
STAT 1291: Data Science
Lecture 18 - Statistical modeling II: Machine learning

Sungkyu Jung

Where are we?

I data visualization
I data wrangling
I professional ethics
I statistical foundation
I Statistical modeling: Regression
I Cause and effect: Causality and confounding
I More statistical modeling: Machine learning

Machine learning
A popular view of ML algorithms. ML can be applied to any data,
if they are in the right form

Figure 1:

Machine learning

Machine learning algorithms are largely used to predict, classify, or
cluster.

I Prediction and classification are examples of supervised learning
I clustering is an example of unsupervise learning.

Put another way, supervised learning is concerned with problems
that have a response variable and unsupervised learning is concerned
with problems without a response variable.

Supervised learning
1. Supervised learning—Prediction (of numeric response)

Predict the ridership (volume) using other information, in
RailTrail data:

RailTrail %>% ggplot(aes(x = avgtemp, y = volume)) +
geom_point() +
geom_smooth(method = 'loess')

200

400

600

40 50 60 70 80

avgtemp

vo
lu

m
e

I Response is volume, which is “supervising” the model fit.
I The scatterplot smoother (in this case, “loess”) is predicting

volume.

RailTrail.fit <- RailTrail %>%
mutate(

loess.fit = loess(volume ~ avgtemp, data = .)$fitted)
head(select(RailTrail.fit, volume, loess.fit, avgtemp))

volume loess.fit avgtemp
1 501 469.4541 66.5
2 419 443.2781 61.0
3 397 462.1633 63.0
4 385 400.6197 78.0
5 200 304.6494 48.0
6 375 448.3692 61.5

RailTrail.fit %>%
ggplot() +
geom_point(aes(x = avgtemp, y = volume)) +
geom_line(aes(x = avgtemp, y = loess.fit), color = "blue")

200

400

600

40 50 60 70 80

avgtemp

vo
lu

m
e

2. Supervised learning—Classification

I The Iris data set: https:
//en.wikipedia.org/wiki/Iris_flower_data_set

iris %>% mutate(true.Species = Species) %>%
ggplot(aes(x = Petal.Length, y = true.Species, color = true.Species)) + geom_point()

setosa

versicolor

virginica

2 4 6

Petal.Length

tr
ue

.S
pe

ci
es true.Species

setosa

versicolor

virginica

https://en.wikipedia.org/wiki/Iris_flower_data_set
https://en.wikipedia.org/wiki/Iris_flower_data_set

Can you classify these flowers (using the measurement
Petal.Length) into one of the species?

I A crude answer:
I Petal.Length < 2 : setosa
I 2 < Petal.Length <5 : versicolor
I Petal.Length > 5 : virginica

iris.crude <- iris %>% mutate(true.Species = Species) %>%
mutate(

predicted.Species =
ifelse(Petal.Length < 2, "setosa",

ifelse(Petal.Length < 5, "vesicolor",
"virginica"))

)

iris.crude %>%
ggplot(aes(x = Petal.Length, y = true.Species,

color = true.Species, shape = predicted.Species)) +
geom_point()

setosa

versicolor

virginica

2 4 6

Petal.Length

tr
ue

.S
pe

ci
es

predicted.Species

setosa

vesicolor

virginica

true.Species

setosa

versicolor

virginica

I A crude eyeballing gives a good classification.
I “Supervising” response variable is true.Species.

Classification is just a special prediction
I Two variables true.Species and predicted.class have the

same set of values “setosa, versicolor and virginica”.

set.seed(13)
sample_n(select(iris.crude, true.Species, predicted.Species, Petal.Length), size = 5)

true.Species predicted.Species Petal.Length
107 virginica vesicolor 4.5
37 setosa setosa 1.3
58 versicolor vesicolor 3.3
14 setosa setosa 1.1
141 virginica virginica 5.6

I This is just predicting true.Species by
predicted.Species.

We can classify better when more variables are available.

iris.crude %>% ggplot(aes(x = Petal.Length, y = Petal.Width, color = true.Species, shape = predicted.Species)) + geom_point()

0.0

0.5

1.0

1.5

2.0

2.5

2 4 6

Petal.Length

P
et

al
.W

id
th

predicted.Species

setosa

vesicolor

virginica

true.Species

setosa

versicolor

virginica

I The scatterplot above was created using only 2 variables.
I How to use all 4 variables in classification?

I Visualization itself is limited in answering this question
I We will use model-based, or algorithm-based methods in

classification

I Visualization will be still useful
I in exploratory analysis (deciding which method to use);
I in conveying the analysis result.

I Classification will be discussed in more detail in the next lecture

Unsupervised learning
1. Unsupervised learning—clustering

Example: Waiting time between eruptions and the duration of the
eruption for the Old Faithful geyser in Yellowstone National Park,
Wyoming, USA.

Figure 2: https://en.wikipedia.org/wiki/Old_Faithful

https://en.wikipedia.org/wiki/Old_Faithful

The faithful dataset contains the eruption times in minutes and
the waiting time to next eruption (in minutes).

head(faithful)

eruptions waiting
1 3.600 79
2 1.800 54
3 3.333 74
4 2.283 62
5 4.533 85
6 2.883 55

2

3

4

5

50 60 70 80 90

waiting

er
up

tio
ns

Do you see two “clusters”?

2

3

4

5

50 60 70 80 90

waiting

er
up

tio
ns cluster

1

2

Clustering methods

There are a number of clustering methods available

Many are algorithm-based:

1. Hierarchical clustering (Agglomerative vs divisive)
2. Partitioning methods (K-means, K-medoids)

Some are model-based:

1. Gaussian mixture

K-means

I K-means clustering is an algorithm-based approach to find k
clusters in the data

I Use “heuristic” updates to make clusters as far as possible, and
each of clusters as tight as possible

I Why heruristic? The number of different clustering of n = 25
observations into k = 4 clusters exceed 1013.

I The number sharply increases as n and k increase.
I It calls for more efficient algorithm (may not be optimal but

reasonably good sub-optimal solutions): K-means algorithm

K-means algorithm

The algorithmic iteration begins with an initial guess for K cluster
means m1, . . . ,mK .

1. Update cluster: For each observation, cluster it to the closest
mean mj

2. Update K -means: For each cluster, update mj by the new
average of points in cluster j .

3. Iterate Steps 1 and 2.

K-means example
First two iterations of the algorithm

Figure 3:

K-means example
First two iterations of the algorithm (with different initial)

Figure 4:

K-means example
First two iterations of the algorithm (with another different initial)

Figure 5:

I R function kmeans() can be used for this task.

faithful.clustered <-
faithful %>%
mutate(cluster =

factor(kmeans(x = ., centers = 2)$cluster)
)

faithful.clustered %>%
ggplot(aes(y = eruptions, x = waiting)) +
geom_point(aes(color = cluster))

2. Unsupervised learning—dimension reduction

Example 1. The Iris data

The iris data has four numeric variables; an observation is a vector
of length 4.

I Dimension of the problem = dimension of the vector space =
number of variables

I For dimension 2 (two variables), a scatterplot is the best
visualization method.

I For dimension 3 (three variables), one may use an interactive
3D scatterplot.

For interactive graphs, including 3D scatterplot, using Plot.ly is
recommended.

I Plot.ly specializes in online dynamic data visualizations, and in
particular, the ability to translate code to generate data
graphics between R, Python, and other data software tools.

I What makes plotly especially attractive is that it can convert
any ggplot2 object into a plotly object using the ggplotly()
function.

I See MDSR Section 11.1.2 for an introduction to ggplotly().

https://plot.ly/r/

For demo
library(plotly)
plot_ly(iris,

x = ~Petal.Length,
y = ~Sepal.Length,
z = ~Petal.Width,
color = ~Species) %>%

add_markers() %>%
layout(scene =

list(xaxis = list(title = 'Petal.Length'),
yaxis = list(title = 'Sepal.Length'),
zaxis = list(title = 'Petal.Width')))

I Each snapshot of the 3D scatterplot is a 2D scatterplot.
I Different snapshots are given by different viewpoint.
I Some are useful; some are not.
I A dimension reduction (from 3 to 2, in this case) is to find a
“right” viewpoint.

I This is achieved by Principal Component Analysis, which
amounts to a rotation of the coordinate axes so that more of
the variability can be explained using just a few variables.

Principal Component Analysis

pc.iris <- iris %>% select(-Species) %>% prcomp()
pc.iris$x %>%

as_tibble() %>%
bind_cols(iris) %>%
ggplot(aes(x = `PC1`, y = `PC2`, color = Species)) + geom_point()

−1.5

−1.0

−0.5

0.0

0.5

1.0

−2 0 2 4

PC1

P
C

2

Species

setosa

versicolor

virginica

Principal Component Analysis (PCA)

I PCA is an example of linear dimension reduction.
I PCA creates new variables, ordered by its importance.
I A new variable is a linear function of old variables:

E.g. the first new variable, named the first principal component, is

PC1 =0.36Sepal.Length − 0.08Sepal.Width (1)
+ 0.86Petal.Length + 0.36Petal.Width. (2)

pc.iris$rotation[,1]

Sepal.Length Sepal.Width Petal.Length Petal.Width
0.36138659 -0.08452251 0.85667061 0.35828920

Example 2. Votes from Scottish Parliament

Votes recorded on each ballot by each member of the Scottish
Parliament in 2008.

Legislators often vote together in pre-organized blocks, and thus the
pattern of “ayes” and “nays” on particular ballots may indicate
which members are affiliated (i.e., members of the same political
party)

'data.frame': 103582 obs. of 3 variables:
$ bill: Factor w/ 773 levels "S1M-1","S1M-1007.1",..: 1 657 658 637 677 161 391 225 639 645 ...
$ name: chr "Canavan, Dennis" "Canavan, Dennis" "Canavan, Dennis" "Canavan, Dennis" ...
$ vote: int 1 1 1 -1 -1 -1 -1 1 -1 -1 ...

I Can the members of the parliament be grouped, according to
their voting patterns?

I Can the bills be grouped into several categories, according to
the voting patterns?

Ballot

M
em

be
r

of
 P

ar
lia

m
en

t

Vote

Nay

Abstain

Aye

Suppose that you wish to cluster the members into groups. It helps
to transforme the narrow data into wide format (as shown above),
so that each case (row) corresponds to a member.

Use tidyr::spread() to achieve that.

wide.Votes <- Votes %>%
spread(key = bill, value = vote) %>%
as_tibble()

wide.Votes

In the wide data, there are 134 rows (members) and 774 variables
(bills).

For 2 variable (take S1M-240.2 and S1M-639.1), we can take a
look at the joint distribution. Recall that “Nay”,“Abstain”,“Aye”
are coded as -1, 0, 1.

wide.Votes %>% select(c("S1M-240.2", "S1M-639.1")) %>%
table()

S1M-639.1
S1M-240.2 -1 0 1
-1 20 11 56
0 11 13 8
1 11 4 0

Treating the categorical values {“Nay”,“Abstain”,“Aye”} as
numeric, {-1, 0, 1}, the scatterplot may be used.

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

S1M−639.1

S
1M

−
24

0.
2

Intuition suggests that it would be better to use all of the ballots,
rather than just two. But is it possible to first look at the data in
search for potential clusters?

I Principal component analysis (PCA) is a potential solution.
I Recall: PCA creates new variables (as linear functions of old

variables), ordered by its importance.
I New variables are called principal components.

1. Estimate principal components from the data;

pc.Votes <- wide.Votes %>% select(-name) %>% prcomp()

2. Take the first two principal components;

pc.Votes$x %>% as_tibble() %>%
bind_cols(wide.Votes) %>% select(name,PC1,PC2) %>% head(3)

A tibble: 3 x 3
name PC1 PC2
<chr> <dbl> <dbl>
1 Adam, Brian -21.86319 9.670291
2 Aitken, Bill -15.18436 -22.619002
3 Alexander, Ms Wendy 13.19690 1.129474

I pc.Votes$rotation contains the coefficients in computing
the values of the new variables.

I pc.Votes$x contains the the values of the new variables.

3. Visually inspect the two variables.

pc.Votes$x %>% as_tibble() %>% select(PC1,PC2) %>%
bind_cols(wide.Votes) %>%
ggplot(aes(x = `PC1`, y = `PC2`)) + geom_point()

−20

−10

0

10

−20 −10 0 10 20

PC1

P
C

2

Principal components are used in both visualization of the data and
analysis result (= clustering result).

pc.cluster.Votes <- pc.Votes$x %>% as_tibble() %>%
mutate(cluster = factor(kmeans(x = ., centers = 3)$cluster))

pc.cluster.Votes %>%
select(PC1,PC2,cluster) %>%
ggplot(aes(x = PC1, y = PC2, color = cluster)) + geom_point()

−20

−10

0

10

−20 −10 0 10 20

PC1

P
C

2

cluster

1

2

3

