), (c) E(XY ), (d) E(X2Y ).

3.56. Let X1, X2, . . . , Xn be n random variables which are identically distributed such that

Find (a) E(Xl � X2 � � Xn), (b) 

Variance and standard deviation
3.57. Find (a) the variance, (b) the standard deviation of the number of points that will come up on a single toss of a

fair die.

3.58. Let X be a random variable having density function

Find (a) Var(X ), (b) X.

3.59. Let X be a random variable having density function

Find (a) Var(X ), (b) X.

3.60. Find the variance and standard deviation for the random variable X of (a) Problem 3.43, (b) Problem 3.44.

3.61. A random variable X has E(X ) � 2, E(X2) � 8. Find (a) Var(X ), (b) X.

3.62. If a random variable X is such that E[(X � 1)2] � 10, E[(X � 2)2] � 6 find (a) E(X ), (b) Var(X ), (c) X.

Moments and moment generating functions
3.63. Find (a) the moment generating function of the random variable

and (b) the first four moments about the origin.

X � e 1>2 prob. 1>2
�1>2 prob. 1>2

s

s

s

f (x) � e e�x x � 0

0 otherwise

s

f (x) � e1>4 �2 � x � 2

0 otherwise

E(X2
1 � X2

2 � c� X2
n).c

Xk � •
1 prob. 1>2
2 prob. 1>3

�1 prob. 1>6

X � e1 prob. 1>3
0 prob. 2>3  Y � e 2 prob. 3>4

�3 prob. 1>4

f (x, y) � e 1
4  (2x � y) 0 �  x � 1, 0 � y � 2

0 otherwise
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3.64. (a) Find the moment generating function of a random variable X having density function

(b) Use the generating function of (a) to find the first four moments about the origin.

3.65. Find the first four moments about the mean in (a) Problem 3.43, (b) Problem 3.44.

3.66. (a) Find the moment generating function of a random variable having density function

and (b) determine the first four moments about the origin.

3.67. In Problem 3.66 find the first four moments about the mean.

3.68. Let X have density function . Find the kth moment about (a) the origin,

(b) the mean.

3.69. If M(t) is the moment generating function of the random variable X, prove that the 3rd and 4th moments about
the mean are given by

Characteristic functions

3.70. Find the characteristic function of the random variable .

3.71. Find the characteristic function of a random variable X that has density function

3.72. Find the characteristic function of a random variable with density function

3.73. Let be independent random variables (k � 1, 2, . . . , n). Prove that the characteristic

function of the random variable

is

3.74. Prove that as the characteristic function of Problem 3.73 approaches (Hint: Take the logarithm of
the characteristic function and use L’Hospital’s rule.)

e�v2>2.n S `

[cos (v>!n)]n.

X1 � X2 � c � Xn

2n

Xk � e 1 prob. 1>2
�1 prob. 1>2

f (x) � e x>2 0 � x � 2

0 otherwise

f (x) � e1>2a u x u �  a

0 otherwise

X � ea prob. p

b prob. q � 1 � p

m3 � M-(0) � 3Ms(0)Mr(0) � 2[Mr(0)]3

m4 � M(iv)(0) � 4M-(0)Mr(0) � 6Ms(0)[Mr(0)]2 � 3[Mr(0)]4

f (x) � e1>(b � a) a � x �  b

0 otherwise

f (x) � e e�x x � 0

0 otherwise

f (x) � e x>2 0 �  x � 2

0 otherwise
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Covariance and correlation coefficient
3.75. Let X and Y be random variables having joint density function

Find (a) Var(X ), (b) Var(Y ), (c) X, (d) Y, (e) XY, (f ) .

3.76. Work Problem 3.75 if the joint density function is .

3.77. Find (a) Var(X), (b) Var(Y ), (c) X, (d) Y, (e) XY, (f ) , for the random variables of Problem 2.56.

3.78. Work Problem 3.77 for the random variables of Problem 2.94.

3.79. Find (a) the covariance, (b) the correlation coefficient of two random variables X and Y if E(X ) � 2, E(Y ) � 3,
E(XY) � 10, E(X2) � 9, E(Y2) � 16.

3.80. The correlation coefficient of two random variables X and Y is while their variances are 3 and 5. Find the
covariance.

Conditional expectation, variance, and moments
3.81. Let X and Y have joint density function

Find the conditional expectation of (a) Y given X, (b) X given Y.

3.82. Work Problem 3.81 if 

3.83. Let X and Y have the joint probability function given in Table 2-9, page 71. Find the conditional expectation of
(a) Y given X, (b) X given Y.

3.84. Find the conditional variance of (a) Y given X, (b) X given Y for the distribution of Problem 3.81.

3.85. Work Problem 3.84 for the distribution of Problem 3.82.

3.86. Work Problem 3.84 for the distribution of Problem 2.94.

Chebyshev’s inequality
3.87. A random variable X has mean 3 and variance 2. Use Chebyshev’s inequality to obtain an upper bound for 

(a) P( X �3 2), (b) P( X � 3 1).

3.88. Prove Chebyshev’s inequality for a discrete variable X. (Hint: See Problem 3.30.)

3.89. A random variable X has the density function (a) Find P( X � � 2). (b) Useumuf (x) �
1
2  e�|x|, �` � x � `.

�uu�uu

f (x, y) � e2e�(x�2y) x � 0, y �  0

0 otherwise

f (x, y) � e x � y 0 � x � 1,  0 �  y � 1

0 otherwise

�
1
4

rsss

f (x, y) � e e�(x�y) x � 0, y �  0

0 otherwise

rsss

f (x, y) � e x � y 0 � x � 1,  0 � y �  1

0 otherwise
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Law of large numbers
3.90. Show that the (weak) law of large numbers can be stated as

and interpret.

3.91. Let Xk (k = 1, . . . , n) be n independent random variables such that

(a) If we interpret Xk to be the number of heads on the kth toss of a coin, what interpretation can be given to 
Sn � X1 � � Xn?

(b) Show that the law of large numbers in this case reduces to

and interpret this result.

Other measures of central tendency
3.92. Find (a) the mode, (b) the median of a random variable X having density function

and (c) compare with the mean.

3.93. Work Problem 3.100 if the density function is

3.94. Find (a) the median, (b) the mode for a random variable X defined by

and (c) compare with the mean.

3.95. Find (a) the median, (b) the mode of the set of numbers 1, 3, 2, 1, 5, 6, 3, 3, and (c) compare with the mean.

Percentiles
3.96. Find the (a) 25th, (b) 75th percentile values for the random variable having density function

3.97. Find the (a) 10th, (b) 25th, (c) 75th, (d) 90th percentile values for the random variable having density function

where c is an appropriate constant.

Other measures of dispersion
3.98. Find (a) the semi-interquartile range, (b) the mean deviation for the random variable of Problem 3.96.

3.99. Work Problem 3.98 for the random variable of Problem 3.97.

f (x) � e c(x � x3) 0 � x � 1

0 otherwise

f (x) � e2(1 � x) 0 � x � 1

0 otherwise

X � e 2 prob. 1>3
�1 prob. 2>3

f (x) � e4x(1 � x2) 0 � x � 1

0 otherwise

f (x) � e e�x x � 0

0 otherwise

lim
nS`

 P¢ 2  Sn

n � p 2  � P≤ � 0

c

Xk � e1 prob. p

0 prob. q � 1 � p

lim
nS`

P¢ 2  Sn

n � m 2 �  P≤ � 1
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3.100. Find the mean deviation of the random variable X in each of the following cases.

(a) (b) 

3.101. Obtain the probability that the random variable X differs from its mean by more than the semi-interquartile
range in the case of (a) Problem 3.96, (b) Problem 3.100(a).

Skewness and kurtosis
3.102. Find the coefficient of (a) skewness, (b) kurtosis for the distribution of Problem 3.100(a).

3.103. If

where c is an appropriate constant, is the density function of X, find the coefficient of (a) skewness,
(b) kurtosis.

3.104. Find the coefficient of (a) skewness, (b) kurtosis, for the distribution with density function

Miscellaneous problems
3.105. Let X be a random variable that can take on the values 2, 1, and 3 with respective probabilities 1 3, 1 6, and

1 2. Find (a) the mean, (b) the variance, (c) the moment generating function, (d) the characteristic function,
(e) the third moment about the mean.

3.106. Work Problem 3.105 if X has density function

where c is an appropriate constant.

3.107. Three dice, assumed fair, are tossed successively. Find (a) the mean, (b) the variance of the sum.

3.108. Let X be a random variable having density function

where c is an appropriate constant. Find (a) the mean, (b) the variance, (c) the moment generating function,
(d) the characteristic function, (e) the coefficient of skewness, (f ) the coefficient of kurtosis.

3.109. Let X and Y have joint density function

Find (a) E(X2 � Y2), (b) 

3.110. Work Problem 3.109 if X and Y are independent identically distributed random variables having density
function f (u) � (2p)�1>2e�u2>2, �` � u � `.

E(!X2 � Y2).

f (x, y) � e cxy 0 � x � 1, 0 � y � 1

0 otherwise

f (x) � e cx 0 � x �  2

0 otherwise

f (x) � e c(1 � x) 0 � x � 1

0 otherwise

>
>>

f (x) � e  le� lx x � 0

0 x � 0

f (x) � • c Q1 �
ux u
a R ux u  � a

0 ux u � a

f (x) �
1

p(1 � x2)
, �` � x � `.f (x) � e e�x x � 0

0 otherwise
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3.111. Let X be a random variable having density function

and let Y � X2. Find (a) E(X), (b) E(Y), (c) E(XY).

ANSWERS TO SUPPLEMENTARY PROBLEMS

3.43. (a) 1 (b) 7 (c) 6 3.44. (a) 3 4 (b) 1 4 (c) 3 5

3.45. (a) 1 (b) 2 (c) 1 3.46. 10.5 3.47. 3

3.48. (a) 1 (b) 1 (c) 1 4

3.50. (a) 7 10 (b) 6 5 (c) 19 10 (d) 5 6

3.52. (a) 2 3 (b) 2 3 (c) 4 3 (d) 4 9

3.54. (a) 7 12 (b) 7 6 (c) 5 12 (d) 5 3 (e) 7 4 (f) 2 3

3.55. (a) 5 2 (b) –55 12 (c) 1 4 (d) 1 4

3.56. (a) n (b) 2n 3.57. (a) 35 12 (b) 

3.58. (a) 4 3 (b) 3.59. (a) 1 (b) 1

3.60. (a) Var(X) = 5, (b) Var(X) = 3 80,

3.61. (a) 4 (b) 2 3.62. (a) 7 2 (b) 15 4 (c) 

3.63. (a) (b) 

3.64. (a) (1 � 2te2t – e2t) 2t2 (b)

3.65. (a) 1 � 0, 2 � 5, 3 � �5, 4 � 35 (b) 1 � 0, 2 � 3 80, 3 � �121 160, 4 � 2307 8960

3.66. (a) 1 (1 � t), | t | � 1 (b) 

3.67.

3.68. (a) (bk�1 – ak�1) (k � 1)(b � a) (b) [1 � (�1)k](b � a)k 2k � 1(k � 1)

3.70. 3.71. 3.72. (e2iv � 2ive2iv � 1)>2v2( sin av)>avpeiva � qeivb

>>

m1 � 0, m2 � 1, m3 � 2, m4 � 33

m � 1, mr2 � 2, mr3 � 6, mr4 � 24>

>m>m>mmmmmm

m � 4>3, mr2 � 2, mr3 � 16>5, mr4 � 16>3>

m � 0, mr2 � 1, mr3 � 0, mr4 � 11
2(e

t>2 � e�t>2) � cosh(t>2)

!15>2>>

sX � 215>20>sX � !5

!4>3>

!35>12>

>>>>

>>>>>>

>>>>

>>>>

>

>>>

f (x) � e 1
2 �1 � x � 1

0 otherwise
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3.75. (a) 11 144 (b) 11 144 (c) (d) (e) –1 144 (f) –1 11

3.76. (a) 1 (b) 1 (c) 1 (d) 1 (e) 0 (f) 0

3.77. (a) 73 960 (b) 73 960 (c) (d) (e) –1 64 (f) –15 73

3.78. (a) 233 324 (b) 233 324 (c) (d) (e) –91 324 (f) –91 233

3.79. (a) 4 (b) 3.80.

3.81. (a) (3x � 2) (6x � 3) for 0 x 1 (b) (3y � 2) (6y � 3) for 0 y 1

3.82. (a) 1 2 for x 0 (b) 1 for y 0

3.83. (a) (b)

��>

��>��>

�!15>44>!35

>>!233>18!233>18>>

>>!73>960!73>960>>

>>!11>12!11>12>>
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X 0 1 2

E(Y X) 4 3 1 5 7>>u

Y 0 1 2

E(X Y) 4 3 7 6 1 2>>>u

3.84. (a) for 0 x 1 (b) for 0 y 1

3.85. (a) 1 9 (b) 1

3.86. (a) (b)

>

��
6y2 � 6y �1

18(2y � 1)2��
6x2 � 6x � 1
18(2x � 1)2

X 0 1 2

Var(Y X) 5 9 4 5 24 49>>>u

Y 0 1 2

Var(X Y) 5 9 29 36 7 12>>>u

3.87. (a) 1 2 (b) 2 (useless) 3.89. (a) e–2 (b) 0.5

3.92. (a) � 0 (b) ln 2 (c) 1 3.93. (a) (b) (c) 8 15

3.94. (a) does not exist (b) –1 (c) 0 3.95. (a) 3 (b) 3 (c) 3

3.96. (a) (b) 1 2

3.97. (a) (b) (c) (d) 

3.98. (a) 1 (b) (c) 16 81

3.99. (a) 1 (b) 0.17 (c) 0.051 3.100. (a) 1 � 2e–1 (b) does not exist

3.101. (a) (b) 

3.102. (a) 2 (b) 9 3.103. (a) 0 (b) 24 5a 3.104. (a) 2 (b) 9>

(3 � 2e�1!3)>3(5 � 2!3)>3

>(!3 � 1)>4

#1 � (1>!10)!1>2#1 � (23>2)#1 � (3>!10)

>1 �
1
2!3

>#1 � (1>!2)1>!3

>



3.105. (a) 7 3 (b) 5 9 (c) (et � 2e2t � 3e3t) 6 (d) (e) �7 27

3.106. (a) 1 3 (b) 1 18 (c) 2(et � 1 � t) t2 (d) (e) 1 135

3.107. (a) 21 2 (b) 35 4

3.108. (a) 4 3 (b) 2 9 (c) (1 � 2te2t � e2t) 2t2 (d)
(e) (f ) 12 5

3.109. (a) 1 (b) 

3.110. (a) 2 (b) 

3.111. (a) 0 (b) 1 3 (c) 0>

!2p>2

8(2!2 � 1)>15

>�2!18>15
�(1 � 2ive2iv � e2iv)>2v2>>>

>>

>�2(eiv � 1 � iv)>v2>>>

>(eiv � 2e2iv � 3e3iv)>6>>>
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CHAPTER 4

Special Probability 
Distributions

The Binomial Distribution
Suppose that we have an experiment such as tossing a coin or die repeatedly or choosing a marble from an urn
repeatedly. Each toss or selection is called a trial. In any single trial there will be a probability associated with
a particular event such as head on the coin, 4 on the die, or selection of a red marble. In some cases this proba-
bility will not change from one trial to the next (as in tossing a coin or die). Such trials are then said to be inde-
pendent and are often called Bernoulli trials after James Bernoulli who investigated them at the end of the
seventeenth century.

Let p be the probability that an event will happen in any single Bernoulli trial (called the probability of success).
Then q � 1 � p is the probability that the event will fail to happen in any single trial (called the probability of
failure). The probability that the event will happen exactly x times in n trials (i.e., successes and n � x failures
will occur) is given by the probability function

(1)

where the random variable X denotes the number of successes in n trials and x � 0, 1, . . . , n.

EXAMPLE 4.1 The probability of getting exactly 2 heads in 6 tosses of a fair coin is

The discrete probability function (1) is often called the binomial distribution since for x � 0, 1, 2, . . . , n, it
corresponds to successive terms in the binomial expansion

(2)

The special case of a binomial distribution with n � 1 is also called the Bernoulli distribution.

Some Properties of the Binomial Distribution
Some of the important properties of the binomial distribution are listed in Table 4-1.

(q � p)n � qn � an
1
bqn�1p � an

2
bqn�2p2 � c� pn � a an

x
b

n

x�0

 pxqn�x

P(X � 2) � a6
2b a1

2b
2

a1
2b

6�2

�
6!

2!4! a1
2b

2

a1
2b

6�2

�
15
64

f (x) � P(X � x) � an
x
b  pxqn�x �

n!
x!(n � x)! pxqn�x

108
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EXAMPLE 4.2 In 100 tosses of a fair coin, the expected or mean number of heads is while the

standard deviation is . 

The Law of Large Numbers for Bernoulli Trials
The law of large numbers, page 83, has an interesting interpretation in the case of Bernoulli trials and is presented
in the following theorem.

Theorem 4-1 (Law of Large Numbers for Bernoulli Trials): Let X be the random variable giving the num-
ber of successes in n Bernoulli trials, so that is the proportion of successes. Then if p is the
probability of success and � is any positive number,

(3)

In other words, in the long run it becomes extremely likely that the proportion of successes, , will be as
close as you like to the probability of success in a single trial, p. This law in a sense justifies use of the empirical
definition of probability on page 5. A stronger result is provided by the strong law of large numbers (page 83),
which states that with probability one, , i.e., actually converges to p except in a negligible 
number of cases.

The Normal Distribution
One of the most important examples of a continuous probability distribution is the normal distribution, some-
times called the Gaussian distribution. The density function for this distribution is given by

(4)

where � and � are the mean and standard deviation, respectively. The corresponding distribution function is
given by

(5)

If X has the distribution function given by (5), we say that the random variable X is normally distributed with mean
� and variance � 2.

If we let Z be the standardized variable corresponding to X, i.e., if we let

(6)Z �
X � m
s

F(x) � P(X � x) �
1

s!2p3
x

�`
 e�(v�m)2/2s2 dv

f (x) �
1

s22p
e�(x�m)2/2s2 �`  �  x �  `

X>nlim
nS`

 X>n � p

X>n
lim

nS`
Pa 2  Xn � p 2 � Pb � 0

X>n

s � 2(100)A12B A12B � 5
m � (100)A12B � 50

Mean � � np

Variance �2 � npq

Standard deviation

Coefficient of skewness

Coefficient of kurtosis

Moment generating function

Characteristic function f(v) � (q � peiv)n

M(t) � (q � pet)n

a4 � 3 �
1 � 6pq

npq

a3 �
q � p

!npq

s � !npq

Table 4-1
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then the mean or expected value of Z is 0 and the variance is 1. In such cases the density function for Z can be
obtained from (4) by formally placing � � 0 and � � 1, yielding

(7)

This is often referred to as the standard normal density function. The corresponding distribution function is given by

(8)

We sometimes call the value z of the standardized variable Z the standard score. The function F(z) is related to
the extensively tabulated error function, erf(z). We have

(9)

A graph of the density function (7), sometimes called the standard normal curve, is shown in Fig. 4-1. In this
graph we have indicated the areas within 1, 2, and 3 standard deviations of the mean (i.e., between z � �1
and �1, z � �2 and �2, z � �3 and �3) as equal, respectively, to 68.27%, 95.45% and 99.73% of the total
area, which is one. This means that

P(�1 � Z � 1) � 0.6827, P(�2 � Z � 2) � 0.9545, P(�3 � Z � 3) � 0.9973 (10)

erf(z) �
2
!p3

z

0
 e�u2 du and F(z) �

1
2

 c1 � erf a z

!2
b d

F(z) � P(Z � z) �
1

!2p3
z

�`
 e�u2>2 du �

1
2

�
1

!2p3
z

0
 e�u2>2  du

f (z) �
1

22p
e�z2>2

A table giving the areas under this curve bounded by the ordinates at z � 0 and any positive value of z is given
in Appendix C. From this table the areas between any two ordinates can be found by using the symmetry of the
curve about z � 0.

Some Properties of the Normal Distribution
In Table 4-2 we list some important properties of the general normal distribution.

Mean �

Variance � 2

Standard deviation �

Coefficient of skewness �3 � 0

Coefficient of kurtosis �4 � 3

Moment generating function

Characteristic function f(v) � eimv�(s2v2>2)

M(t) � eut�(s2t2>2)

Table 4-2

Fig. 4-1
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Relation Between Binomial and Normal Distributions
If n is large and if neither p nor q is too close to zero, the binomial distribution can be closely approximated by
a normal distribution with standardized random variable given by

(11)

Here X is the random variable giving the number of successes in n Bernoulli trials and p is the probability of suc-
cess. The approximation becomes better with increasing n and is exact in the limiting case. (See Problem 4.17.)
In practice, the approximation is very good if both np and nq are greater than 5. The fact that the binomial dis-
tribution approaches the normal distribution can be described by writing

(12)

In words, we say that the standardized random variable is asymptotically normal.

The Poisson Distribution
Let X be a discrete random variable that can take on the values 0, 1, 2, . . . such that the probability function of
X is given by

(13)

where � is a given positive constant. This distribution is called the Poisson distribution (after S. D. Poisson, who
discovered it in the early part of the nineteenth century), and a random variable having this distribution is said
to be Poisson distributed.

The values of f (x) in (13) can be obtained by using Appendix G, which gives values of e�� for various values
of �.

Some Properties of the Poisson Distribution
Some important properties of the Poisson distribution are listed in Table 4-3.

f (x) � P(X � x) �
lxe�l

x!
 x � 0, 1, 2, c

(X � np)>!npq

lim
nS`

P aa �  
X � np

!npq
� bb �

1
!2p3

b

a
e�u2>2 du

Z �
X � np

!npq

Mean � � �

Variance �2 � �

Standard deviation

Coefficient of skewness

Coefficient of kurtosis

Moment generating function

Characteristic function f(v) � el(eiv�1)

M(t) � el(et�1)

a4 � 3 � (1>l)
a3 � 1>!l
s � !l

Table 4-3

Relation Between the Binomial and Poisson Distributions
In the binomial distribution (1), if n is large while the probability p of occurrence of an event is close to
zero, so that q � 1 � p is close to 1, the event is called a rare event. In practice we shall consider an event
as rare if the number of trials is at least 50 (n � 50) while np is less than 5. For such cases the binomial dis-
tribution is very closely approximated by the Poisson distribution (13) with � � np. This is to be expected
on comparing Tables 4-1 and 4-3, since by placing � � np, q 1, and p 0 in Table 4-1, we get the results
in Table 4-3.

<<
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Relation Between the Poisson and Normal Distributions
Since there is a relation between the binomial and normal distributions and between the binomial and Poisson
distributions, we would expect that there should also be a relation between the Poisson and normal distributions.
This is in fact the case. We can show that if X is the Poisson random variable of (13) and is the cor-
responding standardized random variable, then

(14)

i.e., the Poisson distribution approaches the normal distribution as or is asymptotically
normal.

The Central Limit Theorem
The similarity between (12) and (14) naturally leads us to ask whether there are any other distributions besides
the binomial and Poisson that have the normal distribution as the limiting case. The following remarkable theo-
rem reveals that actually a large class of distributions have this property.

Theorem 4-2 (Central Limit Theorem) Let X1, X2, . . . , Xn be independent random variables that are iden-
tically distributed (i.e., all have the same probability function in the discrete case or density
function in the continuous case) and have finite mean � and variance � 2. Then if Sn � X1 �
X2 � . . . � Xn (n � l, 2 . . .),

(15)

that is, the random variable , which is the standardized variable corresponding
to Sn, is asymptotically normal.

The theorem is also true under more general conditions; for example, it holds when X1, X2, . . . , Xn are independ-
ent random variables with the same mean and the same variance but not necessarily identically distributed.

The Multinomial Distribution
Suppose that events A1, A2, . . . , Ak are mutually exclusive, and can occur with respective probabilities p1, p2, . . . ,
pk where If X1, X2, . . . , Xk are the random variables respectively giving the number
of times that A1, A2, . . . , Ak occur in a total of n trials, so that then

(16)

where , is the joint probability function for the random variables 
This distribution, which is a generalization of the binomial distribution, is called the multinomial distribution

since (16) is the general term in the multinomial expansion of 

EXAMPLE 4.3 If a fair die is to be tossed 12 times, the probability of getting 1, 2, 3, 4, 5 and 6 points exactly twice
each is

The expected number of times that A1, A2, . . . , Ak will occur in n trials are np1, np2, . . . , npk respectively, i.e.,

E(X1) � np1, E(X2) � np2, . . . , E(Xk) � npk (17)

The Hypergeometric Distribution
Suppose that a box contains b blue marbles and r red marbles. Let us perform n trials of an experiment in which
a marble is chosen at random, its color is observed, and then the marble is put back in the box. This type of ex-
periment is often referred to as sampling with replacement. In such a case, if X is the random variable denoting

P(X1 � 2, X2 �  2, c, X6 � 2) �
12!

2!2!2!2!2!2! a1
6b

2a1
6b

2a1
6b

2a1
6b

2a1
6b

2a1
6b

2

�
1925

559,872 � 0.00344

( p1 � p2 � c� pk)n.

X1, c, Xk.n1 � n2 � c� nk � n

P(X1 � n1, X2 � n2, c, Xk � nk) �
n

n1!n2! cnk!
pn11 pn2k

cpnkk

X1 � X2 � c� Xk �  n,
p1 � p2 � c� pk � 1.

(Sn � nm)>s!n

lim
nS`

Paa �   
Sn � nm

s!n
� bb �

1
!2p3

b

a
e�u2>2 du

(X � l)>!ll S `

lim
lS`

P aa �
X � l

!l � bb �
1

!2p3
b

a
e�u2>2 du

(X � l)>!l
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the number of blue marbles chosen (successes) in n trials, then using the binomial distribution (1) we see that
the probability of exactly x successes is

(18)

since p � b (b � r), q � 1 � p � r (b � r).
If we modify the above so that sampling is without replacement, i.e., the marbles are not replaced after being

chosen, then

(19)

This is the hypergeometric distribution. The mean and variance for this distribution are

(20)

If we let the total number of blue and red marbles be N, while the proportions of blue and red marbles are p and
q � 1 � p, respectively, then

(21)

so that (19) and (20) become, respectively,

(22)

(23)

Note that as (or N is large compared with n), (22) reduces to (18), which can be written

(24)

and (23) reduces to

� � np, � 2 � npq (25)

in agreement with the first two entries in Table 4-1, page 109. The results are just what we would expect, since
for large N, sampling without replacement is practically identical to sampling with replacement.

The Uniform Distribution
A random variable X is said to be uniformly distributed in a � x � b if its density function is

(26)

and the distribution is called a uniform distribution.
The distribution function is given by

(27)F(x) � P(X � x) � u0   x � a

(x � a)>(b � a)   a � x � b

1   x  �  b

f (x) � e1>(b � a) a � x � b

0 otherwise

P(X � x) � an
x
b   p xqn�x

N S `

m � np,  s2 �
npq(N � n)

N � 1

P(X � x) �

aNp

x
b a Nq

n � x
b

aN
n
b

p �
b

b � r
 �  

b
N

,  q �
r

b � r
 �

r
N
  or  b � Np,  r � Nq

m �
nb

b � r
 ,                 s2 �

nbr(b � r � n)
(b � r)2 (b � r � 1)

P(X � x) �

ab
x
b a r

n � x
b

    ab � r

n
b

, x � max (0, n � r), c,
min (n, b)

>>
P(X � x) � an

x
b bxrn�x

(b � r)n
, x � 0,  1, c, n
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The mean and variance are, respectively,

(28)

The Cauchy Distribution
A random variable X is said to be Cauchy distributed, or to have the Cauchy distribution, if the density function
of X is

(29)

This density function is symmetrical about x � 0 so that its median is zero. However, the mean, variance, and
higher moments do not exist. Similarly, the moment generating function does not exist. However, the character-
istic function does exist and is given by

�(�) � e�a� (30)

The Gamma Distribution
A random variable X is said to have the gamma distribution, or to be gamma distributed, if the density func-
tion is

(31)

where �(�) is the gamma function (see Appendix A). The mean and variance are given by

� � ��, � 2 � ��2 (32)

The moment generating function and characteristic function are given, respectively, by

M(t) � (1 � �t) ��, �(�) � (1 � �i�)�� (33)

The Beta Distribution
A random variable is said to have the beta distribution, or to be beta distributed, if the density function is

(34)

where B(�, �) is the beta function (see Appendix A). In view of the relation (9), Appendix A, between the beta
and gamma functions, the beta distribution can also be defined by the density function

(35)

where �, � are positive. The mean and variance are

(36)

For � � 1, � � 1 there is a unique mode at the value

(37)xmode �
a � 1

a � b � 2

m �
a

a � b
,  s2 �

ab

(a � b)2 (a � b � 1)

f (x) � u �(a � b)
�(a)�(b)

xa�1(1 � x)b�1 0 � x � 1

0 otherwise

(a,  b � 0)u
xa�1(1 � x)b�1

B(a, b)
     0 � x � 1

0      otherwise
f (x) �

(a,  b � 0)u xa�1e�x>b
ba�(a)

 x � 0

0  x � 0
f (x) �

f (x) �
a

p(x2 � a2)
  a � 0,�`  �  x �  `

m �
1
2

 (a � b),  s2 �
1

12
 (b � a)2
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The Chi-Square Distribution
Let X1, X2, . . . , Xv be v independent normally distributed random variables with mean zero and variance 1. Con-
sider the random variable

(38)

where �2 is called chi square. Then we can show that for x � 0,

(39)

and P(�2 � x) � 0 for x � 0.
The distribution defined by (39) is called the chi-square distribution, and v is called the number of degrees of

freedom. The distribution defined by (39) has corresponding density function given by

(40)

It is seen that the chi-square distribution is a special case of the gamma distribution with � � v 2 � � 2.
Therefore,

� � v, �2 � 2v, M(t) � (1 �2t)�v 2, �(�) � (1 � 2i�)�v 2 (41)

For large v(v � 30), we can show that is very nearly normally distributed with mean 0 and
variance 1.

Three theorems that will be useful in later work are as follows:

Theorem 4-3 Let X1, X2, . . . , Xv be independent normally distributed random variables with mean 0 and vari-
ance 1. Then is chi-square distributed with v degrees of freedom.

Theorem 4-4 Let U1, U2, . . . , Uk be independent random variables that are chi-square distributed with v1,
v2, . . . , vk degrees of freedom, respectively. Then their sum is chi-
square distributed with degrees of freedom.

Theorem 4-5 Let V1 and V2 be independent random variables. Suppose that V1 is chi-square distributed with
v1 degrees of freedom while V � V1 � V2 is chi-square distributed with v degrees of freedom,
where v � v1. Then V2 is chi-square distributed with v � v1 degrees of freedom.

In connection with the chi-square distribution, the t distribution (below), the F distribution (page 116),
and others, it is common in statistical work to use the same symbol for both the random variable and a value
of that random variable. Therefore, percentile values of the chi-square distribution for v degrees of freedom
are denoted by or briefly if v is understood, and not by xp,v or xp. (See Appendix E.) This is an am-
biguous notation, and the reader should use care with it, especially when changing variables in density
functions.

Student’s t Distribution
If a random variable has the density function

(42)

it is said to have Student’s t distribution, briefly the t distribution, with v degrees of freedom. If v is large 
(v � 30), the graph of f (t) closely approximates the standard normal curve as indicated in Fig. 4-2. Percentile

f (t) �

�av � 1
2
b

2vp  �av
2
b
a1 �

t2

v b
�(v�1)>2

�`  �  t �  `

x2
px2

p,v,

v1 � v2 � c � vk

W � U1 � U2 � c � Uk

x2 � X2
1 � X2

2 � c� X2
v

!2x2 � !2v � 1

>>

>

f (x) � u
1

2v>2�(v>2)
x(v>2)�1 e�x>2 x � 0

0 x � 0

P(x2 � x) �
1

2v>2�(v>2)3
x

0
  u(v>2)�1 e�u>2 du

x2 � X2
1 � X2

2 � c� X2
v
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Fig. 4-2

values of the t distribution for v degrees of freedom are denoted by tp,v or briefly tp if v is understood. For a
table giving such values, see Appendix D. Since the t distribution is symmetrical, t1�p � �tp; for example,
t0.5 � �t0.95.

For the t distribution we have

� � 0 and (v � 2). (43)

The following theorem is important in later work.

Theorem 4-6 Let Y and Z be independent random variables, where Y is normally distributed with mean 0 and
variance 1 while Z is chi-square distributed with v degrees of freedom. Then the random variable

(44)

has the t distribution with v degrees of freedom.

The F Distribution
A random variable is said to have the F distribution (named after R. A. Fisher) with v1 and v2 degrees of freedom
if its density function is given by

(45)

Percentile values of the F distribution for v1, v2 degrees of freedom are denoted by , or briefly Fp if v1, v2Fp,v1,v2

f

 

(u) � e �av1 � v2

2 b
�av1

2 b  � av2

2 b
v1

v1>2 v2
v2>2u(v1>2)�1(v2 � v1u)�(v1 � v2)>2 u � 0

0 u � 0

T  �   
Y

2Z>v

s2 �
v

v � 2

are understood. For a table giving such values in the case where p � 0.95 and p � 0.99, see Appendix F.
The mean and variance are given, respectively, by

(46)

The distribution has a unique mode at the value

(47)umode � av1 � 2
v1
b a v2

v2 � 2
b (v1 � 2)

m �
v2

v2 � 2
  (v2 �  2) and s2 �

2v2
2(v1 �  v2 � 2)

v1(v2 � 4)(v2 � 2)2
 (v2 � 4)
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The following theorems are important in later work.

Theorem 4-7 Let V1 and V2 be independent random variables that are chi-square distributed with v1 and v2

degrees of freedom, respectively. Then the random variable

(48)

has the F distribution with v1 and v2 degrees of freedom.

Theorem 4-8

Relationships Among Chi-Square, t, and F Distributions

Theorem 4-9

Theorem 4-10

The Bivariate Normal Distribution
A generalization of the normal distribution to two continuous random variables X and Y is given by the joint den-
sity function

(49)

where � � x � , � � y � ; �1, �2 are the means of X and Y; �1, �2 are the standard deviations of X
and Y; and � is the correlation coefficient between X and Y. We often refer to (49) as the bivariate normal
distribution.

For any joint distribution the condition � � 0 is necessary for independence of the random variables (see
Theorem 3-15). In the case of (49) this condition is also sufficient (see Problem 4.51).

Miscellaneous Distributions
In the distributions listed below, the constants �, �, a, b, . . . are taken as positive unless otherwise stated. The
characteristic function �(�) is obtained from the moment generating function, where given, by letting t � i�.

1. GEOMETRIC DISTRIBUTION.

f (x) � P(X � x) � pqx�1 x � l, 2, . . .

The random variable X represents the number of Bernoulli trials up to and including that in which the first suc-
cess occurs. Here p is the probability of success in a single trial.

2. PASCAL’S OR NEGATIVE BINOMIAL DISTRIBUTION.

The random variable X represents the number of Bernoulli trials up to and including that in which the rth suc-
cess occurs. The special case r � 1 gives the geometric distribution.

M(t) � a pet

1 � qet
br

s2 �
rq

p2
m �

r
P

f (x) � P(X � x) � ax � 1

r � 1
b  prqx�r  x � r, r � 1, …

M(t) �
pet

1 � qet
s 2 �

q

p2
m �

1
p

````

f2̂(1 � r2)f (x,  y) �
1

2ps1s221 � r2
 exp e� c ax � m1

s1
b2

� 2rax � m1

s1
b ay � m2

s2
b � ay � m2

s2
b2 d

Fp,v,` �
x2

p,v

v

F1�p,1,v � t2
1�(p>2), v

F1�p,v2,v1
�

1
Fp,v1,v2

V �
V1>v1

V2>v2
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3. EXPONENTIAL DISTRIBUTION.

4. WEIBULL DISTRIBUTION.

5. MAXWELL DISTRIBUTION.

SOLVED PROBLEMS

The binomial distribution
4.1. Find the probability that in tossing a fair coin three times, there will appear (a) 3 heads, (b) 2 tails and 1 head,

(c) at least 1 head, (d) not more than 1 tail.

Method 1
Let H denote heads and T denote tails, and suppose that we designate HTH, for example, to mean head on first
toss, tail on second toss, and then head on third toss.

Since 2 possibilities (head or tail) can occur on each toss, there are a total of (2)(2)(2) � 8 possible outcomes,
i.e., sample points, in the sample space. These are

HHH, HHT, HTH, HTT, TTH, THH, THT, TTT

For a fair coin these are assigned equal probabilities of 1 8 each. Therefore,

(a) P(3 heads) � P(HHH) �

(b) P(2 tails and 1 head) � P(HTT TTH THT)

(c)

Alternatively,

(d) P(not more than 1 tail) � P(0 tails or 1 tail)

� P(0 tails) � P(1 tail)

� P(HHH) � P(HHT HTH THH)

� P(HHH) � P(HHT ) � P(HTH) � P(THH)

�
4
8 �

1
2

<<

P (at least 1 head) � 1 � P(no head) � 1 � P(TTT ) � 1 �
1
8 �

7
8

� P(HTT ) � P(THT ) � P(TTH ) � P(HHT ) � P(HTH ) � P(THH ) � P(HHH ) �
7
8

� P(HTT < THT < TTH ) � P(HHT < HTH < THH ) � P(HHH )

� P(1 head) � P(2 heads) � P(3 heads)

� P(1, 2, or 3 heads)

P(at least 1 head)

� P(HTT ) � P(TTH ) � P(THT ) �
1
8 �  

1
8 �

1
8 �

3
8

<<

1
8

>

s2 � a3 �
8
pb  a�1m � 2A 2

pa

f (x) � e22>pa3>2x2e�ax2>2 x � 0

0 x � 0

s2 � a�2>b c� a1 �
2
b
b � �2  a1 �

1
b
b dm � a�1>b�a1 �

1
b
b

f (x) � eabxb�1e�axb x � 0

0 x � 0

M(t) �
a
a � ts2 �

1
a2

m �
1
a

f (x) � eae�ax x � 0

0 x � 0
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Method 2 (using formula)

(a)

(b)

(c)

Alternatively, ,

(d)

It should be mentioned that the notation of random variables can also be used. For example, if we let X be the
random variable denoting the number of heads in 3 tosses, (c) can be written

We shall use both approaches interchangeably.

4.2. Find the probability that in five tosses of a fair die, a 3 will appear (a) twice, (b) at most once, (c) at least
two times.

Let the random variable X be the number of times a 3 appears in five tosses of a fair die. We have

Probability of 3 in a single toss

Probability of no 3 in a single toss

(a)

(b)

(c)

�
625

3888 �
125

3888 �
25

7776 �
1

7776  �
763

3888

� a5
2
b a1

6b
2a5

6b
3

� a5
3
b a1

6b
3a5

6b
2

�    a5
4
b a1

6b
4a5

6b
1

 �  a5
5
b a1

6b
5a5

6b
0

 

� P(X � 2) � P(X � 3) � P(X � 4) � P(X � 5)

� P(X � 2)

P(3 occurs at least 2 times)

�
3125
7776 �

3125
7776 �

3125
3888

� a5
0
b a1

6b
0a5

6b
5

� a5
1
b a1

6b
1a5

6b
4

P(3 occurs at most once) � P(X � 1) � P(X � 0) � P(X � 1)

P(3 occurs twice) � P(X � 2) � a5
2
b a1

6b
2a5

6b
3

�
625

3888

�  q �  1 � p �  
5
6

� p �
1
6

P(at least 1 head) � P(X � 1) � P(X � 1) � P(X � 2) � P(X � 3) �
7
8

� a3
3
b a1

2b
3a1

2b
0

� a3
2
b a1

2b
2a1

2b �
1
2

� P(0 tails) � P(1 tail)

� P(0  tails or 1 tail)P(not more than 1 tail)

� 1 � a3
0
b a1

2b
0a1

2b
3

�
7
8

P(at least 1 head) � 1 � P(no head)

� a3
1
b a1

2b
1a1

2b
2

� a3
2
b a1

2b
2a1

2b
1

� a3
3
b a1

2b
3a1

2b
0

�   
7
8

� P(1 head) � P(2 heads) � P(3 heads)

P(at least 1 head) � P(1, 2, or 3 heads)

P(2  tails and 1 head) � a3
2
b a1

2b
2a1

2b
1

�
3
8

P(3  heads) � a3
3
b a1

2b
3a1

2b
0

�
1
8
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4.3. Find the probability that in a family of 4 children there will be (a) at least 1 boy, (b) at least 1 boy and at
least 1 girl. Assume that the probability of a male birth is 1 2.

(a) ,

,

Then

Another method

(b)

We could also have solved this problem by letting X be a random variable denoting the number of boys in
families with 4 children. Then, for example, (a) becomes

4.4. Out of 2000 families with 4 children each, how many would you expect to have (a) at least 1 boy,
(b) 2 boys, (c) 1 or 2 girls, (d) no girls?

Referring to Problem 4.3, we see that

(a) Expected number of families with at least 1 boy

(b) Expected number of families with 2 boys � 2000 P(2 boys)

(c)

Expected number of families with 1 or 2 girls

(d) Expected number of families with no girls

4.5. If 20% of the bolts produced by a machine are defective, determine the probability that out of 4 bolts cho-
sen at random, (a) 1, (b) 0, (c) less than 2, bolts will be defective.

The probability of a defective bolt is p � 0.2, of a nondefective bolt is q � 1 � p � 0.8. Let the random variable
X be the number of defective bolts. Then

(a)

(b)

(c) P(X � 2) � P(X � 0) � P(X � 1)

� 0.4096 � 0.4096 � 0.8192

P(X � 0) � a4
0
b(0.2)0(0.8)4 � 0.4096

P(X � 1) � a4
1
b(0.2)1(0.8)3 � 0.4096

� (2000)a 1
16b  � 125

� (2000)a5
8b  � 1250

� P(1  boy)  �   P(2 boys) �   
1
4 �

3
8   �   

5
8

P(1 or 2 girls) � P(1 girl) � P(2 girls)

� 2000a3
8b  � 750?

� 2000a15
16b  � 1875

P(X � 1) � P(X � 1) � P(X � 2) � P(X � 3) � P(X � 4) �
15
16

�   1 �
1

16 �
1

16   �   
7
8

P(at least 1 boy and at least 1 girl)  �   1 � P(no boy) � P(no girl)

P(at least 1 boy) � 1 � P(no boy) �  1 � a1
2b

4

 �   1 �
1

16  �
15
16

�
1
4 �

3
8 �

1
4 �

1
16  �   

15
16

P(at least 1 boy) � P(1 boy) � P(2 boys) � P(3 boys) � P(4 boys)

P(4  boys) �  a4
4
b a1

2b
4a1

2b
0

�
1

16P(3  boys) � a4
3
b a1

2b
3a1

2b
1

�
1
4

P(2  boys) � a4
2
b a1

2b
2a1

2b
2

�
3
8P(1  boy) � a4

1
b a1

2b
1a1

2b
3

�
1
4

>
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4.6. Find the probability of getting a total of 7 at least once in three tosses of a pair of fair dice.

In a single toss of a pair of fair dice the probability of a 7 is p � 1 6 (see Problem 2.1, page 44), so that the
probability of no 7 in a single toss is q � 1 � p � 5 6. Then

and

4.7. Find the moment generating function of a random variable X that is binomially distributed.

Method 1
If X is binomially distributed,

Then the moment generating function is given by

Method 2
For a sequence of n Bernoulli trials, define

( j � 1, 2, . . . , n)

Then the Xj are independent and For the moment generating function of Xj, we have

Mj(t) � et0q � et1p � q � pet ( j � 1, 2, . . . , n)

Then by Theorem 3-9, page 80,

4.8. Prove that the mean and variance of a binomially distributed random variable are, respectively, � � np and
�2 � npq.

Proceeding as in Method 2 of Problem 4.7, we have for j � 1, 2, . . . , n,

Then

where we have used Theorem 3-7 for �2.
The above results can also be obtained (but with more difficulty) by differentiating the moment generating

function (see Problem 3.38) or directly from the probability function.

4.9. If the probability of a defective bolt is 0.1, find (a) the mean, (b) the standard deviation, for the number of
defective bolts in a total of 400 bolts.

(a) Mean � � np � (400) (0.1) � 40, i.e., we can expect 40 bolts to be defective.

(b) Variance �2 � npq � (400)(0.1)(0.9) � 36. Hence, the standard deviation s � !36 � 6.

s2 � Var (X ) � Var ( X1) � Var ( X2) � c� Var ( Xn) � npq

m � E(X ) � E( X1) � E( X2) � c� E(Xn) � np

� p2q � q2p � pq( p � q) � pq

Var (Xj) � E[(Xj � p)2] � (0 � p)2q � (1 � p)2p

E(Xj) � 0q � 1p � p

M(t) � M1(t)M2(t)cMn(t) � (q � pet)n

X � X1 � X2 � c� Xn.

Xj � e 0        if failure in jth trial

1        if success in jth trial

� (q � pet)n

� a
n

x�0
an

x
b( pet)xqn�x

� a
n

x�0
etx an

x
b pxqn�x

M(t) � E(etx) � a etxf (x)

f (x) � P(X �  x) � an
x
bpxqn�x

P(at least one 7 in three tosses) � 1 �
125
216  �

91
216

P(no 7 in three tosses) � a3
0
b a1

6b
0a5

6b
3

�
125
216

>
>
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The law of large numbers for Bernoulli trials
4.10. Prove Theorem 4-1, the (weak) law of large numbers for Bernoulli trials.

By Chebyshev’s inequality, page 83, if X is any random variable with finite mean � and variance �2, then

(1)

In particular, if X is binomially or Bernoulli distributed, then and (1) becomes

(2)

or

(3)

If we let (3) becomes

and taking the limit as we have, as required,

The result also follows directly from Theorem 3-19, page 83, with 

4.11. Give an interpretation of the (weak) law of large numbers for the appearances of a 3 in successive tosses
of a fair die.

The law of large numbers states in this case that the probability of the proportion of 3s in n tosses differing
from 1 6 by more than any value P � 0 approaches zero as .

The normal distribution
4.12. Find the area under the standard normal curve shown in Fig. 4-3 (a) between z � 0 and z � 1.2,

(b) between z � �0.68 and z � 0, (c) between z � �0.46 and z � 2.21, (d) between z � 0.81 and z � 1.94,
(e) to the right of z � �1.28.

(a) Using the table in Appendix C, proceed down the column marked z until entry 1.2 is reached. Then proceed
right to column marked 0. The result, 0.3849, is the required area and represents the probability that Z is
between 0 and 1.2 (Fig. 4-3). Therefore,

P(0 � Z � 1.2) �
1

22p
3

1.2

0
e�u2/2 du � 0.3849

n S `>

Sn � X, m � np, s � !npq.

lim
nS`

P a 2   Xn � p 2 � Pb � 0

n S `

Pa 2   Xn � p 2 � Pb �
pq

nP 2

P � kA
pq
n ,

Pa 2  Xn � p 2 � kA
pq
n b �

1
k2

P( uX � np u �  k!npq ) �  
1
k2

m � np,  s � !npq

P( uX � m u � ks) �
1
k2

Fig. 4-3

(b) Required area � area between z � 0 and z � �0.68 (by symmetry). Therefore, proceed downward under
column marked z until entry 0.6 is reached. Then proceed right to column marked 8.
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The result, 0.2517, is the required area and represents the probability that Z is between �0.68 and 0
(Fig. 4-4). Therefore,

�
1

!2p3
0.68

0
e�u2>2 du � 0.2517

P(�0.68 � Z � 0) �  
1

!2p3
0

�0.68
e�u2>2 du

Fig. 4-5

Fig. 4-6 Fig. 4-7

(c) Required area � (area between z ��0.46 and z � 0)

� (area between z � 0 and z � 2.21)

� (area between z � 0 and z � 0.46)

� (area between z � 0 and z � 2.21)

� 0.1772 � 0.4864 � 0.6636

The area, 0.6636, represents the probability that Z is between �0.46 and 2.21 (Fig. 4-5). Therefore,

(d) Required area (Fig. 4-6) � (area between z � 0 and z � 1.94)

� (area between z � 0 and z � 0.81)

� 0.4738 � 0.2910 � 0.1828

This is the same as P(0.81 � Z � 1.94).

(e) Required area (Fig. 4-7) � (area between z � �1.28 and z � 0)

� (area to right of z � 0)

� 0.3997 � 0.5 � 0.8997

This is the same as P(Z � �1.28).

� 0.6636

�
1

22p
3

0.46

0
e�u2/2  du �

1

22p
3

2.21

0
e�u2/2  du � 0.1772 � 0.4864

�
1

22p
3

0

�0.46
e�u2/2  du �

1

22p
3

2.21

0
e�u2>2  du

P(�0.46 �  Z � 2.21) �
1

22p
3

2.21

�0.46
e�u2> 2  du

4.13. If “area” refers to that under the standard normal curve, find the value or values of z such that (a) area
between 0 and z is 0.3770, (b) area to left of z is 0.8621, (c) area between �1.5 and z is 0.0217.

Fig. 4-4
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(a) In the table in Appendix C the entry 0.3770 is located to the right of the row marked 1.1 and under the
column marked 6. Then the required z � 1.16.

By symmetry, z � �1.16 is another value of z. Therefore, z � 1.16 (Fig. 4-8). The problem is
equivalent to solving for z the equation

(b) Since the area is greater than 0.5, z must be positive.
Area between 0 and z is 0.8621 � 0.5 � 0.3621, from which z � 1.09 (Fig. 4-9).

1
!2p3

z

0
 e�u2>2 du � 0.3770

Fig. 4-8 Fig. 4-9

Fig. 4.10 Fig. 4.11

(c) If z were positive, the area would be greater than the area between �1.5 and 0, which is 0.4332; hence z
must be negative.

Case 1 z is negative but to the right of �1.5 (Fig. 4-10).

Area between �1.5 and z � (area between �1.5 and 0)

� (area between 0 and z)

0.0217 � 0.4332 � (area between 0 and z)

Then the area between 0 and z is 0.4332 � 0.0217 � 0.4115 from which z � �1.35.

Case 2 z is negative but to the left of �1.5 (Fig. 4-11).

Area between z and �1.5 � (area between z and 0)

� (area between �1.5 and 0)

0.0217 � (area between 0 and z) � 0.4332

Then the area between 0 and z is 0.0217 � 0.4332 � 0.4549 and z � �1.694 by using linear interpolation;
or, with slightly less precision, z � �1.69.

4.14. The mean weight of 500 male students at a certain college is 151 lb and the standard deviation is 15 lb.
Assuming that the weights are normally distributed, find how many students weigh (a) between 120 and
155 lb, (b) more than 185 lb.

(a) Weights recorded as being between 120 and 155 lb can actually have any value from 119.5 to 155.5 lb,
assuming they are recorded to the nearest pound (Fig. 4-12).

119.5 lb in standard units � (119.5 � 151) 15

� �2.10

155.5 lb in standard units � (155.5 � 151) 15

� 0.30

>

>
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Required proportion of students � (area between z � �2.10 and z � 0.30)

� (area between z � �2.10 and z � 0)

� (area between z � 0 and z � 0.30)

� 0.4821 � 0.1179 � 0.6000

Then the number of students weighing between 120 and 155 lb is 500(0.6000) � 300

Fig. 4-14

(b) Students weighing more than 185 lb must weigh at least 185.5 lb (Fig. 4-13).

185.5 lb in standard units � (185.5 � 151) 15 � 2.30

Required proportion of students

� (area to right of z � 2.30)

� (area to right of z � 0)

� (area between z � 0 and z � 2.30)

� 0.5 � 0.4893 � 0.0107

Then the number of students weighing more than 185 lb is 500(0.0107) � 5.
If W denotes the weight of a student chosen at random, we can summarize the above results in terms of

probability by writing

P(119.5 � W � 155.5) � 0.6000 P(W � 185.5) � 0.0107

4.15. The mean inside diameter of a sample of 200 washers produced by a machine is 0.502 inches and the stan-
dard deviation is 0.005 inches. The purpose for which these washers are intended allows a maximum tol-
erance in the diameter of 0.496 to 0.508 inches, otherwise the washers are considered defective.
Determine the percentage of defective washers produced by the machine, assuming the diameters are
normally distributed.

0.496 in standard units � (0.496 � 0.502) 0.005 � �1.2

0.508 in standard units � (0.508 � 0.502) 0.005 � 1.2

Proportion of nondefective washers

� (area under normal curve between z � �1.2 and z � 1.2)

� (twice the area between z � 0 and z � 1.2)

� 2(0.3849) � 0.7698, or 77%

Therefore, the percentage of defective washers is 100% � 77% � 23% (Fig. 4-14).

>
>

>

Fig. 4-12 Fig. 4-13

Note that if we think of the interval 0.496 to 0.508 inches as actually representing diameters of from 0.4955
to 0.5085 inches, the above result is modified slightly. To two significant figures, however, the results are the
same.
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4.16. Find the moment generating function for the general normal distribution. 

We have

Letting (x � �) � � v in the integral so that x � � � �v, dx � � dv, we have

Now letting v � �t � w, we find that

Normal approximation to binomial distribution
4.17. Find the probability of getting between 3 and 6 heads inclusive in 10 tosses of a fair coin by using (a) the

binomial distribution, (b) the normal approximation to the binomial distribution.

(a) Let X be the random variable giving the number of heads that will turn up in 10 tosses (Fig. 4-15). Then

Then the required probability is

P(3 � X � 6) �
15

128 �
105
512 �

63
256 �

105
512 �

99
128 � 0.7734

P(X � 6) � a10

6
b a1

2b
6a1

2b
4

�
105
512P(X � 5) � a10

5
b a1

2b
5a1

2b
5

�
63

256

P(X � 4) � a10

4
b a1

2b
4a1

2b
6

�
105
512P(X � 3) � a10

3
b a1

2b
3a1

2b
7

�
15

128

M(t) � emt�(s2t2>2) a 1

22p
3
`

�`
e�w2>2 dwb � eut�(s2t2>2)

M(t) �
1

22p
3
`

�`
eut�svt�(v2>2)   dv �

emt�(s2t2/2)

22p
3
`

�`
e�(v�st)2>2  dv

>
M(t) � E(etX ) �

1
s!2p3

`

�`
 etxe�(x�m)2>2s2 dx

Fig. 4-15 Fig. 4-16

(b) The probability distribution for the number of heads that will turn up in 10 tosses of the coin is shown
graphically in Figures 4-15 and 4-16, where Fig. 4-16 treats the data as if they were continuous. The
required probability is the sum of the areas of the shaded rectangles in Fig. 4-16 and can be approximated
by the area under the corresponding normal curve, shown dashed. Treating the data as continuous, it
follows that 3 to 6 heads can be considered as 2.5 to 6.5 heads. Also, the mean and variance for the

binomial distribution are given by and 

Now

2.5 in standard units 

6.5 in standard units �
6.5 � 5

1.58 � 0.95

�
2.5 � 5

1.58 � �1.58

s � !npq � #(10)A12B A12B � 1.58.m � np � 10A12B � 5
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Required probability (Fig. 4-17) � (area between z � �1.58 and z � 0.95)

� (area between z � �1.58 and z � 0)

� (area between z � 0 and z � 0.95)

� 0.4429 � 0.3289 � 0.7718

which compares very well with the true value 0.7734 obtained in part (a). The accuracy is even better for larger
values of n.

4.18. A fair coin is tossed 500 times. Find the probability that the number of heads will not differ from 250 by
(a) more than 10, (b) more than 30.

(a) We require the probability that the number of heads will lie between 240 and 260, or considering the data
as continuous, between 239.5 and 260.5.

239.5 in standard units 260.5 in standard units � 0.94

Required probability � (area under normal curve between z � �0.94 and z � 0.94)

� (twice area between z � 0 and z � 0.94) � 2(0.3264) � 0.6528

(b) We require the probability that the number of heads will lie between 220 and 280 or, considering the data
as continuous, between 219.5 and 280.5.

219.5 in standard units 280.5 in standard units � 2.73

Required probability � (twice area under normal curve between z � 0 and z � 2.73)

� 2(0.4968) � 0.9936

It follows that we can be very confident that the number of heads will not differ from that expected
(250) by more than 30. Therefore, if it turned out that the actual number of heads was 280, we would
strongly believe that the coin was not fair, i.e., it was loaded.

4.19. A die is tossed 120 times. Find the probability that the face 4 will turn up (a) 18 times or less, (b) 14 times
or less, assuming the die is fair.

The face 4 has probability of turning up and probability of not turning up.

(a) We want the probability of the number of 4s being between 0 and 18. This is given exactly by

but since the labor involved in the computation is overwhelming, we use the normal approximation.
Considering the data as continuous, it follows that 0 to 18 4s can be treated as �0.5 to 18.5 4s. 

Also,

and s � !npq � A(120)a1
6b a5

6b � 4.08m � np � 120a1
6b � 20

a120

18
b a1

2b
18a5

6b
102

� a120

17
b a1

6b
17a5

6b
103

� c� a120

0
b a1

6b
0a5

6b
120

q �
5
6p �

1
6

�
219.5 � 250

11.18 � �2.73

�
239.5 � 250

11.18 � �0.94

s � !npq � A(500)Q12R Q12R � 11.18m � np � (500)a1
2b � 250

Fig. 4-17
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Then

�0.5 in standard units 18.5 in standard units � �0.37

Required probability � (area under normal curve between z � �5.02 and z � �0.37)

� (area between z � 0 and z � �5.02)

� (area between z � 0 and z � �0.37)

� 0.5 � 0.1443 � 0.3557

(b) We proceed as in part (a), replacing 18 by 14. Then

�0.5 in standard units � �5.02 14.5 in standard units

Required probability � (area under normal curve between z � �5.02 and z � �1.35)

� (area between z � 0 and z � �5.02)

� (area between z � 0 and z � �1.35)

� 0.5 � 0.4115 � 0.0885

It follows that if we were to take repeated samples of 120 tosses of a die, a 4 should turn up 14 times or
less in about one-tenth of these samples.

The Poisson distribution
4.20. Establish the validity of the Poisson approximation to the binomial distribution.

If X is binomially distributed, then

(1)

where E(X) � np. Let � � np so that p � � n. Then (1) becomes

Now as ,

while

using the well-known result from calculus that

It follows that when but � stays fixed (i.e., ),

(2)

which is the Poisson distribution.
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x!nx lx a1 �
l
nb

n�x

P(X � x) � an
x
b alnb

xa1 �
l
nb

n�x

>
P(X � x) � an

x
b p xqn�x

�
14.5 � 20

4.08 � �1.35

�
�0.5 � 20

4.08 � �5.02.
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Another method
The moment generating function for the binomial distribution is

(3) (q � pet)n � (1 � p � pet)n � [1 � p(et � 1)]n

If � � np so that p � � n, this becomes

(4)

As this approaches

(5)

which is the moment generating function of the Poisson distribution. The required result then follows on using
Theorem 3-10, page 77.

4.21. Verify that the limiting function (2) of Problem 4.20 is actually a probability function.

First, we see that P(X � x) � 0 for x � 0, 1, . . . , given that � � 0. Second, we have

and the verification is complete.

4.22. Ten percent of the tools produced in a certain manufacturing process turn out to be defective. Find the
probability that in a sample of 10 tools chosen at random, exactly 2 will be defective, by using (a) the
binomial distribution, (b) the Poisson approximation to the binomial distribution.

(a) The probability of a defective tool is p � 0.1. Let X denote the number of defective tools out of 10 chosen.
Then, according to the binomial distribution,

(b) We have � � np � (10)(0.1) � 1. Then, according to the Poisson distribution,

or

In general, the approximation is good if p � 0.1 and � � np � 5.

4.23. If the probability that an individual will suffer a bad reaction from injection of a given serum is 0.001,
determine the probability that out of 2000 individuals, (a) exactly 3, (b) more than 2, individuals will suffer
a bad reaction.

Let X denote the number of individuals suffering a bad reaction. X is Bernoulli distributed, but since bad
reactions are assumed to be rare events, we can suppose that X is Poisson distributed, i.e.,

where � � np � (2000)(0.001) � 2

(a)

(b)

An exact evaluation of the probabilities using the binomial distribution would require much more labor.

The central limit theorem
4.24. Verify the central limit theorem for a random variable X that is binomially distributed, and thereby estab-

lish the validity of the normal approximation to the binomial distribution.

� 1 � 5e�2 � 0.323

� 1 � c 20e�2

0! �
21e�2

1! �
22e�2

2! d
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The standardized variable for X is , and the moment generating function for X* is

Using the expansion

we find

Therefore,

But as , the right-hand side approaches which is the moment generating function for the standard
normal distribution. Therefore, the required result follows by Theorem 3-10, page 77.

4.25. Prove the central limit theorem (Theorem 4-2, page 112).

For n � 1, 2, . . . , we have Now X1, X2, . . . , Xn each have mean μ and variance .
Thus

and, because the Xk are independent,

It follows that the standardized random variable corresponding to Sn is

The moment generating function for is

� 5E[et(X1�m)>s1n]6n

� E[et(X1�m)>s1n] ? E[et(X2�m)>s1n]cE[et(Xn�m)>s1n]
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where, in the last two steps, we have respectively used the facts that the Xk are independent and are identically
distributed. Now, by a Taylor series expansion,

so that

But the limit of this as is which is the moment generating function of the standardized normal
distribution. Hence, by Theorem 3-10, page 80, the required result follows.

Multinomial distribution
4.26. A box contains 5 red balls, 4 white balls, and 3 blue balls. A ball is selected at random from the box, its

color is noted, and then the ball is replaced. Find the probability that out of 6 balls selected in this manner,
3 are red, 2 are white, and 1 is blue.

Method 1 (by formula)

P(red at any drawing) P(white at any drawing)

P(blue at any drawing)

Then

Method 2
The probability of choosing any red ball is 5 12. Then the probability of choosing 3 red balls is (5 12)3.
Similarly, the probability of choosing 2 white balls is (4 12)2, and of choosing 1 blue ball, (3 12)1. Therefore,
the probability of choosing 3 red, 2 white, and 1 blue in that order is

But the same selection can be achieved in various other orders, and the number of these different ways is

as shown in Chapter 1. Then the required probability is

Method 3
The required probability is the term in the multinomial expansion of (pr � pw � pb)6 where pr � 5 12,
pw � 4 12, pb � 3 12. By actual expansion, the above result is obtained.

The hypergeometric distribution
4.27. A box contains 6 blue marbles and 4 red marbles. An experiment is performed in which a marble is chosen

at random and its color observed, but the marble is not replaced. Find the probability that after 5 trials of
the experiment, 3 blue marbles will have been chosen.

Method 1
The number of different ways of selecting 3 blue marbles out of 6 blue marbles is . The number of differenta6

3
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w  pb

6!
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is . Therefore, the required probability is given by

Method 2 (using formula)
We have b � 6, r � 4, n � 5, x � 3. Then by (19), page 113, the required probability is

The uniform distribution
4.28. Show that the mean and variance of the uniform distribution (page 113) are given respectively by 

(a) (b) .

(a)

(b) We have

Then the variance is given by

The Cauchy distribution
4.29. Show that (a) the moment generating function for a Cauchy distributed random variable X does not exist

but that (b) the characteristic function does exist.

(a) The moment generating function of X is

which does not exist if t is real. This can be seen by noting, for example, that if x � 0, t � 0,

so that

and the integral on the right diverges.

(b) The characteristic function of X is
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where we have used the fact that the integrands in the next to last line are even and odd functions, respectively.
The last integral can be shown to exist and to equal .

4.30. Let be a uniformly distributed random variable in the interval . Prove that X � a tan ,
a � 0, is Cauchy distributed in � � x � .

The density function of is

Considering the transformation x � a tan , we have

and

Then by Theorem 2-3, page 42, the density function of X is given by

which is the Cauchy distribution.

The gamma distribution
4.31. Show that the mean and variance of the gamma distribution are given by (a) , (b) .

(a)

Letting , we have

(b)

Letting , we have

since . Therefore,

The beta distribution
4.32. Find the mean of the beta distribution.
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4.33. Find the variance of the beta distribution.

The second moment about the origin is

Then using Problem 4.32, the variance is

The chi-square distribution
4.34. Show that the moment generating function of a random variable X, which is chi-square distributed with 

v degrees of freedom, is M(t) � (1 � 2t)�v 2.

Letting (1 � 2t)x 2 � u in the last integral, we find

4.35. Let X1 and X2 be independent random variables that are chi-square distributed with v1 and v2 degrees of free-
dom, respectively, (a) Show that the moment generating function of Z � X1 � X2 is ,
thereby (b) show that Z is chi-square distributed with v1 � v2 degrees of freedom.

(a) The moment generating function of Z � X1 � X2 is

using Problem 4.34.

(b) It is seen from Problem 4.34 that a distribution whose moment generating function is is the
chi-square distribution with v1 � v2 degrees of freedom. This must be the distribution of
Z, by Theorem 3-10, page 77.

By generalizing the above results, we obtain a proof of Theorem 4-4, page 115.

4.36. Let X be a normally distributed random variable having mean 0 and variance 1. Show that X2 is chi-square
distributed with 1 degree of freedom.

We want to find the distribution of Y � X2 given a standard normal distribution for X. Since the correspondence
between X and Y is not one-one, we cannot apply Theorem 2-3 as it stands but must proceed as follows.
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For y � 0, it is clear that P(Y � y) � 0. For y � 0, we have

where the last step uses the fact that the standard normal density function is even. Making the change of
variable in the final integral, we obtain

But this is a chi-square distribution with 1 degree of freedom, as is seen by putting v � 1 in (39), page 115, and
using the fact that .

4.37. Prove Theorem 4-3, page 115, for v � 2.

By Problem 4.36 we see that if X1 and X2 are normally distributed with mean 0 and variance 1, then and 

are chi square distributed with 1 degree of freedom each. Then, from Problem 4.35(b), we see that 

is chi square distributed with 1 � 1 � 2 degrees of freedom if X1 and X2 are independent. The
general result for all positive integers v follows in the same manner.

4.38. The graph of the chi-square distribution with 5 degrees of freedom is shown in Fig. 4-18. (See the remarks
on notation on page 115.) Find the values for which

(a) the shaded area on the right � 0.05,

(b) the total shaded area � 0.05,

(c) the shaded area on the left � 0.10,

(d) the shaded area on the right � 0.01.
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t�1>2e�t>2 dt

x � �!t

�
1

!2p3
�1y

�1y
e�x2>2 dx �

2
!2p3

�1y

0
e�x2>2 dx

P(Y � y) � P(X 2 � y) � P(�!y � X � � !y)

(a) If the shaded area on the right is 0.05, then the area to the left of is (1 � 0.05) � 0.95, and represents
the 95th percentile, .

Referring to the table in Appendix E, proceed downward under column headed v until entry 5 is
reached. Then proceed right to the column headed . The result, 11.1, is the required value of .

(b) Since the distribution is not symmetric, there are many values for which the total shaded area � 0.05. For
example, the right-hand shaded area could be 0.04 while the left-hand shaded area is 0.01. It is customary,
however, unless otherwise specified, to choose the two areas equal. In this case, then, each area � 0.025.

If the shaded area on the right is 0.025, the area to the left of is 1 � 0.025 � 0.975 and represents
the 97.5th percentile, , which from Appendix E is 12.8.

Similarly, if the shaded area on the left is 0.025, the area to the left of is 0.025 and represents the
2.5th percentile, , which equals 0.831.

Therefore, the values are 0.831 and 12.8.

(c) If the shaded area on the left is 0.10, represents the 10th percentile, , which equals 1.61.

(d) If the shaded area on the right is 0.01, the area to the left of is 0.99, and represents the 99th
percentile, , which equals 15.1.x2

0.99

x2
2x2

2

x2
0.10x2

1

x2
0.025

x2
1

x2
1

x2
0.975

x2
2
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2

x2x2
0.95

x2
0.95

x2
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Fig. 4-18
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4.39. Find the values of for which the area of the right-hand tail of the distribution is 0.05, if the number
of degrees of freedom v is equal to (a) 15, (b) 21, (c) 50.

Using the table in Appendix E, we find in the column headed the values: (a) 25.0 corresponding to 

v � 15; (b) 32.7 corresponding to v � 21; (c) 67.5 corresponding to v � 50.

4.40. Find the median value of corresponding to (a) 9, (b) 28, (c) 40 degrees of freedom.

Using the table in Appendix E, we find in the column headed (since the median is the 50th percentile) 
the values: (a) 8.34 corresponding to v � 9; (b) 27.3 corresponding to v � 28; (c) 39.3 corresponding to 
v � 40.

It is of interest to note that the median values are very nearly equal to the number of degrees of freedom. In
fact, for v � 10 the median values are equal to v � 0.7, as can be seen from the table.

4.41. Find for (a) v � 50, (b) v � 100 degrees of freedom.

For v greater than 30, we can use the fact that is very closely normally distributed with
mean zero and variance one. Then if zp is the (100p)th percentile of the standardized normal distribution, we
can write, to a high degree of approximation,

or

from which

(a) If v � 50, , which agrees very well with the
value 67.5 given in Appendix E.

(b) If v � 100, (actual value � 124.3).

Student’s t distribution
4.42. Prove Theorem 4-6, page 116.

Since Y is normally distributed with mean 0 and variance 1, its density function is

(1)

Since Z is chi-square distributed with v degrees of freedom, its density function is

(2)

Because Y and Z are independent, their joint density function is the product of (1) and (2), i.e.,

for

The distribution function of is

where the integral is taken over the region of the yz plane for which . We first fix z and integrate
with respect to y from to . Then we integrate with respect to z from 0 to . We therefore have

F(x) �
1

!2p2v>2�(v>2)3
`

z�0
z(v>2)�1 e�z>2 c 3

x1z>v
y��`

e�y2>2 dy d  dz

`x!z>v�`

y � x!z>v5

�
1

!2p2v>2 �(v>2)6
5

z(v>2)�1 e�( y2�z)>2 dy dz

F(x) � P(T � x) � P(Y � x!Z>v)

T � Y>!Z>v
�` � y � �`, z � 0.

1
!2p 2v>2 �(v>2)

z(v>2)�1 e�(y2�z)>2

1
2v>2�(v>2)

z(v>2)�1e�z>2   z � 0

1
!2p

e�y2>2

x2
0.95 �

1
2 (z0.95 � !2(100) � 1)2 �

1
2 (1.64 � !199)2 � 124.0

x2
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1
2 (z0.95 � !2(50) � 1)2 �

1
2 (1.64 � !99)2 � 69.2

x2
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1
2 (zp � !2v � 1)2
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x2
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x2
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Letting in the bracketed integral, we find

Letting , this can then be written

as required.

4.43. The graph of Student’s t distribution with 9 degrees of freedom is shown in Fig. 4-19. Find the value of t1

for which

(a) the shaded area on the right � 0.05,

(b) the total shaded area � 0.05,

(c) the total unshaded area � 0.99,

(d) the shaded area on the left � 0.01,

(e) the area to the left of t1 is 0.90.

�

�av � 1
2 b

2pv�av
2b
3

x

u��`
 

du
(1 � u2>v)(v�1)>2

F(x) �
1

!2pv 2v>2�(v>2)
? 2(v�1)>23

x

u��`
c 3

`

w�0
 

w(v�1)>2e�w

(1 � u2>v)(v�1)>2 dw d  du

w �
z
2  a1 �

u2

v b

�
1

!2pv 2v>2�(v>2)3
x

u��`
c 3

`

z�0
z(v�1)>2 e�(z>2)[1�(u2>v)] dz d  du

F(x) �
1

!2p 2v>2�(v>2)3
`

z�0
3
`

u��`
z(v>2)�1e�z>2!z>v e�u2z>2v du dz

y � u2z> v

(a) If the shaded area on the right is 0.05, then the area to the left of t1 is (1 � 0.05) � 0.95, and t1 represents
the 95th percentile, t0.95.

Referring to the table in Appendix D, proceed downward under the column headed v until entry 9 is
reached. Then proceed right to the column headed t0.95. The result 1.83 is the required value of t.

(b) If the total shaded area is 0.05, then the shaded area on the right is 0.025 by symmetry. Therefore, the area
to the left of t1 is (1 � 0.025) � 0.975, and t1 represents the 97.5th percentile, t0.975. From Appendix D, we
find 2.26 as the required value of t.

(c) If the total unshaded area is 0.99, then the total shaded area is (1 � 0.99) � 0.01, and the shaded area to the
right is 0.01 2 � 0.005. From the table we find t0.995 � 3.25.

(d) If the shaded area on the left is 0.01, then by symmetry the shaded area on the right is 0.01. From the table,
t0.99 � 2.82. Therefore, the value of t for which the shaded area on the left is 0.01 is �2.82.

(e) If the area to the left of t1 is 0.90, then t1 corresponds to the 90th percentile, t0.90, which from the table
equals 1.38.

>

Fig. 4-19
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4.44. Find the values of t for which the area of the right-hand tail of the t distribution is 0.05 if the number of
degrees of freedom v is equal to (a) 16, (b) 27, (c) 200.

Referring to Appendix D, we find in the column headed t0.95 the values: (a) 1.75 corresponding to v � 16;
(b) 1.70 corresponding to v � 27; (c) 1.645 corresponding to v � 200. (The latter is the value that would be
obtained by using the normal curve. In Appendix D this value corresponds to the entry in the last row marked �.)

The F distribution
4.45. Prove Theorem 4-7.

The joint density function of V1 and V2 is given by

if v1 � 0, v2 � 0 and 0 otherwise. Make the transformation

Then the Jacobian is

Denoting the density as a function of u and w by g(u, w), we thus have

if u � 0, w � 0 and 0 otherwise.
The (marginal) density function of U can now be found by integrating with respect to w from 0 to , i.e.,

if u � 0 and 0 if u � 0. But from 15, Appendix A,

Therefore, we have

if u � 0 and 0 if u � 0, which is the required result.

�

�av1 � v2

2 b
�av1

2 b�av2

2 b
vv1>2

1 vv2>2
2 u(v1>2)�1(v2 � v1u)�(v1�v2)>2

h(u) �

(v1>v2)v1>2u(v1>2)�1�av1 � v2

2 b
2(v1�v2)>2�(v1>2)�(v2>2) c 12 a1 �

v1u
v2
b d (v1�v2)>2

3
`

0
wp�1e�aw dw �

�( p)
a p

h(u) �
(v1>v2)v1>2u(v1>2)�1

2(v1�v2)>2�(v1>2)�(v2>2)3
`

0
w[(v1�v2)>2]�1e�[1�(v1u>v2)](w>2) dw

`

g(u, w) �
1

2(v1�v2)>2�(v1>2)�(v2>2)
av1uw

v2
b (v1>2)�1

w(v2>2)�1e�[1�(v1u>v2)](w>2)
v1w
v2

'(v1, v2)
'(u, w) � 2'v1>'u 'v1>'w

'v2>'u 'v2>'w 2 � 2 v1w>v2 v1u>v2

0 1
2 � v1w

v2

u �
v1>v1

v2>v2
�

v2v1

v1v2
,    w � v2    or    v1 �

v1uw
v2

    v2 � w

�
1

2(n1�n2)>2�(n1>2)�(n2>2)
v(n1>2)�1

1 v(n2>2)�1
2 e�(v1�v2)>2

f (v1, v2) � a 1
2v1>2�(n1>2)

v(n1>2)�1
1  e�v1>2b a 1

2n2>2�(n2>2)
n2

(n2>2)�1e�v2>2b



CHAPTER 4 Special Probability Distributions 139

4.46. Prove that the F distribution is unimodal at the value if v1 � 2.

The mode locates the maximum value of the density function. Apart from a constant, the density function of the
F distribution is

If this has a relative maximum, it will occur where the derivative is zero, i.e.,

Dividing by we find

Using the second-derivative test, we can show that this actually gives the maximum.

4.47. Using the table for the F distribution in Appendix F, find (a) F0.95,10,15, (b) F0.99,15,9, (c) F0.05,8,30, (d) F0.01,15,9.

(a) From Appendix F, where v1 � 10, v2 � 15, we find F0.95,10,15 � 2.54.

(b) From Appendix F, where v1 � 15, v2 � 9, we find F0.99,15,9 � 4.96.

(c) By Theorem 4-8, page 117,

(d) By Theorem 4-8, page 117,

Relationships among F, , and t distributions
4.48. Verify that (a) (b) .

(a) Compare the entries in the first column of the F0.95 table in Appendix F with those in the t distribution
under t0.975. We see that

161 � (12.71)2, 18.5 � (4.30)2, 10.1 � (3.18)2, 7.71 � (2.78)2, etc.

(b) Compare the entries in the first column of the F0.99 table in Appendix F with those in the t distribution
under t0.995. We see that

4050 � (63.66)2, 98.5 � (9.92)2, 34.1 � (5.84)2, 21.2 � (4.60)2, etc.

4.49. Prove Theorem 4-9, page 117, which can be briefly stated as

and therefore generalize the results of Problem 4.48.

Let v1 � 1, v2 � v in the density function for the F distribution [(45), page 116]. Then

�
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2 b
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u
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u
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2 b
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x2
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1
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for u � 0, and f (u) � 0 for u � 0. Now, by the definition of a percentile value, F1�p is the number such that
P(U � F1�p) � 1 � p. Therefore,

In the integral make the change of variable 

Comparing with (42), page 115, we see that the left-hand side of the last equation equals

where T is a random variable having Student’s t distribution with v degrees of freedom. Therefore,

where we have used the symmetry of the t distribution. Solving, we have

But, by definition, t1�(p 2) is the number such that

and this number is uniquely determined, since the density function of the t distribution is strictly positive.
Therefore,

which was to be proved.

4.50. Verify Theorem 4-10, page 117, for (a) p � 0.95, (b) p � 0.99.

(a) Compare the entries in the last row of the F0.95 table in Appendix F (corresponding to v2 � ) with the
entries under in Appendix E. Then we see that

.

which provides the required verification.

(b) Compare the entries in the last row of the F0.99 table in Appendix F (corresponding to v2 � ) with the 
entries under in Appendix E. Then we see that

.

which provides the required verification.
The general proof of Theorem 4-10 follows by letting v2 in the F distribution on page 116.

The bivariate normal distribution
4.51. Suppose that X and Y are random variables whose joint density function is the bivariate normal distribu-

tion. Show that X and Y are independent if and only if their correlation coefficient is zero.

S `
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If the correlation coefficient � 0, then the bivariate normal density function (49), page 117, becomes

and since this is a product of a function of x alone and a function of y alone for all values of x and y, it follows
that X and Y are independent.

Conversely, if X and Y are independent, f (x, y) given by (49) must for all values of x and y be the product of
a function of x alone and a function of y alone. This is possible only if � 0.

Miscellaneous distributions
4.52. Find the probability that in successive tosses of a fair die, a 3 will come up for the first time on the 

fifth toss.

Method 1
The probability of not getting a 3 on the first toss is 5 6. Similarly, the probability of not getting a 3 on the second

toss is 5 6, etc. Then the probability of not getting a 3 on the first 4 tosses is (5 6) (5 6) (5 6) (5 6) � (5 6)4.

Therefore, since the probability of getting a 3 on the fifth toss is 1 6, the required probability is

Method 2 (using formula)
Using the geometric distribution, page 117, with p � 1 6, q � 5 6, x � 5, we see that the required proba-
bility is

4.53. Verify the expressions given for (a) the mean, (b) the variance, of the Weibull distribution, page 118.

(a)

where we have used the substitution u � axb to evaluate the integral.

(b)
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Miscellaneous problems
4.54. The probability that an entering college student will graduate is 0.4. Determine the probability that out of

5 students (a) none, (b) 1, (c) at least 1, will graduate.

(a) P(none will graduate) � 5C0(0.4)0(0.6)5 � 0.07776, or about 0.08

(b) P(l will graduate) � 5C1(0.4)1(0.6)4 � 0.2592, or about 0.26

(c) P(at least 1 will graduate) � 1 � P(none will graduate) � 0.92224, or about 0.92

4.55. What is the probability of getting a total of 9 (a) twice, (b) at least twice in 6 tosses of a pair of dice?

Each of the 6 ways in which the first die can fall can be associated with each of the 6 ways in which the second
die can fall, so there are 6 6 � 36 ways in which both dice can fall. These are: 1 on the first die and 1 on the
second die, 1 on the first die and 2 on the second die, etc., denoted by (1, 1), (1, 2), etc.

Of these 36 ways, all equally likely if the dice are fair, a total of 9 occurs in 4 cases: (3, 6), (4, 5), (5, 4),
(6, 3). Then the probability of a total of 9 in a single toss of a pair of dice is p � 4 36 � 1 9, and the probability
of not getting a total of 9 in a single toss of a pair of dice is q � 1 � p � 8 9.

(a) P(two 9s in 6 tosses)

(b) P(at least two 9s) � P(two 9s) � P(three 9s) � P(four 9s) � P(five 9s) � P(six 9s)

Another method

4.56. If the probability of a defective bolt is 0.1, find (a) the mean, (b) the standard deviation for the distribu-
tion of defective bolts in a total of 400.

(a) Mean � np � 400(0.1) � 40, i.e., we can expect 40 bolts to be defective.

(b) Variance � npq � 400(0.l)(0.9) � 36. Hence the standard deviation .

4.57. Find the coefficients of (a) skewness, (b) kurtosis of the distribution in Problem 4.56.

(a) Coefficient of skewness

Since this is positive, the distribution is skewed to the right.

(b) Coefficient of kurtosis

The distribution is slightly more peaked than the normal distribution.

4.58. The grades on a short quiz in biology were 0, 1, 2, . . . , 10 points, depending on the number answered cor-
rectly out of 10 questions. The mean grade was 6.7, and the standard deviation was 1.2. Assuming the
grades to be normally distributed, determine (a) the percentage of students scoring 6 points, (b) the max-
imum grade of the lowest 10% of the class, (c) the minimum grade of the highest 10% of the class.

(a) To apply the normal distribution to discrete data, it is necessary to treat the data as if they were continuous.
Thus a score of 6 points is considered as 5.5 to 6.5 points. See Fig. 4-20.

5.5 in standard units � (5.5 � 6.7) 1.2 � �1.0

6.5 in standard units � (6.5 � 6.7) 1.2 � �0.17>
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Required proportion � area between z � �1 and z � �0.17

� (area between z � �1 and z � 0)

� (area between z � �0.17 and z � 0)

� 0.3413 � 0.0675 � 0.2738 � 27%

(b) Let x1 be the required maximum grade and z1 its equivalent in standard units. From Fig. 4-21 the area to the
left of z1 is 10% � 0.10; hence,

Area between z1 and 0 � 0.40
and z1 � �1.28 (very closely).

Then z1 � (x1 � 6.7) 1.2 � �1.28 and x1 � 5.2 or 5 to the nearest integer.

(c) Let x2 be the required minimum grade and z2 the same grade in standard units. From (b), by symmetry,
z2 � 1.28. Then (x2 � 6.7) 1.2 � 1.28, and x2 � 8.2 or 8 to the nearest integer.

4.59. A Geiger counter is used to count the arrivals of radioactive particles. Find the probability that in time t
no particles will be counted.

Let Fig. 4-22 represent the time axis with O as the origin. The probability that a particle is counted in a small
time 
t is proportional to 
t and so can be written as �
t. Therefore, the probability of no count in time 
t is
1 � �
t. More precisely, there will be additional terms involving (
t)2 and higher orders, but these are
negligible if 
t is small.

>

>

Fig. 4-20 Fig. 4-21

Fig. 4-22

Let P0(t) be the probability of no count in time t. Then P0(t � 
t) is the probability of no count in time 
t � 
t. If the arrivals of the particles are assumed to be independent events, the probability of no count in
time t � 
t is the product of the probability of no count in time t and the probability of no count in time 
t.
Therefore, neglecting terms involving (
t)2 and higher, we have

(1) P0(t � 
t) � P0(t)[l � �
t]

From (1) we obtain

(2)

i.e.,

(3)

Solving (3) by integration we obtain

ln P0 � ��t � c1 or P0(t) � ce��t

To determine c, note that if t � 0, P0(0) � c is the probability of no counts in time zero, which is of course 1.
Thus c � 1 and the required probability is

(4) P0(t) � e��t

dP0

dt � �lP0  or  
dP0

P0
� �l dt

lim

tS0

P0(t � 
t) � P0(t)

t � �lP0(t)
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4.60. Referring to Problem 4.59, find the probability of exactly one count in time t.

Let P1(t) be the probability of 1 count in time t, so that P1(t � 
t) is the probability of 1 count in time t � 
t.
Now we will have 1 count in time t � 
t in the following two mutually exclusive cases:

(i) 1 count in time t and 0 counts in time 
t

(ii) 0 counts in time t and 1 count in time 
t

The probability of (i) is P1(t)(1 � �
t).
The probability of (ii) is P0(t) �
t.
Thus, apart from terms involving (
t)2 and higher,

(1) P1(t � 
t) � P1(t)(1 � �
t) � P0(t)�
t

This can be written

(2)

Taking the limit as and using the expression for P0(t) obtained in Problem 4.59, this becomes

(3)

or

(4)

Multiplying by e�t, this can be written

(5)

which yields on integrating

(6) P1(t) � �te��t � c2e��t

If t � 0, P1 (0) is the probability of 1 count in time 0, which is zero. Using this in (6), we find c2 � 0.
Therefore,

(7) P1(t) � �te��t

By continuing in this manner, we can show that the probability of exactly n counts in time t is given by

(8)

which is the Poisson distribution.

SUPPLEMENTARY PROBLEMS

The binomial distribution
4.61. Find the probability that in tossing a fair coin 6 times, there will appear (a) 0, (b) 1, (c) 2, (d) 3, (e) 4, (f) 5,

(g) 6 heads.

4.62. Find the probability of (a) 2 or more heads, (b) fewer than 4 heads, in a single toss of 6 fair coins.

4.63. If X denotes the number of heads in a single toss of 4 fair coins, find (a) P(X � 3), (b) P(X � 2),
(c) P(X � 2), (d) P(1 � X � 3).

4.64. Out of 800 families with 5 children each, how many would you expect to have (a) 3 boys, (b) 5 girls,
(c) either 2 or 3 boys? Assume equal probabilities for boys and girls.

4.65. Find the probability of getting a total of 11 (a) once, (b) twice, in two tosses of a pair of fair dice.

Pn(t) �
(lt)n e�lt

n!

d
dt (e

ltP1) � l

dP1

dt � lP1 � le�lt

dP1

dt � le�lt � lP1


t S 0

P1(t � 
t) � P1(t)

t � lP0(t) � lP1(t)
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4.66. What is the probability of getting a 9 exactly once in 3 throws with a pair of dice?

4.67. Find the probability of guessing correctly at least 6 of the 10 answers on a true-false examination.

4.68. An insurance sales representative sells policies to 5 men, all of identical age and in good health. According to
the actuarial tables, the probability that a man of this particular age will be alive 30 years hence is . Find the
probability that in 30 years (a) all 5 men, (b) at least 3 men, (c) only 2 men, (d) at least 1 man will be alive.

4.69. Compute the (a) mean, (b) standard deviation, (c) coefficient of skewness, (d) coefficient of kurtosis for a
binomial distribution in which p � 0.7 and n � 60. Interpret the results.

4.70. Show that if a binomial distribution with n � 100 is symmetric; its coefficient of kurtosis is 2.9.

4.71. Evaluate (a) (x � μ)3 f(x), (b) (x � μ)4f(x) the binomial distribution.

The normal distribution
4.72. On a statistics examination the mean was 78 and the standard deviation was 10. (a) Determine the standard

scores of two students whose grades were 93 and 62, respectively, (b) Determine the grades of two students
whose standard scores were �0.6 and 1.2, respectively.

4.73. Find (a) the mean, (b) the standard deviation on an examination in which grades of 70 and 88 correspond to
standard scores of �0.6 and 1.4, respectively.

4.74. Find the area under the normal curve between (a) z � �1.20 and z � 2.40, (b) z � 1.23 and z � 1.87,
(c) z � �2.35 and z � �0.50.

4.75. Find the area under the normal curve (a) to the left of z � �1.78, (b) to the left of z � 0.56, (c) to the right 
of z � �1.45, (d) corresponding to z � 2.16, (e) corresponding to �0.80 � z � 1.53, (f ) to the left of z � �2.52
and to the right of z � 1.83.

4.76. If Z is normally distributed with mean 0 and variance 1, find: (a) P(Z � �1.64), (b) P(�1.96 � Z � 1.96),
(c) P( Z � 1).

4.77. Find the values of z such that (a) the area to the right of z is 0.2266, (b) the area to the left of z is 0.0314, (c) the
area between �0.23 and z is 0.5722, (d) the area between 1.15 and z is 0.0730, (e) the area between �z and z is
0.9000.

4.78. Find z1 if P(Z � z1) � 0.84, where z is normally distributed with mean 0 and variance 1.

4.79. If X is normally distributed with mean 5 and standard deviation 2, find P(X � 8).

4.80. If the heights of 300 students are normally distributed with mean 68.0 inches and standard deviation 3.0 inches,
how many students have heights (a) greater than 72 inches, (b) less than or equal to 64 inches, (c) between 65
and 71 inches inclusive, (d) equal to 68 inches? Assume the measurements to be recorded to the nearest inch.

4.81. If the diameters of ball bearings are normally distributed with mean 0.6140 inches and standard deviation
0.0025 inches, determine the percentage of ball bearings with diameters (a) between 0.610 and 0.618 inches
inclusive, (b) greater than 0.617 inches, (c) less than 0.608 inches, (d) equal to 0.615 inches.
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4.82. The mean grade on a final examination was 72, and the standard deviation was 9. The top 10% of the students
are to receive A’s. What is the minimum grade a student must get in order to receive an A?

4.83. If a set of measurements are normally distributed, what percentage of these differ from the mean by (a) more
than half the standard deviation, (b) less than three quarters of the standard deviation?

4.84. If μ is the mean and � is the standard deviation of a set of measurements that are normally distributed, what
percentage of the measurements are (a) within the range μ  2� (b) outside the range μ  1.2� (c) greater than
μ � 1.5�?

4.85. In Problem 4.84 find the constant a such that the percentage of the cases (a) within the range μ  a� is 75%,
(b) less than μ � a� is 22%.

Normal approximation to binomial distribution
4.86. Find the probability that 200 tosses of a coin will result in (a) between 80 and 120 heads inclusive, (b) less than

90 heads, (c) less than 85 or more than 115 heads, (d) exactly 100 heads.

4.87. Find the probability that a student can guess correctly the answers to (a) 12 or more out of 20, (b) 24 or more
out of 40, questions on a true-false examination.

4.88. A machine produces bolts which are 10% defective. Find the probability that in a random sample of 400 bolts
produced by this machine, (a) at most 30, (b) between 30 and 50, (c) between 35 and 45, (d) 65 or more, of the
bolts will be defective.

4.89. Find the probability of getting more than 25 “sevens” in 100 tosses of a pair of fair dice.

The Poisson distribution
4.90. If 3% of the electric bulbs manufactured by a company are defective, find the probability that in a sample of 

100 bulbs, (a) 0, (b) 1, (c) 2, (d) 3, (e) 4, (f) 5 bulbs will be defective.

4.91. In Problem 4.90, find the probability that (a) more than 5, (b) between 1 and 3, (c) less than or equal to 2, bulbs
will be defective.

4.92. A bag contains 1 red and 7 white marbles. A marble is drawn from the bag, and its color is observed. Then the
marble is put back into the bag and the contents are thoroughly mixed. Using (a) the binomial distribution,
(b) the Poisson approximation to the binomial distribution, find the probability that in 8 such drawings, a red
ball is selected exactly 3 times.

4.93. According to the National Office of Vital Statistics of the U.S. Department of Health and Human Services, the
average number of accidental drownings per year in the United States is 3.0 per 100,000 population. Find the
probability that in a city of population 200,000 there will be (a) 0, (b) 2, (c) 6, (d) 8, (e) between 4 and 8,
(f) fewer than 3, accidental drownings per year.

4.94. Prove that if X1 and X2 are independent Poisson variables with respective parameters �1 and �2, then X1 � X2

has a Poisson distribution with parameter �1 � �2. (Hint: Use the moment generating function.) Generalize the
result to n variables.

Multinomial distribution
4.95. A fair die is tossed 6 times. Find the probability that (a) 1 “one”, 2 “twos” and 3 “threes” will turn up,

(b) each side will turn up once.
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4.96. A box contains a very large number of red, white, blue, and yellow marbles in the ratio 4:3:2:1. Find the
probability that in 10 drawings (a) 4 red, 3 white, 2 blue, and 1 yellow marble will be drawn, (b) 8 red and 2
yellow marbles will be drawn.

4.97. Find the probability of not getting a 1, 2, or 3 in 4 tosses of a fair die.

The hypergeometric distribution
4.98. A box contains 5 red and 10 white marbles. If 8 marbles are to be chosen at random (without replacement),

determine the probability that (a) 4 will be red, (b) all will be white, (c) at least one will be red.

4.99. If 13 cards are to be chosen at random (without replacement) from an ordinary deck of 52 cards, find the
probability that (a) 6 will be picture cards, (b) none will be picture cards.

4.100. Out of 60 applicants to a university, 40 are from the East. If 20 applicants are to be selected at random, find the
probability that (a) 10, (b) not more than 2, will be from the East.

The uniform distribution
4.101. Let X be uniformly distributed in �2 � x � 2 Find (a) P(X � 1), (b) P( X � 1 � ).

4.102. Find (a) the third, (b) the fourth moment about the mean of a uniform distribution.

4.103. Determine the coefficient of (a) skewness, (b) kurtosis of a uniform distribution.

4.104. If X and Y are independent and both uniformly distributed in the interval from 0 to 1, find P( X � Y � ).

The Cauchy distribution
4.105. Suppose that X is Cauchy distributed according to (29), page 114, with a � 2. Find (a) P(X � 2),

(b) P(X2 � 12).

4.106. Prove that if X1 and X2 are independent and have the same Cauchy distribution, then their arithmetic mean also
has this distribution.

4.107. Let X1 and X2 be independent and normally distributed with mean 0 and variance 1. Prove that Y � X1 X2 is
Cauchy distributed.

The gamma distribution
4.108. A random variable X is gamma distributed with � � 3, � � 2. Find (a) P(X � 1), (b) P(l � X � 2).

The chi-square distribution
4.109. For a chi-square distribution with 12 degrees of freedom, find the value of such that (a) the area to the right

of is 0.05, (b) the area to the left of is 0.99, (c) the area to the right of is 0.025.

4.110. Find the values of for which the area of the right-hand tail of the distribution is 0.05, if the number of
degrees of freedom v is equal to (a) 8, (b) 19, (c) 28, (d) 40.

4.111. Work Problem 4.110 if the area of the right-hand tail is 0.01.
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4.112. (a) Find and such that the area under the distribution corresponding to v � 20 between and is
0.95, assuming equal areas to the right of and left of . (b) Show that if the assumption of equal areas in
part (a) is not made, the values and are not unique.

4.113. If the variable U is chi-square distributed with v � 7, find and such that (a) P(U � ) � 0.025,
(b) P(U � ) � 0.50, (c) .

4.114. Find (a) and (b) for v � 150.

4.115. Find (a) and (b) for v � 250.

Student’s t distribution
4.116. For a Student’s distribution with 15 degrees of freedom, find the value of t1 such that (a) the area to the right of

t1 is 0.01, (b) the area to the left of t1 is 0.95, (c) the area to the right of t1 is 0.10, (d) the combined area to the
right of t1 and to the left of �t1 is 0.01, (e) the area between �t1 and t1 is 0.95.

4.117. Find the values of t for which the area of the right-hand tail of the t distribution is 0.01, if the number of
degrees of freedom v is equal to (a) 4, (b) 12, (c) 25, (d) 60, (e) 150.

4.118. Find the values of t1 for Student’s distribution that satisfy each of the following conditions: (a) the area
between �t1 and t1 is 0.90 and v � 25, (b) the area to the left of �t1 is 0.025 and v � 20, (c) the combined
area to the right of t1 and left of �t1 is 0.01 and v � 5, (d) the area to the right of t1 is 0.55 and v � 16.

4.119. If a variable U has a Student’s distribution with v � 10, find the constant c such that (a) P(U � c) � 0.05,
(b) P(�c � U � c) � 0.98, (c) P(U � c) � 0.20, (d) P(U � c) � 0.90.

The F distribution
4.120. Evaluate each of the following:

(a) F0.95,15,12; (b) F0.99,120,60; (c) F0.99,60,24; (d) F0.01,30,12; (e) F0.05,9,20; (f) F0.01,8,8.

ANSWERS TO SUPPLEMENTARY PROBLEMS

4.61. (a) 1 64 (b) 3 32 (c) 15 64 (d) 5 16 (e) 15 64 (f) 3 32 (g) 1 64

4.62. (a) 57 64 (b) 21 32 4.63. (a) 1 4 (b) 5 16 (c) 11 16 (d) 5 8

4.64. (a) 250 (b) 25 (c) 500 4.65. (a) 17 162 (b) 1 324 4.66. 64 243

4.67. 193 512 4.68. (a) 32 243 (b) 192 243 (c) 40 243 (d) 242 243

4.69. (a) 42 (b) 3.550 (c) �0.1127 (d) 2.927

4.71. (a) npq(q � p) (b) npq(1 � 6pq) � 3n2p2q2 4.72. (a) 1.5, �1.6 (b) 72, 90

4.73. (a) 75.4 (b) 9 4.74. (a) 0.8767 (b) 0.0786 (c) 0.2991
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4.75. (a) 0.0375 (b) 0.7123 (c) 0.9265 (d) 0.0154 (e) 0.7251 (f) 0.0395

4.76. (a) 0.9495 (b) 0.9500 (c) 0.6826

4.77. (a) 0.75 (b) �1.86 (c) 2.08 (d) 1.625 or 0.849 (e) 1.645

4.78. �0.995 4.79. 0.0668

4.80. (a) 20 (b) 36 (c) 227 (d) 40

4.81. (a) 93% (b) 8.1% (c) 0.47% (d) 15% 4.82. 84

4.83. (a) 61.7% (b) 54.7% 4.84. (a) 95.4% (b) 23.0% (c) 93.3%

4.85. (a) 1.15 (b) 0.77 4.86. (a) 0.9962 (b) 0.0687 (c) 0.0286 (d) 0.0558

4.87. (a) 0.2511 (b) 0.1342 4.88. (a) 0.0567 (b) 0.9198 (c) 0.6404 (d) 0.0079

4.89. 0.0089 4.90. (a) 0.04979 (b) 0.1494 (c) 0.2241 (d) 0.2241 (e) 0.1680 (f) 0.1008

4.91. (a) 0.0838 (b) 0.5976 (c) 0.4232 4.92. (a) 0.05610 (b) 0.06131

4.93. (a) 0.00248 (b) 0.04462 (c) 0.1607 (d) 0.1033 (e) 0.6964 (f) 0.0620

4.95. (a) 5 3888 (b) 5 324 4.96. (a) 0.0348 (b) 0.000295

4.97. 1 16 4.98. (a) 70 429 (b) 1 143 (c) 142 143

4.99. (a) (b) 

4.100. (a) (b) [(40C0)(20C20) � (40C1)(20C19) � (40C2)(20C18)] 60C20

4.101. (a) 3 4 (b) 3 4 4.102. (a) 0 (b) (b � a)4 80

4.103. (a) 0 (b) 9 5 4.104. 1 4

4.105. (a) 3 4 (b) 1 3 4.108. (a) (b) 

4.109. (a) 21.0 (b) 26.2 (c) 23.3 4.110. (a) 15.5 (b) 30.1 (c) 41.3 (d) 55.8

4.111. (a) 20.1 (b) 36.2 (c) 48.3 (d) 63.7 4.112. (a) 9.59 and 34.2
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4.113. (a) 16.0 (b) 6.35 (c) assuming equal areas in the two tails, and 

4.114. (a) 122.5 (b) 179.2 4.115. (a) 207.7 (b) 295.2

4.116. (a) 2.60 (b) 1.75 (c) 1.34 (d) 2.95 (e) 2.13

4.117. (a) 3.75 (b) 2.68 (c) 2.48 (d) 2.39 (e) 2.33

4.118. (a) 1.71 (b) 2.09 (c) 4.03 (d) �0.128

4.119. (a) 1.81 (b) 2.76 (c) �0.879 (d) �1.37

4.120. (a) 2.62 (b) 1.73 (c) 2.40 (d) 0.352 (e) 0.340 (f) 0.166

x2
2 � 14.1x2

1 � 2.17
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