
STAT 1291: Data Science
Lecture 16 - Statistical modeling I: Regression

Sungkyu Jung

Where are we?

I data visualization
I data wrangling
I professional ethics
I statistical foundation
I Statistical modeling

Conditional modeling

I A travel policy using the SF data (below) as the population.
I Example: book a flight that is scheduled to arrive at least 124

minutes before.
I There, we assumed that the population is homogeneous; that

is, a flight is just like any other flight.

Heterogeneous population

The assumption of homogeneous population is certainly not true:

I flight delays are more likely to occur if the airport is busy,
I depends on the time of day, day of the week and month of the

year.
I Accounting the heterogeneous nature of population is done by

modeling.
I A model, explaining a variable (arrival delay) by other variables

(time of the year), is necessarily a conditional statement:

I “arrival delay pattern depends on time of the year”.

Models
Many of the “useful” models, in statistics, statistical learning,
machine learning, or data mining, are categorized into one of the
following:

1. Linear models are a simple, yet powerful, class of models.
Linear models include the models behind t-test, ANOVA, and
multiple linear regression.

2. Generalized linear models are a larger class of models,
enjoying both the interpretability of simple linear models and
the power to model more complex relation. Logistic regression
is an example.

3. In statistics, nonlinear models refer to a class of specific
parametric models. There are more drawbacks than advantages
in using these models. For example, these are not very flexible,
yet computationally expensive to fit.

4. Nonparametric models are a vast class of flexible models,
including both linear and nonlinear models. Examples include
scatterplot smoothers and decision trees.

Toward modeling the arrival delay time

We begin by considering time of day: first using standard
box-and-whiskers to show the (conditional) distribution of arrival
delays per each hour; second with a kind of statistical model called
a linear model that lets us track the mean arrival delay over the
course of the day.

SF %>%
ggplot(aes(x = hour, y = arr_delay)) +
geom_boxplot(alpha = 0.1, aes(group = hour)) +
geom_smooth(method = "lm") +
xlab("Scheduled hour of departure") + ylab("Arrival delay (minutes)") + coord_cartesian(ylim = c(-30, 120))

0

40

80

120

5 10 15 20

Scheduled hour of departure

A
rr

iv
al

 d
el

ay
 (

m
in

ut
es

)

Data transformation might help us better understand the pattern.
For this, create a new variable long_delay whose value is 1 TRUE
if the delay is over 60 minutes. Instead of looking at the whole
distribution of arrival delay, focus on the binary variable
long_delay.

SF %>%
mutate(long_delay = arr_delay > 60)

SF %>%
mutate(long_delay = arr_delay > 60) %>%
ggplot(aes(x = hour, fill= long_delay)) +
geom_bar(position = "fill") +
xlab("Scheduled hour of departure") + ylab("Proportion of long delay")

0.00

0.25

0.50

0.75

1.00

5 10 15 20

Scheduled hour of departure

P
ro

po
rt

io
n

of
 lo

ng
 d

el
ay

long_delay

FALSE

TRUE

How about in terms of day of the week, month of the year, and
different airlines?

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12

Month

P
ro

po
rt

io
n

of
 lo

ng
 d

el
ay

long_delay

FALSE

TRUE

0.00

0.25

0.50

0.75

1.00

Sun Mon Tues Wed Thurs Fri Sat

Day of the week
P

ro
po

rt
io

n
of

 lo
ng

 d
el

ay

long_delay

FALSE

TRUE

0.00

0.25

0.50

0.75

1.00

EWR JFK

Origin

P
ro

po
rt

io
n

of
 lo

ng
 d

el
ay

long_delay

FALSE

TRUE

0.00

0.25

0.50

0.75

1.00

AA B6 DL UA VX

Airlines

P
ro

po
rt

io
n

of
 lo

ng
 d

el
ay

long_delay

FALSE

TRUE

It makes a lot of sense to use these variables to model the patterns
of arrival delay.

I Is the visual pattern really there?
I Can modeling help us identifying patterns that are not easily

visible?

Linear regression

We use a different data set mosaicData::RailTrail to make
examples for regression. The Pioneer Valley Planning Commission
(PVPC) collected data north of Chestnut Street in Florence,
Massachusetts for a ninety day period.

The PVPC wants to understand the relationship between daily
ridership (i.e., the number of riders and walkers who use the bike
path on any given day) and a collection of explanatory variables,
including the temperature, rainfall, cloud cover, and day of the week.

Observations: 90
Variables: 10
$ hightemp <int> 83, 73, 74, 95, 44, 69, 66, 66, 80, 79, 78, 65, 41,...
$ lowtemp <int> 50, 49, 52, 61, 52, 54, 39, 38, 55, 45, 55, 48, 49,...
$ avgtemp <dbl> 66.5, 61.0, 63.0, 78.0, 48.0, 61.5, 52.5, 52.0, 67....
$ spring <int> 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, ...
$ summer <int> 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, ...
$ fall <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, ...
$ cloudcover <dbl> 7.6, 6.3, 7.5, 2.6, 10.0, 6.6, 2.4, 0.0, 3.8, 4.1, ...
$ precip <dbl> 0.00, 0.29, 0.32, 0.00, 0.14, 0.02, 0.00, 0.00, 0.0...
$ volume <int> 501, 419, 397, 385, 200, 375, 417, 629, 533, 547, 4...
$ weekday <fctr> 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0,...

Simple linear regression

In a simple linear regression model, there is a single quantitative
explanatory variable. It seems reasonable that the high temperature
for the day (hightemp, measured in degrees Fahrenheit) might be
related to ridership (volume), so we will explore that first.

RailTrail %>% ggplot(aes(x = hightemp, y = volume)) +
geom_point()

200

400

600

40 60 80

hightemp

vo
lu

m
e

A simple linear regression model is of the form

volumei = β0 + β1hightempi + εi ,

where β0, β1 ∈ (−∞,∞) are the (unknown) parameters of the
model. This is not just one model, rather a family of models, where
different values of β0, β1, i.e. parameters, indicate different
members in the family.

Here, εi stands for the unexplained error associated with the ith
case. Often, the errors are assume to have mean 0 and variance σ2.
The model has a nice interpretation.

I If hightemp is 60, then volume is centered at
β0 + β1hightempi with margin of error σ.

I If hightemp is increased by 1, then volume is increased by β1
on average.

Fitting a regression model amounts to find estimates of β0, β1 (or
to find a suitable member in the family). Delve into this idea by
sampling some members of the family.

200

400

600

40 60 80

x

y

Each line segment is given by the formula y = b0 + b1x , and is a
member of the linear regression model family. A lot of these do not
follow the apparent trend in the scatter plot. How do we choose a
“good fit”?

There are million different ways to fit a model to data, but a
standard technique is called least-squares.
Here is the idea behind the least-squares fit. We choose two of the
models in the family:

Figure 1:

Compare the errors of the fit on the left and the right:

x y error.left error.right
1 41 193 -124.16667 -23.69772
2 41 287 -218.16667 70.30228
3 42 181 -112.16667 -41.39960
4 44 200 -131.16667 -33.80336
5 46 189 -120.16667 -56.20712
6 49 129 -60.16667 -133.31275

The sum of squares of errors of a model is

mod.compare %>%
summarize(

SSE.left = sum(error.left^2),
SSE.right = sum(error.right^2)
)

SSE.left SSE.right
1 9904439 955214.1

SSE.right is smaller than SSE.left. Thus the model on the right
is better than the model on the left.

Of the five hundred models shown above, you can repeat this
process of computing the SSE, and look for the model with the
least sum of squared of errors. That is the best model among your
collection of 500 models.

If you do this for all possible models (not just for the handful of 500
models), and find the “least-square” model, that is the best model
fitted to your data. Mathematically, this is an optimization problem:

Find β̂0, β̂1 such that
n∑

i=1
(yi − (β̂0 + β̂1xi))2 ≤

n∑
i=1

(yi − (β0 + β1xi))2

for all β0, β1 in the family.

Mathematics sometimes gives you an analytic solution: The formula
you have learned in introductory statistics for β̂0, β̂1 is the solution
of the above optimization problem.

In R, lm() computes β̂0, β̂1 (and a lot more):

mod <- lm(y ~ x, data = RTsim)
coef(mod)

(Intercept) x
-17.079281 5.701878

Many sophisticted statistical methods or “machine learning”
algorithms are no unlike the simple linear regression. Essentially,

any statistic method optimizes a goodness-of-fit measure
over a family of models.

I Sometimes, the optimization comes down to a formula.
I Oftentimes, algorithms are used to numerically approximate the

optimal member of the family. This is where efficient
computation comes in.

I More often than not, you will want to consider multiple families
of models. Computational efficiency becomes more important.

Quantifying uncertainty in regression

Thus far, we have fit a model and interpreted its estimated
coefficients.

Take one step back. We have fit a model using the data set we
have. More often than not, a data set is merely a sample from a
population. What can we say about the population from our fitted
model?

Uncertainty quantification arises in two ways:

1. In prediction of “y” from “x”
2. In estimation of the coefficient, i.e., β1.

These are easy to answer if you know the population.

If you do not know the population, it is still possible, using
bootstrap.

Case that you know the population

You never know about the population. Instead you make an
assumption that you know certain things about the population.

Make the assumption that the members of the population following
the rule:

y = β0 + β1x + εi , εi ∼ N(0, σ2).

Even though you do not know the exact values of the parameters
(β0, β1, σ

2) of this rule/model, this is a big assumption!

(It is also typical to make assumptions on the sampling procedure,
e.g. each member in the sample is picked independent from other
members.)

Uncertainty in estimation of the coefficient
Use our understanding of the normal distribution to make inferences
about the true value of regression coefficients.

I Test a hypothesis about β1 (most commonly that it is equal to
zero) and find a confidence interval (range of plausible values)
for it.

mod1 <- lm(volume ~ hightemp, data = RailTrail)
summary(mod1)

##
Call:
lm(formula = volume ~ hightemp, data = RailTrail)
##
Residuals:
Min 1Q Median 3Q Max
-254.562 -57.800 8.737 57.352 314.035
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.079 59.395 -0.288 0.774
hightemp 5.702 0.848 6.724 1.71e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
Residual standard error: 104.2 on 88 degrees of freedom
Multiple R-squared: 0.3394, Adjusted R-squared: 0.3319
F-statistic: 45.21 on 1 and 88 DF, p-value: 1.705e-09

Uncertainty in prediction of “y”
Likewise, the margin or error in the prediction can be found, for
each value of “x”, explaining that the true value lies in the (vertical)
interval with 95% of confidence.

RailTrail %>%
ggplot(aes(x=hightemp, y=volume)) +
geom_point() +
geom_smooth(method = "lm", se = TRUE)

200

400

600

40 60 80

hightemp

vo
lu

m
e

Case that you do not know the population

The previous case (that is, you know assume that population is
normally distributed) is in fact very common. In case you do not
want to make such an assumption, bootstrap gives a
computationally heavy, but distribution-free answer.

This can be easily done in R for a simple model like linear regression.

I Implement bootstrap using R packages dplyr and broom.

We compute the bootstrap standard error for the estimate of β1
(the coefficient) below.

library(broom)
boot <- RailTrail %>%

bootstrap(100) %>%
do(tidy(lm(volume ~ hightemp, .)))

head(boot)

A tibble: 6 x 6
Groups: replicate [3]
replicate term estimate std.error statistic p.value
<int> <chr> <dbl> <dbl> <dbl> <dbl>
1 1 (Intercept) -6.889481 64.0207424 -0.1076133 9.145474e-01
2 1 hightemp 5.474549 0.9210045 5.9441070 5.475945e-08
3 2 (Intercept) -69.060686 59.4112888 -1.1624169 2.482089e-01
4 2 hightemp 6.719702 0.8612593 7.8021819 1.172571e-11
5 3 (Intercept) -80.979445 59.6455792 -1.3576772 1.780375e-01
6 3 hightemp 6.827259 0.8556984 7.9785811 5.125404e-12

boot %>% ungroup() %>%
filter(term == "hightemp") %>%
summarize(se = sd(estimate, na.rm = TRUE))

A tibble: 1 x 1
se
<dbl>
1 0.8190253

The bootstrap standard error is indeed quite close to the standard
error estimated assuming the normality.

Categorical explanatory variables

Suppose that instead of using temperature as our explanatory
variable for ridership on the rail trail, we only considered whether it
was a weekday or not a weekday (e.g., weekend or holiday). The
indicator variable weekday is binary (or dichotomous) in that it only
takes on the values 0 and 1. (Such variables are sometimes called
indicator variables: weekday = 1 if weekday, 0 if weekend.) This
new linear regression model has the form:

volumei = β0 + β1weekdayi + εi .

There are now only two cases in the model: weekday = 1 or 0.

RailTrail %>%
group_by(weekday) %>%
summarise(mean_volume = mean(volume))

A tibble: 2 x 2
weekday mean_volume
<fctr> <dbl>
1 0 430.7143
2 1 350.4194

RailTrail %>%
ggplot(aes(x = weekday, y= volume)) +
geom_boxplot()

200

400

600

0 1

weekday

vo
lu

m
e

Is weekday related to volumn?

The least-squares fit does reflect our finding:

coef(lm(volume ~ weekday, data = RailTrail))

(Intercept) weekday1
430.71429 -80.29493

By default, the lm() function will pick the alphabetically lowest
value of the categorical predictor as the reference group and create
indicators for the other levels (in this case “0”). As a result the
intercept is now the predicted number of trail crossings on a
weekend. The interpretation of the model is that on a weekday, 80
fewer riders are expected than on a weekend or holiday.

Multiple regression

Multiple regression is a natural extension of simple linear regression
that incorporates multiple explanatory (or predictor) variables. It
has the general form:

yi = β0 + β1x1i + β2x2i + · · ·+ βpxpi + εi .

The estimated coefficients are now interpreted as “conditional on”
the other variables???each βj reflects the predicted change in y
associated with a one-unit increase in xji , conditional upon the rest
of the explanatory variables. This type of model can help to
disentangle more complex relationships between three or more
variables.

Examples

Once you decide which variables to include in the model, R function
lm() gives the least-squares fit for βj :

mod1 <- lm(volume ~ hightemp + weekday, data = RailTrail)
mod2 <- lm(volume ~ hightemp + cloudcover + weekday, data = RailTrail)
mod3 <- lm(volume ~ . , data = RailTrail)

Here, the model formula volume ~ . is the full model, i.e. a model
with all available explanatory variables in the data set.

We now encounter another layer of complexity (First layer was the
fitting itself; oftentimes fitting a model is merely an educated
trial-and-error procedure.):

Among the three families of models mod1, mod2, mod3,
which model family should we use?

Variable selection problem

In multiple linear regression, this question is translated to a variable
selection problem: Among the p variables, which variables to use?

I When only a few variables are included, the model may not
well explain the pattern in the data (underfit).

I When too many variables are included, the model may be
swayed by idiosyncratic errors and peculiar values (overfit).

I In this case, there may be problem associated with the fitting
procedure (in this case, the least-squares). In fact, some
coefficients of mod3 are not estimated. This is caused by a
problem called colinearity. To cope with this, one may choose to
alter the fitting procedure (e.g. regularized or sparse regression).

Computationally expensive data-driven modeling
The degrees of freedom in the choice of models are now almost
infinite. Even sticking with the multiple linear regression, you will
need to decide

1. which goodness-of-fit measure to minimize?
2. over which family of models?

Can’t decide? We can use the data (just like we did for bootstrap)
to make informed decisions on these two questions. The way we
seek for answers is again an educated trial-and-error procedure,
which tends to be very computationally expensive. Statisticians are
now required to take both inferential and computational aspects of
model fitting. This is modern statistics. Some other people call it
data science.
We will see some basics of data-driven model fitting later.

I Note: Understanding multiple linear regression is so
fundamental in understanding any other methods. This lecture
is a short, insufficient introduction of regression.

Nonparametric regression a.k.a. scatterplot smoothing

Nonparametric regression assumes a simple (not necessarily linear)
model:

yi = f (xi) + εi .

where f is a smooth function. The family of models is parametrized
by the function f , which inself is parameterized by a near infinite
number of parameters. “Nonparametric” regression is named so
because there are the infinite number of parameters to fit. As a
result, the fit is very flexible.

`geom_smooth()` using method = 'loess'
`geom_smooth()` using method = 'loess'

200

400

600

40 60 80

x

y

200

400

600

40 60 80

x

y

scat_ex <- RTsim %>% ggplot(aes(x,y)) + geom_point()
scat_ex + geom_smooth(span = 10)
scat_ex + geom_smooth(span = 1/5)

In the above example, ggplot2 automatically use a local polynomial
regression implemented in loess(). There are other well-developed
methods, such as kernel regression implemented in ksmooth(). The
choice of fitting methods comes from the choice of model families.

Notice that for two different values of span, the fit looks quite
different. The span is an example of tuning parameter. Data-driven
choice for the value of the tunining parameter is well-studied and we
will glimpse over it later.

Categorical response variable

Our previous examples had quantitative (or continuous) outcomes.
What happens when we are interested in modeling a dichotomous
outcome? For example, we might model the probability of long
delay as a function of airtime (We are back to the “SF” example).

It would be very awkward to use a linear model to fit the following
relationship.

SF_longdelay <- SF %>% mutate(long_delay = arr_delay > 60)
SF_longdelay %>% ggplot(aes(x = air_time, y = long_delay)) +

geom_point()

FALSE

TRUE

300 350 400 450

air_time

lo
ng

_d
el

ay

The main difficulty is caused by the fact that the response has only
two possible values {0, 1} as opposed to (−∞,∞) in the simple
linear regression. Logistic regression can be used in this case, which
is an example of generalized linear regression. Generalized linear
regression transforms the y -coordinate (and a lot more) so that a
highly interpretable linear model can be used.

