
STAT 1291: Data Science
Lecture 19 - Statistical modeling III: Classification and Model

Evaluation

Sungkyu Jung

Where are we?

I data visualization
I data wrangling
I professional ethics
I statistical foundation
I Statistical modeling: Regression
I Cause and effect: Causality and confounding
I More statistical modeling: Machine learning

Classification

Classifiers are an important complement to regression models in the
fields of machine learning and predictive modeling.

Whereas regression models have a quantitative response variable,
classification models have a categorical response.

Example: The Obama-Clinton divide

I The following graphic, published in New York Times, by
Amada Cox, in 2008 gained popularity for its beautiful use of
graphics in displaying a statistical analysis.

http: // www. nytimes. com/ imagepages/ 2008/ 04/
16/ us/ 20080416_ OBAMA_ GRAPHIC. html

I We see an entire story between Obama and Clinton - positions
taken, counties won, and counties lost.

I This is an example of classification: For each given county,
using measurements of the county (e.g. %black population,
%high-school grad, geographic location, etc), you can predict
whether Clinton wins or not.

http://www.nytimes.com/imagepages/2008/04/16/us/20080416_OBAMA_GRAPHIC.html
http://www.nytimes.com/imagepages/2008/04/16/us/20080416_OBAMA_GRAPHIC.html

The data: 2008 Democratic primaries

primary <- read.csv(url("http://www.stat.pitt.edu/sungkyu/course/pds/material/primaries.csv"),head=T)
primary <- as_tibble(primary)

I The decision tree was built from a data set concerning all the
counties in states where primaries had already been held.

I The unit of observation is a county and variables included
various demographic measures (age and ethnic makeup,
education level, religious breakdown), political measures (did
the county go to Bush or Kerry in 04) and economic factors
(unemployment rate, the amount of construction in the
county), and so on.

Whenever we encounter a new dataset, it is a good practice to first
visualize the data.

glimpse(primary) # demo only

I To see if the categorical variable region is a good indication
of winner, we want to look at the conditional distribution of
winner, given by different region levels:

primary %>% ggplot(aes(x = region, fill = winner)) +
geom_bar(position = "fill")

0.00

0.25

0.50

0.75

1.00

MW NE S W

region

co
un

t

winner

clinton

obama

NA

Data transformation

Some counties do not have a winner yet. Let us exclude these
counties.

primary <- primary %>% filter(!is.na(winner))

I To see if the continuous variable Bush04 is a good indication
of winner, we want to look at the conditional distribution of
Bush04, given by different winner levels.

primary %>% ggplot(aes(x = winner, y = Bush04)) +
geom_boxplot()

Warning: Removed 1 rows containing non-finite values (stat_boxplot).

0.25

0.50

0.75

clinton obama

winner

B
us

h0
4

I To see if the continuous variables black06 and
popUnder30_00 are a good indication of winner, the best
practice is to use the scatterplot with the income information
given by the color cue.

primary %>% ggplot(aes(x = black06, y = popUnder30_00, color = winner)) + geom_point()

10

20

30

40

50

60

0e+00 5e+05 1e+06

black06

po
pU

nd
er

30
_0

0

winner

clinton

obama

Data transformation

Notice that the coordinate scales do not commensurate; some
counties have large populations.

Mutate a variable for the percent of African American population.
Also remove some missing values

primary <-
primary %>%
mutate(AFprop = black06 / pop06 * 100) %>%
filter(!is.na(AFprop))

primary %>% ggplot(aes(x = AFprop, y = popUnder30_00,
color = winner)) +

geom_point() + scale_x_log10()

10

20

30

40

50

60

1 100

AFprop

po
pU

nd
er

30
_0

0

winner

clinton

obama

Data Science workflow

A typical data science project looks something like this:

Figure 1: (from r4ds)

From exploratory analysis

I Some variables (when transformed) are logically predicting the
winner

I Some make little sense to use.
I A combination of variables seems to work better than using a

single variable.
I Overall, it seems reasonable to predict the winner using data.
I We will fit

Winner ∼ f (some variables)

using two families of models.

Classification methods

There are probably thousands of classification methods proposed to
date. We will see a couple of popular methods.

1. Decision tree
2. Logistic regression

1. Decision tree

A decision tree is a tree-like flowchart that assigns class labels to
individual observations. Each branch of the tree separates the
records in the data set into increasingly “pure” (i.e., homogeneous)
subsets, in the sense that they are more likely to share the same
class label.

A tree with two numeric variables X1 and X2

Each subregion must be increasingly “pure”.

How do we construct these trees?

I The number of possible decision trees grows exponentially with
respect to the number of variables p.

I Computationally finding the optimal tree is impossible.
I There are several competing heuristics for building decision

trees that employ greedy (i.e., locally optimal) strategies.
I We will simplify our presentation by restricting our discussion

to recursive partitioning decision trees.
I The R package that builds these decision trees is accordingly

called rpart.

Below, we simply use two variables AFprop and popUnder30_00 to
predict winner.

library(rpart) # for computation of recursive partitioning
library(rpart.plot) # for plotting trees

Warning: package 'rpart.plot' was built under R version 3.4.2

mod_tree1 <- rpart(winner ~ AFprop + popUnder30_00,
data = primary)

Use rpart.plot() to visualize the fitted decision tree.

rpart.plot(mod_tree1)

AFprop < 20

AFprop >= 1

popUnder30_00 < 32

AFprop >= 0.35

popUnder30_00 >= 29

clinton
0.44

100%

clinton
0.34
81%

clinton
0.25
49%

clinton
0.48
32%

clinton
0.46
29%

clinton
0.36
14%

obama
0.54
15%

clinton
0.29
1%

obama
0.57
14%

obama
0.83
2%

obama
0.84
19%

yes no

Each node shows

I the predicted class (Clinton or Obama),
I the predicted probability of Obama,
I the percentage of observations in the node.

Daughter nodes are branched by a decision involving a single
variable.

Decision tree with data

10

20

30

40

50

60

1 100

AFprop

po
pU

nd
er

30
_0

0

winner

clinton

obama

Another model
Note that the model formula is saved in an object form. We will
reuse this object.

form <- as.formula("winner ~ AFprop + region + pres04winner + pct_hs_grad")
mod_tree2 <- rpart(form, data = primary)
rpart.plot(mod_tree2)

AFprop < 20

pct_hs_grad < 0.78

pct_hs_grad < 0.86

AFprop >= 0.58

region = MW,S

AFprop < 0.11

pct_hs_grad < 0.81

clinton
0.44

100%

clinton
0.34
81%

clinton
0.11
34%

obama
0.51
47%

clinton
0.43
35%

clinton
0.34
22%

obama
0.58
13%

clinton
0.50
9%

clinton
0.16
1%

obama
0.54
8%

clinton
0.36
3%

obama
0.63
5%

obama
0.75
4%

obama
0.75
12%

obama
0.84
19%

yes no

Yet another model

mod_tree3 <- rpart(form, data = primary, control = rpart.control(cp = 0.005))
rpart.plot(mod_tree3)

AFprop < 20

pct_hs_grad < 0.78

region = MW,NE,S

AFprop >= 0.34

pct_hs_grad < 0.86

AFprop >= 0.58

region = NE

pres04winner = bush

AFprop < 13 AFprop >= 2.2

region = MW,S

AFprop < 0.11

pct_hs_grad < 0.81

clinton
0.44

100%

clinton
0.34
81%

clinton
0.11
34%

clinton
0.09
32%

clinton
0.34
3%

clinton
0.15
2%

obama
0.79
1%

obama
0.51
47%

clinton
0.43
35%

clinton
0.34
22%

clinton
0.11
3%

clinton
0.38
18%

clinton
0.34
15%

clinton
0.31
14%

obama
0.74
1%

obama
0.55
3%

clinton
0.40
2%

obama
0.77
1%

obama
0.58
13%

clinton
0.50
9%

clinton
0.16
1%

obama
0.54
8%

clinton
0.36
3%

obama
0.63
5%

obama
0.75
4%

obama
0.75
12%

obama
0.84
19%

yes no

Which model is better?

I Range of models is given by
I sets of variables used
I complexity of the model (depth of the tree)

I How do you assess each model?
I By the classification performance (one of many possible choices)

Measuring classification performance

1. Confusion Matrix

Confusion_matrix3 <- primary %>%
mutate(pred3 = predict(mod_tree3, type = "class")) %>%
select(winner,pred3) %>% table()

Confusion_matrix3

pred3
winner clinton obama
clinton 1133 236
obama 234 826

2. Misclassification error rate

Model 3 gives the misclassification rate of 0.1934953.

Never use the same data to fit and assess the model

I Prone to overfit
I Model 2 gives the misclassification rate of 0.211198, Slightly

worse than that of Model 3. But Model 2 is much simpler.

Model evaluation 1: Training and testing data

If the model works well on those training data, but not so well on a
set of testing data, that the model has never seen, then the model is
said to be overfit.

Perhaps the most elementary mistake in predictive analytics is to
overfit your model to the training data, only to see it later perform
miserably on the testing set.

In predictive analytics, data sets are often divided into two sets:

I Training The set of data on which you build your model
I Testing Once your model is built, you test it by evaluating it

against data that it has not previously seen.

Training vs testing

I Randomly divide the data set into a training set and a testing
set

library(dplyr)
set.seed(1)
train <- primary %>% sample_frac(size = 0.8)
test <- primary %>% setdiff(train)

Check that there is no overlap between the two data sets:

nrow(intersect(train,test))

[1] 0

I Build models on training data

mod1 <- rpart(form2, data = train,
control = rpart.control(cp = 0.005))

mod2 <- rpart(form2 , data = train,
control = rpart.control(cp = 0.0001))

I Evaluate the misclassification rate on testing data

tibble(
model = c("1","2"),
testerror = c(mcr(test,mod1), mcr(test,mod2)),
trainerror = c(mcr(train,mod1), mcr(train,mod2)))

A tibble: 2 x 3
model testerror trainerror
<chr> <dbl> <dbl>
1 1 0.1851852 0.1595471
2 2 0.1893004 0.1101390

I It is possible that training error is small, but the test error is
large; an evidence of overfit

2. Logistic regression as a classifier

I A simple-minded understanding of logistic regression is to
predict y ∈ {0, 1} using x1, . . . , xp by a formula

y ∼ φ(x1, . . . , xp) = φ(β0 + β1x1 + . . .+ βpxp)

I In fact, a logistic regression model estimates the probability p
of y = 1, given the values of x .

I For prediction of y , we will round 0 ≤ p ≤ 1 to either 0 or 1.

Logistic regression
I Explanatory variables to an intermediate predictor z :

(x1, . . . , xp)→ z = β0 + β1x1 + . . .+ βpxp

I z to estimated probability p:
p = φ(z)

I Round p to either 0 or 1 to predict y (or classify into “0” or
“1”)

Figure 2:

Example: Logistic regression

I Use glmnet package by Friedman, Hastie, Simon, Qian and
Tibshirani to numerically compute the fitted coefficients (βs)
of the logistic regression.

I model.matrix() transforms the categorical variables in the
data into appropriate numeric variables (by creating dummy
variables if needed).

I Logistic regression is a special case of Generalized Linear
Models, where the response is binary (Clinton vs Obama, in
this case). To indicate this, in the argument of glmnet(), we
specify family = "binomial".

library(glmnet)
form <- as.formula(

"winner ~ AFprop + region + pres04winner")
predictors <- model.matrix(form, data = train)
fit1 <- glmnet(predictors, train$winner,

family = "binomial",
lambda = 0)

I We will discuss the argument lambda = 0 shortly. Ignore for
now.

Logistic regression fitted to primary data
fit1$beta

6 x 1 sparse Matrix of class "dgCMatrix"
s0
(Intercept) .
AFprop 0.1040414
regionNE -1.1548498
regionS -1.6667265
regionW 1.0794071
pres04winnerkerry 0.2250285

In the print-out above, ignore the first two lines. They are related to
the numerical problem of efficiently handling the fitted values.

I This logistic model gives the testing misclassification rate of
0.261316872427984.

Regularized logistic regression

A regularized logistic regression finds the values of β’s by
minimizing the following:

Variance + λBias

This is often referred to as “Loss + Penalty”. The latter is correct,
and the former is a bit misleading, but let us focus on the idea for
now.

Variance–Bias trade-off
I Ordinary logistic regression minimizes the “variance”
I Regularized logistic regression introduced a “bias” in hope for

minimizing the total error

Figure 3:

Elastic Net logistic regression

I the “Variance” is in fact a negative goodness-of-fit measure:

GF (β) = −
[
1
N

N∑
i=1

yi · (β0 + xT
i β)− log(1 + e(β0+xT

i β))
]

I the “Bias” is in fact the size of β:

Size(β) =
[
(1− α)||β||22/2 + α||β||1

]
Elastic Net logistic regression amounts to the optimization of the
form:

min
(β0,β)∈Rp+1

−GF (β) + λSize(β)

What is λ?
I In the regularized regression, λ is called a tuning parameter:

That is, the result of analysis is tunable by changing the
value of λ.

I Large λ forces to set many β equal to 0:

fit2 <- glmnet(predictors, train$winner,
family = "binomial", lambda = 0.05) # lambda > 0

fit2$beta

6 x 1 sparse Matrix of class "dgCMatrix"
s0
(Intercept) .
AFprop 0.04864433
regionNE .
regionS -0.49085299
regionW 0.70316716
pres04winnerkerry .

Classification by regularized logistic regression

I The question of which variables to model is now replaced by
how to choose a value of λ?

lambda Testing Misclassification Rate

0 (Ordinary logistic regression) 0.261316872427984
0.05 (Regularized logistic regression) 0.253086419753086

Model evaluation 2: Cross-validation

I So far, we set aside 80% of the observations to use as a
training set, but held back another 20% for testing.

I Another approach is cross-validation.
I The idea of cross-validation is similar to that of bootstrap:

Repeat the train-testing subsampling K times.

K -fold cross validation

I To perform a 2-fold cross-validation:

1. Randomly split your data (by rows) into two data sets with the
same number of observations. Call them X1 and X2.

2. Build your model on the data in X1, and then run the data in
X2 through your model. How well does it perform? Just
because your model performs well on X1 (this is known as
in-sample testing), does not imply that it will perform as well
on the data in X2 (out-of-sample testing).

3. Now reverse the roles of X1 and X2, so that the data in X2 is
used for training, and the data in X1 is used for testing.

I Typically K is chosen to be 10, not 2.

Cross-validation of model fit against λ

I The package glmnet provides a handy cross-validation
function cv.glmnet().

I In the argument of cv.glmnet(), the option type =
"class" is used to specify that the misclassification error is
used as a measure of comparison.

predictors <-
model.matrix(form, data = primary) # use whole data

cv.fit <-
cv.glmnet(predictors, primary$winner,

family = "binomial", type = "class")

plot(cv.fit)

−7 −6 −5 −4 −3 −2

0.
30

0.
35

0.
40

0.
45

log(Lambda)

M
is

cl
as

si
fic

at
io

n
E

rr
or

5 5 5 5 5 5 5 5 5 5 5 5 4 3 3 3 2 1 1

Summary: Classification and model evaluation

I Two popular classification methods: Decision tree, regularized
logistic regression

I Both methods are tunable:
I In decision tree, model complexity = the level of tree
I In logistic regression, choice of lambda = variable selection

I To “tune” the tuning parameters, and to assess the fitted
model, we use partitioned data: Training-Testing split or
cross-validation

I Choice between decision tree and logistic regression can be
similarly using the data.

Take away message

We have seen the tip of the iceberg. However, the idea is universal:

I Variance-bias trade off
I Complex models: small bias, large variance
I Simple models: large bias, small variance

I Compete for a goodness-of-fit measure (e.g. misclassification
rate)

I Never use the same data for fitting and assessment

