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What Exactly is R Shiny?

The technical definition straight from R:

Definition

Shiny is an R package that makes it easy to build interactive web apps
straight from R. You can host standalone apps on a webpage or embed
them in R Markdown documents or build dashboards. You can also extend
your Shiny apps with CSS themes, htmlwidgets, and JavaScript actions.
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What Exactly is R Shiny?

Simply put:

1 Shiny makes many kinds of interactive apps

2 Apps can be customized and published

3 Multiple functions can be added

4 If you can imagine it, you can make it.

But what makes Shiny work?
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What Drives R Shiny?

All Shiny creations must come from a computer running R (Shiny is an R
package after all). Because of this, all Shiny apps can be housed in R or R
Studio like it was just another code. Every application must have 4
components in order for Shiny to work:

1 The library(shiny)

2 The user interface definition ui

3 The server definition

4 The shinyApp declaration

The above, when implemented, create the most basic of apps, which we
will see in the Hello World example.
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Hello World Example

Our first app will be a friendly greeting called ”Hello World”, which is
typically the example used for the most simple programs in many
programming languages.
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The User Interface

The user interface defines what our application page will look like. Though
Shiny has many kinds of page styles, we will focus on the most versatile
one called fluidPage(). We will see several options for ui in the following
examples.

What can this ”fluid page” do for you?

1 Set up panels or ”place holders” for titles, sidebar options, and plots
2 Allow for user input of any kind

Numeric input can come from sliders
Text input can be entered directly or selected in a drop down menu
Date inputs can be selected from a calendar
etc.

3 Allow users to define ”Action Buttons” to force specific application
events, e.g. ”Exit” closes the app.
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The Server

We must define servers using a function command in R, and tell R what to
do with the input and the output. So all servers will have the form

server = function(input, output){. . . }

Server functions:

Houses all the program logic

Uses Reactive() to update the results based on text input

Uses RenderPlot() to update all plot output based off the input

Defines what should happen when buttons are pressed
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Scatter Plots of Anderson’s Iris Data

Suppose we wanted to visualize the iris dataset by producing multiple
scatter plots of all pairs of quantitative variables. Instead of changing the
code over and over again, we can create a Shiny App to change the input
for us and react by updating the scatter plots.
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Extending Functionality: Looking up Stocks

We will create a Shiny App that will look up whatever stock index we
desire, granted we know what the symbol for that stock is, and plot the
stock’s prices for a user defined date range.

This app uses library(quantmod) which lets us pull up-to-date stock prices
directly from google or yahoo finance. This app also uses a special type of
plot called chart series to make the output look more professional.
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But this is statistics, right?

What if wanted to do something a little more complicated like see how the
choice of a conjugate prior effects the posterior distribution? First we need
to understand what I just said and give a brief introduction to Bayesian
Statistics.
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Theorem 1

Theorem (Normal Mean Conjugate Prior)

Let X1,X2, . . . ,Xn be a random sample from a normal distribution with
unknown mean θ and known variance σ2 > 0. Suppose the prior
distribution of θ is selected to be another normal distribution with mean
µ0 and variance ν20 . Then the posterior distribution of θ given Xi = xi , for
i = 1, . . . , n, is also a normal distribution with mean µ1 and variance ν21
where

µ1 =
σ2µ0 + nν20X n

σ2 + nν20
and ν21 =

σ2ν20
σ2 + nν20
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Likelihood

Since X1,X2, . . . ,Xn is a random sample from a normal distribution with
mean θ and variance σ2; the likelihood function of the data, f (x |θ), will
have the form

f (x |θ) =
n∏

i=1

(
1

2πσ2

) 1
2

exp

{
− 1

2σ2
(xi − θ)2

}

=

(
1

2πσ2

) n
2

exp

{
− 1

2σ2

n∑
i=1

(xi − θ)2
}

Removing all proportionality constants, i.e. all the terms that are not
dependent on θ, this relation simplifies to

f (x |θ) ∝ exp

{
− 1

2σ2

n∑
i=1

(xi − θ)2
}
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Complete the Square

The likelihood can be further simplified by completing the squares.
Applying this principle to

∑n
i=1 (xi − θ)2 with ai = 1, bi = xi , y = θ and

c = 0 then,

∑n
i=1 (xi − θ)2 = (

∑n
i=1 1)

[
θ −

∑n
i=1 xi−0∑n

i=1 1

]2
+
∑n

i=1 1
(
xi −

∑n
i=1 xi∑n
i=1 1

)2
= n

(
θ − 1

n

∑n
i=1 xi

)2
+
∑n

i=1

(
xi − 1

n

∑n
i=1 xi

)2
= n (θ − xn)2 +

∑n
i=1 (xi − xn)2
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Likelihood and Prior

Finally using the equation from the last slide, the likelihood function can
be expressed as

f (x |θ) ∝ exp

{
− 1

2σ2
n(θ − xn)2

}
.

The selected prior distribution was a normal distribution with mean µ0 and
variance ν20 , which has the form

ξ(θ) ∝ exp

{
− 1

2ν20
(θ − µ0)2

}
.
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Posterior

The posterior, ξ(θ|x), must satisfy the relation

ξ(θ|x) ∝ f (x |θ)ξ(θ) ∝ exp

{
−1

2

[
n

σ2
(θ − xn)2 +

1

ν20
(θ − µ0)2

]}
.

Expanding the equation over a common denominator yields

ξ(θ|x) ∝ exp

{
−1

2

[
nν20(θ2 − 2θxn + x2n) + σ2(θ2 − 2θµ0 + µ20)

σ2ν20

]}

ξ(θ|x) ∝ exp

{
−1

2

[
θ2(σ2 + nν20)− 2θ(σ2µ0 + nν20xn)

σ2ν20

]}
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Creating a Recognizable Form

To get the previous expression of the posterior into a recognizable form,
the following steps are taken:

ξ(θ|x) ∝ exp
{
−1

2

[
1/(σ2+nν20 )

1/(σ2+nν20 )

(
θ2(σ2+nν20 )−2θ(σ2µ0+nν20xn)

σ2ν20

)]}

= exp

−1
2

 θ2−2θ
σ2µ0+nν20 xn

σ2+nν2
0

σ2ν2
0

σ2+nν2
0


∝ exp

−1
2

(θ−σ2µ0+nν20 xn

σ2+nν2
0

)2

σ2ν2
0

σ2+nν2
0
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Remark

Why is

exp

−1

2

θ2 − 2θ
σ2µ0+nν20xn
σ2+nν20

σ2ν20
σ2+nν20

 ∝ exp

−1

2


(
θ − σ2µ0+nν20xn

σ2+nν20

)2
σ2ν20

σ2+nν20


?

Consider the case where we are interested in a parameter ψ and there is
some constant c that does not depend on ψ. Then,

(ψ − c)2 = ψ2 − 2ψc + c2 ∝ ψ2 − 2ψc

So let ψ = θ and let c =
σ2µ0+nν20xn
σ2+nν20

.
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Reparameterize and Identify the Distribution

Let µ1 =
σ2µ0+nν20X n

σ2+nν20
and ν21 =

σ2ν20
σ2+nν20

. But then,

ξ(θ|x) ∝ exp

{
− 1

2ν21
(θ − µ1)2

}
which is recognizable as a normal distribution with mean µ1 and variance
ν21 , thus proving the theorem.
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Definitions

Definition (Precision)

The precision φ of a normal distribution with mean µ and variance σ2 is
defined as the reciprocal of the variance; that is, φ = 1/σ2.

Definition (Normal p.d.f using precision)

If a random variable has a normal distribution with mean µ and precision
φ, then its p.d.f is given by

f (x |µ, φ) =

(
φ

2π

) 1
2

exp

{
−φ

2
(x − µ)2

}
for −∞ < x <∞
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Theorem 2

Theorem (Gamma Precision Conjugate Prior)

Let X1, . . . ,Xn be a random sample from a normal distribution with known
mean µ and unknown precision φ. Suppose the prior distribution on φ is
selected to be Gamma(a, b). Then the posterior distribution of φ given
Xi = xi , for i = 1, . . . , n, is also a Gamma distribution with parameters α
and β for

α = a +
n

2
and β = b +

1

2

n∑
i=1

(xi − µ)2
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Likelihood and Prior

The likelihood function of the data, f (x |φ), will be

f (x |φ) =
n∏

i=1

(
φ

2π

) 1
2

exp

{
−φ

2
(xi − µ)2

}

=

(
φ

2π

) n
2

exp

{
−φ

2

n∑
i=1

(xi − µ)2

}

∝ φn/2 exp

{
−φ

(
1

2

n∑
i=1

(xi − µ)2

)}
.

The selected prior distribution was a Gamma(a, b), which has the form

ξ(φ) =
ba

Γ(a)
φa−1 exp {−φb} ∝ φa−1 exp {−φb} .
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Posterior

Thus, it follows that the posterior ξ(φ|x) must satisfy the relation

ξ(φ|x) ∝ f (x |φ)ξ(φ)

∝ φn/2 exp
{
−φ
(
1
2

∑n
i=1(xi − µ)2

)}
φa−1 exp {−φb}

= φ(a+n/2)−1 exp
{
−φ
(
b + 1

2

∑n
i=1(xi − µ)2

)}
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Play Name that Distribution

Letting α = a + n/2 and β = b + 1
2

∑n
i=1(xi − µ)2, makes the posterior

distribution have the form

ξ(φ|x) ∝ φα−1 exp {−φβ}

which is recognizable as a Gamma distribution with parameters α and β,
hence proving the theorem.
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Simulation

A R Shiny App was created to show the effect on how the choice of
sample size, prior mean, and prior variance effect the posterior distribution
for the normal mean normal conjugate prior.
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Questions?

The End
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