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Section 1

Data Exploration and Graphics



Summary Statistics

e Data analysis ALWAYS begins with an inspection of the data entry (e.g.,
using head (dataset.name) and str(dataset.name))

e To calculate the mean, standard deviation, variance, median and quantiles.

> x <- rnorm(50)
> mean(x)
[1] 0.03301363
> sd(x)
[1] 1.069454
> var (x)
[1] 1.143731
> median (x)
[1] -0.08682795
> quantile (x)
0% 25% 50% 75% 100%
-2.60741896 -0.54495849 -0.08682795 0.70018536 2.98872414

Exercise: Obtain all deciles and percentiles.



Summary Statistics

use na.rm argument (if not available, then remove) for missing values

> attach(juul)
> mean (igf1)

[1] NA

> mean(igfl,na.rm=T)

[1] 340.168

summary function: to obtain summaries of any objects

> summary (igf1)
Min. 1st Qu.
25.0 202.2

> summary (juul)

age

Min. : 0.170
1st Qu.: 9.053
Median :12.560
Mean :15.095
3rd Qu.:16.855

Max. :83.000

NA’s :5
tanner

Min. :1.00

1st Qu.:1
Median :2
Mean 12,
3rd Qu.:5.00
Max. 5
NA’e )

Median Mean 3rd Qu.

313.5 340.2

menarche

Min. :1.000
1st Qu.:1.000
Median :1.000
Mean 1.476
3rd Qu.:2.000
Max. 2.000
NA’s 635
testvol

Min. : 1.000

1st Qu.: 1.000
Median : 3.000

Mean 1 7.896
3rd Qu.:15.000
Max. :30.000

NA’e .QRQ

462.8

Min.

1st Qu.:

Median
Mean

3rd Qu.

NA’s

9

DO R R

Max.
15.0

000
000

534
000
000

NA’s
321

igfl

Min.

1st Qu.

Median
Mean

3rd Qu.

NA’s

1202
1313
:340.
1462,
:915
:321

o N ;N O
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Summary Statistics

summary function for factor data type

The data set has menarche, sex, and tanner coded as numeric variables even
though they are clearly categorical. This can be mended as follows:

> detach(juul)
> juul$sex <- factor(juul$sex,labels=c("M","F"))
> juul$menarche <- factor(juul$menarche,labels=c("No","Yes"))
> juul$tanner <- factor(juul$tanner,
+ 1abels=c("I","II","III","IV","V"))
> attach(juul)
> summary (juul)

age menarche sex igfl tanner
Min. : 0.170 No :369 M 1621 Min. : 25.0 I :515
1st Qu.: 9.053 Yes :335 F 1713 1st Qu.:202.2 II :103
Median :12.560 NA’s:635 NA’s: 5 Median :313.5 III : 72
Mean :15.095 Mean :340.2 Iv : 81
3rd Qu.:16.855 3rd Qu.:462.8 V 1328
Max. :83.000 Max. :915.0  NA’s:240
NA’s :5 NA’s 1321

Exercise: Use the transform function (or within) to convert menarche, sex,
and tanner variables in the juul data set as factors.



Graphical display of distributions

Histograms: hist function

> hist (numeric.vector)
> hist (numeric.vector, ...)

e option breaks = n, you get approximately n cells (bars)

e option breaks = vector, vector giving the breakpoints between
histogram cells

e option freq = TRUE, you get frequencies (counts), freq = FALSE, you
get densities (count/n)

o



Graphical display of distributions

Smoothed Histograms: density function
Smoothed Histgram is an estimate of the true density function

> xd = density(juul$igfl,na.rm = T)

> str(xd)
List of 7
$ x : num [1:512] -90.6 -88.4 -86.2 -84 -81.8
$y : num [1:512] 4.84e-07 5.84e-07 7.03e-07 8.43e-07 1.01
$ bw : num 38.5
$n : int 1018
$ call : language density.default(x = juul$igfl, na.rm = T)
$ data.name: chr "juul$igfi"
$ has.na : logi FALSE
- attr(*x, "class")= chr "density"

> plot(xd$x,xd$y)



Comparing Distributions

Quantile-Quantile plot: To directly compare data dist'n with theoretical
normal dist'n

> qqnorm(numeric.vector)

Exercise: Compare 100 random normal (or exponential) numbers with the
normal distribution.

Box plots: Useful for side-by-side comparison

par (mfrow=c(1,2))
boxplot (juul$igfl)
boxplot(log(juul$igfl))
par (mfrow=c(1,1))
boxplot (iris[,1:4])

V V V VYV
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Summary Statistics by Groups

Grouped Data

e Numeric data grouped (categorized) by levels of factors
e Typical for data aimed for two-sample t-test and ANOVA
> str(red.cell.folate)

’data.frame’: 22 obs. of 2 variables:
$ folate : num 243 251 275 291 347 354 380 392 206 210

$ ventilation: Factor w/ 3 levels "N20+02,24h","N20+02,0p",..:

tapply function
Work with numeric (or integer) data type as a grouping variable

> attach(red.cell.folate);attach(juul)
> tapply(folate,ventilation ,mean)
N20+02,24h N20+02,0p 02,24h
316.6250 256.4444 278.0000
> tapply(age, tanner, mean, na.rm=T)
1 2 3 4 5
8.195456 12.316019 12.989306 14.746667 17.878872

o



Summary Statistics by Groups

aggregate function

Splits the data into subsets, computes summary statistics for each, and returns
the result in a convenient form.

> aggregate (object, by = list.object, FUN, ...)
> aggregate (formula, data = data.frame, FUN, ...)

e object: a vector or data frame

list.object: a list or data frame of grouping elements
e FUN: mean, median, etc.
e formula: R formula, see example below.

> aggregate(juul, list(Sex = sex,Tanner = tanner),

mean, na.rm = T)
> aggregate(igfl ~ sex + tanner, data = juul, mean, na.rm = T)



Summary Statistics by Groups

by function: Apply a Function to a Data Frame Split by Factors

> by(data.frame, INDICES, FUN, ...)

e INDICES: factor indices (need not to be factor data type)
e FUN: function name, which can be applied to the data frame
Examples:

by (juul, as.factor(tanner), summary)
by (juul, tanner, summary)
by (juul, juul["tanner"], summary)



Summary Graphics by Groups

Top-Bottom Histograms

>
>
>
>
>
>
>

attach(energy)

expend.lean <- expend[stature=="lean"]

expend.obese <- expend[stature=="obese"]

par (mfrow=c(2,1))

hist (expend.lean,breaks=10,xlim=c(5,13),ylim=c(0,4),col="white")
hist (expend.obese,breaks=10,xlim=c(5,13),ylim=c(0,4),col="grey")
par (mfrow=c(1,1))

Parallel Boxplot

>
>
>

boxplot (expend.lean, expend.obese)
boxplot (expend ~ stature, data = energy)
boxplot (expend ~ stature)



Section 2

One- and Two-Sample Tests
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One Sample Location Test

One Sample T-Test: t.test function
Assume Xi,..., Xy ~ iid. N(u,o?),

daily.intake <- c(5260,5470,5640,6180,6390,6515,
6805 ,7515,7515,8230,8770)

t.test(daily.intake)

t.test(daily.intake ,mu=7725)

t.test(daily.intake ,mu=7725,alt = "1")

vV V.V + vV

The t tests are fairly robust against departures from the normal distribution
especially in larger samples. For small sample size, assuming only that the
distribution is symmetric around p,

Wilcoxon signed-rank test: wilcox.test function

> wilcox.test(daily.intake, mu=7725)
> wilcox.test (daily.intake, mu=7725, alt = "g")



Two-Sample Location Test

Two-Sample t test: t.test, var.test functions

e For comparison of two vectors

t.test(expend.lean,expend.obese, var.equal = TRUE)

t.test (expend.lean,expend.obese, var.equal FALSE)

t.test (expend.lean,expend.obese, var.equal = FALSE, alt = "g")
var.test (expend.lean, expend.obese)

e Using the model formula

t.test (expend stature, var.equal = T)
var.test (expend ~ stature)

Wilcoxon rank sum test: wilcox.test function

wilcox.test (expend.lean, expend.obese)
wilcox.test (expend~stature)
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Paired difference test

Paired tests are used when there are two measurements on the same
experimental unit. The theory is essentially based on taking differences and
thus reducing the problem to that of a one-sample test.

The paired t test
attach(intake)

pre - post
t.test (pre,post,paired = T)

t.test(pre,post,mu = 1100, paired = T)
t.test(pre,post,mu = 1100,paired = T,alternative = "g")
t.test(pre-post, mu = 1100, alternative = "g")

The matched-pairs Wilcoxon test

wilcox.test (pre,post,paired = T)
wilcox.test(pre,post, mu = 1100, paired = T)
wilcox.test(pre,post, mu = 1100,paired = T, alternative = "g")



Saving the result of analysis

> ttestresult <- t.test(pre,post,paired = T)
> ttestresult

Paired t-test

data: pre and post
t = 11.9414, df = 10, p-value = 3.059e-07
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:

1074.072 1566.838
sample estimates:
mean of the differences

1320.455

> ttestresult$statistic
t

11.94139

> ttestresult$p.value

[1] 3.059021e-07



Section 3

Power and the computation of sample size
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The principles of power calculations

When designing experiments, the experimenter should try to ensure that a
sufficient amount of data are collected to be reasonably sure that a difference
of a specified size will be detected.

A simple example: Z-test
Test Ho : = o based on the sample Xi,..., Xy ~ N(u,1), 0 =1 known.
With alternative H; : 1 > 110, a sensible test is the Z-test, where Hp is rejected
if
ﬁ()_( - Mo) > Zl—a
Then
e Prob. of Type | error: P, (v/n(X — o) > z1-a) = @

e Power at p > o (m(p)): Probability that the test detects the difference
when the true difference is

W(M) = PN(\/E()_( - ,uo) > Zl—a)
=P(Z>z-a—Vn(p— o)), Z~ N(0,1)
=1-®(zi—a — Vn(p — o))

Notice that the power depends on u — po (effect size), n (sample size) and «
(significance level).



The principles of power calculations

For fixed sample size n = 15, the power m(u) as a function of u > po =0 can
be evaluated as follows:

n = 15
mu0 = 0
alpha = 0.05

mu = seq(0,1.5,by = 0.1)

power.Z = (l-pnorm(gqnorm(l-alpha) -sqrt(n)*(mu-mu0)))
plot(mu, power.Z, type = "1")

1.0
1.0

0.8
L

power.Z
04 06
power
04

0.2
L

0.0
L

0.0 0.5 1.0 15 0.0 05 1.0 1.5 20

mu mu (effect size)
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The principles of power calculations

Power as a function of sample size

For a fixed (desired) effect size u, power is also a function the sample size n.

mu = 0.5

mu0 = 0

alpha = 0.05

n = 1:50

power.Z = (1-pnorm(qnorm(l-alpha) -sqrt(n)*(mu-mu0)))
plot(n, power.Z, type = "1", ylim = c(0,1))

power.Z
04 08 1.0

02

0 10 20 30 40 50

22/28



The principles of power calculations

Sample size computation

For a fixed (desired) effect size y — 10, how large n is needed to ensure that
the power is greater than (say) 0.97

m(p) =1—&(z1-a — Vn(p — po)) > 0.9
& ®(z1-0 — VAl — o)) < 0.1
S 210 —Vn(p — po) < ®7H0.1) = 201
<21_a - 20.1)2
<Sn> | —
H1— o

mu = 0.5
mu0 = 0
alpha = 0.05
nn<-((-qnorm(1-0.9)+ qgnorm(l-alpha))/(mu-mu0)) "2

ceiling(nn)
1] 35

m, VvV VvV VVYyV



Power and Sample Size Calculation for t test

One sample t test
Test Ho : j1 = o based on the sample X1, ..., X, ~ N(u,c?), o unknown.
With alternative Hi : > 1o, the one-sample t test rejects Hp if

X — Ho
s//n

> tn—l,l—cx

Then
e Power at p > 10 (7(8)): Probability that the test detects the positive
effect size 6 = p — mug.
)_< — Mo
0) =P, > th-11-a
m(0)=Ps ( s/v/n t >

where T = ()_(s_/‘\%ré has the non-central t distribution with d.f. n — 1 and

noncentrality parameter v = \/nd/o.
Notice that the power depends on ¢ (effect size), o (population s.d.), n
(sample size) and « (significance level).

N

R

o



Power and Sample Size Calculation for t test

For fixed sample size n = 15, the power 7(d) as a function of § > 0 can be
evaluated as follows:

n = 15

mu0 = 0

alpha = 0.05

mu = seq(0,1,by = 0.05)

sigma = 1;

t.ncp <- sqrt(n)*(mu-mul)/sigma

power.t = 1- pt( gqt(l-alpha,n-1), n-1 ,ncp = t.ncp )
plot (mu, power.t, type = "1", ylim = c(0,1))

1.0

06 08

power.t
04

0.0 0.2 0.4 0.6 08 1.0

mu



Power calculation for one- and two-sample t test

power.t.test function

power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = 0.05,
power = NULL,
type = c("two.sample", "one.sample", "paired"),
alternative = c("two.sided", "one.sided"))

o Exactly one of the parameters n, delta, power, sd and sig.level must
be passed as NULL, and that parameter is determined from the others.

Example:
power.t.test(n = 15, delta = 1, sd = 1,

type = "one.sample", alternative = "one.sided")
power.t.test(power = 0.9, delta = 1, sd = 1,

type = "one.sample", alternative = "two.sided")

power.t.test (power 0.9, delta = 1, sd = 3,
type = "paired", alternative = "two.sided")



Exercise

@ Use power.t.test function to reproduce the plot in page 26.

® Use power.t.test function to draw the graph of one-sample t-test power
as a function of sample size.

@® This example is from Altman (1991, p. 457) and concerns the influence of
milk on growth. Two groups are to be given different diets, and their
growth will be measured. We wish to compute the sample size that, with
a power of 90%, a two-sided test at the 1% level can find a difference of
0.5 cm in a distribution with a standard deviation of 2 cm.

@ Under which assumptions is the use of power.t.test function valid?

27



Remark on Power calculation

e Basic R distribution offers two more power calculation functions. Find out
by referring to their help pages.

> 7power.prop.test
> 7?power.anova.test

e Power and sample size calculation in general cases may be handled by
using independent packages (such as pwr package), or by using other
specialized software (such as PASS Software, NCSS, LLC.)

o
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